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Abstract Ridge top ecosystems (RTEs) are considered to
be more sensitive to global warming as they are charac-
terized by uniform sunlight exposure and low human
interferences and hence are perfect places for monitoring
and comparing the effects of climate change in species
composition. The present study was carried out on RTEs of
four different mountain ranges, viz. (1) Narendranagar—
Hindolakhal (2) Mussoorie-Dhanolti (3) Chaurangikhal-
Harunta and (4) Dayara—Gidara, along altitudinal gradient
(situated below 2000 to above 3500 m), in Garhwal
Himalaya to understand the variation in tree composition
and distribution range. 0.1 ha-sized sample plot was used
to analyze the tree species, whereas 5 m x 5 m for sap-
lings and 1 m x 1 m for seedlings. The tree layers on
RTEs were consisted of total 69 tree species, belonging to
55 genera and 39 families. Shorea robusta, Pinus rox-
burghii, Rhododendron arboreum, Quercus leucotri-
chophora, Q. floribunda, Q. semecarpifolia, Cedrus
deodara, Pinus wallichiana and Abies spectabilis were
found as the dominant and well-occupied tree species on
the RTEs from lower to higher elevations. The mean stand
density was recorded as 597 + 29 trees ha ' (ranged
between 546 and 616 trees ha~') with a mean basal cover
of 77.25 + 17.90 m* ha~' (ranged between 54.43 and
102.83 m* ha™'). A traditional pattern for tree diversity
was recorded which decreased with increasing altitude. The
detrended correspondence analysis ordination plot clumped
the species together which shared the same habitat and
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environmental conditions which revealed that elevation
and geographic location were the dominant factors for
regional differences in species composition among RTEs.

Keywords Climate change - Ecological indicators - Forest
composition - Ridge top ecosystems - Detrended
correspondence analysis

1 Introduction

The ridge top ecosystems (RTEs) are considered to be
more sensitive to global warming as they are characterized
by uniform sunlight exposure and low human interferences
and hence are perfect places for monitoring and comparing
the effects of climate change and predicting the future
changes in species composition. In Himalayan region,
elevation and climatic factors are the governing factors for
regional differences in species composition (Lee and Chun
2016; Sharma et al. 2016). Furthermore, it is supposed that
in the event of a rise in temperature at lower elevations the
movement/migration of vegetation would be toward upper
elevational (Chen and Hill 2011). The recent global
warming has resulted in disturbances of ecological rela-
tionships, alteration in plant life history and general upward
shift in the species distributional ranges (Jurasinski and
Kreyling 2007; Pauli et al. 2012). Climate controls the
distribution of vegetation (Sharma et al. 2016), and thus,
future changes in climate are projected to cause changes in
the vegetation distribution ranges. Several studies have
attributed widespread changes in plant growth or mortality
to climate change, but these efforts have focused on gen-
eral trends within a biome rather than identifying spatially
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coherent distribution pattern (Pauli et al. 2007; Engler et al.
2009).

The composition and ecosystem services of Himalayan
forests depend on forest structure, which is believed to be
changing over time. Gottfried et al. (2012) reported ample
evidences that ongoing climate change continuously affects
the Himalayan Vegetation along with its different compo-
nents. Rapid geo-climatic variations at different altitudes in
Himalaya generate diverse vegetation structure and high
species diversity (Chawla et al. 2008). Intensity of major
threats to forest ecosystems and biodiversity along altitu-
dinal gradient is directly measured by compositional
changes in forest structure. Role of habitat loss due to
fragmentation, overexploitation, invasion by alien species
and global climate change is premier in disruption of
community structure along the altitudinal gradient, which
can be used to assess the status of forest composition and
alert for future changes. Lots of work have been done on
the effects of elevational gradients on forest structure and
composition (Sharma et al. 2010; Gairola et al. 2012;
Rawat and Chandra 2014), but the studies on change in
species composition on RTEs along the altitudinal gradient
in Himalaya are completely lacking.

