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Abstract

Theta representations appear globally as the residues of Eisenstein series on covers of
groups; their unramified local constituents may be characterized as subquotients of
certain principal series. A cuspidal theta representation is one which is equal to the
local twisted theta representation at almost all places. Cuspidal theta representations
are known to exist but only for covers of GLj , j ≤ 3. In this paper we establish necessary
conditions for the existence of cuspidal theta representations on the r-fold metaplectic
cover of the general linear group of arbitrary rank.
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1 Introduction andmain results
Let r ≥ 2, let F be a number field containing a full set of r-th roots of unity μr , and let A

denote the adeles of F . For n ≥ 2, let GL(r)n (A) denote an r-fold cover of the general linear
group, as in Kazhdan-Patterson [12]. This group is a cover of GLn(A) with fibers given by
μr and multiplication defined by a certain two-cocycle σ . The group GL(r)n (A) is obtained
by piecing together local metaplectic groups GL(r)n (Fν) over the places ν of F [the group
GL(r)n (Fν) is, however, not the Fν-points of an algebraic group]. Following Takeda [17], we
shall use the local cocycle given by Banks-Levy-Sepanski [1], which is block-compatible,
and adjust it by a coboundary to construct a global cocycle. Kazhdan and Patterson work
with a different cocycle thanTakeda but the groups are isomorphic. The choice of twisting
parameter c in the sense of [12] is arbitrary.
Let �

(r)
n denote the theta representation on the group GL(r)n (A). This representation

was defined in Kazhdan-Patterson [12] using the residues of Eisenstein series, as fol-
lows. Let Bn be the standard Borel subgroup of GLn, and Tn ⊆ Bn denote the maximal
torus of GLn. Let s be a multi-complex variable, and define the character μs of Tn(A) by
μs(diag(a1, . . . , an)) = ∏

i |ai|si . If H is an algebraic subgroup of GLn, let H (r)(Fν) (resp.
H (r)(A)) denote the full inverse image of H (Fν) (resp. H (A)) in GL(r)n (Fν) (resp. GL(r)n (A)).
Let Z(T (r)

n (A)) denote the center of T (r)
n (A). Let ωs be a genuine character of Z(T (r)

n (A))
such that ωs = μs ◦ p on {(tr , 1) | t ∈ Tn(A)}, where p is the canonical projection from
T (r)
n (A) to Tn(A). Choose a maximal abelian subgroup A of T (r)

n (A), extend this character
to a character of A, and induce it to T (r)

n (A). Then extend trivially to B(r)
n (A) using the
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canonical projection from B(r)
n (A) to T (r)

n (A), and further induce it to the group GL(r)n (A).
We abuse the notation slightly and write this induced representation IndGL

(r)
n (A)

B(r)n (A)
μs. It fol-

lows from [12] that this construction is independent of the choice ofA and of the extension
of ωs. Forming the Eisenstein series E(g, s) attached to this induced representation, it fol-
lows from [12] that when μs = δ

r+1
2r

Bn (with δBn the modular function of Bn), this Eisenstein
series has a nonzero residue representation. This is the representation �

(r)
n .

Let ν be a finite place for F such that |r|ν = 1. Defining similar groups over the local
field Fν , it follows from [12] that the local induced representation IndGL

(r)
n (Fν )

B(r)n (Fν )
δ
r+1
2r

Bn has a

unique unramified subquotient which we again denote by �
(r)
n . This representation is

also the unique unramified subrepresentation of IndGL
(r)
n (Fν )

B(r)n (Fν )
δ
r−1
2r

Bn . If χν denotes an unram-

ified character of F×
ν , then the twisted induced representation IndGL

(r)
n (Fν )

B(r)n (Fν )
χ

1
r
ν δ

r−1
2r

Bn is also

reducible, and one can define the local twisted theta representation �
(r)
n,χν as the unique

unramified subrepresentation. Here the twisting means that the induction is from a gen-
uine character of the group Z

(
T (r)
n (Fν)

)
such that

χ
1
r
ν δ

r−1
2r

Bn ((tr , 1)) = χν(det t) δ
r−1
2

Bn (t) for all t ∈ Tn(Fν).

The group {(tr , ζ ) | t ∈ Tn(Fν), ζ ∈ μr} is in general a proper subgroup of Z
(
T (r)
n (Fν)

)
,

so this condition does not uniquely specify the twisting character χ
1
r
ν . Since the local

calculations below are independent of this choice, we do not indicate it in the notation.
Returning to the global case, we have

Definition 1 An automorphic representation π of GL(r)n (A) is called a theta representa-
tion if for almost all places ν there are unramified characters χν such that the unramified
constituent of π is equal to �

(r)
n,χν . If π is cuspidal, we say that π is a cuspidal theta

representation.

The interesting cases of such theta representations are when the local characters χν are
the unramified constituents of a global automorphic character χ . We shall write �

(r)
n,χ for

such a representation.
Examples of such representations may be constructed as follows. Suppose that χ = χ r

1
for some global characterχ1. Then one can construct theta representations�

(r)
n,χ bymeans

of residues of Eisenstein series, by [12] (the case χ = 1 was described above). However,
these representations are never cuspidal.
InFlicker [6], a classificationof all theta representations for the coveringgroupsGL(r)2 (A),

r ≥ 2, with c = 0 in the sense of [12] was given using the trace formula. The case n = r = 2
was also studied by Gelbart and Piatetski-Shapiro [7]. When n = r = 3, Patterson and
Piatetski-Shapiro [15] constructed a cuspidal theta representation�

(r)
n,χ for any χ which is

not of the form χ3
1 , again for the cover with c = 0. This construction applied the converse

theorem.This approachwasusedwhenn = r = 4 byWang [18], and resultswere obtained
subject to certain technical hypotheses. No other examples of such representations are
known.
The basic problem is then to understand for what values of r and n, and for what

characters χ , there exists a cuspidal theta representation �
(r)
n,χ . We shall give a necessary
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condition for the existence of such a representation. However, we do not determine
whether or not these conditions are sufficient.
First, if r < n such cuspidal representations do not exist. This follows trivially since

every cuspidal automorphic representation of GL(r)n (A) must be generic, but the local
unramified representation�

(r)
n,χν is not generic if r < n. Hence we may assume that r ≥ n.

