Skip to main content
Log in

Profiling of heavy metal(loid)-resistant bacterial community structure by metagenomic-DNA fingerprinting using PCR–DGGE for monitoring and bioremediation of contaminated environment

  • Original Article
  • Published:
Energy, Ecology and Environment Aims and scope Submit manuscript

Abstract

Frequent exposure of microbes to hazardous metalloids/heavy metals in contaminated environment results in the development of heavy metal(loid)-resistance properties. The study attempted to assess the profile of elevated arsenic (As), cadmium (Cd) and mercury (Hg)—resistant bacterial community structures of sludge (S1, India), sludge and sediment (S2 and S3, Japan) and sediment (S4, Vietnam) samples by metagenomic-DNA fingerprinting using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR–DGGE) for monitoring and bioremediation of hazardous metal(loid) contamination in environment. The results revealed that As-resistant bacteria were dominant compared to Cd- and Hg-resistant bacteria with higher species diversity (Lysinibacillus sp., Uncultured soil bacterium clone, Staphylococcus sciuri, Bacillus fastidiosus, Bacillus niacini, Clostridium sp. and Bacillus sp.) in S1 and S4 than that of S2 and S3 samples. The occurrence of dominant As-resistant bacteria may indicate arsenic contamination in the investigated coastal habitats of India, Japan and Vietnam. The As-, Cd- and Hg-resistant bacteria/bacterial consortiums showed appreciable uptake ability of respective metal(loid) (0.042–0.125 mg As/l, 0.696–0.726 mg Cd/l and 0.34–0.412 mg Hg/l). Therefore, it might be concluded that the profiling of metalloids/heavy metal-resistant bacterial community structure by metagenomic-DNA fingerprinting using PCR–DGGE could be used to explore high metal(loid)-resistant bacteria for applying in metal(loid) bioremediation and as an indicator for monitoring hazardous metal(loid) contamination in environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abbas SZ, Riaz M, Ramzan N, Zahid MT, Shakoori FR, Rafatullah M (2014) Isolation and characterization of arsenic resistant bacteria from wastewater. Braz J Microbiol 45:1309–1315

    Article  Google Scholar 

  • Abbas SZ, Rafatullah M, Ismail N, Lalung J (2015) Isolation and characterization of Cd-resistant bacteria from industrial wastewater. Desalin Water Treat 56:1037–1046

    Article  Google Scholar 

  • Altimira F, Yáñez C, Bravo G, González M, Rojas LA, Seeger M (2012) Characterization of copper–resistant bacteria and bacterial communities from copper–polluted agricultural soils of central Chile. BMC Microbiol 12:193

    Article  Google Scholar 

  • Bhakta JN (2016) Microbial response against metal toxicity. In: Rathoure AK, Dhatwalia VK (eds) Toxicity and waste management using bioremediation. IGI Global, PA, pp 75–96. https://doi.org/10.4018/978-1-4666-9734-8.ch004

    Chapter  Google Scholar 

  • Bhakta JN (2017) Metal toxicity in microorganism. In: Bhakta JN (ed) Handbook of research on inventive bioremediation techniques. IGI Global, PA, pp 1–23. https://doi.org/10.4018/978-1-5225-2325-3.ch001

    Chapter  Google Scholar 

  • Bhakta JN, Munekage Y (2008) Role of ecosystem components in Cd removal process of aquatic ecosystem. Ecol Eng 32:274–280

    Article  Google Scholar 

  • Bhakta JN, Munekage Y (2010) Mercury removal by some soils of Japan from aquatic environment. Environ Eng Manag J 9(4):503–510

    Google Scholar 

  • Bhakta JN, Ohnishi K, Munekage Y, Iwasaki K (2010) Isolation and probiotic characterization of arsenic–resistant lactic acid bacteria for uptaking arsenic. Int J Chem Biol Eng 3:4

    Google Scholar 

  • Bhakta JN, Munekage Y, Ohnishi K, Jana BB (2012a) Isolation and identification of cadmium and lead resistant lactic acid bacteria for applying as metal removing probiotic. Int J Environ Sci Technol 9:433–440

    Article  Google Scholar 

  • Bhakta JN, Ohnishi K, Munekage Y, Iwasaki K, Wei M (2012b) Characterization of lactic acid bacteria–based probiotics as heavy metals sorbents. J Appl Microbiol 112:1193–1206

    Article  Google Scholar 

  • Bhakta JN, Munekage Y, Ohnishi K, Jana BB, Balcazar JL (2014) Isolation and characterization of cadmium and arsenic absorbing bacteria for bioremediation. Water Air Soil Pollut 225(10):2151. https://doi.org/10.1007/s11270-014-2151-2

    Article  Google Scholar 

  • Bidstrup PC (1964) Toxicity of mercury and its compounds. Elsevier, Amsterdam

    Google Scholar 

  • Campbell JH, Clark JS, John CZ (2009) PCR–DGGE comparison of bacterial community structure in fresh and archived soils sampled along a Chihuahuan Desert elevational gradient. Microb Ecol 57(2):261–266