In the western Himalayan region, along lowest and
highest elevational transects the changes in forest compo-
sition are evident, but they are required to be measured
properly (Chitale et al. 2014; Sharma et al. 2014). Pro-
jecting future changes in species composition and distri-
bution of vegetation on RTEs at different altitudes is a
crucial step toward planning and mitigating the impacts of
climate change on biodiversity. The aim of the study is to
describe and analyze the forest structure, composition and
distribution pattern along elevational gradients, in order to
explain the changes in forest composition and characters of
forests on RTEs in response to changing climate.

2 Methodology
2.1 Study area

The study was conducted in four different mountain ranges,
viz. (1) Narendranagar—Hindolakhal (<2000 m) (2) Mus-
soorie—Dhanolti (1900-2900 m) (3) Chaurangikhal-Har-
unta (2400-3300 m) and “4) Dayara—Gidara
(2500-3750 m), of Garhwal Himalaya to assess tree spe-
cies composition and distribution on different RTEs along
the elevational gradient (Above sea level). For this pur-
pose, we selected the RTEs from lower to higher elevations
in aforesaid different mountain ranges. In these ranges, the
selected RTEs were studied on five different elevations,
viz. (a) <2000 m (b) 2000-2500 m (c) 2500-3000 m
(d) 3000-3500 and (e) >3500 m. The study areas were

situated in the catchment of river Ganges (called Bhagirathi
toward upstream). Details of study area, forest types and
dominant tree species within the selected elevations are
shown in Table 1 and Fig. 1.

All the mountain ranges were characterized by undulating
topography with gentle slopes on northern, northeastern and
northwestern faces and somewhat steep slopes on southern
and southwestern directions. Ridges are continuous elevated
top made by chain of mountains (Fig. 2). Numerous high
ridges, deep gorges and precipitous cliffs, rocky crates and
narrow valleys were part of the topography in all the ranges.
Geologically, the rocks were complex mixture of mainly
sedimentary, low-grade metamorphosed rocks with
sequences capped by crystalline nappe (Valdiya 1980).

2.2 Vegetation composition

The patterns of forest structure over RTEs were assessed
along the elevational gradient in the selected four mountain
ranges. The results of all the ranges were compared with
one another. Various RTEs along with several plant com-
munities provided an excellent base to investigate the cli-
matic control on plant distribution. The sample plots were
laid out from lower to higher elevations, climbing through
subtropical, temperate to subalpine forests.

The forest composition was analyzed by laying out a total
of 30 sample plots of 0.1 ha each, and three vegetation layers
(trees, saplings and seedlings) were studied for knowing the
species richness, density, diversity and regeneration status of
various forest-forming species as per (Kent and Coker 1992).
The trees (>10 cm dbh) were analyzed by 0.1 ha-sized
sample plots, whereas saplings by ten 5 m x 5 m-sized
quadrats and seedling by five 1 m x 1 m-sized quadrats,
which were randomly laid out within a 0.1 ha sample plots
on each site. Circumference at breast height (cbh = 1.37 m)
was taken for the determination of tree basal area, and in case
of saplings and seedlings, it was taken at collar height and
finally was calculated as nr? (where r is the radius). The data
were quantitatively analyzed for density, frequency and
abundance, following Curtis and McIntosh (1950). Density
and total basal cover values were converted to per hectare
(ha_l) for extrapolation of the results. Basal cover (m2 ha™ 1)
was used to determine the relative dominance of a tree spe-
cies. Importance value index (IVI) was the sum of relative
frequency, relative density and relative dominance (Phillips
1959) of a species. Shannon—-Weaver index (H) (Cootam and
Curtis 1956), Simpson’s dominance index (C) (Simpson
1949) and Hill diversity numbers NO, N1 and N2 (Hill 1973)
were computed. With the help of CANOCO 5 and SPSS-20
softwares, the results were correlated with temperature,
elevation and local climatic conditions to predict the future
changes in the vegetation at RTEs.
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Table 1 List of dominant woody plant species in different life phase at different altitudes

