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Abstract Hydrogen (H2) produced from biological meth-

ods is a potential option to meet the growing clean energy

needs. The present study aimed to produce biohydrogen by

dark fermentation from nuisance aquatic weed, Eichhornia

crassipes, using facultative anaerobic bacteria. A total of

12 bacterial strains were isolated from different wastewater

sources and were screened for the potential of H2 pro-

duction using glucose as carbon source. Ten strains showed

the H2-producing potential and were identified up to the

generic level by biochemical tests. Two strains with higher

H2 production were sequenced using PCR technique and

identified as Proteus mirabilis and Pseudomonas aerugi-

nosa and selected for the studies with E. crassipes as the

substrate. It was found that P. aeruginosa could produce

19.54 ± 0.03% of H2 from 2% acid (H2SO4) treated sub-

strate which was comparatively higher than that of 4 and

8% treatments. P. mirabilis also yielded better results of

5.42 ± 0.02% H2 f or 2% acid (H2SO4) treated substrate

than 4 and 8% treatments. In total, 33.52 ± 0.04% of H2

was produced by P. aeruginosa for the substrate treated

with 2% alkali (NaOH). It was noted that with respect to P.

mirabilis 4% alkali treated substrate yielded a higher per-

centage of H2 (20.23 ± 0.03%) compared to the other two

concentrations. The results indicate that alkali treated

substrate produced comparatively higher amount of H2

than that of acid treated substrates. Regarding efficiency, P.

aeruginosa was found to be more competent than P.

mirabilis.
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1 Introduction

The extensive use of fossil fuels has depleted the limited

resources, and the emissions have been behind the envi-

ronmental issues like global warming, climate change and

ozone depletion (Show et al. 2012; Suleman et al. 2015;

Thomas et al. 2016). Hydrogen (H2) is considered as a

suitable alternative source of energy owing to its regener-

ative, carbon neutral and high energy yielding (122 kJ/g)

property (Kapdan and Kargi 2006; Brown et al. 2007; Balat

2008; Das and Veziroglu 2008; Wang and Wan 2009;

Suleman et al. 2015). However, presently about 96% of H2

are produced from fossil fuels, which are again energy

intensive, economically and environmentally not feasible

(Momirlan and Veziroglu 2002; Nath and Das 2004; Ewan

and Allen 2005; Mohanty et al. 2015). Hence, biological

methods of H2 production from renewable sources exhibit

significant advantages as clean energy and less expensive

(Ren et al. 2009; Guo et al. 2010; Pudukudy et al. 2014;

Marc and Koohi-Fayegh 2016). The established biological

methods are direct biophotolysis by green algae, indirect

biophotolysis by cyanobacteria, photofermentation by

photosynthetic bacteria and dark fermentation by anaerobic

fermentative bacteria (Das and Veziroglu 2008; Oncel and

Sukan 2011; Show et al. 2012; Hay et al. 2013).

Dark fermentation involves the conversion of organic

substrates to H2 along with butyric, lactic and acetic acid& V. P. Sylas
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by the action of anaerobic fermentative bacteria which has

dual advantage of energy production and waste manage-

ment (Nath and Das 2003; Ren et al. 2009; Hay et al.

2013). Bacteria belonging to varied groups can perform

fermentative H2 production (Reginatto and Antônio 2015).

Strict anaerobe Clostridium and facultative anaerobes of

the family Enterobacteriaceae are the well-established H2-

producing strains (Seol et al. 2008; Elsharnouby et al.

2013; Reginatto and Antônio 2015).

Eichhornia crassipes (Mart.) Solms (water hyacinth) is an

aquatic weed, having invaded many water bodies, growing

vigorously, blanketing the entire water surface and considered

as one of the world’s 100 worst invaders (Center et al. 1999;

Cheng et al. 2010; Luque et al. 2013). Various mechanical,

chemical and biological control methods have been imple-

mented for the removal of this noxious weed (Parolin et al.

