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Abstract

For X a curve over a field of positive characteristic, we investigate when the canonical
representation of Aut(X) on H0(X ,�X) is irreducible. Any curve with an irreducible
canonical representation must either be superspecial or ordinary. Having a small
automorphism group is an obstruction to having irreducible canonical representation;
with this motivation, the bulk of the paper is spent bounding the size of automorphism
groups of superspecial and ordinary curves. After proving that all automorphisms of an
Fq2 -maximal curve are defined over Fq2 , we find all superspecial curves with g > 82
having an irreducible representation. In the ordinary case, we provide a bound on the
size of the automorphism group of an ordinary curve that improves on a result of
Nakajima.

1 Introduction
Given a complete nonsingular curve X of genus g ≥ 2, the finite group G := Aut(X) has
a natural action on the g-dimensional k-vector space H0(X,�X), known as the canonical
representation. It is natural to ask when this representation is irreducible. In characteristic
zero, irreducibility of the canonical representation implies that g2 ≤ |G|, and combining
this with the Hurwitz bound of |G| ≤ 84(g − 1), one can observe that the genus of X is
bounded by 82. In fact, Breuer [1] shows that the maximal genus of a Riemann surface
with irreducible canonical representation is 14.
In characteristic p, the picture is more subtle when p divides |G|. The Hurwitz bound of

84(g − 1) may no longer hold due to the possibility of wild ramification in the Riemann-
Hurwitz formula. It is known that when 2 ≤ g ≤ p−2, the Hurwitz bound holds with one
exception given by Roquette [21]: the hyperelliptic curve y2 = xp − x, which has genus
p−1
2 and 2p(p2 − 1) automorphisms. In general, the problem of classifying curves with

more than 84(g − 1) automorphisms is not well understood. At present, the best general
result is by Henn, who in [9] classified all curves for which |G| ≥ 8g3, extending the work
of Stichtenoth in [22]. Recent results improve the classification for supersingular curves
over characteristic 2 fields [5], for p-cyclic covers of the projective line [16], and for curves
with “big actions” [17], but Henn’s classification remains the best general result.
Hence, in characteristic p, the above bound of g ≤ 82 certainly no longer applies.

Indeed, Hortsch [11] shows that the Roquette curve has irreducible canonical represen-
tation, providing an example of arbitrarily high genus curves with irreducible canonical
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representation. Dummigan [2] showed that the Fermat curve (which is equivalent to the
Hermitian or Drinfeld curve after suitable change of coordinates)

xp+1 + yp+1 + zp+1 = 0

in characteristic p is another such example, having genus g = p(p−1)
2 .

It is natural to ask whether for fixed p, there exist characteristic p curves X of arbitrarily
high genus g with irreducible canonical representation. Via Observation 2.3, this question
splits into two cases depending on whether the curve is superspecial (i.e., the Frobenius
acts as 0 on H1(X,OX)) or ordinary (i.e., the p-rank of X equals g).
In the superspecial case, we find all curves of genus g > 82 with irreducible canonical

representations. Indeed, as we demonstrate in Theorem 3.3, any such curve must be iso-
morphic to either the Roquette curve or the Fermat curve given above. To prove this, we
show that we may work with Fp2 -maximal curves and subsequently prove a strict condi-
tion for a high genus Fp2 -maximal curve to have |Aut(X)| > g2. Since |Aut(X)| > g2 is a
necessary condition for irreducibility, this will give the result. To prove the condition for
Fp2 -maximal curves to have many automorphisms, which is given as Theorem 3.16, we
rely on the new result that all automorphisms of an Fq2 -maximal curve are defined over
Fq2 , which is given as Theorem 3.10.
We then reduce the question to considering ordinary curves, where progress is harder.

Nakajima [19] bounds the automorphism group of an ordinary curve by 84g(g − 1). In
this paper, we prove the following stronger result:

Theorem 1.1. There exists a constant c = c(p) such that any ordinary curve X over a
field of characteristic p with genus gX > c satisfies the inequality

|Aut(X)| ≤ 6
(
g2X + 12

√
21g

3
2
X

)
.

Remark 1.2. From our proof, we may take c(p) to be on the order of p2.
This does not yet imply reducibility of the canonical representation, but we have the

following.
Remark 1.3. An unpublished result of Guralnick and Zieve [7] states that for any prime
p there is a positive constant cp so that, if X is an ordinary curve of genus g > 1
over an algebraically closed field of characteristic p, the group of automorphisms of X
has order bounded by cpg8/5. Together with the superspecial results, this would imply
that for a fixed characteristic, there do not exist arbitrarily high genus curves with
irreducible canonical representation. We hope that the eventual published work will
give even stronger ways of characterizing ordinary curves with irreducible canonical
representations.

2 Preliminaries
In this section, we present notations and basic techniques that will be used throughout the
paper. Let k be an algebraically closed field of characteristic p > 0. Throughout, a curve
is a complete connected nonsingular curve over k. For a curve X, we shall use gX , γX , and
Aut(X) to denote its genus, p-rank of Jacobian, and automorphism group, respectively.
For any two curves X and Y, πX/Y will denote a (branched) covering map X → Y if there
is no ambiguity with respect to the map in question.
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2.1 Ramification Groups

Given a curve X, a finite subgroupG ⊂ Aut(X), and a point P ∈ X, define the ramification
groups Gi(P) for i ≥ 0 as follows:

G0(P) = {σ ∈ G|σP = P} (1)

and

Gi(P) = {σ ∈ G0(P)|ordP(σπP − πP) ≥ i + 1} (2)

for i > 0, where πP is a uniformizer of the ring of functions on X at P and ordP denotes
the order of the zero at P.
We will use the following fact about the ramification groups, which can be found in

([19], Sections 2,3):

Proposition 2.1. Let X be a curve, G be a subgroup of Aut(X), and P ∈ X be any point.
Then the following are true:

(1) G1(P) is a normal Sylow p-subgroup of G0(P).
(2) G0(P)/G1(P) is a cyclic group with order prime to p.
(3) If in addition, X is ordinary (i.e. gx = γx), then G2(P) = {1}.

2.2 Galois Coverings of Curves

Let π : X → Y be a Galois covering of curves with Galois groupG. Then, Y is the quotient
of X by a finite subgroup G of automorphisms. For Q ∈ Y and any point P ∈ π−1(Q), let
eQ denote the ramification index of π at P, and dQ := ∑∞

i=0(|Gi(P)| − 1). Note that eQ
and dQ do not depend on the choice of P. We also have that dQ ≥ eQ − 1 with equality if
and only if Q is tamely ramified. The relationship between the genera of X and Y is given
by the Riemann-Hurwitz formula (see [8]):

2gX − 2
|G| = 2gY − 2 +

∑
Q∈Y

dQ
eQ

. (3)

A similar formula, known as the Deuring-Šafarevič formula, relates the p-ranks of X
and Z = X/H when H ⊆ G is a p-group (see [23], Thm 4.2) :

γX − 1
|H| = γZ − 1 +

∑
Q∈Z

(
1 − e−1

Q

)
. (4)

2.3 Frobenius and p-rank

The idea of studying the canonical representation via Frobenius has appeared in [18]. It
may be adapted to our situation as follows. The action of Frobenius on a curve X gives a
natural action of Frobenius onH1(X,OX). In fact, for particular curves, this action can be
explicitly computed on a basis of H1(X,OX) by using a Čech cover of X. In addition, by
Serre duality, H1(X,OX) has a natural k[ Aut(X)]-module structure as the dual represen-
tation of the canonical representation. In fact, it is not difficult to see that the Frobenius
commutes with this module structure. Since the Frobenius map does not respect scalar
multiplication, it is not quite a k[ Aut(X)]-module homomorphism, but we may still
observe the following:
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Observation 2.2. If X has irreducible canonical representation, then the Fp-vector space
map F : H1(X,OX) → H1(X,OX) given by Frobenius is either injective or zero.

Proof. The kernel of this map is a k-vector space which is invariant under Aut(X) since
automorphisms (on the function field) commute with F. Thus, the kernel is a k[ Aut(X)]-
module, so if it is a proper nonzero submodule, then the canonical representation has
a proper subrepresentation, contradicting the hypothesis. Hence, the kernel must either
equal H1(X,OX) or zero.

