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Abstract The assessment of Coal burst risk (CBR) 
is the premise of bump disaster prevention and con-
trol. It is the implementation criterion to guide vari-
ous rock burst prevention and control measures. The 
existing static prediction and evaluation methods for 
CBR cannot be effectively combined with the results 
of underground dynamic monitoring. This study 
proposed a mining-induced seismicity information 
quantification method based on the fractal theory. 
Deep learning methods were used to construct a deep 
learning framework of coal burst risk (DLFR) based 
on the fractal dimension of microseismic informa-
tion. Gray correlation analysis (GRA), information 
gain ratio (IGR), and Pearson correlation coefficient 
are used to screen and compare factors. Statistical 
evaluation indicators such as macro-F1, accuracy 
rate, and fitness curve were used to evaluate model 
performance. Taking the Gaojiapu coal mine as a 
case study, the performance of deep learning mod-
els such as BP Neural Network (BP), Support Vector 
Machine (SVM) and its optimized model based on 
particle swarm optimization (PSO) algorithm under 
this framework is discussed. The research results’ 

reliability and validity are verified by comparing the 
predicted results with the actual results. The research 
results show that the prediction results of CBR in 
DLFR are consistent with the actual results, and the 
model is reliable and effective. The mining-induced 
seismicity quantification can solve the problem of 
insufficient training samples for the CBR. With this, 
different pressure relief measures can be formulated 
based on the results of the CBR predictions to achieve 
"graded" precise prevention and control.

Highlights 

• Method to quantify mining-induced microseisms 
based on the Fractal theory.

• A deep learning framework for coal burst risk pre-
diction.

• A new method for static predicting and evaluating 
the risk of coal burst areas was proposed.

Keywords Coal burst · Deep learning method · 
Mining-induced seismicity · Risk assessment · Fractal 
quantification

1 Introduction

The geodynamic disasters induced by human beings 
during the construction of deep underground space 
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utilization and deep mineral resource mining have 
been the focus of global research for nearly a hundred 
years (Borisov et al. 2019). Coal bursts and mining-
induced seismicity are typical geodynamic disasters, 
often causing severe damage to shafts and roadways 
and heavy casualties (Cao et  al. 2023; Cheng et  al. 
2023). Coal bursts have occurred in coal mines in 
over 20 large coal mining countries, including South 
Africa, Germany, Canada, Russia, and Australia (Wu 
et al. 2022). On May 12, 2014, a coal burst accident 
occurred at a coal mine in Boone County, West Vir-
ginia, USA, killing two miners (Newman and New-
man 2021). Coincidentally, on May 24, 2020, a coal 
burst accident happened at the Mengcun coal mine 
in Shaanxi Province, China, injuring six miners. The 
assessment of coal burst risk (CBR) is the premise of 
coal burst disaster prevention and the implementation 
criterion to guide various coal burst prevention and 
control measures (Dou et  al. 2018; Dai et  al. 2022). 
Accurate coal burst prediction is critical for high-effi-
ciency mine production and ensures the life safety of 
underground workers.

Research on CBR assessment methods in coal 
mines mainly focuses on dynamic monitoring and 
early warning (DMEW) as well as static predic-
tion and evaluation of CBR (Dou et  al. 2022). The 
DMEW method largely uses practices such as drill-
ing cuttings, mine-pressure measurements, micro-
seismic, ground sound, and electromagnetic radiation 
monitoring (Jiang et al. 2016; Cai et al. 2020; Duan 
et al. 2021). These methods are affected by the scope 
of underground mining activities and are suitable for 
real-time dynamic early warning of coal burst haz-
ards in the production stage. The static evaluation of 
coal burst risk is widely used in the mine design and 
development preparation stage.

Numerous studies have been completed on the 
static prediction and evaluation of CBR in recent 
years. Dou and He (2002) statistically analyzed the 
cases of coal burst mines in China. They proposed 
a comprehensive index method for the prediction of 
CBR by using mining and geological factors such 
as Coal seam thickness (CST), Mining depth (MD), 
Elastic energy index, the Ratio of stress increment 
caused by the structure to the standard stress value 
(RIS), and rock-layer thickness characteristic param-
eter (RTP). Bukowska (2006) studied the Upper 
Silesia Coal Basin and proposed an assessment sys-
tem of the CBR based on seven natural conditions of 