Our main result is

Theorem 1 Fix a natural number r, and an automorphic character χ of GL1(A). Then
there is at most one natural number n such that there is a nonzero cuspidal theta represen-
tation �

(r)
n,χ . Moreover, if such n exists, then n divides r. If a cuspidal theta representation

�
(r)
n,χ exists for some n which divides r, n ≥ 3, then χ �= χ r

1 for any character χ1.

For n = 2 and twisting parameter c = 0, this result follows from [6]. This includes the
last assertion: if a cuspidal theta representation �

(r)
2,χ exists for some even r, then χ �= χ r

1
for any character χ1. In [6], a character χ such that χ �= χ r

1 is called an odd character for
the number r.
To establish the Theorem, we need to prove three things. First that n divides r. We

prove this in Sect. 3. Second, the uniqueness property of the number n. We prove this
in Sect. 4. Then in Sect. 5 we prove the condition on the character χ when n ≥ 3.
The basic tool in these sections is the study of Eisenstein series obtained by inducing
copies of cuspidal theta representations, and their residues. There is a unipotent orbit
attached to the automorphic representationgeneratedby these residues, andwedetermine
this. However, if any of the conditions of the Theorem are violated then this leads to a
contradiction. For example, if there are two cuspidal theta representations�

(r)
m,χ and�

(r)
n,χ

attached to the same character χ with m < n, a suitable Eisenstein series obtained by
mixing them in the inducing data has a residue. The Fourier coefficient of this residue
attached to its unipotent orbit can be analyzed in two different ways, with contradictory
vanishing properties. The contradictory properties are due to a lack of symmetry for this
representation under the outer automorphism of the Dynkin diagram, which takes the
relevant parabolic used inmaking the induction to its associated parabolic, in terms of the
constant terms that it supports.
We will establish Theorem 1 using residues of Eisenstein series, but parts of it follows

easily if one accepts Conjecture 1.2, which is a local statement, in Bump and Friedberg [3].
To see this, suppose that for some character χ , there is a cuspidal theta representation
�

(r)
r,χ defined on the group GL(r)r (A). Assume that for some m < r, one can define a

theta representation �
(r)
m,χ which need not be cuspidal, but corresponding to the same

character χ . Then, assuming Conjecture 1.2 in [3], the following identity follows from [3],
Proposition 2.1

∫

GLm(F )\GLm(A)
θ
(r)
r,χ

(
g

Ir−m

)

θ (r)m,χ (g) |detg |s−
r−m
2 dg

= ZS(χ , s)LS
(

rs − r − 1
2

,χ−1 ⊗ �(r)
m,χ

)

. (1)

Here θ
(r)
r,χ is a vector in the space of �

(r)
r,χ , and similarly for θ

(r)
m,χ . Also, S is a set of places,

including the archimedean places, such that outside of S all data is unramified. Finally, LS

is the partial L-function interpreted as in [3], and ZS(χ , s) is a product of local integrals
defined on the places in S.
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Now from the definition of the partial L-function, it follows that this term contributes
a finite product of partial zeta functions to the right-hand-side of (1). Hence for suitable
s the term LS

(
rs − r−1

2 ,χ−1 ⊗ �
(r)
m,χ

)
has a simple pole. Since the integrals involved in

ZS(χ , s) are all Whittaker type integrals, it is not hard to prove that given any complex
number s, there is a choice of data such that ZS(χ , s) is not zero at s. Hence, for suitable
s and suitable data, the right hand side of (1) has a simple pole. But the left hand side
of (1) is holomorphic for all s since �

(r)
r,χ is cuspidal. This is a contradiction, and hence

for all m < r the group GL(r)m (A) has no cuspidal theta representation associated with χ .
Moreover, if χ = χ r

1 for some character χ1, then for anym < r, we can consider the theta
representation �

(r)
m,χ as constructed in [12]. Since the left-hand side of (1) still represents

a holomorphic function even if �(r)
m,χ is not cuspidal while the right-hand side has a pole,

we once again derive a contradiction. Hence χ �= χ r
1 .

We thank Erez Lapid for helpful conversations.

2 Residues of Eisenstein series
Given l natural numbers n1 ≥ n2 ≥ · · · ≥ nl > 0, let �

(r)
ni,χ denote theta representations

attached to a fixed character χ . Let k = n1 + · · · + nl , so λ := (n1, n2, . . . , nl) is a partition
of k . Let Pn1 ,...,nl be the standard parabolic subgroup of GLk whose Levi part Mn1 ,...,nl is
GLn1 × · · · × GLnl embedded diagonally

(g1, g2, . . . , gl) 	→ diag(g1, g2, . . . , gl) : gj ∈ GLnj ,

and let Un1 ,...,nl denote the unipotent radical of Pn1 ,...,nl .
Let s = (s1, . . . , sl) be a multiple complex variable. Then one may form an

Eisenstein series E(r)
λ,χ (g, s) on the group GL(r)k (A) attached to the representations

(
�

(r)
n1 ,χ ,�

(r)
n2 ,χ , . . . ,�

(r)
nl ,χ

)
by a variant of standard parabolic induction. Once one has a

representation of M(r)
n1 ,...,nl (A) the construction is the standard ‘averaging’ one (see, for

example, Mœglin-Waldspurger [13], II.1.5); we frequently suppress the dependence of
this series on the test vector used in the averaging from the notation for the Eisenstein
series. However, since the inverse images of the groups GLni (A) in M(r)

n1 ,...,nl (A) do not
commute, one must restrict to a smaller subgroup and then induce or extend from that.
Let

GLnj,0(A) =
{
g ∈ GLnj (A) | det g ∈ (A×)rF×}

.

Then the inverse images of these groups in M(r)
n1 ,...,nl (A) commute, and the group S that

they generate is thus isomorphic to the fibered direct product of the GL(r)nj ,0(A) over μr .