In the literature, the matrix of the action of F on H1(X,OX) is referred to as the Hasse-
Witt matrix, with the corresponding dual action onH0(X,�X) being known as the Cartier
operator. If the action is injective, it is immediate that the p-rank of X is equal to its maxi-
mum possible value, g; such curves are called ordinary. On the other hand, if the action is
zero, the curve is known as superspecial. The typical definition of a superspecial curve is a
curve whose corresponding Jacobian variety is a product of supersingular elliptic curves.
However, Oort [20] shows that this condition is equivalent to the Cartier operator being
zero. With this extra notation, we can restate the above observation:

Observation 2.3. Let X be a curve. If the canonical representation of X is irreducible,
then X is either superspecial or ordinary.

Example 2.4. Let X be the genus 2 curve given by y2 = x5 − x in positive characteristic
p > 2. Considered as a Riemann surface, this curve is called the Bolza surface and has 48
automorphisms, the most of any genus two curve [14]. In our case, we only consider the
automorphisms α(x, y) =

(
1
x ,

y
x3

)
and β(x, y) = (−x, iy), where i2 = −1.

Let U = X\{(0, 0)} and V = X\{P∞}. Since {U ,V } is a Cech cover for the curve, we
have

H1(X,OX) = �(U ∩ V ,OX)/ (�(U ,OX) ⊕ �(V ,OX)) .

We can easily see that y/x and y/x2 form a basis for H1(X,OX). Then, using these auto-
morphisms α and β , it is easy to see that the canonical representation of this curve is
irreducible. For α has distinct eigenvectors y

x ± y
x2 corresponding to eigenvalues ±1, and

it is easy to see that neither of these are fixed by β .
By the above criteria, we then know that this curve is either ordinary or superspecial.

To determine which it is, we apply Frobenius to the two basis elements:

F
( y
x

)
= yp

xp
= y

xp
(
x5 − x

) 1
2 (p−1) = y

x
1
2 (p+1)

(
x4 − 1

) 1
2 (p−1) .

For i �= 1, 2, the function y/xi is trivial in the cohomology group, so almost every term
vanishes. Indeed, we get

F
( y
x

)
=

⎧⎪⎨
⎪⎩
K1

y
x if p ≡ 1

K2
y
x2 if p ≡ 3

0 if p ≡ 5, 7
(mod 8)
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where K1,K2 are nonzero binomial coefficients, and

F
( y
x2

)
=

⎧⎪⎨
⎪⎩
K3

y
x if p ≡ 3

K4
y
x2 if p ≡ 1

0 if p ≡ 5, 7
(mod 8).

From this, we see that the Bolza surface is ordinary if p ≡ 1, 3 (mod 8) and is
superspecial if p ≡ 5, 7 (mod 8).

3 Superspecial curves
Proposition 3.1. If X is a superspecial curve in a field of characteristic p, then g ≤

1
2p(p − 1). If X is additionally hyperelliptic, then g ≤ 1

2 (p − 1).

Proof. This is Theorem 1.1 of [3].

Both of these bounds are sharp, with the Hermitian curve xp − x = yp+1 giving an
example of the equality case for the first bound and the hyperelliptic curve y2 = xp − x
giving an example of the equality case for the second.
These two examples can be reused for the following proposition:

Proposition 3.2. The maximal genus of a superspecial curve with irreducible canonical
representation is 1

2p(p − 1), a bound attained by the Hermitian curve given by xp − x =
yp+1. The maximal genus of a hyperelliptic superspecial curve with irreducible canonical
representation is 1

2 (p − 1), a bound attained by the curve given by y2 = xp − x.

Proof. Dummigan [2] and Hortsch [11] prove that the two desired curves have irre-
ducible canonical representation, so we are done by the previous proposition.

In fact, these are the only two infinite families of superspecial curves with irreducible
canonical representation, in the sense of the following theorem:

Theorem 3.3. If X is a superspecial curve of genus g > 82 over an algebraically closed
field of characteristic p, then X has an irreducible canonical representation if and only if X
is isomorphic to the curve given by y2 = xp − x or to the curve given by yp+1 = xp − x.

This result will be proved in section ‘Superspecial curves with irreducible canonical
representations’. To prove this result, we transmute the problem to looking at maximal
and minimal curves, which we define now.

3.1 Maximal andminimal curves

Theorem 3.4. (Weil conjecture for curves) If X is a nonsingular curve of genus g defined
over Fq, then there are 2g complex constants ω1, . . . ,ω2g of magnitude q1/2 so that Nn, the
number of Fqn-rational points on the curve, satisfies

Nn = qn + 1 −
2g∑
i=1

ωn
i .

In particular, qn − 2gqn/2 + 1 ≤ Nn ≤ qn + 2gqn/2 + 1.
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Definition 3.5. A curve defined over Fq2 is called Fq2 -maximal if the number of Fq2 -
rational points is q2 + 2gq + 1, and is called Fq2-minimal if the number of Fq2 -rational
points is q2 − 2gq + 1.
From the Weil conjectures, we see that the number of Fq2n-rational points on a Fq2 -

maximal curve is q2n + (−1)n−12gqn + 1, and the number of Fq2n-rational points on a
Fq2 -minimal curve is q2n−2gqn+1. Since a curve must have at least as many Fq4 -rational
points as Fq2 -rational points, note that a Fq2 maximal curve has genus satisfying

q4 − 2gq2 + 1 ≥ q2 + 2gq + 1

or g ≤ q(q−1)
2 .

The relevance of maximal and minimal curves is immediate from the following propo-
sition:

Proposition 3.6. A curve X defined over the algebraic closure of Fp is superspecial if and
only if it is isomorphic to an Fp2-maximal curve or an Fp2-minimal curve.

Proof. This is a consequence of Ekedahl’s work in [3] and is proved as Theorem 2.6 of
[15].

The L-functions over Fq2 corresponding to maximal and minimal curves are very sim-
ple, equaling (qt + 1)2g for maximal curves and (qt − 1)2g for minimal curves. As was
noted in [4] and extended to minimal curves in [25], this is enough to imply the following
result, which is known as the fundamental equation.

Proposition 3.7. Suppose X is an Fq2-maximal curve over an algebraically closed field
of characteristic p > 0. If P0 is an Fq2-rational point, then we have the linear equivalence

(q + 1)P0 ∼ qP + F(P) (5)

where F denotes the degree q2 Frobenius map and P is any closed point of the curve. If X is
instead assumed to be an Fq2-minimal curve, we have

(q − 1)P0 ∼ qP − F(P). (6)

3.2 Automorphisms of maximal curves

Proposition 3.8. Let X be an Fq2-maximal curve of genus at least two. Then three
distinct points P,Q,R satisfy

(q + 1)P ∼ (q + 1)Q ∼ (q + 1)R (7)

if and only if all three points are Fq2-rational.

Remark 3.6. This proposition and proof also works for minimal curves, being based off
the rational point relation (q − 1)P ∼ (q − 1)Q ∼ (q − 1)R instead of (7).

Proof. The fundamental equation 5 gives that, if P,Q,R are all Fq2 -rational, they satisfy
(7). Conversely, suppose (7) were satisfied for three distinct points P,Q,R. We note that if
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one of these points is Fq2 -rational, then all three are. For supposing P were Fq2 -rational,
we can write

qQ + F(Q) ∼ (q + 1)P ∼ (q + 1)Q,

where F is the q2 Frobenius map. Then Q ∼ F(Q), and hence Q = F(Q).
From (5), we have qP + F(P) ∼ qQ + F(Q), and subtracting from (7) then gives P +

F(Q) ∼ Q+F(P). If this system is not base point free, given that P �= Q, we find P = F(P),
so the points are Fq2 -rational. Then we assume |P + F(Q)| is a base-point free linear
system, so X must be hyperelliptic.
This same argument shows that |P+F(R)| is a base-point free linear system. Both these

divisors are of degree two and dimension one, so since the genus of the curve is at least
two, the divisors must be the same (see [10], p.216). Then P+F(Q) ∼ P+F(R), soQ = R.
This contradicts the three points being distinct, proving the proposition.

Theorem 3.10. An automorphism of an Fq2-maximal or -minimal curve of genus at
least two fixes the set of Fq2-rational points. More generally, automorphisms of maximal
or minimal curves always commute with the q2 Frobenius map, and are hence defined as
Fq2 maps.

Proof. Take X to be such a maximal curve, and suppose there were an automorphism
σ that maps an Fq2 -rational point P1 to a non-Fq2 -rational point. Choose three distinct
Fq2 -rational points P1,P2,P3. Then (q + 1)P1 ∼ (q + 1)P2 ∼ (q + 1)P3, so

(q + 1)(σP1) ∼ (q + 1)(σP2) ∼ (q + 1)(σP3).