Altitude Studied area Dominant forest type Dominant tree species
<2000 Hindolakhal, Mussoorie, Chaurangikhal Tropical moist S. robusta, Q. leucotrichophora, T. chebula
2000-2500 Mussoorie, Dayara—Gidara, Chaurangikhal Moist temperate R. arboretum, Q. floribunda, Q. leucotrichophora
2500-3000 Mussoorie, Dayara—Gidara, Chaurangikhal Moist temperate Q. floribunda, Q. semecarpifolia, A. pindrow
3000-3500 Dayara—Gidara, Chaurangikhal Moist temperate A. spectabilis, Q. semecarpifolia, B. utilis
>3500 Dayara—Gidara Subalpine Q. semecarpifolia, A. spectabilis, B utilis
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Fig. 1 Map representing the study area

3 Results
3.1 Altitudinal variation in species composition

The structure and composition of the tree species on var-
ious RTEs and elevations are presented in Table 1. Shorea
robusta, Pinus roxburghii, Rhododendron arboreum,
Cedrus deodara, Quercus semecarpifolia, Q. floribunda,
Q. leucotrichophora, Pinus wallichiana and Abies spect-
abilis were the dominant tree species on RTEs at various
elevations (Table 2). The tree layers on all RTEs were
consisted of 69 species, represented by 55 genera and 39
families in the study area. Pinaceae and Fabaceae were the
dominant families represented by 6 tree species each.
Mean stand (stem) density was observed as 597 + 29 trees
ha~!, which ranged between 546 and 616 trees ha~! with a
total basal cover (TBC) of 77.25 + 17.90 m* ha™" (rang-
ing from 54.43 to 102.83 m”* ha™") on various ridge top
forests. Biodiversity index showed lowest Simpson index
value (0.07) on <2000 m and highest (0.44) on >3500 m.

@ Springer

The RTEs of lower altitudes (<2000 m.) were highly
diverse as compared to other altitudes and therefore
showed highest value (1.3). The details of forest compo-
sition in terms of species frequency, density, basal cover
and importance value index on different ridge top forests
of all five altitudinal ranges are given in Table 2.

3.2 DBH Class distribution

Overall diameter class density, species richness and basal
cover distribution on different elevational ranges repre-
sented different patterns, i.e., reverse J-shaped, inter-
rupted J-shaped and bell-shaped. Based on the overall
basal cover distribution, on RTEs above 3500 m eleva-
tion, an established forest was recorded (this may be
because of least disturbance in the inaccessible areas),
followed by 3000-3500 m elevation range, where mature
forests were prevalent; however, on RTEs situated below
2000 m elevation, younger regenerating forests were
recorded (probably because of their situation near
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Table 2 Tree species

composition along the different Altitude <2000 2000-2500 2500-3000 3000-3500 >3500
elevational ranges Species richness 46 20 24 13 3
Genus 40 18 19 12 3
Family 27 12 14 8 3
Stem density (ha™!) 546 615 600 616 610
Total basal cover (m? ha™!) 54.43 70.11 74.62 84.25 102.83
Simpson index 0.07 0.12 0.13 0.20 0.44
Shannon—Wiener index 1.29 1.05 1.01 0.81 0.39
Species evenness 0.78 0.81 0.73 0.73 0.82
Hill diversity
Hy 46 20 24 13 3
H, 1.07 1.13 1.14 1.22 1.55
H, 0.77 0.95 0.99 1.24 2.54

habitation zone). The tree density and species richness
under different size classes showed a reverse J-shaped
pattern in all five altitudinal ranges, whereas above
3500 m elevational range dbh density pattern was bell-
shaped (normal distribution). The dbh class-based basal
cover data also followed the bell-shaped curve at highest
altitude (Fig. 3a, b, ¢).

3.3 Species composition and distribution pattern
along the elevational gradients

Detrended correspondence analysis clearly showed that
vegetation distribution and association with the RTEs of
various mountain ranges were highly similar to each other
(Fig. 4). Among five different elevational ranges, the
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Fig. 3 Forest composition by DBH classes (cm) at different altitudes
(m); a species richness, b stem density and c total basal cover (m2
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distribution of vegetation was recorded on four different axes
which represented four major groups. Forest distribution on
<2000 m RTE was highly dissimilar to other altitudes. DCA
diagram has shown that vegetation structure between 2500
and 3500 m was almost similar (Fig. 4). The frequency
distribution pattern of 34 species is given in Fig. 5. Order of
widely distributed species among all ranges was C. deodara
(1450-3252 m) > R. arboreum (1732-3474 m) > L. ovali-
folia (1732-3474 m) > Q. semecarpifolia (2320-3540 m)
> P. wallichiana (2072-3252 m) > Q. leucotrichophora
(428-2592 m) > P. smithiana (2072-3125) etc. Linear
regression analysis between the components of forest com-
position and elevational gradients is also shown in Fig. 6.