Accordingly, one first restricts each representation �
(r)
ni,χ |det(·)|si to GL(r)ni,0(A), and takes

the usual tensor product to obtain a genuine representation of S. One may then proceed
to extend this representation to M(r)

n1 ,...,nl (A), either by extending functions by zero (as
in Suzuki [16], Section 8), by inducing to M(r)

n1 ,...,nl (A) (as in Brubaker and Friedberg [2],
though that paper is written in the language of S-integers as a substitute for the adeles), or
by first extending to a larger subgroup ofM(r)

n1 ,...,nl (A), under certain hypotheses, and then
inducing from that subgroup toM(r)

n1 ,...,nl (A) (as in Takeda [17]). Our main computations
will take place in the subgroup generated by S and by unipotent subgroups, which split
via the trivial section u 	→ (u, 1), hence any of these (slightly different) foundations are
sufficient for the arguments given here. We will sometimes abuse the notation (as we
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already did in the case of induction from the Borel subgroup) and describe E(r)
λ,χ (g, s) as the

Eisenstein series attached to the induced representation

IndGL
(r)
k (A)

P(r)
n1 ,...,nl (A)

(
�(r)

n1 ,χ |det(·)|s1 ⊗ �(r)
n2 ,χ |det(·)|s2 ⊗ · · · ⊗ �(r)

nl ,χ |det(·)|sl
)
. (2)

As a representation, this induced space is the vector space spanned by the functions
E(r)

λ,χ (g, s) as one varies over all test vectors.
The Eisenstein series E(r)

λ,χ (g, s) has a simple pole, similarly to the case ni = 1 for all i
which is described in Sect. 1. Indeed, by Definition 1, the unramified constituent at a place

ν of the representation �
(r)
ni,χ is a quotient of IndGL

(r)
ni (Fν )

B(r)ni (Fν )
χ

1
r
ν δ

r+1
2r

Bni
, where χ = ∏

ν χν . This

means that the unramified constituent of the induced representation (2) is an induced

representation of the form IndGL
(r)
k (Fν )

B(r)k (Fν )
χ

1
r
ν μs where μs is a genuine character of the group

Z
(
T (r)
k (Fν)

)
defined as follows. Let t = diag(A1, . . . , Al) where each Ai is a diagonal

matrix in GLni (Fν) which consists of r-th powers. Let t̃ = (t, ζ ) ∈ Z
(
T (r)
k (Fν)

)
. Then we

define

μs(t̃) = ζ δ
r+1
2r

Bn1
(A1) . . . δ

r+1
2r

Bnl
(Al)

∏

i
|Ai|si .

Arguing as in [12], one sees that the Eisenstein series E(r)
λ,χ (g, s) has a simple pole at the

point μs = δ
r+1
2r

Bk .
We remark that the existence of this pole does not depend on whether some of the

representations �
(r)
ni,χ are cuspidal or not. A similar construction with all of the represen-

tations being cuspidal was studied by Suzuki [16], Sections 8 and 9. In that reference, the
author also assumes that the Shimura lifts of the cuspidal representations in question are
also cuspidal. In our case this does not happen, but the argument about the existence of
the pole is the same.
Let L(r)

k,λ,χ denote the residue representation of the above Eisenstein series at the
above point. Then the construction of the representation L(r)

k,λ,χ is inductive in the
following sense. For 1 ≤ j ≤ l let λj be a partition of nj . Form the representa-
tions L(r)

nj ,λj ,χ . Then we can form the Eisenstein series attached to the representations

(ηsL(r)
n1 ,λ1 ,χ , ηsL

(r)
n2 ,λ2 ,χ , . . . , ηsL

(r)
nl ,λl ,χ ) where ηs is an unramified character of Pn1 ,...,nl . We

shall denote this Eisenstein series by E(r)
λ1 ,...,λl ,χ (g, s). As in the above, and also as in Sect. 1,

we deduce that this Eisenstein series has a simple pole at ηs = δ
r+1
2r

Pn1 ,...,nl
, and the represen-

tation generated by the residues is L(r)
k,λ,χ .

3 The divisibility condition
Suppose that �

(r)
n,χ is a cuspidal theta representation defined on GL(r)n (A) and that n does

not divide r. We shall derive a contradiction. First, we construct the residue representa-
tion L(r)

nl,λ,χ on GL(r)nl (A) where l is a natural number and λ = (nl). For convenience we
sometimes omit λ from the notation, writing L(r)

nl,χ instead of L(r)
nl,λ,χ . Thus L(r)

n,χ = �
(r)
n,χ .

In general, if ϕ is an automorphic function on a group H (A) and U is any unipotent
subgroup of H , we write ϕU for the constant term of ϕ along U

ϕU (h) =
∫

U (F )\U (A)

ϕ(uh) du.
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Also, if ψU is a character of U (F )\U (A), we write

ϕU,ψU (h) =
∫

U (F )\U (A)

ϕ(uh)ψU (u) du.

We shall be concerned with the case that U = U(l−m)n,mn, the unipotent radical of the
maximal parabolic subgroup ofGLnl whose Levi part isGL(l−m)n×GLmn, with 1 ≤ m < l.
We start with the following

Proposition 1 Fix m, 1 ≤ m < l, let P = P(l−m)n,mn and U = U(l−m)n,mn.

(i) Let ϕ
(r)
nl,χ be a function in the space of L(r)

nl,χ . Then there are functions ϕ
(r)
(l−m)n,χ in the

space of L(r)
(l−m)n,χ and ϕ

(r)
mn,χ in the space of L(r)

mn,χ such that

(ϕ(r)
nl,χ )

U (t(v1, v2)) = δ
r−1
2r

P (t)ϕ(r)
(l−m)n,χ (v1)ϕ

(r)
mn,χ (v2) (3)

for all unipotent elements v1 ∈ GL(l−m)n(A) and v2 ∈ GLmn(A) and all t which are
r-th powers and in the center of the Levi subgroup of P.