mining operations. Peng et  al. (2010) analyzed the 
mechanism of coal bursts and, taking the bursting 
liability and stress state of coal as the influencing fac-
tors of the CBR, proposed a simple CBR assessment 
method. Zhang et al. (2016a, b) used the geodynamic 
zoning method to analyze active regional faults, 
dividing the fault block structure of active faults at all 
levels. They proposed an evaluation method for CBR 
based on fault structure and coal-rock characteristics. 
Konicek and Schreiber (2018) analyzed typical exam-
ples of coal bursts recorded in the Czech part of the 
Silesian Coal Basin in rock mass protection pillars, 
using microseismic activity recorded during long-
wall mining to roughly assess the CBR in coal mines. 
Zhu et  al. (2018) analyzed the relationship between 
coal burst and five factors: MD, tectonic stress, verti-
cal crustal movement, active fault, and roof hard rock 
ratio. They established an assessment model for the 
CBR using AHP (Analytic Hierarchy Process) and a 
fuzzy comprehensive evaluation method. Zhang et al. 
(2022) used the LS-FAHP-CRITIC method to evalu-
ate the CBR in mining areas by combining five indi-
cators: CST and MD, initial in-situ stress, geological 
structure, and sedimentation. Du et al. (2022) selected 
microseismic monitoring signals as critical indica-
tors, establishing a normal distribution function of 
microseismic daily frequency, and proposed a quanti-
tative evaluation method for CBR.

Although the above studies have promoted the 
development of CBR assessment, there are still sev-
eral issues. First, many factors affect coal bursts, 
and there is a deep coupling between each factor Qi 
et al. (2019). Based only on the geological and min-
ing information before mining, the qualitative clas-
sification and evaluation of CBR in mines and local 
areas are highly subjective and unreliable. Second, 
the existing static prediction methods with dynamic 
monitoring and early warning methods are independ-
ent. Some data are ignored, and there are still sig-
nificant errors in the actual comparison to prediction 
results. Applying the results of dynamic monitoring 
to the static prediction and evaluation of CBR is criti-
cal research.

This study proposes a method for quantifying 
mining-induced seismicity information based on 
the fractal theory. A deep learning framework of 
coal burst risk (DLFR) based on the fractal dimen-
sion of dynamic monitoring information is con-
structed using the deep learning method. Using the 
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Gaojiappu Coal Mine as an example, a prediction 
of CBR is carried out based on the DLFR. During 
the modelling process, the gray relational analysis 
(GRA), information gain ratio (IGR), and Pear-
son correlation coefficient are used to screen the 
model factors to gain more representative samples 
and improve the model accuracy. Finally, the model 
performance is evaluated using statistical evalua-
tion indicators such as macro-F1 (macro-F1), accu-
racy rate (ACC), and fitness curve. Conduct a com-
parative analysis between the predicted results of a 
study area and the actual field results through a spe-
cific case study to validate the reliability of research 
findings. The performances of deep learning models 
are discussed, such as BP, SVM, PSO-BP, and PSO-
SVM, under this framework, aiming to establish a 
stable and high-quality CBR identification model 
and provide some inspiration for the research on 
CBR assessment methods. According to the results 
of CBR identification, a "graded" precise pressure 
relief design can be performed, providing the basis 
and guidance for the design of coal mine coal burst 
prevention and control.

1.1  Geological setting

The Gaojiapu coal mine is located in the plateau area 
in the southwest Ordos Basin, primarily a beam and 
gully landform. The length and width of the coal 
mine are 25.7km and 16.6km, respectively, and the 
minefield area is 219.16  km2 (Fig. 1a). The mine uses 
the vertical shaft development method, and the under-
ground coal mining method consists of longwall coal 
mining of mainly the No.4 coal seam of the Juras-
sic Yan’an Formation. Currently, the research area is 
divided into three panels for mining. Due to the coal 
burst disaster impact, the first-panel subsequent work-
ing face is not mined. The second-panel has been 
fully extracted, and the third-panel area is designated 
as the continuous production area. The research area 
has installed a new ’SOS’ microseismic monitor-
ing system designed and manufactured by the Polish 
Institute of Mine Research. The system is capable of 
Real-time dynamic monitoring of microseismic sig-
nals with energy greater than 100J in the study area. 
It can accurately calculate the energy, time, and loca-
tion of mining-induced microseismicity (Kan et  al. 

Fig. 1  Location of the study area and layout of microseismic monitoring sensors
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2022). The sensor installation position of this moni-
toring system is shown in Fig.  1b. By collecting all 
the microseismic monitoring data in the study area 
since installing the ’SOS’ microseismic monitoring 
system. Due to the complex geological conditions 
of the study area, the geodynamic hazards are highly 
active. Because of coal extraction, numerous coal 
burst accidents have occurred, seriously affecting the 
safety of mine production (Fig. 2).