2012).The controlmeasures adoptedworldwidehave exhibited

varying extent of success, but complete eradication has not yet

achieved (Ray et al. 2009; Patel 2012; Stubbs and Kennedy

2012). However, studies have reported that water hyacinth can

be a good source of energy owing to the profuse growth and

abundance (Mathur and Singh 2004; Gunnarsson and Petersen

2007;Mishima et al. 2008;Chuang et al. 2011;Das et al. 2016).

The dry plant biomass mainly comprises of cellulose

(18–31%), hemicellulose (18–43%) and lignin (7–26%) (Ku-

mar et al. 2009; Bergier et al. 2012; Barua and Kalamdhad

2016). The high content of carbohydrate can be hydrolysed

through acidic and alkaline treatment into fermentable sugars

(Kumar et al. 2009;Aswathy et al. 2009;Barua andKalamdhad

2016).Efforts done to tap thebiomass as a suitable feedstock for

the production of biofuels like biogas (Vivekanand et al. 2013;

Barua and Kalamdhad 2016), bioethanol (Das et al. 2016;

Shanab et al. 2017), biohydrogen (Cheng et al. 2010; Chuang

et al. 2011; Lazaro et al. 2014) and biodiesel (Shanab et al.

2017) have been proved successful (Kumar et al. 2009;

O’Sullivan et al. 2010; Sharma et al. 2016).

Kuttanad, an integral part of Vembanad-Kol Ramsar

site, is also adversely affected by various nuisance invasive

aquatic macrophytes. E. crassipes is one among the most

problematic invasive in the area (Sylas 2010). Hence, the

present study has attempted to produce H2 from E. cras-

sipes through dark fermentation in the laboratory condition

using two locally isolated facultative bacterial species.

2 Materials and methods

2.1 Organism and growth conditions

The facultative anaerobic bacteria were isolated from dif-

ferent sources of wastewater such as fish market sewage,

tapioca processing, coir retting pond and cow dung slurry.

These samples were collected in sterilized containers from

different locations of Kottayam district, Kerala, India, and

brought to the laboratory. The samples (200 ml) were fil-

tered through 2-mm sieve to remove larger particles, then

heated in an oven at 100 �C for about 45 min and then

cooled (Li and Fang 2007). Hundred millilitres of the heat-

treated wastewater was inoculated into sterile nutrient

broth and incubated at 37 �C in anaerobic condition for

3 days. Subsequently, from this broth, cultures were inoc-

ulated onto nutrient agar plates and incubated at 37 �C for

24 h. Later, the grown colonies were aseptically inoculated

into nutrient broth for growth enhancement and used as the

inoculums for the further experiments.

2.2 Screening test for bacteria with hydrogen

production potential

The isolated bacteria were screened for the potential to

produceH2. For the screening test, the bacterial cultureswere

inoculated into nutrient medium containing glucose (1.5%)

in sterilized distilled water in 250-ml Erlenmeyer flask

having screw cap and a port for the gas collection. The final

working volume was 200 ml (150 ml glucose solution,

40 ml nutrient medium and 10 ml bacterial inoculums) (Lay

et al. 2013). The nutrient medium consisted of 3.77 g/l

NH4CO3, 0.125 g/l K2HPO4, 2 g/l NaHCO3, 0.005 g/l

CuSO4, 0.1 g/l MgCl2, 0.015 g/l MnSO4, 0.025 g/l FeSO4

and 0.00125 g/l CoCl2 (Fang andLiu 2002). The initial pHof

the medium was maintained at 7, and the flasks were purged

withCO2 for 5 min and sealed tightlywithTeflon tape. Itwas

then kept in anaerobic condition at 37 �C for 7 days, and all

the experiments were done in quadruplicate. After 7 days,

the gas from the headspace of the container was collected

with a gas-lock syringe and analysed in gas chromatograph.

2.3 Identification and characterization of bacteria

The bacterial strains having the potential of H2 production

were identified up to the generic level by biochemical char-

acterization and gram staining (Barrow and Feltham 1974).