(ii) Let V1 (resp. V2) be the group of upper triangular unipotent elements in GL(l−m)n(A)
(resp. GLmn(A)), and for i = 1, 2, let ψVi be characters of Vi(F )\Vi(A). Then the
integral

∫

V1(F )\V1(A)

∫

V2(F )\V2(A)

(ϕ(r)
nl,χ )

U ((v1, v2))ψV1 (v1)ψV2 (v2) dv1 dv2

is zero for all ϕ(r)
nl,χ in the space of L(r)

nl,χ if (ϕ(r)
(l−m)n,χ )

V1 ,ψV1 or (ϕ(r)
mn,χ )V2 ,ψV2 is zero for

all functions ϕ
(r)
(l−m)n,χ in the space of L(r)

(l−m)n,χ or all ϕ(r)
mn,χ in the space of L(r)

mn,χ .

When r = 1 and �
(r)
n,χ is a cuspidal representation of GLn(A), a similar statement is

given in Offen-Sayag [14], Lemma 2.4 and Jiang-Liu [11], Lemma 4.2.

Proof The proof is based on a standard argument using unfolding of the Eisenstein series,
and closely follows [11,14], and [13] II.1.7. We sketch it briefly. Let E(r)

nl,χ (g, s) denote the
Eisenstein series attached to the induced representation

IndGL
(r)
nl (A)

P(r)
mn,(l−m)n(A)

(
L(r)
mn,χ ⊗ L(r)

(l−m)n,χ

)
δsPmn,(l−m)n

.

Then, as explained in Sect. 2 above,L(r)
nl,χ is the residue of this Eisenstein series at s = r+1

2r .
Consider the constant term E(r),U

nl,χ (g, s) for Re(s) large. Unfolding this constant term as
in [4,11,13,14], we obtain a sum of Eisenstein series (and degenerate Eisenstein series),
where the sum is over Weyl elements that give a complete set of representatives for the
double cosets Pmn,(l−m)n(F )\GLnl(F )/P(l−m)n,mn(F ) [(see for example Bump–Friedberg–
Ginzburg [4], Eq. (1.2)]. Let

w0 =
(

Imn
I(l−m)n

)

.

Then as in the references above, for everyWeyl element not equal tow0 which contributes
a nonzero term, the corresponding Eisenstein series is holomorphic at s = r+1

2r . The
contribution from w0 is just the intertwining operator Mw0 ,s which clearly has a simple
pole at s = r+1

2r , and as a function of (v1, v2) is as in (3).
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The claim about the dependence of (ϕ(r)
nl,χ )

U (t(v1, v2)) on t follows since L(r)
nl,χ is a sub-

representation of the induced representation

IndGL
(r)
nl (A)

P(r)
mn,(l−m)n(A)

(
L(r)
mn,χ ⊗ L(r)

(l−m)n,χ

)
δsPmn,(l−m)n

at the point s = r−1
2r . ��

We next give an application of Proposition 1.

Lemma 1 The representation L(r)
nl,χ is square integrable.

Proof We use Jacquet’s criterion as stated in [13], the Lemma in I.4.11. Note that L(r)
nl,χ

consists of automorphic forms so the Lemma there is applicable. LetU denote a unipotent
radical of a maximal parabolic subgroup P of GLnl . Let U−

n,...,n = w̃Un,...,nw̃−1. Here w̃ is
the longest Weyl element in GLnl .
Suppose first thatU is such that there is noWeyl element w ofGLk such thatwUw−1 ⊂

U−
n,...,n. Then a standard unfolding argument implies that the constant term

∫

U (F )\U (A)

E(r)
nl,χ (ug, s) du

is zero for all choices of data.
On the other hand, if U = U(l−m)n,mn for some m, then it follows from Proposition 1,

part (i), that for all t in the center of P = P(l−m)n,mn we obtain the exponent δ
r−1
2r

P = δ
−1
2r
P δ

1
2
B .

Here B is the Borel subgroup of GLln. Lemma 1 follows. ��
The above Proposition and Lemma can be extended to the general case. That is, both

statements hold for the representation L(r)
k,λ,χ as well.

Since we are in the case r ≥ n, the representation L(r)
n,χ = �

(r)
n,χ is clearly generic. On

the other hand if l is chosen so that nl > r, then L(r)
nl,χ is not generic. Hence, there is a

minimal natural number, which we denote by a, such that L(r)
an,χ is generic, but L(r)

(a+1)n,χ
is not. Notice that since n does not divide r then an < r. Let b be the smallest natural
number so that abn > r.
For the proof of the next Proposition we need to modify our construction. Let E (r)

an,χ
denote an irreducible generic summand of the representationL(r)

an,χ . The existence of such
a summand follows fromLemma1 and from the assumption thatL(r)

an,χ is generic. Forming
the Eisenstein series on GL(r)nl (A) attached to (E (r)

an,χ , E (r)
an,χ , . . . , E (r)

an,χ )ηs then it follows as

in the previous section that this series has a simple pole at the point ηs = δ
r+1
2r

Pn,...,n . Denote
the residue representation by E (r)

abn,χ . It is clear from this construction that Proposition 1
holds if we replace the representation L(r)

ln,χ with the representation E (r)
ln,χ .

Given an automorphic representation π defined on a reductive group H (A), let O(π )
be its set of unipotent orbits as defined in Ginzburg [9] (For information about unipotent
orbits see Collingwood and McGovern [5]). A unipotent orbitO is in the setO(π ) if first,
π has no nonzero Fourier coefficients attached to any unipotent orbit which is greater
than O and second, π has a nonzero Fourier coefficient corresponding to the unipotent
orbitO. Since unipotent groups split in any covering group, this definition extends with-
out change to representations of metaplectic groups. Moreover, for the general linear
group the unipotent orbits are parametrized by partitions, a manifestation of the Jordan
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decomposition. If O(π ) consists of a single unipotent orbit parametrized by a partition λ

we writeO(π ) = λ. In our case, we have:

Proposition 2 If n � r, thenO
(
E (r)
abn,χ

)
= (

(an)b
)
.