1.2  Coal burst affecting factors

Based on an extensive literature survey, field survey 
analysis, and previous work, the previous coal burst 
prediction included the following factors (Dou and 
He 2002; Sun et  al. 2021; Zhu et  al. 2018): CST, 
coal seam dip angle, MD, roof lithology, elastic 
energy (W), structural conditions, maximum tan-
gential stress, uniaxial compressive strength (Uc), 
ratio of stress increment caused by the structure to 
the standard stress value (RIS), and rock-layer thick-
ness parameter (RTP). In this study, 11 factors, both 
qualitative and quantitative, were selected, namely 
coal seam thickness (CST), mining depth (MD), 
rock-layer thickness parameter (RTP), thickness 
of overburden hard rock-layer and its spacing with 
the coal seam, sedimentary characteristics of roof 
strata, rock mass quality evaluation score (RQS), 
geological structural capacity dimension (GSD), 

RIS, lateral pressure coefficient (LPC), and elastic 
energy (W). Table 1 shows the source of each factor 
selection and its significance.

In China’s coal burst prevention and control 
standards, RTP within 100 m of the roof is used as 
an evaluation indicator. However, due to the devel-
opment of the Jurassic Coalfield and the change in 
coal mining technology, the range of the mining 
deformation and damage disturbance zone is more 
extensive than that of the previous mining projects 
(Han et al. 2023). Therefore, this study selected an 
RTP within 200 m of the roof as the evaluation fac-
tor. According to the geological data of the Gao-
jiapu coal mine, there are three widely distributed 
hard sandstone strata on the roof layer (Fig.  1c). 
Therefore, a total of 6 groups of information on 
the thickness of overburden hard rock-layer and its 
spacing with the coal seam were used to reflect the 
impact of the roof hard rock layer on coal explosion 
(Fig. 3d–i). Besides, based on the tectonic evolution 
history, the overburden sedimentary microfacies 
of the study area were divided into three levels by 
the sedimentary discontinuity as the dividing line, 
namely the Yan’an Formation sedimentary microfa-
cies (YS) (Fig. 3j), the Zhiluo and Anding Forma-
tions sedimentary microfacies (ZAS) (Fig. 3k), and 
the Luohe Formation sedimentary microfacies (LS) 
(Fig. 3l). Finally, 17 pieces of information out of 11 
factors were selected in this Study (Fig. 3).

Fig. 2  Photos showing 
severe coal burst in the 
study area
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2  Methodology

2.1  Deep learning framework of coal burst risk 
(DLFR)

With the rapid development of computational simu-
lation and deep learning technology, deep learning-
assisted geoscience mining has shown good applica-
tion prospects (Ma and Mei 2021). Many studies use 
deep learning technology to provide effective paths 
and solutions for solving geological problems (Pol-
son and Sokolov 2020). This study constructed a deep 
learning framework of coal burst risk (DLFR) based 
on the fractal dimension of microseismic information. 
The risk identification of coal bursts was performed 
as shown in Fig. 4. First, based on the fractal theory, 
the mining-induced seismicity information data of 
underground monitoring were quantified. A CBR 
database was established for the study area through 
statistical analysis of mine geological data. Then, the 
collinearity diagnosis and screening of factors were 
performed through the GRA, Pearson correlation 
coefficient, and IGR. This enables more representa-
tive samples and improved model accuracy. Statistical 
evaluation metrics such as macro-F1, ACC, and fit-
ness curve were used to evaluate model performance, 
and the performances of deep learning models such as 

BP, SVM, PSO-BP, and PSO-SVM under the DLFR 
were discussed. Finally, conduct a comparative analy-
sis between the predicted results of a study area and 
the actual field results through a specific case study to 
validate the reliability of research findings.

2.2  Fractal quantification method of mining-induced 
seismicity

Fractal geometry was first proposed in the 1960s to 
describe complex natural shapes (King 1983). The 
fractal theory is widely used in various disciplines 
such as mathematics, physics, biology, economics, 
and geology (Turcotte 1986). The location and area 
where microseismic events occur have a self-sim-
ilarity system, which is the same as the geological 
structures and has statistical similarity in geometry. 
The microseismic monitoring signal can be used as a 
parameter to comprehensively reflect the risk of coal 
burst (Si et al. 2020; Wang et al. 2022). In this paper, 
fractal research on the distribution characteristics of 
microseismic events was performed through the frac-
tal dimension to obtain the fractal quantitative evalua-
tion of coal burst risk.

Assuming that the plane distribution of microseis-
mic events is a fixed point set A contained in a rec-
tangle, it can be divided into several grids with side 

Table 1  Influencing factors of coal burst and its significance

Factors Significance

Coal seam thickness (CST) The intensity of underground coal mining (Sun et al. 2021)
Mining depth (MD) The stress level of the surrounding rock in the coal mine (Sun et al. 2021)
Rock-layer thickness parameter (RTP) The ability of the overlying rock to store and release elastic energy (Dou and He 