But σP1 being not rational contradicts the previous proposition. Then any automor-
phism fixes the rational points.
This implies that automorphisms commute with the degree q2 Frobenius map. For take

P an arbitrary point, σ an arbitrary automorphism, and P0 any rational point. Then

F(σP) ∼ (q + 1)P0 − qσP ∼ (q + 1)σP0 − qσP ∼ σF(P).

This establishes the theorem in the maximal case.
The minimal curve case falls to an identical argument if there are at least three Fq2 -

rational points. If there are not, we must have q2 − 2gq + 1 either equal to one or two.
Since q2 − 2gq + 1 is one mod q, it must equal one if it is less than three, with g = q/2.
Then in this exceptional case, qmust be a power of two.
Let X be an Fq2 -minimal curve in characteristic 2 with a single Fq2 -rational point. Sup-

pose there were an automorphism σ of the curve that did not fix the unique Fq2 -rational
point P0. Let P1 = σ−1P0. Then (6) applied to P0 and σP0 gives

(q − 1)P0 ∼ qσP0 − F(σP0).

Similarly, applying (6) to P0 and P1 gives (q − 1)P0 ∼ qP1 − F(P1), and applying σ to
this equation gives

(q − 1)σP0 ∼ qσP1 − σF(P1) ∼ qP0 − σF(P1).
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Then

F(σP0) + σF(P1) ∼ P0 + σP0.

But P0 is neither σF(P1) nor F(σP0), so since the curve is not rational, |P0 + σP0| is
base-point free. We similarly find that |σP0 + σ 2P0| is base-point free, so again by the
uniqueness of such a linear system, we have σP0 + σ 2P0 ∼ P0 + σP0, for P0 = σ 2P0.
Next, since X is an Fq4 -minimal curve too, and since q4 − 2gq2 + 1 = q4 − q3 + 1 ≥ 3,

we can use what we have already proved to say that σ fixes the set of Fq4 -rational points,
of which there are an odd number. Write the order of σ as 2l · r with r odd. Then σ r

still switches P0 and P1, but in addition has order a power of two. Since there are an odd
number of Fq4 -rational points, this implies that σ r fixes some Fq4 -rational point. Call this
point P2. Then

(q − 1)P0 ∼ qP2 − F(P2)

and

(q − 1)σ rP0 ∼ qσ rP2 − σ rF(P2)

for

(q − 1)P1 ∼ qP2 − σ rF(P2).

Then

(q − 1)P0 + F(P2) ∼ (q − 1)P1 + σ rF(P2)

so that

F(P2) + P1 ∼ σ rF(P2) + F(P1).

This must be another base-point free divisor of degree two. From the uniqueness of
such a divisor, we have F(P2)+P1 ∼ P0 +P1, for F(P2) ∼ P0. This is impossible, implying
that the automorphism group of X fixes the unique Fq2 -rational point. Then the automor-
phism group of an Fq2 -minimal curve fixes the Fq2 -rational points. That automorphisms
commute with Frobenius is proved exactly as it was before.

Remark 3.11. This result has been observed before for specific curves. In [6], for instance,
the automorphism group of a family of maximal curves is calculated, and it is observed
that all automorphisms are defined over Fq2 .

3.3 Consequences of Theorem 3.10

Theorem 3.10 is a very strong result for understanding the structure of the automorphism
groups of maximal and minimal curves, telling us that if X is Fq2 -maximal or -minimal,
the group of automorphisms fixes the set of Fq2n-rational points for any n, a set whose
cardinality we already knew. This can be exploited.

Proposition 3.12. Let X be an Fq2-maximal or -minimal curve of genus g ≥ 2. Take H
to be a p-subgroup of automorphisms. Then H fixes a unique point and acts freely on all
other points, and |H| divides q3.
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Proof. Maximal and minimal curves are known to have p-rank 0, so the first part of this
proposition follows from Lemma 11.129 and Remark 11.128 of [10]. Explicitly, from the
Deuring-Šafarevič formula, we have

−1
|H| = −1 +

∑
Q∈Z

(
1 − e−1

Q

)
,

where Z = X/H , and this relation can only hold if the map ramifies with index |H| at a
single point.
To prove the bound, we first deal with the case where X is Fq2 -maximal. The action ofH

on the Fq2 rational points splits into one orbit of size one and some number of free orbits
by the first part, so

|H| ∣∣ (
q2 + 2gq

)
But g ≤ q(q−1)

2 , so |H| ≤ q3. The same argument works for minimal curves unless
q2 −2gq = 0, or rather unless g = q/2. In this case we consider the action ofH on the Fq4

rational points. This gives

|H| ∣∣ q3(q − 1)

so again |H| ≤ q3.

From here forward, we will use the term short orbit to denote any non-free orbit ofG in
X, that is, an orbit where each point has nontrivial stabilizer in G.

Proposition 3.13. Suppose X is a Fq2-maximal curve of genus g ≥ 2, and suppose the
automorphism group G of X has only free orbits outside of the Fq2-rational points. Then

|G| ∣∣ 2q3 (
q2 − 1

)
(q + 1) .

If X is instead a Fq2-minimal curve of genus g ≥ 2, and the automorphism group G has
only free orbits outside the Fq2-rational points, then

|G| ∣∣ 2q3 (
q2 − 1

)
(q − 1) .

Proof. First suppose X is maximal. By Theorem 3.10, for a pair of integers a ≥ 1 and b ≥
2, we can say the set S(a,b) of Fq2ab-rational points that are not Fq2a-rational is stabilized
under G. If G has no short orbits outside the Fq2 -rational points, then we know that |G|
will divide |S(a,b)|, so for all a, b ≥ 1,

|G| ∣∣ (
q2ab + (−1)ab−12gqab − q2a + (−1)a2gqa

)
. (8)

Take T to be the maximal divisor of |G| not divisible by p. From the above expression,
we get

T
∣∣ (

qa(b−1) + (−1)a(b−1)−1
) (

(−1)ab−12g + qab + (−1)a(b−1)qa
)
.

Write m = a(b − 1), and take a, a′ to be different factors of m with a > a′. If m is odd,
we get

T
∣∣ (

qm + 1
) (−2g + qm+a − qa

)
. (9)

Subtracting this from the similar expression for a′ gives, form odd,

T
∣∣ (

q2m − 1
) (

qa−a′ − 1
)
. (10)
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From m = 3, we get T
∣∣ (q6 − 1)(q2 − 1). From m = 5, we get T

∣∣ (q10 − 1)(q4 − 1).
1 + q2 + q4 is coprime to q2 + 1 and 1 + q2 + q4 + q6 + q8, so we get T

∣∣ (q2 − 1)2. If
m = a(b − 1) is even, we use the same process, first getting

T
∣∣ (

qm − 1
) (

(−1)a−12g + qm+a + qa
)
. (11)

If a, a′ are divisors ofm, we get

T
∣∣ (

q2m − 1
) (

qa−a′ − (−1)a−a′)
.

From m = 2, T
∣∣ (q4 − 1)(q + 1), and the GCD of q2 + 1 and q − 1 is at most two,

so we have that T is a factor of 2(q2 − 1)(q + 1). The relation on |G| then follows from
Proposition 3.12.
In the minimal case, (10) holds for all m. Taking the GCD for m = 2, 3 gives the result.

Proposition 3.14. Suppose X is a Fq2-maximal curve of genus at least two, and suppose
the automorphism group G of X has only free orbits outside of the Fq2-rational points. Then

|G| ∣∣ 2q3(q + 1) · gcd(2g − 2, q + 1) · gcd(4g, q − 1).

For minimal curves, the relation is instead

|G| ∣∣ 2q3(q − 1) · gcd(2g − 2, q − 1) · gcd(4g, q + 1).

Proof. We start with the maximal case. From (9),

gcd
(
(q + 1)2, |G|) ∣∣ (

qm + 1
) (−2g + qm+a − qa

)
form odd. Choosem coprime to q + 1. Then we get

gcd
(
(q + 1)2, |G|) ∣∣ (q + 1)gcd

(
q + 1,−2g + qm+a − qa

)
or

gcd
(
(q + 1)2, |G|) ∣∣ (q + 1)gcd

(
q + 1, 2g − 2

)
.