Proof This proof is similar to Jiang and Liu [11]; see also the proof of Proposition 5.3 in
Ginzburg [9].
We need to prove two things. First, letO = (n1n2 . . . nr) be a partition of abn. Assume

that this partition is greater than or is not related to the partition
(
(an)b

)
. Then we need

to prove that any Fourier coefficient of E (r)
abn,χ associated with this partition is zero. As

explained in [9] at the beginning of the proof of Proposition 5.3, it is enough to prove that
the functions in E (r)

abn,χ have no nonzero Fourier coefficients associated with the partitions
(m1abn−m) for allm > an.
The proof of this statement about the Fourier coefficients is similar to [9,11]. In [9] this

was proved by local means, and this was replaced in [11] by a version of Proposition 1.
To indicate the approach, suppose that m is even. The case that m is odd is similar and
will be omitted. If m is even, then the Fourier coefficient associated with the unipotent
orbit (m1abn−m) is given as follows. Let Pm denote the parabolic subgroup ofGLabn whose
Levi part isGLm1 ×GLabn−m. We embed the Levi part inGLabn as all matrices of the form
diag(a1, . . . , am/2, h, b1, . . . , bm/2), with ai, bi ∈ GL1, h ∈ GLabn−m. Let V 0

m denote the
unipotent radical of Pm, and Vm denote the subgroup of V 0

m which consists of all matrices
v = (vi,j) such that vi,abn−m

2 +1 = 0 for all m
2 + 1 ≤ i ≤ abn − m

2 . Let ψVm denote the
character of Vm defined as follows. For v = (vi,j) ∈ Vm set

ψVm (v) = ψ

⎛

⎝vm
2 ,abn−m

2 +1 +
m/2−1∑

i=1

(
vi,i+1 + vabn−m

2 +i,abn−m
2 +i+1

)
⎞

⎠ .

Then, the Fourier coefficient corresponding to the partition (m1abn−m) is given by
∫

Vm(F )\Vm(A)

E(r)
abn,χ (v)ψVm (v) dv.

Let w1 denote the Weyl element of GLabn defined by

w1 =
⎛

⎜
⎝

Im
2

Im
2

Iabn−m

⎞

⎟
⎠ .

Conjugating by w1 and performing some Fourier expansions, one deduces that the van-
ishing of the above integral for all choices of data is equivalent to the vanishing of

∫

Um(F )\Um(A)

E(r)
abn,χ (u)ψUm (u) du (4)

for all choices of data. HereUm is the unipotent radical of the standard parabolic subgroup
of GLabn whose Levi part is GLm−1

1 × GLabn−m+1, with the Levi part embedded in GLabn
as diag(a1, . . . , am−1, h) (ai ∈ GL1, 1 ≤ i ≤ m − 1, and h ∈ GLabn−m+1), and ψUm is the
character

ψUm (u) = ψ(u1,2 + u2,3 + · · · + um−1,m).
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Note that when m = abn, the group Uabn is the maximal upper triangular unipotent
subgroup of GLabn.
Let α = (αi)m≤i≤abn−1 with αi ∈ {0, 1} for all i and define

ψUm,α(u) = ψ

⎛

⎝
m−1∑

i=1
ui,i+1 +

abn−1∑

i=m
αiui,i+1

⎞

⎠ .

Then performing Fourier expansions, one sees that the vanishing of the integral (4) is
equivalent to the vanishing of all the integrals

∫

Uabn(F )\Uabn(A)

E(r)
abn,χ (u)ψUm,α(u) du. (5)

If αi = 1 for all i, then the integral (5) is theWhittaker coefficient of E(r)
abn,χ which is zero.

If instead αi = 0 for some i, let k ≥ m be the first integer such that αi = 1 for allm ≤ i ≤ k
and αk+1 = 0. If k �= np for some natural number p, then the corresponding integral (5)
is zero. Indeed, since �

(r)
n,χ is a cuspidal representation, the constant term E(r),U

abn,χ (g, s) is
zero if U is not equal to U(ab−l)n,ln for some l. (Note that it is precisely at this point in the
argument that we use the cuspidality hypothesis.) On the other hand, if k = np, then it
follows from Proposition 1 that integral (5) is zero if the residue representation E (r)

np,χ is
not generic. But since np = k ≥ m > an, it follows from the definition of a that E (r)

np,χ is
indeednot generic. This completes the proof thatE (r)

abn,χ has nononzero Fourier coefficient
corresponding to any unipotent orbit which greater than or not related to

(
(an)b

)
.

The last step is to prove that E (r)
abn,χ has a nonzero Fourier coefficient corresponding to

the partition
(
(an)b

)
. This is proved similarly to [9] pp. 338–339; see also [11] and [14]. Let

E(r)
abn,χ be a vector in the space of E (r)

abn,χ . Then it follows from [9], p. 338, that the Fourier
coefficient of E(r)

abn,χ with respect to the orbit
(
(an)b

)
is given by the integral

f (h) =
∫

V (F )\V (A)

E(r)
abn,χ (vh)ψV (v) dv. (6)

Here we let the Vk,p be the unipotent subgroup of GLkp consisting of all matrices of the
from

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Ik X1,2 ∗ ∗ · · · ∗
Ik X2,3 ∗ · · · ∗

Ik X3,4 · · · ∗
Ik · · · ∗

. . . ∗
Ik

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(7)

with Ik appearing p times and each Xi,j a matrix of size k . The group V in the integral
(6) is the group Vk,p with k = b and p = an. Also, define a character ψVk,p on Vk,p by
ψVk,p (v) = ψ(tr(X1,2 + X2,3 + · · · + Xp−1,p)). Then the character ψV in (6) is ψVb,an .
Let Uan denote the maximal upper unipotent subgroup of GLan, and let U ′ = Uan ×

· · · × Uan where the group Uan appears b times. This group is embedded in GLanb as
(u1, . . . , ub) 	→ diag(u1, . . . , ub). Let ψU ′ be the character given by

ψU ′ (u′) = ψUan (u1) . . . ψUan (ub),

where ψUan is the standardWhittaker character ofUan. Then as in [9] p. 338, the integral
(6) is nonzero for some choice of data if and only if the integral
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∫

U ′(F )\U ′(A)

∫

Vb,an(F )\Vb,an(A)

E(r)
abn,χ (vu

′)ψU ′ (u′) dv du′ (8)

is not zero for some choice of data. Using (3) inductively and the irreducibility of the
representation E (r)

an,χ , we deduce that the integral (8) is not zero for some choice of data
if the representation E (r)

an,χ is generic. This last assertion follows from our assumption on
the number a. ��
We can now prove the first part of Theorem 1.