4 Discussion
Plant species may respond to global warming either by

adapting their life cycles to the new conditions or by
migrating upwards from their conventional distribution
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Fig. 5 Distributional range of dominant woody plant species along the altitudes

ranges to more suitable habitats (Bellard et al. 2012). The
study revealed that tree species found in this part of
Himalaya exhibited a pattern of distribution along different
altitudinal and climatic gradients (Subedi et al. 2015). Tree
species richness was observed to be highest (47 species)
below 2000 m elevational zone, followed by 2500-3000 m
(26) and 3000-3500 m (20) and lowest (3 species) above
3500 m. More than two-third of plant species were
encountered at the elevation range below 2000 m, where
the temperature range was found fluctuating between 8 and
37 °C. Similar results of species richness were reported by
Burns (1995) and Austin et al. (1996) in their elevational
gradients study. The total species richness was greatest at
lower elevation (warmer sites) as compared to the higher
elevation (cooler sites).

Assessment of biodiversity and their drivers along
environmental gradients is one of the central topics in
ecology (Lee and Chun 2016). The variation in quantitative
parameters, species richness as well as forest composition
among all studied RTEs may be due to difference in cli-
matic, physiographic and edaphic factors. Distributional
ranges of several species were reported as segregated along
the widened elevational ranges (Kharkwal et al. 2005).
Pauses and Austin (2001) suggested that over any large
area, the distribution of species richness is likely to be
governed by two or more environmental factors. Trends of
species richness on RTEs of this study were almost similar
to other elevational gradient studies, because the decline in

species richness with increasing elevation is widely
accepted (Rahbek 1995; Sharma et al. 2016).

The mean stand density on various RTEs was recorded as
597 + 29 stems ha™' (which ranged between 546 and 616
stems ha_l) and mean value of TBC as
7725 + 179 m* ha™' (which ranged from 544 to
102.83 m? hafl). However, there was a gradual increase in
density with an increase in elevation, which is in conformity
with the studies performed in the Western Ghats by Partha-
sarathy and Karthikeyan (1997) and in Himalayan temperate
forests by Samant et al. (2002). The recorded density values
of this study did not vary considerably from values reported
by other authors (Adhikari and Tiwari 1991; Singhal and
Soni 1989; Ilorkar and Khatri 2003). From Garhwal Hima-
laya, Pande (2001) had reported a stem density of 792—-1111
stems hafl, which is higher than our values, whereas the
reported TBC range (56-126 m* ha™') was similar to our
study. All the results on vegetation composition were in
accordance with the earlier reported findings by various
ecologists for moist Himalayan temperate forests (Singh and
Kaushal 2006; Sharma et al. 2009, 2014, 2015).

Forest dominance increased with an increase in the
elevation. Simpson’s index value was 0.07 below 2000 m,
which gradually increased and reached finally up to 0.44
for the forest vegetation above 3500 m. This was due to
tolerance-based dominance of only few tree species under
severe environmental conditions. Shannon—Weiner’s index
values ranged from 0.39 to 1.3 and decreased with
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Fig. 6 Linear regression analysis between forest composition and elevation

increasing altitudes/elevations, which was in accordance
with the values reported for other temperate forests (Singh
and Kaushal 2006; Sharma et al. 2009). The high impor-
tance value index (IVI) of species between 600 and 1100 m
indicated their dominance and ecological success, good

@ Springer

power of regeneration and ecological amplitude. Similar
observations were also recorded by Singh et al. (1991),
Gogate and Kumar (1993) and Ilorkar and Khatri (2003).