Polymerase chain reaction (PCR) was performed for species-

level identification of the two bacterial strains which showed

higher H2 production. The DNA sequences were searched for

similarity using BLAST (basic local alignment search tool)

and were submitted in the NCBI GenBank DNA database.

2.4 Substrate collection and pre-treatment

The E. crassipes plants were collected from Kuttanad

wetland ecosystem, part of Vembanad-Kol Ramsar site, in

Kerala, India. The collected plants were first washed with

tap water and chopped into small pieces (2–3 cm) and

sun-dried. The dried biomass was then finely powdered in
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a plant grinder and sieved through 0.25-micron mesh and

stored in airtight containers at room temperature for fur-

ther analysis. The physico-chemical properties of the

biomass were analysed as per APHA (1998) [tests were

done with hyacinth solution of 1 g dried biomass in 1 l of

deionized water (Lay et al. 2013)]. The biomass was pre-

treated with different concentrations (2, 4 and 8%) of

sulphuric acid (H2SO4) as well as sodium hydroxide

(NaOH) separately. Ten gram biomass was mixed with

either H2SO4 or NaOH solution at a solid/liquid ratio of

1:15 and kept under steam treatment at 121 �C at 15 lbs.

The pre-treated biomass was then neutralized with acid or

alkali and then filtered using Whatman filter paper no: 1.

The filtrate was finally sterilized and used as substrate for

the experiments.

2.5 Experimental set-up

The two bacteria with higher H2 production potential were

selected for the tests with substrate. The experiments were

performed in the similar manner as the screening test with

glucose mentioned above in Sect. 2.2. The gas produced

was analysed in gas chromatograph. The schematic repre-

sentation of the entire work is shown in Fig. 1.

2.6 Analytical methods

The pH of the experiments was measured using a

portable pH metre. Glucose content was determined using

phenol sulphuric acid method (DuBois et al. 1956), and

COD was estimated using open reflux method (APHA

Collection of Samples 
for isolation of bacteria

Heat treatment and 
culturing and isolation

Screening test for bacteria 
with H2 production potential 

using glucose

Identification of H2

producing bacteria

Two bacterial strains 
Pseudomonas aeruginosa and 

Proteus mirabilis selected

E. crassipes : Collection and
Preparation (Chopping, 
drying and powdering)

Pre-treatment using H2SO4 

or  NaOH

Neutralization and filtration

Filtrate autoclaved – used 
as substrate

Experiment with bacteria and 
substrate in reactor for 7 days

Collection of headspace gas

Analysis in Gas Chromatograph

Fig. 1 Schematic

representation of experimental

procedure
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1998). The headspace gas was analysed in gas chro-

matograph (Nucon, India, Model 5700) equipped with

thermal conductivity detector (TCD). Isothermal separation

was done in a packed 2-m-long Porapak Q (80/100) mesh

column. The operating temperature of injection port, the

oven and the detector was set at 80, 60 and 100 �C,
respectively. Nitrogen was used as the carrier gas at a flow

rate of 20 ml/min.

3 Results and discussion

3.1 Bacteria: isolation, screening of H2 production

potential and identification

A total of 12 bacterial strains were obtained through the

heat treatment and subsequent culturing and were named as

HPB1-12. Among them, ten strains showed H2 production

in the screening test (Table 1). Two strains, HPB1 and

HPB10, were found to produce higher percentage of

hydrogen, and hence, they were selected for the further

study of anaerobic fermentation with E. crassipes.

The identified bacterial strains belonged to five different

genera, namely Salmonella, Pseudomonas, Proteus, Kleb-

siella and Providencia. The H2-producing capability of

Salmonella (Watanapokasin et al. 2009), Pseudomonas

(Xie et al. 2008; Soniagandhi and Krishnaveni 2013),

Proteus (Patel et al. 2010), Klebsiella (Costa et al. 2011)

and Providencia has already been reported.