2002)
Thickness of overburden hard rock-layer and its 

spacing with the coal seam
The hard strata in the overlying rock is closely related to the occurrence of geody-

namic disasters such as coal bursts (Kuang et al. 2019)
Sedimentary characteristics of roof strata The sedimentary characteristics of the roof strata that define the basic environment 

of coal burst disasters (Zhang et al. 2022)
Rock mass quality evaluation score (RQS) The quality and stability of engineering geological rock mass (Zhang et al. 2016a, 

b)
Geological structural capacity dimension (GSD) Quantitatively evaluate the complexity of geological structures and reflect the 

distribution and development characteristics of geological structures (Qiao et al. 
2019; Zhou et al. 2022)

Ratio of stress increment caused by the structure 
to the standard stress value (RIS)

The degree of structural stress concentration (Dou and He 2002). It is usually used 
for estimation when there are no measured values of in-situ stress

Lateral pressure coefficient (LPC) It represents the stress state and reflects the accumulation, release and deformation 
mode of rock mass energy (Cheng et al. 2023)

Elastic energy (W) The size of elastic strain energy accumulation in the state of the natural in-situ 
stress field (Wang and Cui 2018)
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length a (Velandia and Bermúdez 2018). The dis-
tribution points of microseismic events are covered 
with grids with side length a, and the number of grids 
containing microseismic events N(a) is recorded. 
The grid size ai is continuously reduced to obtain 

the corresponding grid number N(ai). A curve can 
be obtained in the lna-ln N(a) coordinate system, and 
the slope of the straight line segment is the capacity 
dimension Dms of the distribution of microseismic 
events in the rectangle (Fig.  5), reflecting the com-
plexity of the distribution of microseismic events in 
the rectangular area. Dms is calculated as follows:

2.3  Deep learning method

2.3.1  SVM

SVM is a deep learning method suitable for small, 
non-linear samples with high-dimensional numbers. 
It was studied and proposed by Vapnik et  al. in the 

(1)Dms(A)= lim
a→0

lnN(a)

ln
(
a−1

) = − lim
a→0

lnN(a)

ln a

Fig. 3  Spatial distribution of each factor in the study area 
(a-q). a Coal seam thickness. b Mining depth. c Roof-layer 
thickness parameter. d Thickness of the fine sandstone in the 
Yan’an Formation. e Thickness of the coarse sandstone in the 
Anding Formation. f Thickness of the middle sandstone in 
the Luohe Formation. g Distance between the fine sandstone 
in the Yan’an Formation and coal seam. h Distance between 
the coarse sandstone in the Anding Formation and coa seam. 
i Diatance between the middle sandstone in the Luohe For-
mation and coal seam. j Sedimentary microfacies of Yan’an 
Formation. k Sedimentary microfacies of Zhiluo and Anding 
Formation. l Sedimentary microfacies of Luohe Formation. 
m Rockmass quality evaluation score. n Geological structure 
capacity dimension. o Ratio of stress increment caused by the 
structure to the standard stress value. p Lateral pressure coef-
ficient. q Elastic energy.

◂

Fig. 4  Flowchart of this study
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1970s (Cherkassky and Ma 2004). It is widely used 
in imaging, biological information, and other infor-
mation recognition, classification, and regression 
technologies (Dou et al. 2020). For two-dimensional 
linear binary classification problems, the optimal 
classification line becomes the optimal classifica-
tion surface after being extended to high-dimensional 
space (Wu et al. 2013). Assuming that the sample set 
D =

{
(xi, yi), i = 1, 2,… n

}
, yi = {−1, 1} is lin-

early separable, its classification surface equation is:

where yi is the category label.
Using the Lagrangian function 

L(w, �i, b) =
1

2
‖w‖2 −

n∑
i=1

�i

�
yi
�
(w ⋅ xi) + b

�
− 1

�
 to 

transform the above formula into a dual problem is as 
follows:

(2)
[
(w ⋅ xi) + b

]
− 1 ≥ 0, i = 1, 2,… , n

(3)w ⋅ x + b = 0

(4)max

n∑
i=1

�i −
1

2

n∑
i,j=1

�i�jyiyj(xi ⋅ xj)

(5)s.t.

n∑
i=1

�iyi = 0, �i ≥ 0, i = 1, 2,… , n

The kernel function can replace the transformation 
of the high-dimensional space, and the inner product 
operation between the sample set data can be pro-
cessed to determine the optimal classification surface 
in the high-dimensional space (Liu et al. 2011). The 
Gaussian Radial Basis Function (RBF) is the most 
commonly used kernel function and can analyze non-
linear data. The optimal classification function is as 
follows:

2.3.2  BP

Artificial neural networks (ANN) are divided into 
two types of network structures: feed-forward neural 
networks and feedback neural networks (Sun et  al. 
2015). The backpropagation (BP) method is the core 
part of the feed-forward neural network, solving 
non-linear optimization problems through the input 
and output of a set of samples. Any non-linear func-
tion can be approximated with arbitrary precision by 
adjusting the BP connection weights and network 
size (including n, m, and the number of hidden layer 

(6)f (x) = sgn

(
n∑
i=1

�iyiK(xi ⋅ x) + b

)

Fig. 5  Flowchart of mining-induced seismicity fractal quantification method
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neurons) (Liu et  al. 2021). The non-linear relation-
ship between the coal burst risk being inverted and 
a set of neural networks describes the impact factors 
(n, h1,… , hp,m) as follows:

where P =
(
p
�
, p

�
, ..., pn

)
 is the input node expres-

sion of the neural network, D =
(
d
�
, d

�
,… , dn

)
 is the 

output node expression of the neural network, NN(n, 
h1,…, hp, m) is the established multi-layer neural 
network structure, and n, h1,…, hp, m are the node’s 
number of neural networks.