    Article  Google Scholar 

  • Carpio IE, Machado-Santelli G, Sakata SK, Ferreira Filho SS, Rodrigues DF (2014) Copper removal using a heavy-metal resistant microbial consortium in a fixed-bed reactor. Water Res 62:156–166

    Article  Google Scholar 

  • Carpio IEM, Franco DC, Sato MIZ, Sakata S, Pellizari VH, Ferreira Filho SS, Rodrigues DF (2016) Biostimulation of metal-resistant microbial consortium to remove zinc from contaminated environments. Sci Total Environ 550:670–675. https://doi.org/10.1016/j.scitotenv.2016.01.149

    Article  Google Scholar 

  • Curtis TP, Sloan WT (2004) Prokaryotic diversity and its limits: microbial community structure in nature and implications for microbial ecology. Curr Opin Microbiol 7:221–226

    Article  Google Scholar 

  • Dinsdale EA, Edwards RA, Hall D et al (2008) Functional metagenomic profiling of nine biomes. Nature 452:629–632

    Article  Google Scholar 

  • Figueiredo NL, Canário J, O’Driscoll NJ, Duarte A, Carvalho C (2016) Aerobic Mercury-resistant bacteria alter Mercury speciation and retention in the Tagus Estuary (Portugal). Ecotoxicol Environ Saf 124:60–67

    Article  Google Scholar 

  • Gadd GM (1990) Heavy metal accumulation by bacteria and other microorganisms. Experientia 46:834–840

    Article  Google Scholar 

  • Giller K, Witter E, McGrath SP (1998) Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: a review. Soil Biol Biochem 30:1389–1414

    Article  Google Scholar 

  • Gupta UC, Gupta SC (1998) Trace element toxicity relationships to crop production and livestock and human health: implications for management. Commun Soil Sci Plant Anal 29(11–14):1491–1522

    Article  Google Scholar 

  • Handelsman J (2004) Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev 68:669–685

    Article  Google Scholar 

  • Handelsman J, Rondon MR, Brady SF, Clardy J, Goodman RM (1998) Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem Biol 5:R245–R249

    Article  Google Scholar 

  • Hoover J, Gonzales M, Shuey C, Barney Y, Lewis J (2017) Elevated arsenic and uranium concentrations in unregulated water sources on the Navajo Nation, USA. Expo Health 9:113–124. https://doi.org/10.1007/s12403-016-0226-6

    Article  Google Scholar 

  • Jafari SA, Cheraghi S (2014) Mercury removal from aqueous solution by dried biomass of indigenous Vibrio parahaemolyticus PG02: kinetic, equilibrium, and thermodynamic studies. Int Biodeterior Biodegrad 92:12–19

    Article  Google Scholar 

  • Kumar S, Krishnani KK, Bhushan B, Brahmane MP (2015) Metagenomics: retrospect and prospects in high throughput age. Biotech Res Int 2015, Article ID 121735, p 13. https://dx.doi.org/10.1155/2015/121735

  • Kunin V, Copeland A, Lapidus A, Mavromatis K, Hugenholtz P (2008) A bioinformatician’s guide to metagenomics. Microbiol Mol Biol Rev 72:557–578

    Article  Google Scholar 

  • Kvasnova S, Hamarová L, Pristaš P (2017) Zinc bioaccumulation by microbial consortium isolated from nickel smelter sludge disposal site. Nova Biotechnol Chim 16:48–53. https://doi.org/10.1515/nbec-2017-0007

    Google Scholar 

  • Li Z, Xu J, Tang C, Wu J, Muhammad A, Wang H (2006) Application of 16S rRNA PCR amplification and DGGE fingerprinting for detection of shift microbial community diversity in Cu–, Zn– and Cd–contaminated paddy soil. Chemosphere 62:1374–1380

    Article  Google Scholar 

  • Lim KT, Shukor MY, Wasoh H (2014) Physical, chemical, and biological methods for the removal of arsenic compounds. BioMed Res Int 2014, Article ID 503784, p 9. https://dx.doi.org/10.1155/2014/503784

  • Logue JB, Bürgmann H, Robinson CT (2008) Progress in the ecological genetics and biodiversity of freshwater bacteria. Bioscience 58:103–113. https://doi.org/10.1641/B580205

    Article  Google Scholar 

  • Martínez-Alonso M, Escolano J, Montesinos E, Gaju N (2010) Diversity of the bacterial community in the surface soil of a pear orchard based on 16S rRNA gene analysis. Int Microbiol 13(3):123–134

    Google Scholar 

  • Min-sheng H, Jing P, Le-ping Z (2001) Removal of heavy metals from aqueous solutions using bacteria. J Shanghai Univ 5(3):253–259

    Article  Google Scholar 

  • O’Brien S, Buckling A (2015) Hijacking the social lives of microbial populations to clean up heavy metal contamination. EMBO Rep 16:1241–1245

    Article  Google Scholar 

  • Pettit RK (2004) Soil DNA libraries for anticancer drug discovery. Cancer Chemother Pharmacol 54:1–6