The DNA sequence data revealed the strains as HPB1

showing 100% similarity with Proteus mirabilis (Fig. 2)

and HPB10 showing 100% similarity with Pseudomonas

aeruginosa (Fig. 3). The accession numbers for the sub-

mitted sequence data in NCBI GenBank are Proteus mir-

abilis KY817361 and Pseudomonas aeruginosa

KY817362.

3.2 Hydrogen production: effect of acid pre-

treatment

The dried E. crassipes is composed of cellulose (22.3%),

hemicellulose (39.8%) and lignin (20.6%). These complex

organic compounds could not be degraded directly by the

bacteria (Su et al. 2010). Direct conversion of raw substrate

to H2 is difficult due to complex nature of lignin hemi-

cellulose–cellulose complex; hence, various pre-treatment

methods were carried out to break down the complex

structure into simpler fragments so as to enable the bac-

terial action (Singhal and Singh 2014). Acidic and alkaline

pre-treatment helps in the breakdown of cellulose into

simpler monomer units of glucose (Sun and Cheng 2002;

Li and Fang 2007; Aswathy et al. 2009). Glucose is the

carbon source on which microbial communities act upon to

produce hydrogen through fermentation (Benemann 1996;

Das and Veziroglu 2001; Levin et al. 2006; Guo et al.

2010). In the present study, both acid and alkali treatments

(concentrations of 2, 4 and 8%) were employed for the

Table 1 Hydrogen production from the isolated bacteria

Sl. no Strain code Identified bacterial genera H2 (ml)

1 HPB1 Proteus 5.15

2 HPB2 Salmonella 0.83

3 HPB3 Providencia 0.045

4 HPB4 Klebsiella 0.045

5 HPB5 Providencia 0.415

6 HPB6 Klebsiella 0.155

7 HPB7 Klebsiella 0.7

8 HPB8 Salmonella 0.305

9 HPB9 Salmonella 0.0

10 HPB10 Pseudomonas 9.94

11 HPB11 Salmonella 0.065

12 HPB12 Providencia 0.0

TGCAGTCGAGCGGTAACAGGAGAAAGCTTGCTTTCTTGCTGACGAGCGGCGGACGGTGAGTAATGTATGGGGATC

TGCCCGATAGAGGGGGATAACTACTGGAAACGGTGGCTAATACCGCATAATGTCTACGGACCAAAGCAGGGGCTC

TTCGGACCTTGCACTATCGGATGAACCCATATGGGATTAGCTAGTAGGTGGGGTAAAGGCTCACCTAGGCGACGAT

CTCTAGCTGGTCTGAGAGGATGATCAGCCACACTGGGACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGT

GGGGAATATTGCACAATGGGCGCAAGCCTGATGCAGCCATGCCGCGTGTATGAAGAAGGCCTTAGGGTTGTAAAG

TACTTTCAGCGGGGAGGAAGGTGATAAGGTTAATACCCTTATCAATTGACGTTACCCGCAGAAGAAGCACCGGCT

AACTCCGTGCCAGCAGCCGCGGTAATACGGAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGCACGCA

GGCGGT

Fig. 2 Consensus sequence data of HPB1—Proteus mirabilis
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conversion of polysaccharides into simple sugars. Later,

the isolated bacterial species, P. aeruginosa and P. mir-

abilis, were inoculated for the production of H2 under

anaerobic condition.

In acidic pre-treatment, the acid hydrolyses hemicellu-

loses into xylose (Cui et al. 2009; Thomsen et al. 2006).