2.4  Particle swarm optimization (PSO)

PSO is a method to solve optimization problems by 
simulating the process of bird foraging. In particle 
swarm optimization, birds are abstracted as a group 
of random particles, and the optimal solution is found 
through iteration (Zhao et  al. 2015). A particle can 
find the optimal position Pb by itself and identify the 
optimal position Pb,g found by other particles in the 
entire population. Particles update their position by 
tracking two optimal solutions (i.e., Pb , Pb,g ) calcu-
lated according to the following (Li and Wei 2021):

where Vi(t) and xi(t) are the time t ’s speed and posi-
tions of particle i , respectively. ci is the learning fac-
tors and w is the inertia factor. r1 and r2 are random 
numbers in [0, 1].

2.5  Factor screening metrics

2.5.1  GRA 

GRA is a method for quantitatively describing and 
comparing the development and changes of an over-
all system. According to the geometric similarity of 
the time series curves of each relevant factor, the rela-
tionship between the factors is close, reflecting the 
degree of correlation between the indicators (Yan and 

(7)

⎧
⎪⎨⎪⎩

NN(n, h1,… , hp, m) ∶ Rn → Rm

D = NN(n, h1,… , hp, m)(P)

P = (p1, p2,… , pn) D = (d1, d2,… , dn)

(8)

{
Vi(t + 1) = wVi(t) + c1r1

[
Pb,i(t) − xi(t)

]
+ c2r2

[
Pb,gi(t) − xi(t)

]
xi(t + 1) = xi(t)+Vi(t + 1)

Li 2013). To eliminate the impact of the non-uniform 
dimensions of each factor on the results, range trans-
formation is used to perform dimensionless process-
ing on the characterization sequence Y and the impact 
sequence X. The correlation degree between each com-
ponent of each sequence is calculated as follows (Wu 
et al. 2005):

where  x0(m) is the m-th feature index of Y, xi(k) is the 
k-th factor of the i-th component in X, i = 1, 2, …, n, 
k = 1, 2, …, m. X’, Y’ are X, Y dimensionless series, 
respectively. r is the degree of correlation, � is the 
correlation coefficient, n is the number of samples, 
i is the number of sub-factors, k is the k-th group of 
samples, |x0(k) − xi(k)| is the absolute value of the 
sequence X0 and Xi at the point k , � is the resolution 
coefficient, and the value range is (0, 1).

2.5.2  IGR

Information gain (IG) represents the uncertainty-
reduced value of categorical feature M by knowing 
the information of feature N. It is used to measure the 
ability of feature N to distinguish datasets (Shen et al. 
2022). If there are more feature values, IG is greater. 
Therefore, only using IG to evaluate the composition of 
a sample set is not objective enough (Yao et al. 2022). 
The IGR only offsets the complexity of the feature vari-
ables and avoids the existence of over-fitting. IGR is 
calculated as follows:

(9)

�
(
x0(k), xi(k)

)
=

min

i
min

k |x0(k) − xi(k)| + �
max

i
max

k |x0(k) − xi(k)|
|x0(k) − xi(k)| + �

max

i
max

k |x0(k) − xi(k)|

(10)r
(
X0,Xi

)
=

1

n

n∑
k=1

�
(
x0(k), xi(k)

)

(11)Y = X0 = (x0(1), x0(2), ..., x0(k))

(12)X =

⎡⎢⎢⎣

x1(1) ⋯ x1(k)

⋮ ⋱ ⋮

xn(1) ⋯ xn(k)

⎤⎥⎥⎦

(13)IGR(M|N) = g(M|N)
Hx(M)
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where H(Y|X) is the IG of M by given N condition, 
g(Y|X) is the information gain entropy corresponding 
to feature N, and Hx(Y) is the information entropy of 
M about feature N.