Proposition 3 Let n ≤ r be a natural number, and suppose there exists a cuspidal theta
representation �

(r)
n,χ on GL(r)n (A). Then n divides r.

Proof Suppose instead that n does not divide r. Construct the representation E (r)
abn,χ on

the group GL(r)abn(A) as above. It follows from Proposition 2 that O
(
E (r)
abn,χ

)
= (

(an)b
)
.

Let E(r)
abn,χ be a vector in the space of E (r)

abn,χ . Then the Fourier coefficient of E(r)
abn,χ with

respect to the orbit
(
(an)b

)
is given by the integral (6) above.

Since an < r and b ≥ 2, the Fourier coefficient (6) defines a genuine automorphic
function on some covering group ofGLb(A) of degree greater than one. Hence f (h) cannot
be the constant function. Note that at this step we are using the hypothesis that n does
not divide r. Indeed, this assumption implies that an �= r. By contrast, if an = r, then it
might happen that the above embedding of the group GLb splits under the r-fold cover,
and we would not be able to assert that f (h) is not constant.
Let σ denote the representation generated by all functions f (h) as above. Since a non-

constant automorphic function cannot equal a constant term along any unipotent sub-
group, it follows that the integral

∫

F\A
f (x(l))ψ(l) dl where x(l) = Ib + le1,b (9)

is not zero for some function f in σ (here and below ei,j denotes the (i, j)th elementary
matrix).Using this nonvanishing,wewill show that the representationE (r)

abn,χ has anonzero
Fourier coefficient corresponding to the unipotent orbit ((an + 1)(an)b−2(an − 1)).
To do so, we introduce two families of unipotent subgroups of GLabn. First, let Zi,

1 ≤ i ≤ an − 1, denote the unipotent subgroup with

Zi(A) = {
r1eb,1 + r2eb,2 + · · · + rb−1eb,b−1 : rj ∈ A

} ⊂ Xi,i+1

and let Z0 denote the group with

Z0(A) = {
r2e2,1 + r3e3,1 + · · · + rb−1eb−1,1 : rj ∈ A

} ⊂ X1,2.

Here each Xi,i+1 is embedded in GLabn as in (7). Notice that Z0 and Z1 are two distinct
subgroups of X1,2. Second, for 1 ≤ i ≤ an − 1 let

Yi(A) = {
Ib + l1e1,b + l2e2,b + · · · + lb−1eb−1,b : lj ∈ A

}

and let

Y0(A) = {
Ib + l2e1,2 + l3e1,3 + · · · + lb−1e1,b−1 : lj ∈ A

}
.

These groups are embedded in GLabn as diag(Y0, Y1, . . . , Yan−1). Also, let Z be the unipo-
tent subgroup ofGLabn generated by all Zi with 0 ≤ i ≤ an−1, and let Y be the unipotent
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subgroup ofGLabn generated by the Yi, 0 ≤ i ≤ an−1, together with the one dimensional
unipotent subgroup x(l) defined in (9).
Substituting (9) into (6) we then expand the integral along the unipotent subgroups Yi

where 0 ≤ i ≤ an−1. Then using the unipotent subgroups Xi, we obtain that the integral
(9) is equal to

∫

Z(A)

∫

V1(F )\V1(A)

E(r)
abn,χ (v1zh)ψV1 (v1) dv1 dz, (10)

where V1 is the subgroup of all upper triangular unipotent matrices in GLabn generated
by Y and all the one-parameter unipotent subgroups {xα(t)}, α a positive root, that are in
V but not in Z. The character ψV1 matches ψV on the one-parameter subgroups {xα(t)}
in V that are not in Z and is ψ(y1,b) on Y (A).
To conclude the proof, we note that the inner integration over V1 in (10) is a Fourier

coefficient corresponding to the unipotent orbit ((an+ 1)(an)b−2(an− 1)). Since it is not
zero this contradicts Proposition 2. ��

4 The uniqueness property
In this section we prove the uniqueness property given in Theorem 1. To do so, suppose
that there are two natural numbers, n andm,m < n, with cuspidal theta representations
�

(r)
n,χ and �

(r)
m,χ attached to the same character χ . We shall derive a contradiction.

As above, let a ≥ 1 be the smallest natural number such that E (r)
an,χ is an irreducible

generic representation. From Sect. 3 we know that n divides r, and hence, using [12], we
have an ≤ r. Choose the smallest integer b ≥ 1 such that abn + m > r. Construct the
residue representation E (r)

abn+m,χ as in Sect. 2. This representation is the residue of the
Eisenstein series on GL(r)nl+m(A) attached to the induced representation

Ind
GL(r)nl+m(A)

P(r)
n,...,n,m(A)

(
E (r)
an,χ ⊗ E (r)

an,χ ⊗ · · · ⊗ E (r)
an,χ ⊗ �(r)

m,χ

)
ηs

Denote by U−
n,...,n,m the transpose of the unipotent group Un,...,n,m defined in Sect. 2.

The following Lemma is standard.

Lemma 2 Let U denote the unipotent radical of a maximal parabolic subgroup of
GLabn+m. If there is no Weyl element w in GLabn+m such that wUw−1 is a subgroup of
U−
n,...,n,m, then the constant term E(r),U

abn+m,χ (g) is zero for all choices of data.

With this we have the following analogue of Proposition 1.