    Article  Google Scholar 

  • Qing H, Min-Na D, Hong-Yan Q, Xiang-Ming X, Guo-Qiang Z, Min Y (2007) Detection, isolation, and identi cation of cadmium–resistant bacteria based on PCR–DGGE. J Environ Sci 19:1114–1119

    Article  Google Scholar 

  • Ranjard L, Echairi A, Nowak V, Lejon D, Nouaim R, Chaussod R (2006) Field and microcosm experiments to evaluate the effects of agricultural Cu treatment on the density and genetic structure of microbial communities in two different soils. FEMS Microbiol Ecol 58:303–315

    Article  Google Scholar 

  • Ruiz-Barba JL, Maldonado A, Jiménez-Díaz R (2005) Small–scale total DNA extraction from bacteria and yeast for PCR applications. Anal Biochem 347:333–335

    Article  Google Scholar 

  • Saranya K, Sundaramanickam A, Shekhar S, Swaminathan S, Balasubramanian T (2017) Bioremediation of mercury by Vibrio fluvialis screened from industrial effluents. BioMed Res Int, Article ID 6509648, 6 pages. https://dx.doi.org/10.1155/2017/6509648

  • Schmeisser C, Steele H, Streit WR (2007) Metagenomics, biotechnology with non–culturable microbes. Appl Microbiol Biotechnol 75:955–962

    Article  Google Scholar 

  • Signes-Pastor AJ, Carey M, Vioque J, Navarrete-Mun˜oz EM, Rodrıguez-Dehli C, Tardon A, Begon˜a-Zubero M, Santa-Marina L, Vrijheid M, Casas M, Llop S, Gonzalez-Palacios S, Meharg AA (2017) Urinary arsenic speciation in children and pregnant women from Spain. Expo Health 9:105–111. https://doi.org/10.1007/s12403-016-0225-7

    Article  Google Scholar 

  • Singh PK, Singh AL, Kumar A, Singh MP (2012) Mixed bacterial consortium as an emerging tool to remove hazardous trace metals from coal. Fuel 102:227–230

    Article  Google Scholar 

  • Sinha A, Pant KK, Khare SK (2012) Studies on mercury bioremediation by alginate immobilized mercury tolerant Bacillus cereus cells. Int Biodeterior Biodegrad 71:1–8

    Article  Google Scholar 

  • Smalla K, Oros-Sichler M, Milling A, Heuer H, Baumgarte S, Becker R, Neuber G, Kropf S, Ulrich A, Tebbe CC (2007) Bacterial diversity of soils assessed by DGGE, T-RFLP and SSCP fingerprints of PCR–amplified 16S rRNA gene fragments: do the different methods provide similar results? J Microbiol Methods 69(3):470–479

    Article  Google Scholar 

  • Streit WR, Schmitz RA (2004) Metagenomics—the key to the uncultured microbes. Curr Opin Microbiol 7:492–498

    Article  Google Scholar 

  • Torsvik V, Ovreas L (2002) Microbial diversity and function in soil: from genes to ecosystems. Curr Opin Microbiol 5:240–245

    Article  Google Scholar 

  • Umar AF, Tahir F, Agbo EB (2017) Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR–DGGE) profile of bacterial community from agricultural soils in Bauchi, North-East Nigeria. Adv Microbiol 7:480–486

    Article  Google Scholar 

  • Wang Y, Shi J, Wang H, Lin Q, Chen X, Chen Y (2007) The influence of soil heavy metals pollution on soil microbial biomass, enzyme activity, and community composition near a copper smelter. Ecotoxicol Environ Saf 67:75–81

    Article  Google Scholar 

  • Watts MP, Khijniak TV, Boothman C, Lloyd JR (2015) Treatment of alkaline Cr(VI)-contaminated leachate with an alkaliphilic metal-reducing bacterium. Appl Environ Microbiol 81(16): eScholarID:268368

  • Wei G, Fan L, Zhu W, Fu Y, Yu J, Tang M (2009) Isolation and characterization of the heavy metal resistant bacteria CCNWRS33–2 isolated from root nodule of Lepedeza cuneata in gold mine tailings in China. J Hazard Mater 162:50–56

    Article  Google Scholar 

  • Yao X-F, Zhang J-M, Tian L, Guob J-H (2017) The effect of heavy metal contamination on the bacterial community structure at Jiaozhou Bay, China. Braz J Microbiol 48:71–78. https://doi.org/10.1016/j.bjm.2016.09.007

    Article  Google Scholar 

Download references

Acknowledgements

Authors are grateful to Japan Society for the promotion of Science (JSPS) for sponsoring research fund and fellowship (FY2009 JSPS postdoctoral fellowship) to Dr. Bhakta to carry out the study. Authors are also especially grateful to Dr. J. K. Pittman for reviewing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jatindra N. Bhakta.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhakta, J.N., Lahiri, S., Bhuiyna, F.A. et al. Profiling of heavy metal(loid)-resistant bacterial community structure by metagenomic-DNA fingerprinting using PCR–DGGE for monitoring and bioremediation of contaminated environment. Energ. Ecol. Environ. 3, 102–109 (2018). https://doi.org/10.1007/s40974-017-0079-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40974-017-0079-2

Keywords

Navigation