TCGAGCGGATGAAGGGAGCTTGCTCCTGGATTCAGCGGCGGACGGGTGAGTAATGCCTAGGAATCTGCCTGGTAG

TGGGGGATAACGTCCGGAAACGGGCGCTAATACCGCATACGTCCTGAGGGAGAAAGTGGGGGATCTTCGGACCTC

ACGCTATCAGATGAGCCTAGGTCGGATTAGCTAGTTGGTGGGGTAAAGGCCTACCAAGGCGACGATCCGTAACTG

GTCTGAGAGGATGATCAGTCACACTGGAACTGAGACACGGTCCAGACTCCTACGGGAGGCAGCAGTGGGGAATAT

TGGACAATGGGCGAAAGCCTGATCCAGCCATGCCGCGTGTGTGAAGAAGGTCTTCGGATTGTAAAGCACTTTAAG

TTGGGAGGAAGGGCAGTAAGTTAATACCTTGCTGTTTTGACGTTACCAACAGAATAAGCACCGGCTAACTTCGTGC

CAGCAGCCGCGGTAATACGAAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGCGCGTAGGTGGTTCAG

CAAGTTGGATGTGAAATCCCCGGGCTCAACCTGGGAACTGCATCCAAAACTACTGAGCTAGAGTACGGTAGAGGG

TGGTGGAATTTCCTGTGTAGCGGTGAAATGCGTAGATATAGGAAGGAACACCGTGGCGAAGGCGACCACCTGGAC

TGATACTGACACTGAGGTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGA

TGTCGACTAGCCGTTGGGATCCTTGAGATCTTAGTGGCGCAGCTAACGCGATAAGTCGACCGCCTGGGGAGTACGG

CCGCAAGGTTAAAACTCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAATTCGAAGCAAC

GCGAAGAACCTTACCTGGCCTTGACATGCTGAGAACTTTCCAGAGATGGATTGGTGCCTTCGGGAACTCAGACACA

GGTGCTGCATGGCTGTCGTCA 

Fig. 3 Consensus sequence data of HPB10—Pseudomonas aeruginosa
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The bacteria, P. aeruginosa and P. mirabilis, could pro-

duce H2 using the pre-treated substrate (E. crassipes) under

anaerobic fermentation. In the present study, the percent-

age of H2 production with P. aeruginosa was found to be

higher for the substrate treated with 2% acid

(19.54 ± 0.03%) than that of 4 and 8% acid treated sub-

strates (4.18 ± 0.13 and 4.23 ± 0.04% H2, respectively)

(Fig. 3). Likewise, for P. mirabilis also similar trend was

observed, i.e. 2% acid treated substrate yielded better result

(5.42 ± 0.02%) than 4 and 8% treated substrates

(0.14 ± 0.02 and 0% H2, respectively) (Fig. 4). In terms of

H2 yield, it was 9.77 ± 0.01, 2.09 ± 0.06 and

2.12 ± 0.02 ml H2/g substrate, respectively, for 2, 4 and

8% acid treated substrates for P. aeruginosa. And for P.

mirabilis, the yield was 2.71 ± 0.01, 0.07 ± 0.01 and 0 ml

H2/g substrate, respectively, for 2, 4 and 8% acid treated

substrates.

The result showed that low acid concentration gave

better yield. Similarly, the mild acid treatment of water

hyacinth yields high ethanol production (Ma et al. 2010;

Sathyanagalakshmi et al. 2011; Idrees et al. 2013). The

increased acid concentration lowered the H2 production

due to the conversion of the available sugars to other

compounds like xylose, acetic acid and furfural (Aguilar

et al. 2002). Furfural and soluble lignin compounds

generated during the acid hydrolysis are inhibitors of the

fermentation and can even stop the fermentation (Ramos

2003).

3.3 Effect of alkali pre-treatment

Alkaline pre-treatment results in an increase in the internal

surface by cellulose swelling, decrease in polymerization

degree and structural alteration of lignin. The treatment

also causes the crystallinity destruction of links between

lignin and other polymers, causing the breakdown of lignin

(Sun and Cheng 2002; Ibrahim et al. 2011; Yan et al.

2015). Alkaline pre-treatment changes the structures and

properties of cellulosic fibres and improves the enzymatic

digestibility of fibres (Zhu et al. 2004; Teater et al. 2011).