2.6  Model performance evaluation metrics

Model performance evaluation is key to predic-
tive models (Yang et  al. 2023). In binary classifica-
tion model evaluation, several commonly used sta-
tistical parameters are precision (P), recall (R), and 
accuracy(ACC ). By comparing actual markers with 
predicted markers, true negatives (TN), true positives 
(TP), false negatives (FN), and false positives (FP) 
are determined (Dao et  al. 2020). For multi-classifi-
cation problems, the P and R of different categories 
are different. Here, evaluation parameters such as 
macro precision (macro-P), macro recall (macro-R), 
and macro F1 (macro-F1) are introduced to determine 
the performance of the entire model. The formulas 
for calculating the above evaluation parameters are as 
follows (Sharma and Kaur 2021):

Furthermore, in the PSO optimization model, the 
fitness function is one of the main concepts used to 
evaluate the quality or fitness of each particle’s solu-
tion. The fitness function evaluates the solution qual-
ity and judges the model’s optimal solution or a solu-
tion close to the optimal solution.

(14)P =
TP

TP + FP

(15)R =
TP

TP + FN

(16)macro − P =
1

n

n∑
i=1

Pi

(17)macro − R =
1

n

n∑
i=1

Ri

(18)macro − F1 =
2 ⋅ macro − P ⋅ macro − R

macro − P + macro − R

(19)ACC =
TP + TN

TP + FP + TN + FN

3  Results

3.1  Influencing factor screening

First, the correlation between each influencing fac-
tor is compared with CBR, and the GRA is used to 
calculate the correlation degree. The results show that 
the correlation degree between each influencing fac-
tor with CBR is above 0.65, which has a good cor-
relation and can fully indicate the risk of coal burst. 
Secondly, Pearson correlation analysis was used to 
determine the correlation among the various factors. 
When the absolute value of the correlation coefficient 
of the two factors is greater than 0.7, the relationship 
is very close (Arndt et al. 1999; Yao et al. 2022). The 
results of Pearson correlation analysis are shown in 
Fig.  6. The distance between the medium sandstone 
strata of the Luohe Formation and coal seam (DLSC) 
and CST, as well as the LPC and RIS, all show a high 
correlation (R values are 0.78 and 1, respectively). 
Finally, the IGR is used to compare the sensitivity 
of each influencing factor to the CBR and rank the 
importance of each factor (Fig.  7). The greater the 
IGR, the greater the information content of the index. 
Each factor positively contributes to varying degrees 
(IGR > 002). Among them, compared with DLSC, 
the IGR of CST is relatively small. Hereby, factor 
removal is performed to reduce data redundancy, and 
CTS was chosen to be eliminated. In this study, since 
we inverted the in-situ stress field (Cheng et al. 2023), 
RIS is essentially the value obtained by subtract-
ing LPC to 1. Therefore, deleting RIS or LPC has no 
practical significance because RIS has the same IGR 
as LPC, and the information they contain is the same. 
In addition, since LPC is frequently used in most 
research, we retain LPC in this article. After elimi-
nating factors that cause data redundancy, the filtered 
influencing factors are used to predict CBR.

3.2  Model performance evaluation

Based on the microseismic monitoring results of the 
mined areas of the first-panel and the second-panel, 
the fractal and fractal dimension calculations are car-
ried out. Considering that the horizontal positioning 
error of the ’SOS’ microseismic monitoring system is 
about 20m (Zhou et al. 2020), we select 20m × 20m as 
the grid size for microseismic fractal quantification. 
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Fig. 6  Pearson correlation coefficient heat map

Fig. 7  Analysis results of gray relational degree and information gain ratio
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The Jenks natural breaks method divides the monitor-
ing results into four categories: safe area, relatively 
safe area, dangerous area, and highly dangerous area. 
The classification results of training samples’ risk of 
coal burst are obtained. Combined with the screened 
high-purity influencing factor data, a better sample 
database is obtained for subsequent training and pre-
diction. Seventy percent of the sample data are then 
randomly selected for model training, and the remain-
ing 30% are for testing the model. The parameters of 

the deep learning model are set through past experi-
ence and trial and error. The calculation results of 
model testing indicators are shown in Tables 2, 3, and 
Fig. 8.

It is worth noting that after the 39th iteration of 
PSO-SVM, the fitness tends to stabilize, indicating 
that the model training is the optimal solution. Com-
paring the results of PSO-SVM and SVM models 
shows that ACC and Macro-F1 increased by 21.26% 
and 20.46%, respectively, indicating that the model 
after PSO optimization has higher accuracy and lower 
error.

After training the BP neural network model for 
comparison, the model evaluation index shows that 
when the SVM model (ACC = 65.35%) is used for the 
discrimination and classification of this problem, the 
accuracy is higher than that of the BP neural network 
model (ACC = 65.03%). The PSO-SVM and PSO-BP 
model accuracies are 86.61% and 82.21%, respec-
tively, indicating that CBR can be effectively identi-
fied under the DLFR in this dataset (Figs. 9, 10).