The DCA revealed that elevation and geographic loca-
tion were the dominant factors underlying regional
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Table 3 continued

>3500

3000-3500

Family

Tree species

VI

TBC

Fr

VI

TBC

Fr

1.58 0.02 2.02

3.95

Taxaceae

Taxus baccata L. var. fastigiata (Lindl.) Loudon

Combretaceae

Terminalia chebula Retz.

Combretaceae

Terminalia elliptica Willd.

Meliaceae

Toona ciliata M. Roem.

Ulmaceae

Ulmus wallichiana Planch.

Rhamnaceae

Ziziphus glaberrima Lam.

84.25 300 175 610 102.8 300

615.79

227.63

Fr Frequency, D density, TBC total basal cover, /VI importance value index

differences in the species composition among sites. DCA
clearly showed that vegetation distribution and association
with the RTEs of various mountain ranges were focused
along the first two DCA axes. RTEs at higher elevations
were highly similar in species composition, whereas the
vegetation of lower elevation was dissimilar to higher
elevation. Mountain topography can influence temperature
differences over very short vertical distances (Scherrer and
Korner 2010). Elevation itself represents a complex com-
bination of related climatic variables closely correlated
with numerous other environmental properties, i.e, soil
texture, nutrients and substrate stability (Ramsay and
Oxley 1997). Within one elevation, the cofactors such as
topography, aspect, inclination of slope and soil types
further affect the forest composition (Holland and Steyn
1975). Zhuang et al. (2012) and Moeslund et al. (2013)
suggested that differential distribution of solar radiation
might produce differences in microclimate (e.g., tempera-
ture) and water balance (moisture), which results in growth
of different plant communities. Our DCA study shows that
aforesaid factors may cause major differences in vegetation
composition at different elevations, but these do not affect
the higher elevational RTs where almost similar composi-
tion and diversity status were observed (Table 3).
Distributional pattern of species showed that at lower
elevation, the dominance of subtropical S. robusta was
affected by Anogeissus latifolia, whereas in temperate
region, the P. roxburghii forests were found replacing the
Quercus spp. (from broadleaf and mixed broadleaf forests)
gradually. At the middle elevations, however, the conifer-
ous species such as C. deodara and Cupressus torulosa
were also predominantly replacing the broadleaf forests. In
subalpine forests, birch (Betula utilis) and fir (A. spect-
abilis) forests along with some broadleaf species, viz. R.
arboreum, Q. semecarpifolia, etc., have revealed the
dominance. The B. utilis, A. spectabilis and R. arboreum
were also found encroaching the lower alpine meadows
through species migration (Sharma et al. 2014). Species
distribution along altitudinal gradient was directly con-
trolled by ecophysiological processes of temperature tol-
erance (Korner 2003). Species from warmer lower
elevational vegetation belts took advantage of the
improved growing conditions to extend their leading edges
to the temperate and subalpine belts at the expense of cold-
adapted species already occurring there. Linear regression
was used to assess the effect of elevational gradient in the
species composition on ridge tops. Species richness and
tree species diversity were negatively correlated with ele-
vational gradient and decreased with increasing elevation.
The occurrence of higher diversity and species richness on
lower elevational RTs might thus be explained by the
invasion susceptibility of the communities with ample
available gaps in sparse vegetation due to anthropogenic
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disturbances, mainly structured by facilitative interactions
(Choler et al. 2001). The homogeneous forest was recorded
at higher altitudes which emphasized the dominance of
single/few species with increasing altitude (as was revealed
by Simpson’s index). The Shannon—Wiener index showed
higher diversity on the RTEs of lower altitudes and lower
diversity on the RTEs of higher altitudes.

5 Conclusion

The present study highlights the lower elevational RTEs had
comparatively higher number of species, whereas lower
numbers of species were recorded at higher elevational
RTEs, which imply the climatic adaptation by plant species.
The findings of this study will provide the baseline data to
assess future migration of species. Vegetation response to
recent climatic changes on the RTEs is dependent on initial
species composition, vegetation structure and environmental
conditions. Study results of species distribution will directly
reveal the future species shift in Himalayan region and thus
will be helpful for planning management and conservation of
biodiversity in Himalaya.
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