The percentage of H2 production for the substrate treated

with 2% alkali with P. aeruginosa was 33.52 ± 0.04%,

which is higher than that of 4 and 8% alkali treated sub-

strates (4.36 ± 0.02 and 4.22 ± 0.03% H2, respectively)

(Fig. 5). The 4% alkali substrate yielded a higher per-

centage of H2 compared to other two concentrations for P.

mirabilis. The percentage of H2 was 2.43 ± 0.02% for 2%

alkali treated substrate and 20.23 ± 0.03% for 4% treated

substrate and 0.66 ± 0.02% for 8% alkali treated substrate

(Fig. 5). In terms of yield, it was 16.76 ± 0.02,

2.18 ± 0.01 and 2.11 ± 0.01 ml H2/g substrate, respec-

tively, for 2, 4 and 8% alkali treated substrates for P.

aeruginosa. And for P. mirabilis, the yield was

1.21 ± 0.01, 10.11 ± 0.01 and 0.33 ± 0.01 ml H2/g sub-

strate, respectively, for 2, 4 and 8% alkali treated

substrates.

A similar trend was obtained in other studies also;

higher H2 yields were obtained with alkaline pre-treated

sludge (Cai et al. 2004). Alkaline pre-treatment enhances

the enzymatic hydrolysis, thereby facilitating H2 produc-

tion (Su et al. 2010; Aswathy et al. 2009). During alkaline

treatment, the H2 produced was maintained and less con-

sumed within the reactor; thus, the higher amount is pre-

sent at the end of the experiments (Cai et al. 2004).

Alkaline pre-treatment causes less sugar transformation

(Antonopoulou and Lyberatos 2011; Ibrahim et al. 2011;

Sills and Gossett 2011) making the sugars available for

microbial action.

Presence of methane was not observed in any of the

reactors. This might be the positive effect of heat pre-

treatment of raw inoculums. The heat pre-treatment was

done to eliminate H2-consuming methanogens and selec-

tively favour the growth of H2 producers (Lin et al. 2006;

Li and Fang 2007; Sivaramakrishna et al. 2014).

3.4 Process variables: pH, COD and glucose

At the end of the experiments, the pH dropped to acidic

range in all the reactors for both the treatments (Figs. 6 and

7). This decrease is owed to the production of acidic

intermediates such as volatile fatty acids (Alkaya and

Demirer 2011), which was not quantified in the present

Table 2 Percentage degradation of sugar

Concentration (%) % degradation of sugar

P. aeruginosa P. mirabilis

Acid 2 81.34 47.67

4 48.79 21.13

8 49.73 20.93

Alkali 2 87.56 33.82

4 47.42 82.13

8 48.93 24.79

Table 3 Percentage COD reduction

Concentration (%) % COD reduction

P. aeruginosa P. mirabilis

Acid 2 67.90 56.93

4 63.45 50.21

8 59.76 39.98

Alkali 2 71.34 47.23

4 44.89 69.87

8 56.76 37.54
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study. Volatile fatty acid productions are interrelated with

H2 production (Prakasaham et al. 2009).

The substrate had an initial sugar content of 2.2 mg/g.

The sugar degradation values ranged from 48.79 to 81.34%

in acid treated substrates and 47.42–87.56% in alkali

treated substrates for the bacteria P. aeruginosa (Table 2).

For the bacteria P. mirabilis, in acid treated substrates, the

values ranged from 20.93 to 47.67% and in alkali treated

substrates the values ranged from 24.79 to 82.13%. The

sugar degradation values are in accordance with the result

of hydrogen production, and the higher degradation per-

centage was shown in the reactor which produced higher

percentage of H2. Pure glucose substrates show 100% sugar

degradation efficiency (Kumar et al. 2013; Nasra et al.

2014), and the less degradation exhibited in the study may

be due to the composite nature of the substrate (Kumar

et al. 2013).