Next, we have

gcd (q − 1, |G|) ∣∣ (
qm + 1

) (−2g + qm+a − qa
)

for

gcd (q − 1, |G|) ∣∣ 4g.
Together with the previous proposition, these two relations imply the result formaximal

curves. For minimal curves, we start instead with

|G| ∣∣ (
qm+a − qa

) (−2g + qm+a + qa
)

to derive the other result.

The next technical lemma is a direct application of Proposition 3.14, and allows us to
bound the size of automorphism groups for some curves with relatively small genus.

Lemma 3.15. Suppose X is a Fp2-maximal curve of genus at least two over a field with
characteristic an odd prime, and suppose the automorphism group G of X has only free
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orbits outside of the Fq2-rational points. Suppose the genus of X can be written as g =
1
2 c(p − 1) + dp. Then

|G| ∣∣ 16q3(q + 1)d(c + d + 1).

3.4 Fp2 -maximal curves with many automorphisms

In this section we prove the following theorem:

Theorem 3.16. Let X be a Fp2-maximal curve of genus g at least 2, where p > 7, and
let |G| be the group of automorphisms of X. If |G| > g2 and |G| > 84(g − 1), X must be
isomorphic to a curve of the form ym = xp − x, where m > 1 and m divides p + 1.

As a first step, we determine the structure of a Sylow subgroup of G.

Proposition 3.17. Let X be a Fp2-maximal curve of positive genus, and suppose G has
order divisible by p. Then we can write

g = 1
2
c(p − 1) + dp.

Furthermore, unless X is isomorphic to the Hermitian curve, we must have that p2 does
not divide |G|.

Proof. Let H be a Sylow p-subgroup of G, and let H ′ be a subgroup of H of size p. Per
Proposition 3.12, H ′ stabilizes a single point P. Then

2g − 2
p

= 2d − 2 + (c + 2)(p − 1)
p

,

where i = c + 1 is the final index so Gi(P) has order p and d is the genus of X/H ′. This
gives g in the form 1

2 c(p − 1) + dp.
Next, we recall that the Hermitian curve is the only Fp2 -maximal curve attaining the

maximal genus 1
2p(p− 1). Then, unless the curve X is Hermitian, p2 + 2gp < p3. Then, if

H is not of order p, it is of order p2. But then we can write

2g − 2
p2

= 2f − 2 + 1
p2

(
(c + 2)(p2 − 1) + bp(p − 1)

)
for some nonnegative integers f , b, c. We are here using the fact that, for a1, a2 ≥ 1, if
Ga1+1(P) is distinct from Ga1(P) and Ga2+1(P) is distinct from Ga2(P), then a1 − a2 ≡ 0
(mod p), see ([10], Lemma 11.75(v)). Simplifying gives

2g = 2fp2 + c(p2 − 1) + bp(p − 1).

But 2g < p(p − 1) for X not the Hermitian curve, so we get f = c = b = g = 0 unless
the curve is Hermitian.

We will use the notation g = 1
2 c(p − 1) + dp throughout this section. In this notation,

d is the genus of the quotient curve from dividing by an order p subgroup.
As is traditional when studying large automorphism groups (see [9] or [19]), we use

the following lemma to split into cases. For this lemma, a wild short orbit is an orbit
where each point has nontrivial stabilizer of order dividing p, and a tame short orbit is an
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orbit where each point has nontrivial stabilizer of order not dividing p. For a proof of the
lemma, see [10], Theorem 11.56.

Lemma 3.18. Let G be the automorphism group of a genus g ≥ 2 curve X defined over
an algebraically closed field of characteristic p. If |G| > 84(g − 1), then X/G is rational
and one of the following four cases applies.

(I) p �= 2 and G has precisely three short orbits in X, one wild and two tame, with each
point in the tame orbits having an order-two stabilizer.

(II) G has precisely two short orbits, both wild.
(III) G has one wild short orbit and no other short orbits.
(IV) G has one wild short orbit, one tame short orbit, and no other short orbits.

The first two cases are easily dealt with.

Lemma 3.19. There is no Fp2-maximal curve X of Type I of Lemma 3.18.

Proof. The Hermitian curve is of Type IV, so by Proposition 3.17 we can assume that a
maximal p-subgroup of X is of order p. Recall the notation g = 1

2 c(p − 1) + dp. The size
of the wild orbit is in the form 1 + np for some integer n by Proposition 3.12. Letting s
denote the size of the stabilizer for the wild orbit, the Riemann-Hurwitz formula gives

2g − 2
(1 + np)s

= (c + 1)(p − 1) − 1
s

= (c + 1)(p − 1) − 1
s

.

Then

(1 + np)(cp + p − c − 2) = 2g − 2.

If n > 0, the only case where genus is at most 1
2p(p− 1) is n = 1, c = 0, and no case has

genus strictly less than this. Since the Hermitian curve is not of this type, we have n = 0
and get

p = 2dp,

which cannot happen.

For Type II, we in fact have a result for Fq2 -maximal curves instead of just Fp2 -maximal
curves.

Proposition 3.20. There is no Fq2-maximal curve X of Type II of Lemma 3.18.

Proof. From Proposition 3.12, we see each wild orbit is of size congruent to one modulo
p. One wild orbit must be a subset of the Fq2 -rational points, since the number of such
points is congruent to one modulo p. The number of remaining Fq2 -rational points is
then divisible by p, so the other wild orbit cannot lie among the Fq2 -rational points. The
other wild orbit must then lie in the set of Fq2n-rational points that are not Fq2 -rational.
However, these sets of points also have order divisible by p, so this is again impossible.

The following lemma allows our divisibility-based methods to become precise at the
end.
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Lemma 3.21. Let X be a Fp2-maximal curve of genus at least two. If X/H is rational for
some subgroup H ⊂ G of order p, then X is isomorphic to ym = xp − x for some m dividing
p + 1.

Proof. The main theorem of [12] states that any Artin-Schreier curve with zero Hasse-
Witt mapmust be of the form ym = xp−xwithm dividing p+1. Since Fp2 -maximal curves
are superspecial, they by definition have zero Hasse-Witt map. Since X/H is rational, X is
an Artin-Schreier curve, and the theorem applies.

At this point in the proof of Theorem 3.16, we can assume that there at most one short
tame orbit and a unique wild orbit in the action of G on X. There are three cases to
consider. First, for relatively low genus curves, it is possible there is a free orbit among the
Fp2 points. Otherwise, the Fp2 -rational points either consist of just one wild orbit, a case
dealt with in Lemma 3.23, or are the union of a tame orbit with a wild orbit, a case dealt
with in Lemma 3.24.

Lemma 3.22. Suppose X is a Fp2-maximal curve of genus g ≥ 2 and p > 7. Suppose
X → X/G is wildly ramified and that there is a free orbit among the Fp2-rational points.
Then |G| ≤ g2 or |G| ≤ 84(g − 1).

Proof. Write g = dp + 1
2 c(p − 1) and write np + 1 for the length of the wild orbit.

First, we deal with the case that d > 0 and n > 1. In this case, there must be a free orbit
of size at most (2d+ c+ 1)p2 − (c+ n)p, which is less than g2 for d > 2, d = 2 and c > 0,
or d = 1 and c > 2. We also have a lower bound of p(np + 1) on the size of the group.
Then, if |G| > g2, we must have

5p2 − np ≥ np2 + p,

so n < 5.
If the tame orbit is outside the Fp2 -rational points, we must have the wild orbit size

dividing the number of other points in Fp2 . Then np+1 divides (2d+ c+1)p− (c+n), so

np + 1
∣∣ (n(n + c) + 2d + c + 1) .

For 2 ≤ n ≤ 4, d > 0, and 2d + c ≤ 4, it is a quick computation to verify this only has
solutions for p = 2, 3, 5, 7.
Now, if the tame orbit is among the Fp2 -rational points, we use Lemma 3.15 to say

np + 1
∣∣ 16(p + 1)d(c + d + 1)

which, from p(n − 1) = (np + 1) − (p + 1) gives

np + 1
∣∣ 16(n − 1)d(c + d + 1).