Proposition 4 Let U denote the unipotent radical of the maximal parabolic subgroup
of GLabn+m whose Levi part is GLr1 × GLr2 with r1 = m + kn and r2 = (ab − k)n for
some k ≥ 0. Suppose that wUw−1 is a subgroup of U−

n,...,n,m for some Weyl element w. Let
E(r)
abn+m,χ be a vector in the space of E (r)

abn+m,χ . Then for i = 1, 2 there exist E(r)
ri,χ in the space

of E (r)
ri ,χ such that

E(r),U
abn+m,χ

((
v1

v2

))

= E(r)
m+kn,χ (v1)E

(r)
(ab−k)n,χ (v2)

for all unipotents vi ∈ GLri (A). Moreover a statement similar to Proposition 1, part (ii),
holds in this case as well.
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With these properties we can prove

Proposition 5 Under the hypotheses of this section,O
(
E (r)
abn+m,χ

)
= (

(an)bm
)
.

Proof There are two things to establish. The first is the vanishing property of the Fourier
coefficients with respect to orbits that are greater than or incomparable with

(
(an)bm

)
.

This vanishing is established similarly to the proof of Proposition 2 above. We omit the
details.
The second part of the assertion is the nonvanishing of a Fourier coefficient attached

to the partition
(
(an)bm

)
. We now describe such a coefficient. The description depends

on the parity relation between an andm. We shall give the details in the case where both
numbers are odd. The other cases are similar.
Let V denote the unipotent subgroup of GLabn+m consisting of all matrices of the form

⎛

⎜
⎝

v1 v4 v6
v2 v5

v3

⎞

⎟
⎠ v1, v3 ∈ Vb,(an−m)/2, v2 ∈ Vb+1,m.

Here the groups Vk,p were defined in (7) above, and v4 , v5, v6 are general suitably-sized

matrices. Write v4 =
(

∗ ∗
v′
4 ∗

)

where v′
4 ∈ Matb×b, and let ψ1(v4) = ψ(tr v′

4). Similarly,

write v5 =
⎛

⎜
⎝

∗ ∗
v′
5 ∗
v′′
5 ∗

⎞

⎟
⎠ with v′

5 ∈ Matb×b and v′′
5 ∈ Mat1×b, and let ψ2(v5) = ψ(tr v′

5). Let

ψV be the character

ψV (v) = ψVb,(an−m)/2 (v1)ψVb+1,m (v2)ψVb,(an−m)/2 (v3)ψ1(v4)ψ2(v5).

Then a Fourier coefficient associated with the partition
(
(an)bm

)
is given by

∫

V (F )\V (A)

E(r)
abn+m,χ (vh)ψV (v) dv. (11)

Let ν1 be the Weyl element of GLabn+m defined as follows. Write

ν1 =

⎛

⎜
⎜
⎜
⎜
⎝

w0
w1
...
wb

⎞

⎟
⎟
⎟
⎟
⎠

w0 ∈ Matm×(anb+m), wj ∈ Matan×(anb+m), 1 ≤ j ≤ b.

Here the matrix w0 has (i, b(i + t)) entries equal to 1 , 1 ≤ i ≤ m, and all other entries 0,
where t = (an − m)/2. The matrices wj , 1 ≤ j ≤ b, have entries of 1 at the (i1, j + (i1 −
1)b), (t + i2, j+ tb+ i2(b+1)) and (t +m+ i3 +1, j+ tb+m(b+1)+ i3b) positions for all
1 ≤ i1 ≤ t + 1, 1 ≤ i2 ≤ m and 1 ≤ i3 ≤ t − 1, and all other entries 0. This Weyl element
may be characterized as follows. As explained in [9], to any unipotent orbit O one can
attach a one dimensional torus {hO(t)}. In our case, for the unipotent orbitO = (

(an)bm
)
,

hO(t) = diag
(
tan−1Ib, tan−3Ib, . . . , tm+1Ib, tm−1Ib+1, . . . , t−(m−1)Ib+1,

t−(m+1)Ib, . . . , t−(an−1)Ib
)
.

TheWeyl element ν1 is the shortestWeyl element inGLabn+m which conjugates the torus
{hO(t)} to the torus {h(t)} with h(t) = diag(dm(t), dan(t), . . . , dan(t)), where for all i > 0
we have di(t) = diag

(
ti−1, ti−3, . . . , t−(i−3), t−(i−1)

)
.
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Using the invariance of E(r)
abn+m,χ by ν1 and moving it rightward via conjugation, the

integral (11) is equal to
∫

Z(F )\Z(A)

∫

U ′(F )\U ′(A)

∫

Y (F )\Y (A)

E(r)
abn+m,χ

(
yu′zν1h

)
ψU ′

(
u′) dy du′ dz. (12)

The notation here is as follows. Let Uk denote the maximal unipotent subgroup of GLk
consisting of upper triangular matrices. Then U ′ = Um × Uan × · · · × Uan where the
groupUan appears b times. This group is embedded insideGLanb+m as (u0, u1, . . . , ub) 	→
diag(u0, u1, . . . , ub). The character ψU ′ is given by

ψU ′ (u′) = ψUm (u0)ψUan (u1) . . . ψUan (ub),

whereψUk is the standardWhittaker character ofUk . The group Y is the upper triangular
unipotent group defined by Y = ν1V ν−1

1 ∩Um,an,...,an. The group Z is the lower triangular
unipotent group consisting of all elements v ∈ V such that ν1vν−1

1 ∈ U−
m,an,...,an where

the group U−
m,an,...,an is the transpose of the unipotent group Um,an,...,an. Another way of

characterizing these groups is by means of the torus {h(t)}. The group Y is generated by
the matrices yi,j(k) = Iabn+m + kei,j ∈ Um,an,...,an such that h(t)yi,j(k)h(t)−1 = yi,j(t�k) for
some � > 0. Similarly, the group Z is generated by all matrices zi,j(k) = Iabn+m + kei,j ∈
U−
m,an,...,an such that h(t)zi,j(k)h(t)−1 = zi,j(t�k) for some � > 0.
The next step is to perform certain Fourier expansions on the integral (12), using root

exchange (as inGinzburg–Rallis–Soudry [10], Section 7.1) and the vanishing of the Fourier
coefficients of the representation E (r)

abn+m,χ corresponding to unipotent orbits which are
greater than or not comparable to