Although the precision and accuracy of each 
model after PSO optimization have been significantly 
improved, the PSO-BP model tends to stabilize after 
the 48th iteration. The fitness value is also greater 
than that of the PSO-SVM model. In addition, the 
ACC and Macro-F1 of the PSO-SVM model are still 
greater than those of the PSO-BP model, indicating 
that the PSO-BP model needs a longer time and pro-
cess to solve the problem. Furthermore, the accuracy 

Table 2  Comparison of model training set metrics

Model Metrics of training samples

Macro-P Macro-R Macro-F1 ACC 

BP 0.6503 0.6814 0.6655 0.6503
SVM 0.6535 0.6703 0.6618 0.6535
PSO-BP 0.8221 0.8244 0.8233 0.8221
PSO-SVM 0.8661 0.8667 0.8664 0.8661

Table 3  Comparison of model testing set metrics

Model Metrics of testing samples

Macro-P Macro-R Macro-F1 ACC 

BP 0.6420 0.6679 0.6547 0.6351
SVM 0.6596 0.6800 0.6696 0.6596
PSO-BP 0.7926 0.7968 0.7947 0.7926
PSO-SVM 0.8244 0.8237 0.8240 0.8244

Fig. 8  Time series distribution plot of training and testing samples



Geomech. Geophys. Geo-energ. Geo-resour.           (2023) 9:145  

1 3

Page 13 of 19   145 

Vol.: (0123456789)

of the PSO-BP model is not high than that of the 
PSO-SVM model, indicating that the PSO-SVM 
model is more significant for solving this problem.

3.3  Model results validation

To further verify the reliability of the research results 
and methods, a comparative analysis by comparing the 
high-energy microseismic records and shock manifes-
tations of the 3rd-panel coalfaces. During the mining 
of the 301 coalface and the 302 coalface, more than 
100 high-energy microseismic events of more than 
 103  J occurred. Among them, there are 39 microseis-
mic events greater than  104  J and 17 microseismic 
events greater than  105 J, as shown in Fig. 11. In addi-
tion, the coal burst phenomena occurred in two areas 
in the middle of the 301 coalface and near the stop 
production line, resulting in the sinking of the roof and 
the drop of the shotcrete layer. From the results of the 
PSO-BP model and PSO-SVM model in Fig. 11, it can 
be seen that the microseismic high-energy events dur-
ing the 3rd-panel mining period are mostly located in 
the predicted dangerous area and high dangerous area, 
and the microseismic events greater than  103 J are less 

distributed in the safe area and relatively safe area. In 
addition, high-energy microseismics greater than  105 J 
are mostly located in high dangerous area. Especially 
the area where the coal burst phenomena occurred are 
also found in high dangerous area. The results show 
that the prediction results of the model in this study are 
basically consistent with the actual results, the model 
and method are reliable and effective, and can be used 
for coal burst risk prediction and further guidance for 
field production work.

It is worth noting that the energy of microseismic 
events in high dangerous area and dangerous area is 
high. In contrast, the energy of microseismic events 
in safe area and relatively safe area is low. This also 
means that strong pressure relief measures need to be 
developed in high dangerous area and dangerous area 
to avoid coal bursts. The CBR warning and prevention 
are complementary. With this, reasonable and effec-
tive pressure relief measures are formulated for differ-
ent CBR levels based on the results of the deep learn-
ing predictions to achieve "graded" precise prevention 
and control. Taking the study area as an example, the 
"graded" pressure relief suggestions and measures are 
shown in Table 4.

Fig. 9  The fitness curve 
of the PSO optimization 
model
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Fig. 10  Prediction results of coal burst risk for each model. a BP model. b SVM model. c PSO-BP model. d PSO-SVM model

Fig. 11  Comparison of 
forecasted results and actual 
results of 3rd-panel working 
face. a PSO-BP model. b 
PSO-SVM model
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4  Discussion

4.1  Analysis of influencing factors of coal burst

Like other geological disasters, the occurrence of coal 
bursts is a complex non-linear process affected by 
numerous factors. This study uses the weighted fre-
quency ratio (FR) in the statistical analysis method to 
determine the importance of each factor to the highly 
dangerous area, as shown in Fig. 12. Coal burst high 
dangerous areas mainly occur in areas with large MD, 
high W, large LPC, and high GSD. This area’s geo-
logical environment and tectonic stress are complex 
and have a high static load. When interacting with 
small dynamic load disturbances, the critical stress 
load may be exceeded to induce a coal burst.

Except for depth, GSD and W are positively cor-
related with the coal burst risk, and the thickness 
of fine-grained Yan’an Formation sandstone (YST), 

DLSC, and the distance between the fine-grained 
Yan’an Formation sandstone and coal seam (DYSC) 
also have a positive correlation with the coal burst 
risk to a certain extent. This indicates that the over-
burden hard rock-layer has a specific influence on 
the coal burst. Among them, the greater YST and 
DYSC are, the easier it is to induce coal bursts. On 
the contrary, the thinner the sandstone strata in the 
Luohe Formation (LST) and DLSC, the easier it is 
to induce coal bursts. This indicates that the thick-
ness and spacing of the hard rock formations of the 
roof must be in the appropriate range to cause a coal 
burst. This is also confirmed by the Anding For-
mation coarse-grained sandstone (AST) thickness 
results and its distance to the coal seam (DASC). 
This result is also helpful in studying the target 
layer identification of underground roof fracturing 
pressure relief technology.