For 2d+c ≤ 4, we then have np+1
∣∣ 96(n−1) or np+1

∣∣ 64(n−1). Checking for pwith
n = 2, 3, 4 is another easy computation. The only p that can satisfy these congruences for
n in this range are p = 2, 5, and the case is done.
Now suppose that n = 1 with d > 0. In this case, the stabilizer of each point of the

wild orbit is necessarily transitive on the other points, so that G acts double transitively
on the wild orbit. Take Ḡ to be the permutation group G induces on these p + 1 points.
By element counting, no α ∈ Ḡ that fixes two points of the orbit can have order more
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than p − 1. But subgroups of the stabilizer of a point of size not dividing p are necessarily
cyclic, so the stabilizer of any pair of points is cyclic.
Then, by [13], and since the 2-transitive action is on a set of size p + 1 and not pk + 1

for some larger k, we know that Ḡ is either isomorphic to PSL(2, p), PGL(2, p), or has a
regular normal subgroup. But PSL(2, p) is of size 1

2 (p
3 − p) and PGL(2, p) is still larger,

while g < 5
2p being necessary for |G| > g2 implies the number of Fp2 points outside this

orbit is at most 6p2 − 2p, so p − 1 < 12. Then exceptions can only exist for p ≤ 11. We
can deal with the case p = 11 by noting PGL(2, 11) is too large, and PSL(2, 11) has size
equal to p2 + 2gp − p only when g is exactly 1

25(p − 1), outside the case d �= 0.
If Ḡ instead has some regular normal subgroup, or a subgroup acting freely and transi-

tively on the p+1 points, we know that the regular normal subgroupmust be a elementary
p-group. Excepting p = 2 to p + 1 = 3, we then get that pmust be a Mersenne prime, of
the form 2k − 1 for some k.
Taking an alternative tack, we can also write

2g − 2
rp(p + 1)

= −k
t

+ (c + 1)(p − 1) − 1
rp

in this case for some positive integers r, t and with k either 0 or 1. Then

k|G|
t

= p(c + 1)(p − 1) − 2dp

Then, for d ≤ 2, k �= 0 for p > 5. But this tame orbit size must divide the number of
Fp2 -rational points that are not among the p + 1, so

((c + 1)(p − 1) − 2d)
∣∣ ((2d + c + 1)p − (c + 1)) .

In fact, unless the tame orbit is among the Fp2 -rational points, we see that p + 1
∣∣

(2d+c+1)p−(c+1) too, so p+1
∣∣ 2d+2c+2, which is impossible for 2d+c ≤ 5, d ≥ 1,

and p > 7 (should 2d + c > 5 with d ≥ 1, |G| is forced to be less than g2). Then the tame
orbit is Fp2 -rational, so we also have that (c + 1)(p − 1) − 2d divides 2(p2 − 1)(p + 1), so

((c + 1)(p − 1) − 2d)
∣∣ 32d(c + d + 1)2,

where the relation comes from considering the greatest common denominator of p −
1, p + 1 with the left hand side. This relation doubles as an inequality. If c + 2d > 4,
d > 0, and |G| > g2, we have from counting the number of points in the free orbit of
Fp2 -points that p2 − 14p + 9 < 0 for p < 17. Otherwise, for c + 2d ≤ 4, d > 0, we get
p ≤ 9 · 64 + 3. The only Mersenne primes of interest are then p = 3, 7, 31, 127. Checking
31, 127 for (c, d) = (0, 1), (1, 1), (2, 1), (0, 2), we see that they cannot be examples, so for
p > 7 we again have no examples.
Now, suppose d �= 0 and the wild orbit is of size 1. In this case we can write

2g − 2
rp

= −k
t

+ (c + 1)(p − 1) − 1
rp

for k either 0 or 1. For k = 0, we get 2dp− p = 0, which is impossible. For k = 1, we have

2dp − p
rp

= −1
t
,

which is impossible for d > 0.
This just leaves all cases where d = 0. In this case, we know by Lemma 3.21 that any

possible curve is isomorphic to one of the form ym = xp − x with m dividing p + 1. But
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these do not have the specified type, as the automorphism group for each partitions the
set of Fp2 -rational points into either one or two short orbits. The lemma is proved.

Lemma 3.23. For p ≥ 7, the only Fp2-maximal curve of genus at least two with all of the
Fp2-rational points forming a single wild orbit is the Hermitian curve.

Proof. We first deal with the case where the maximal p-group has order p. Write g =
dp + 1

2 c(p − 1), and write the size of the stabilizer for a point of the wild orbit as rp.
Suppose d �= 0. Then r ≤ 4d + 2, as r is the order of a cyclic group in X/H , where H is a
p-group, and X/H has genus d > 0. Write p2 + 2gp + 1 = N . Assuming that there is at
most one other tamely ramified orbit, we can write

2g − 2
rpN

= −k
t

+ cp + p − c − 2
rp

.

But the magnitude of the right hand side, if nonzero, has a lower bound of
cp + p − c − 2
(rp)(rp + 1)

,

so
1
rp2

≥ 2g − 2
2rgp2

≥ 2g − 2
rpN

≥ cp + p − c − 2
(rp)(rp + 1)

,

so rp + 1 ≥ cp2 + p2 − cp − 2p, and so (4d + 2)p + 1 ≥ p(cp + p − c − 2), and finally

d ≥ 1
4

(
cp2 + p2 − cp − 4p − 1

)
.

If c = 0, we get d ≥ 1
4 (p − 4). But then the genus is at least 1

4p(p − 4) and is divisible
by p, and no maximal curve fits this bill for p ≥ 7 by checking against Theorem 10.48 of
[10]. If c > 0, the only curve in the range is the Hermitian curve.
Then we can assume d = 0. This case falls immediately to Lemma 3.21. The Hermitian

curve is the only example of a curve of the form ym = xp − x, where m divides p + 1,
whose automorphism group acts transitively on the Fp2 -rational points.

Lemma 3.24. Let X be a Fp2-maximal curve of genus at least two. Then G has two short
orbits in X, one wild and one tame, that have union equal to the set of Fp2-rational points
if and only if X is isomorphic to a curve given by the equation ym = xp−x, where m

∣∣ p+1,
m �= 1, p + 1.

Proof. Write 1 + np for the size of the wild orbit and write g = dp + 1
2 c(p − 1). Then

Riemann-Hurwitz gives

2g − 2 = −(p2 + (2g − n)p) + (1 + np)((c + 1)(p − 1) − 1),

which reduces to

2d(p + 1) = (c + 1)(n − 1)(p − 1).

But p − 1 and p + 1 have greatest common factor at most 2, so d ≥ 1
4 (p − 1) unless the

right hand side of this expression vanishes. But the only Fp2 -maximal curve with genus at
least 1

4p(p − 1) is the Hermitian curve, so the right hand vanishes. Then nmust be 1 and
d must be zero.
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By Lemma 3.21, we have that such a curve is of the form ym = xp − x with m dividing
p+ 1. Taking away the casesm = 1 for being rational andm = p+ 1 for being Hermitian
and not of this form, we have one direction of the lemma.
However, the curve ym = xp − x with m dividing p + 1 is covered by the Hermitian

curve. It is a twist of a maximal curve. Further, per Theorem 12.11 of [10], if m �= p + 1,
the curve has two short orbits, one of size p+1 and the other of size (c+1)p(p−1). These
partition the rational points between them. For genus g ≥ 2, we only need that m > 1.
Then we have the converse.

At this point we have exhausted all possibilities. Theorem 3.16 is true.

3.5 Superspecial curves with irreducible canonical representations

We can now prove Theorem 3.3.
Proof. X is isomorphic either to a Fp2 -maximal or Fp2 -minimal curve. In the latter

case, since the genus of a Fp2 -minimal curve is at most 1
2 (p − 1), as a curve cannot

have negatively many points, we have that the only possible examples of an exception
to |G| ≤ 84(g − 1) come from curves isomorphic to the Roquette curve from equation
y2 = xp − x. Then X can be assumed to be Fp2 -maximal. But then, if g > 82 and |G| > g2,
then |G| > 84(g − 1) too. Further, if p ≤ 7, then we have g ≤ 3 · 7 = 21. Then we can
apply Theorem 3.16 to say that if X has irreducible canonical representation, has g > 82,
and is not isomorphic to the Roquette curve from y2 = xp − x, then it is isomorphic to
ym = xp − x for somem

∣∣ p + 1. The following proposition then implies the theorem.

Proposition 3.25. Let X be the smooth projective model of ym = xp − x, where m|p + 1.
Then X has an irreducible canonical representation if and only if m ∈ {2, p + 1}.