(
(an)bm

)
. This process is fairly standard—see for exam-

ple the proof of Ginzburg–Rallis–Soudry [8], Lemma 2.4—and so we only sketch the
ideas. View Um,an,...,an as the group of matrices generated by ui,j(k) = Iabn+m + kei,j .
Similarly for the groups Y and Z. Consider the subgroup uan+m−1,abn+m(k). Since
h(t)uan+m−1,abn+m(k)h(t)−1 = uan+m−1,abn+m(k), this one dimensional unipotent group
is not in Y . Similarly, conjugating by h(t) we deduce that ui,abn+m(k) is in Y for all
1 ≤ i ≤ an + m − 2, and that zabn+m−1,an+m−1(k) is in Z. We may continue this process,
going from the last to the first column in Um,an,...,an. When we encounter a unipotent
group of the form ui,j(k) in Um,an,...,an which is not in Y we look for a suitable unipotent
subgroup ofZ. If such a subgroup exists, we perform a root exchange. If not, we check that
the Fourier coefficient obtained corresponds to a unipotent orbit which is greater than
or not related to

(
(an)bm

)
. This implies that all non-trivial characters of the expansion

contribute zero, and we are left with only the trivial character.
By this argument, we see that integral (11) is not zero for some choice of data if and only

if the integral
∫

U ′(F )\U ′(A)

∫

Um,an,...,an(F )\Um,an,...,an(A)

E(r)
abn+m,χ

(
uu′h

)
ψU ′

(
u′) du du′ (13)

is not zero for some choice of data.
Notice that Um,abn is a subgroup of Um,an,...,an, and it is the unipotent radical of the

maximal parabolic subgroup Pm,abn. Hence we can apply Proposition 4 inductively with
k = 0 to deduce that the integral (13) is not zero for some choice of data if the two integrals

∫

Um(F )\Um(A)

θ (r)m,χ (u)ψUm (u) du (14)
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and
∫

Uabn(F )\Uabn(A)

E(r)
an,χ (u)ψUan (u) du (15)

are each nonzero for suitable data. The integral (14) is not zero since�
(r)
m,χ is an irreducible

cuspidal representation, and hence generic. It follows from the irreducibility of E (r)
an,χ and

from the definition of a that the second integral (15) is also nonzero for some choice of
data. ��

With the above we can now prove

Proposition 6 Fix r and χ . Then there is at most one natural number n such that a
cuspidal theta representation �

(r)
n,χ exists.

Proof Recall that we are supposing that m < n and there exist cuspidal theta represen-
tations �

(r)
n,χ and �

(r)
m,χ . We will derive a contradiction. Form the residue representation

E (r)
abn+m,χ as above. Then the integral (11) is not zero for some choice of data. We claim

that this implies that the integral
∫

U ′(F )\U ′(A)

∫

Uan,...,an,m(F )\Uan,...,an,m(A)

E(r)
abn+m,χ

(
uu′h

)
ψU ′

(
u′) du du′ (16)

is not zero for some choice of data. Notice the difference between the integrals (16) and
(13). In (13) the integration is over Um,an,...,an(F )\Um,an,...,an(A), while in (16) it is over
Uan,...,an,m(F )\Uan,...,an,m(A). These are two different groups.
To prove that the integral (16) is not zero for some choice of data, we start with the

integral (11), which we have already shown is nonzero for some choice of data. Let ν2 be
the Weyl element

ν2 =

⎛

⎜
⎜
⎜
⎜
⎝

w1
...
wb
w0

⎞

⎟
⎟
⎟
⎟
⎠

w0 ∈ Matm×(anb+m), wj ∈ Matan×(anb+m), 1 ≤ j ≤ b,

where the matrices wi are as above. Inserting ν2 into (11) and performing similar Fourier
expansions, we deduce that the integral (16) is not zero for some choice of data. HereU ′ =
Uan×· · ·×Uan×Um, and the characterψU ′ is defined accordingly. But notice thatUabn,m
is a subgroup of Uan,...,an,m which is also the unipotent radical of a maximal parabolic
subgroup. However, there is no Weyl element w such that wUabn,mw−1 is contained in
U−
n,...,n,m. Hence, by Lemma 2 we obtain that the integral (16) is zero for all choices of data.

This is a contradiction. ��

5 The condition on the character χ

Let n ≥ 3. Suppose that �
(r)
n,χ is a cuspidal theta representation and χ = χ r

1 for some
character χ1. We shall derive a contradiction. The idea is similar to the one we used in
Sect. 4.
Similarly to [12], we may construct the theta representation �

(r)
2,χ by means of a residue

of an Eisenstein series. This is possible since χ = χ r
1 . This representation has a nonzero

constant term and so is not cuspidal. Define a and b as in Sect. 4 above and letm defined
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in that section equal 2 in the present case. Then construct the residue representation
E (r)
abn+m,χ = E (r)

abn+2,χ as above. Although the representation �
(r)
2,χ is not cuspidal, most

of the results stated in Sect. 4 go through with small adaptations. In particular, we
have

Proposition 7 Under the hypotheses of this section,O(E (r)
abn+m,χ ) = (

(an)b2
)
.

Then we obtain a contradiction as in Sect. 4. Indeed, from Proposition 7 we obtain that
the Fourier coefficient∫

U ′(F )\U ′(A)

∫

Uan,...,an,2(F )\Uan,...,an,2(A)

E(r)
abn+2,χ

(
uu′h

)
ψU ′

(
u′) du du′

is not zero for some choice of data. Notice thatUabn,2 is a subgroup ofUan,...,an,2. However,
even though �

(r)
2,χ is not cuspidal, the constant term of E(r)

abn+2,χ along Uabn,2 is still zero
for all choices of data. Indeed, it is not hard to check that there is no Weyl element
w in GLabn+2 such that wUabn,2w−1 is contained in U−

an,...,an,2. The vanishing of this
constant term then follows as in Lemma 2. However, this is a contradiction, and the result
follows.
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