Table 4  “Graded” stress relief suggestions and measures of the study area

Prediction results Suggestions Measures to relief stress of the study area

Safe area Weakening the rock burst tendency and strengthening 
the monitoring

Multi-parameter microseismic monitoring and early 
warning

Relative safe area Pre-pressure relief and strengthening the monitoring Pressure relief through large-diameter drilling or coal 
seam blasting

Dangerous area Strengthening the monitoring and the pressure relief Take multiple measures to enhance the stress relief 
effect. (On the basis of pre-pressure relief measures, 
some other pressure relief measures should be sup-
plemented or enhanced)

High dangerous area Strengthening the pressure relief and the reinforcing 
support

Based on pressure relief measures in Dangerous area, 
the roof was weakened and cutted. Supplementary 
measures in the study area include deep hole blast-
ing and hydraulic fracturing in the roof

Fig. 12  FR of coal burst influencing factors
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It is worth mentioning that RTP and RQS did 
not show a linear relationship with coal burst haz-
ard. This seems to be inconsistent with previous 
studies. The smaller the RTP, the easier it is for the 
roof rock to break under mining conditions. Fur-
thermore, it is easier to generate dynamic loads to 
induce coal bursts. The results of RQS show that 
the extremes of roof strata quality adversely affect 
coal bursts. Because the better the quality of the 
roof strata, the overburden is difficult to break under 
mining conditions. However, a poor-quality roof 
typically has more broken strata, and it is not easy 
to accumulate a large amount of elastic energy. The 
sedimentary microfacies of each group of forma-
tions show a certain degree of consistency; that is, 
the depositional environment with strong hydrody-
namic conditions is more likely to induce coal burst 
than the depositional environment with weak hydro-
dynamic conditions. Finally, when the LPC is high, 
FR is high, indicating that the CBR is small when 
the difference in the stress environment is small.

4.2  Performance of deep learning for the CBR 
prediction

The traditional static prediction method of coal 
bursts can only be evaluated by fusing qualitative 
and quantitative multivariate information. Also, 
its prediction results lack reliability. In this study, 
the fractal and fractal dimension calculation of the 
microseismic monitoring results in the mining area 
is converted into the classification results of CBR. 
This solves the problem of insufficient coal burst 
training samples to a certain extent.

This study chose PSO-SVM as the basic model 
to solve the problem of the CBR’s non-linear judg-
ment, improving the model accuracy and reduc-
ing data redundancy through factor selection and 
screening. The effect of the deep learning structure 
optimized by the PSO algorithm is significantly bet-
ter than ordinary deep learning. One of the funda-
mental reasons is that the combined deep learning 
algorithm can ensure the convergence and accuracy 
of deep learning and improve the convergence speed 
of problem-solving. By combining deep learning 
technology, this study provides a new method for 
studying coal mine coal burst risk assessment.

5  Conclusions

Based on the fractal theory, this study quantified 
the mining-induced seismicity information. High-
reliability samples were screened out through factor 
analysis, a deep learning risk identification frame-
work based on microseismic information fractal 
dimensions was constructed, and the performances of 
deep learning models such as BP, SVM, PSO-SVM 
and PSO-BP under this framework were compared. 
Through a specific case study, the prediction results 
in the study area are compared with the actual results, 
and the reliability of the research results was verified. 
The following conclusions can be drawn:

1. The microseismic monitoring results in the mined 
area were calculated by the fractal dimensions 
method and converted into the classification results 
of CBR. This method can solve the problem of 
insufficient training samples in coal burst scenarios. 
Under the DLFR, the accuracy of the PSO-SVM 
and PSO-BP models reached 86.61% and 82.21%, 
respectively. The CBR can be effectively identified 
using the DLFR proposed in this paper.

2. In the deep learning model, the effect of the deep 
learning structure optimized by the PSO algo-
rithm is significantly better than that of the ordi-
nary deep learning structure. The PSO method 
ensures the convergence and accuracy of deep 
learning and improves the convergence speed.

3. Coal burst phenomenon areas and high-energy 
microseismic events mostly occur in high danger-
ous area, with this, different pressure relief meas-
ures can be formulated for different CBR levels 
based on the results of the deep learning predic-
tions to achieve "graded" precise prevention and 
control.

4. Based on the PSO-SVM model, the results show 
that the highly dangerous areas of coal bursts 
mainly occur in areas with large MD, high W, 
large LPC, and high GSD.
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