We first recall a basis for H0(X,�1). From [24], Lemma 1, we know that such a basis is
given by

xiyjdywith 0 ≤ i, j and im + jp ≤ (p − 1)(m − 1) − 2.

where i and j are integers. Alternatively, viamym−1dy = −dx, we can write this basis as

xidx
yj

with 0 ≤ i and j ≤ m − 1 and im + (m − 1 − j)p ≤ (p − 1)(m − 1) − 2

Takem′ = (p+1)/m. We claim that the subspace generated by xidx
y with 0 ≤ i ≤ m′ −2

is invariant under the automorphism group provided that m < p + 1. We recall that,
by ([10], Thm 12.11), the automorphism group of X is generated by the following two
elements:

(1) An mth root of unity ζm acting via (x, y) → (x, ζmy).

(2) An element σ =
(
a b
c d

)
∈ SL(2,Fp) acting via

(x, y) →
(
ax + b
cx + d

,
y

(cx + d)m′

)
.
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We have that ζm acts on the basis vectors as a scalar, so it fixes the subspace. Next, σ
acts on the basis for the subspace by

σ

(
xidx
y

)
= (ax + b)i(cx + d)m

′−2−i dx
y
.

This result is a linear combination of terms of the form xidx
y with i ≤ m′ − 2. Then

the generators fix the subspace. This is a proper subspace when m > 2. Thus, when
2 < m < p + 1, the canonical representation is not irreducible. Whenm ∈ {2, p + 1}, the
canonical representation is irreducible as stated in Proposition 3.2.

4 Automorphisms of Ordinary Curves
In this section, we prove Theorem 1.1, improving upon a bound by Nakajima [19] on the
automorphisms of ordinary curves. The proof of the theorem borrows many techniques
from the similar theorem in [19], but improves the bound by using asymptotics and some
more detailed arguments.
Proof of Theorem 1.1. Let G = Aut(X) and Y = X/G. If |G| > 84(g − 1), then Y has

genus zero and Lemma 3.18 applies. This splits the proof of the theorem into four cases,
each corresponding to a type of curve from this Lemma.
Case I. This case has p an odd prime, with one point P ∈ Y wildly ramified, two points

Q,Q′ tamely ramified with ramification index 2, and no other ramified points. Choose
P1 ∈ X over P. Then we can write |G(0)

P′ | = Eq, with q a power of p and p � E. Hurwitz gives

2
(
g − 1
|G|

)
= −2 + 2

2
+ Eq + q − 2

Eq
= q − 2

Eq
.

But Eq is the size of a subgroup of G, so we have that

2
(
g − 1
q − 2

)
= |G|

Eq

is an integer. Since q− 2 is odd, we have (q− 2)|(g − 1). Write a = g−1
q−2 . Also, E divides

q − 1 by ([19], Proposition 1), so write q − 1 = dE. Then

|G| = 2aEq = 2a
d

(
g − 1
a

+ 1
) (

g − 1
a

+ 2
)

= 2(g + a − 1)(g + 2a − 1)
ad

.

But 1 ≤ a < g, so this equation forces |G| ≤ 2(2g − 1)(g + 1) ≤ 5g2, finishing this case.
Case II. In this case, there are two wildly ramified points in Y and no other ramified

points. Renaming the points if necessary, we write eQ1 = E1q, eQ2 = E2qq′ with E1,E2
integers not divisible by p. Then Hurwitz gives

2
(
g − 1
|G|

)
= −2 + E1q + q − 2

E1q
+ E2qq′ + qq′ − 2

E2qq′ .

If qq′ = q = 2, this equation forces X to be an elliptic curve, against our assumption
gX ≥ 2. We then assume qq′ > 2.
Define b1 and b2 so b1E1 = q − 1, b2E2 = qq′ − 1. b1 and b2 are positive integers by

([19], Proposition 1, Lemma 2). We then rewrite the above equation as
|G|
qq′ = 2(g − 1)(q − 1)(qq′ − 1)

b2(q − 1)(qq′ − 2) + b1(qq′ − 1)q′(q − 2)
.

Then
|G|
qq′ ≤ 2(g − 1)(qq′ − 1)

b2(qq′ − 2)
,
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with equality if and only if q = 2. If 3 ≤ qq′ ≤ 14, this gives

|G| ≤ 14 · 13(g − 1)
6b2

,

which is less than g2 for g ≥ 30. Assuming qq′ ≥ 15 for the rest of this case, we have

|G| ≤ 15qq′(g − 1)
7b2

. (12)

We now split into three subcases. First, suppose q �= 2 and q′ �= 1. E2qq′ is the size of a
subgroup of G, so

b2|G|
qq′(qq′ − 1)

= 2b2(g − 1)(q − 1)
b2(q − 1)(qq′ − 2) + b1(qq′ − 1)q′(q − 2)

is an integer. But the greatest common denominator of q − 1 and the denominator will
need to divide b1(q′ − 1), so

2b2b1(g − 1)(q′ − 1)
b2(q − 1)(qq′ − 2) + b1(qq′ − 1)q′(q − 2)

is also an integer. Then
2b2(g − 1)(q′ − 1)
q′(qq′ − 1)(q − 2)

≥ 1,

so 1
b2 (qq

′ − 1) ≤ 2(g − 1) for q > 2. Then Equation 12 gives

|G| ≤ 32
7

(g − 1)2.

For the next subcase, take q = 2 and q′ �= 1. In this case, our equation is
|G|
2q′ = (g − 1)(2q′ − 1)

b2(q′ − 1)
.

The left is an integer, so we find that (q′ − 1)|(g − 1). Write a(q′ − 1) = (g − 1). We find

|G| = 2aq′ 2q′ − 1
b2

= 1
ab2

2(g + a − 1)(2g + a − 2),

which from 1 ≤ a < g gives |G| ≤ 6g2.
If q = 2 and q′ = 1, we would have qq′ = 2, which we already dealt with.
Finally, suppose q′ = 1. We have that

b2|G|
q(q − 1)

= 2b2(g − 1)
(b1 + b2)(q − 2)

and
b1|G|

q(q − 1)
= 2b1(g − 1)

(b1 + b2)(q − 2)
are integers. Adding these, we see a(q − 2) = 2(g − 1) for some a. Then

|G| = 2(g − 1)
q(q − 1)

(b1 + b2)(q − 2)
≤ 15

14
(g − 1)2g ≤ 3g2,

where we are using q = qq′ ≥ 15. This finishes Case II.
Case III. [19] shows that this case is impossible for ordinary curves.
Case IV. Let eQ1 = Eq and eQ2 = e, where q = pn and (E, p) = (e, p) = 1. This implies

that dQ1
eQ1

= Eq+q−2
Eq and dQ2

eQ2
= e−1

e . Applying the Riemann-Hurwitz formula, we have

2gX − 2
|G| = (e − E)q − 2e

Eqe
. (13)
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By ([19], Lemmas 1,2), it suffices to consider when E > (
gX
21 )

1
2 , and thus, we take E to be

large in the following analysis. Our strategy for the remainder of Case III is to first prove
two bounds on |G| in terms of E, q, and gX in Lemma 4.1. Then, we bound E and q in
terms of gX to finish the proof.

Lemma 4.1. If E ≥ 444, we have the following estimates of |G|:
|G| ≤ 2(1 + 7E−1)Eq(gX − 1) (14)

and

|G| ≤ 2(3 + 37E−1)E2(gX − 1). (15)

Proof. Define d = (q − 1)/E and ε = e − E. It is shown in ([19], Proposition 1, Lemma
2) that d, ε are positive integers. We then define the variables

λ = dEε − 2E − ε

E + ε

and

μ = dEε − 2E − ε

(d + E−1)(E + ε)
,

so that (13) gives us

|G| = 2Eq
λ

(gX − 1) = 2E2

μ
(gX − 1). (16)

First, we bound λ from below. If ε ≥ 4, then certainly λ ≥ Eε
E+ε

− 2 > 1. Otherwise, we
have that λ = (dε−2)− (dε−1) ε

E+ε
and ε ≤ 3. But λ > 0 implies that dε−2 is a positive

integer, and thus

λ = (dε − 2) − (dε − 1)
ε

E + ε
≥ 1 − 6

E
.

Next, we claim that μ ≥ 1
3 − 4

E . As before, it is easy to see that if ε ≥ 3, then we are
done. Thus, assume that ε < 3 and we have

μ = dε − 2
d + E−1 − ε(dε − 1)

(d + E−1)(E + ε)
≥ dε − 2

d
− 4

E
.

Since μ > 0, we have dε > 2. Hence, this is minimized at d = 3, ε = 1, in which case
we get our desired bound of

μ ≥ 1
3

− 4
E
.

Finally, we have the bounds

1
μ

≤
(
1
3

− 4
E

)−1
≤ 3 + 37

E
1
λ

≤
(
1 − 6

E

)−1
≤ 1 + 7

E
for all E ≥ 444, and the result follows.