The initial chemical oxygen demand (COD) of the

substrate was 390 mgO2/l. The COD reduction percentage

ranged between 59.76 and 67.90% for P. aeruginosa in

acid treated substrate and 44.89 and 71.34% in alkali

treated substrates (Table 3). The values ranged from 39.98

to 56.93% in acid treated substrate for P. mirabilis, and in

alkali treated substrates it ranged from 37.54 to 69.87%

(Table 3). From the overall results, the highest reduction

percentage was observed in the 4% alkali treated substrate

with P. mirabilis, which is in line with the result of

hydrogen production. The COD removal efficiency of an

organism is a characteristic feature determining its hydro-

gen production capability (Ramprakash and Muthukumar

2014). The general range of COD removal efficiencies in

fermentative hydrogen production processes is between 20

and 40% (O-Thong et al. 2008). However, higher effi-

ciencies have been exhibited with various other studies;

COD removal of 71.8% was obtained during the fermen-

tation of enzymatic hydrolysed rice mill wastewater

(Ramprakash and Muthukumar 2014). About 75% effi-

ciency was recorded for the fermentation of paper and pulp

industry effluent with Enterobacter aerogenes (Laksh-

midevi and Muthukumar 2010). In the fermentation of

palm oil mill effluent, a COD removal efficiency of 63%

was obtained which could enhance hydrogen production

(O-Thong et al. 2008).

The results of the present study are compared with

previous reports of biohydrogen production with different

substrates by dark fermentation (Table 4).

4 Conclusion

The study succeeded in producing hydrogen gas from pre-

treated aquatic weed E.crassipes through anaerobic fer-

mentation. Out of the twelve bacteria isolated from dif-

ferent sources of wastewater, ten strains had the potential

of producing hydrogen under anaerobic condition. These

bacterial species belonged to five genera, namely Sal-

monella, Pseudomonas, Proteus, Klebsiella and Providen-

cia. Of them, Pseudomonas sp. and Proteus sp. produced

higher amount of hydrogen and hence were selected for the

anaerobic experiments with acid and alkali pre-treated E.

Table 4 Biohydrogen production from different substrates by dark fermentation

Substrate Microorganism used H2 yield References

Glucose Klebsiella oxytoca HP1 1.0 mol H2/mol substrate Minnan et al. (2005)

Jackfruit peel Cow dung slurry 55 ± 2% H2 Vijayaraghavan et al. (2006)

Molasses Mixed microbial culture 3.47 mol/mol substrate Guo et al. (2008)

Wheat powder E. aerogenes 545 ml H2/g starch Argun et al. (2009)

Water hyacinth Anaerobic sludge 51.7 ml- H2/g-TVS Cheng et al. (2010)

Sugarcane bagasse Elephant dung 0.84 mol H2/mol total sugar Fangkum and Reungsang (2011)

Cheese whey powder Anaerobic seed sludge 1.03 mol/mol substrate Kargi et al. (2012)

Pineapple waste Anaerobic seed sludge 1.83 mol H2/mol glucose Reungsang and Sreela-or (2013)

Rice straw Clostridium pasteurianum 0.44 mol H2/mol T-sugar Liu et al. (2013)

Water hyacinth Pig slurry 13.65 ml/g feedstock Lay et al. (2013)

Benincasa hispida Mixed microbial culture 14 mmol H2/mol sugar Singhal and Singh (2014)

Vegetable waste Seed microflora 2.2 mol/mol substrate Marone et al. (2014)

Sugar beet juice Anaerobic digested sludge 3.2 mol H2/mol hexose Dhar et al. (2015)

Waste peach pulp Anaerobic sludge 123 ml H2/g TOC Argun and Dao (2016)

Raw cassava starch Mixed microbial culture 1.72 mol H2/mol glucose Wang et al. (2017)

Water hyacinth P. aeruginosa 16.76 ml H2/g substrate Present study

Water hyacinth P. mirabilis 10.11 ml H2/g substrate Present study
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crassipes. These two bacteria were sequenced through PCR

technique to identify the species as P. aeruginosa and P.

mirabilis. The results of the experimental analysis show

that alkali treated substrate produced higher amount of

hydrogen than that of acid treated substrates. Comparing

the efficiency of the bacteria, P. aeruginosa was found to

produce higher percentage of hydrogen.
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