Now we bound E2 and Eq by a multiple of gX . Let P1 ∈ X be such that πX/Y (P1) = Q1.
Let Z = X/G1(P1) andW = X/G0(P1). We have a sequence of maps X → Z → W such
that |Gal(X/Z)| = q andW is the quotient of Z byG0(P1)/G1(P1), which is a cyclic group
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of order E by Proposition 2.1. We now have two cases depending on whether or not Z is
rational.

Lemma 4.2. Theorem 1.1 holds in the case gZ ≥ 1.

Proof. Observing that the point P1 is totally wildly ramified in πX/Z , we have by the
Riemann-Hurwitz formula:

2gX − 2 ≥ q(2gZ − 2) + 2(q − 1),

which implies that gX ≥ qgZ .
We now bound gZ from below by a multiple of E so that wemay apply Lemma 4.1 to get:

|G| ≤ 2
(
1 + 7E−1)Eq (

gX − 1
) ≤ 2

(
1 + 7E−1) (

E
gZ

)
gX(gX − 1). (17)

To do so, we examine the quotient map Z → W = Z/CE where CE ∼= G0(P1)/G1(P1)
denotes the cyclic group of order E. Hereafter, for any positive integer a|E, we identify Ca
with the unique order a cyclic subgroup of CE . Let the lengths of the short orbits of CE
acting on Z (that is, the orbits of size less than E) be l1, · · · , ls+1.We have that li|E. Wemay
assume that ls+1 = 1 corresponding to the image of the point P1 in Z, which is fixed by all
of G0(P1)/G1(P1). Applying the Riemann-Hurwitz formula to the map Z → W yields

2gZ − 2 = E(2gW − 2) +
s+1∑
i=1

(E − li). (18)

If gW > 0, then we have 2gZ − 2 ≥ E − ls+1 = E − 1 which implies the result by (17).
Thus, we assume gW = 0. Then, we note that 2gZ − 2 ≥ 0 and E

2 ≤ E − li ≤ E − 1. By 18,
we conclude that s ≥ 2. If s ≥ 4, we have that

2gZ − 2 = −2E + (E − 1) +
s∑

i=1
(E − li) ≥ −2E + (E − 1) + 4

(
E
2

)

= E − 1

and we are done as before. Hence, we have two remaining cases, s = 2 and s = 3.
Subcase 1: s = 2. We have that 2gZ −2 = E− l1 − l2 −1. We let a = lcm

(
E
l1 ,

E
l2

)
and let

Z′ = Z/Ca. Then, we observe that by the choice of a, the map πZ′/W is a map of degree
E
a which is only ramified at πX/W (P1), where it is totally ramified. It follows that by the
Riemann-Hurwitz formula on πZ′/W , we have that 2gZ′ − 2 = − 2E

a + (Ea − 1) = −E
a − 1.

But gZ′ ≥ 0, so it follows that a = E and therefore, (l1, l2) = 1. Assume without loss of
generality that l1 ≥ l2. It follows from the fact that l1 and l2 are relatively prime integers
dividing E that l1l2 ≤ E. Hence, we have that either l1 + l2 ≤ E

3 + 3 or l1 = E
2 . In the

former case, we immediately have that E ≤ 3gZ +3 and thus E
gZ ≤ 3(1− 3

E )−1 ≤ 3(1+ 4
E ).

Thus, we have that by (17),

|G| ≤ 6
(
1 + 12E−1) gX (

gX − 1
) ≤ 6

(
1 + 12

√
21
gX

)
gX

(
gX − 1

)
(19)

≤ 6
(
g2X + 12

√
21g

3
2
X

)
,

as desired.
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We now assume that E is even and l1 = E
2 . It follows that l2 is either 1 or 2. We claim

that Z is not ordinary in both cases. This would contradict the Deuring-Šafarevič formula
applied to πX/Z . Let Z′′ = Z/C2 so that the map πZ′′/W is a degree E

2 map with exactly two
ramification points, R1 = πX/W (P1) and another point R2 ∈ W . By the Riemann-Hurwitz
formula applied to πZ′′/W , we have that

2gZ′′ − 2 = E
2

(−2) + 2(E − 1),

which implies that gZ′′ = 0. Therefore, since πZ/Z′′ has degree 2, Z is hyperelliptic. In
fact, since gZ′′ = gW = 0 and πZ′′/W is a degree E

2 map which is totally ramified over 2
points, we may assume up to automorphisms of Z′′ andW that πZ′′/W is the map z �→ z

E
2 .

Let Z be the hyperelliptic curve given by y2 = f (x) such that the map Z → Z′′ is given
by (x, y) �→ x. Then, Gal(Z′′/W ) ∈ Aut(Z′′) is a cyclic group of order E

2 such that any
element γ ∈ Gal(Z′′/W ) fixes 0 and ∞ and has the property that (γ z)

E
2 = z

E
2 . Hence, γ

is multiplication by an E
2 -th root of unity. In fact, if γ is chosen to be a generator of this

cyclic group, then γ is multiplication by a primitive E
2 -th root of unity. It follows that the

map Z → Z′ is branched over 0, possibly ∞ depending on whether l2 is 1 or 2, and E
2

other points which are permuted by Gal(Z′′/W ). Hence, these points must be related by
multiplication by some E

2 -th root of unity. Thus, we have that f (x) = x
(
x

E
2 − a

)
and Z is

the hyperelliptic curve given by the equation y2 = x
(
x

E
2 − a

)
for some a ∈ k. We show

that this curve is not ordinary for sufficiently large E.
This is a standard computation; we simply compute the action of Frobenius on a basis

ofH1(Z,OZ) and show that the matrix of Frobenius is not invertible. For this hyperelliptic
curve, a basis of H1(Z,OZ) is given by

{
y
xi

}
for i = 1, 2, · · · ,

⌊
E
4

⌋
.

If p = 2, then Frobenius sends y
xi to

x
E
2 −a
x2i = 0 inH1(Z,OZ), so in fact Z is supersingular

and we can ignore this case. Otherwise, assume that p > 2 and Frobenius sends

y
xi

�→ yp

xpi
=

y
(
x
(
x

E
2 − a

)) p−1
2

xpi
.

Therefore, the (i, j) entry of the matrix of Frobenius with respect to this basis, known as
the Hasse-Witt matrix, is

[
pi − j

] (
x
(
x

E
2 − a

)) p−1
2 =

[
pi − j − p − 1

2

] (
x

E
2 − a

) p−1
2 ,

where [ n] f (x) refers to the xn coefficient of f (x). Thus the (i, j) entry is nonzero if and
only if E

2 divides pi − j − p−1
2 , or in other words, pi − p−1

2 ≡ j (mod E
2 ).

Suppose Z is ordinary. Then for each i, row imust have some nonzero entry. Thus, since
1 ≤ j ≤

⌊
E
4

⌋
, we have that for each i, the smallest positive integer n such that

pi − p − 1
2

≡ n
(
mod

E
2

)

satisfies 1 ≤ n ≤
⌊
E
4

⌋
.

Let i =
⌊

E
2p

⌋
. First assume that i �= 0. Then, pi − p−1

2 is between E
2 − p + 1 − p−1

2 and
E
2 − p−1

2 . Since its value modulo E
2 must be between 1 and

⌊
E
4

⌋
, we have E

2 −p+1− p−1
2 ≤

E
4 , so E ≤ 6(p − 1) and gX ≤ 21E2 = 756(p − 1)2. Thus, gX is bounded by some c = c(p)
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on the order of p2 and we have finished this case. Now, note that if i = 0, we trivially have
the same bounds.
Subcase 2: s = 3. We have that 2gZ − 2 = 2E − l1 − l2 − l3 − 1. By the same argument

as above, we obtain (l1, l2, l3) = 1 and thus l1 + l2 + l3 ≤ E + 2 and we are done by the
same bounds as in (19).

For the remainder of the proof, we assume that gZ = 0, which implies that gW = 0.
Applying the Riemann-Hurwitz formula to the cyclic cover πZ/W immediately yields that
there must be exactly two ramification points, and they both must be totally ramified. Let
them be R1,R2 ∈ W such that πX/W (P1) = R1. We have the following lemma:

Lemma 4.3. If there exists R3 ∈ W, R3 �= R1,R2, which is ramified under πX/W, then
Theorem 1.1 holds.

Proof. In πX/W , R1 is totally ramified by definition, so dR3 = Eq + q − 2 and eR3 = Eq.
Since R2 is totally ramified in πZ/W , we have that eR2 ≥ E and thus dR2

eR2
≥ eR2−1

eR2
≥ 1 − 1

E .
Finally, since R3 is unramified in πZ/W , eR3 divides q = deg πX/Z . Hence, dR3 = 2eR3 − 2
so we have that dR3

eR3
= 2 − 2

eR3
≥ 2 − 2

p . Finally, we apply the Riemann-Hurwitz formula
to πX/Z which yields:

2gX − 2
Eq

≥ −2 + dR1
eR1

+ dR2
eR2

+ dR3
eR3

≥ 2 − 2
Eq

− 2
p
.

Rearranging and using (14), we have

|G| ≤ 2Eq
(
1 + 7E−1) (

gX − 1
) ≤ 2

(
1 + 7E−1

1 − 1
Eq − 1

p

) (
gX − 1

)2 .
The conclusion follows by letting E grow large and using p ≥ 2.

Now suppose that R1 and R2 are the only ramification points of πX/W in W. In this
final case, we will show a stronger result; that is, that |G| ≤ g2X for gX sufficiently large,
except possibly for one particular family of cases. As before, assume E ≥ 1. Also assume
|G| > g2X , and as usual we can and will also assume that 21E2 > gX .

Lemma 4.4. In this case, d ≥ E − 2.

Proof. Again letting H = G1(P1), we have that since G2(P1) = {1} by Proposition 2.1
(3),H = G1(P1)/G2(P1), which is an elementary abelian p-group of order q. Choose some
P2 mapping to R2. LetN = H0(P2) = H1(P2). As in [19], we let q′ = |N | and q′′ = |H/N |.
Then q′q′′ = q.
By the argument in Lemma 5 of [19], E divides both q′ − 1 and q′′ − 1, and q′ �= 1.

Therefore, either

q′′ = 1

or

E2 ≤ (q′ − 1)(q′′ − 1) < q′q′′ = q.
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In the former case, ([19], p. 606) shows that E ≤ √q+1. This implies that E2−2E ≤ q−1,
and so d = q−1

E ≥ E−2, so Lemma 4.4 holds. In the latter case, E2 ≤ q−1, which implies
that d = q−1

E ≥ E. Thus Lemma 4.4 holds here as well.

Lemma 4.5. If ε ≥ 3, then gX ≤ 364.

Proof. By definition,

μ = dEε − 2E − ε

(d + E−1)(E + ε)
= Eε

E + ε

d
d + E−1 − 2E + ε

(d + E−1)(E + ε)
,

which is an increasing function in d. Therefore, we can substitute d ≥ E − 2 to obtain

μ ≥ (E − 2)Eε − 2E − ε

(E − 2 + E−1)(E + ε)
.

Using 2E ≤ 2Eε in the numerator and E−1 ≤ 1 in the denominator, we have that

μ ≥ (E − 4)Eε − ε

(E − 1)(E + ε)
= ε(E2 − 4E − 1)

(E − 1)(E + ε)
.

This last expression is increasing in ε, so if ε ≥ 3,

μ ≥ 3
(
E2 − 4E − 1

)
E2 + 2E − 3

.

Substituting into the expression |G| = 2E2
μ

(gX − 1),

|G| ≤ 2E2
(
E2 + 2E − 3

)
3

(
E2 − 4E − 1

) (
gX − 1

)
.

(Here we assume that this expression is positive, i.e. E ≥ 5.)
Now, since |G| > g2X , this means

2E2
(
E2 + 2E − 3

)
3

(
E2 − 4E − 1

) ≥ |G|
gX − 1

≥ g2X
gX − 1

> gX + 1.

However, [19] also shows that if q′′ �= 1, then E2 < gX , and if q′′ = 1, then E ≤√
gX + 1 + 1. Either way, gX + 1 ≥ (E − 1)2. Therefore,

2E2
(
E2 + 2E − 3

)
3

(
E2 − 4E − 1

) > (E − 1)2.

Therefore, E ≤ 20.
Since gX + 1 <

2E2(E2+2E−3)
3(E2−4E−1) for E ≥ 5, this means that if 5 ≤ E ≤ 20, gX + 1 < 366.

Thus if E ≥ 5, gX ≤ 364, so the lemma holds. If E ≤ 4, we have the bound E ≥
√

g
21 , so in

this case, g ≤ 21 · 42 = 336, so the lemma also holds here.

We now consider the case ε ≤ 2. Recall that ε = e − E. We rearrange the expression

2gX − 2
|G| = (e − E)q − 2e

Eqe

into
|G|
Eqe

= 2gX − 2
(e − E)q − 2e

= 2gX − 2
dEε − 2E − ε

.
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Now, note that since both Eq and e are the size of the stabilizer of a point in X under
G, |G| is divisible by both Eq and e. Now, gcd(q, e) = 1, as p � e, and gcd(E, e) divides
e − E = ε. Therefore, Eqe divides ε|G|, and so

ε(2gX − 2)
dEε − 2E − ε

is a positive integer.
We first consider the case q′′ = 1. Then [19] shows that gX = q − 1 = dE. Therefore,

2dEε − 2ε
dEε − 2E − ε

is an integer. Subtracting 2,

4E
dEε − 2E − ε

is an integer. But dEε − 2E − ε ≥ dE − 2E − 1 ≥ E2 − 4E − 1 > 4E for E ≥ 9. Therefore,
E ≤ 9. Thus gX < 21E2 = 1701.
Now, suppose q′′ �= 1. We have that E divides both q′ − 1 and q′′ − 1. Let q′ = pa′ and

q′′ = pa′′ . Then E divides gcd(q′ −1, q′′ −1) = pgcd(a′,a′′) −1. Therefore, E ≤ pgcd(a′,a′′) −1.
Suppose a′ �= a′′. Then E3 < (pgcd(a′,a′′) − 1)(p2 gcd(a′,a′′) − 1) ≤ (q′ − 1)(q′′ − 1), since
one of a′ or a′′ must be at least 2 gcd(a′, a′′). By the argument in Lemma 5 of [19], we have
that gX ≥ (q′ − 1)(q′′ − 1). Therefore, gX ≥ E3. But 21E2 > gX , so E ≤ 20, implying that
gX < 21 · 202 = 8400. Therefore, if gX ≥ 8400, then q′ = q′′ = √q.
In this case, √q = pn for some positive integer n, and q′ = q′′ = pn. Then the argument

in Lemma 5 of [19] (applying the Hurwitz formula to the map X → Z) shows that gX =
p2n − pn. Therefore,

ε
(
2gX − 2

)
(εq − 2e)

= 2ε
(
p2n − pn − 1

)
εp2n − 2e

is an integer, so subtracting 2,

2(2e − εpn − ε)

εp2n − 2e

is an integer. Now, since E divides q′ −1 = pn−1, E ≤ pn−1 and thus e = E+ε ≤ pn+1,
as ε ≤ 2. Therefore,

|2(2e − εpn − ε)| ≤ max
(
4e, 2εpn + 2ε

) ≤ 4pn + 4.

Therefore, if 2e − εpn − ε �= 0,

4pn + 4 ≥ εp2n − 2e ≥ p2n − 2pn − 2.

Therefore, pn < 7, so pn ≤ 5. Thus E ≤ pn − 1 = 4, so gX ≤ 21 · 42 = 336 < 8400.
Therefore, if gX ≥ 8400, then 2e − εpn − ε = 0. This implies that e = ε

2 (p
n + 1), and

thus E = e − ε = ε
2 (p

n − 1). This also means that the integer

ε|G|
Eqe

= ε(2gX − 2)
(εq − 2e)

must in fact be equal to 2. Thus if ε = 1, then |G| = 2Eqe = 2 pn−1
2 · p2n · pn+1

2 = p4n−p2n
2 .

But if |G| > g2X = (p2n − pn)2, we have that

p4n − p2n > 2
(
p2n − pn

)2 ,
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so pn = 2. But then E = 1, a contradiction. Therefore, ε = 2. Thus E = pn − 1, and
e = pn + 1. Since 2|G|

Eqe = 2, |G| = Eqe = p4n − p2n.
Therefore, if gX ≥ 8400 and |G| > g2X , then E = pn − 1, e = pn + 1, q = p2n, gX =

p2n − pn, and |G| = p4n − p2n for some positive integer n. Theorem 1.1 trivially follows
from this stronger result in this case.
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