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Abstract The present paper is adding to the current
knowledge by experimentally investigating the change
of strain in a fragment of temperedglass. This is doneby
comparing the surface shape before and after fracture.
The present work also aims at validating a FE-model
for estimating the remaining strain energy and thereby
the stress in a fragment post failure. The FE-model have
been established in previousworkNielsen (Glass Struct
Eng, 2016. doi:10.1007/s40940-016-0036-z) and is
applied here on the specific geometry and initial state
of the investigated fragments. This is done by measur-
ing the residual stresses using a Scattered Light Polar-
iscope before failure and thereby determining the initial
stress state. The Geometry of the investigated fragment
is found by means of a 3D scan. The surface topology
of the fragment is found by letting a stylus traverse the
surface and recording the shape. These information are
then used for setting up a FE-model for calculating the
stresses and strains left in the fragment after failure and
compare the deformation to the measured.
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1 Introduction

Tempered glass is widely used in the community and
is part of our daily life. It is usually not possible to
distinguish it from ordinary window glass (float glass)
by the naked eye. However, when broken it reveals a
characteristic feature; it shatters into relatively small
fragments. InFig. 1 fragments of broken temperedglass
is seen. It is noted that the fragments often group into
larger, quite fragile, chunks.

The fragmentation is driven by the amount of strain
energy present in tempered glass, however, not all
present energy is used in the process of fragmentation.
This needs to be taken into account before any serious
predictions between the residual stress state and the
fragment size can be made.

This paper is describing a novel method for experi-
mentally verifying previous calculations of the remain-
ing strain energy in a fragment.

In order to understand the nature of the tempered
glass and its fragmentation behaviour the tempering
process might be a good place to start.

1.1 The tempering process

Tempered glass is ordinary float glass which has been
heated to a temperature where it starts to be soft, unable
to carry any stresses, and then quenched rapidly as
sketched in Fig. 2.

During the quenching a temperature gradient will
exist in the glass, the surface will contract and stiffen
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Fig. 1 Fragments from broken tempered glass

Fig. 2 Tempered glass production, afterHaldimann et al. (2008).
Prior to heating and quenching, the glass is cleaned

while the core is remaining soft and stress-free. When
the temperature in the center is low enough for the
material to become stiff, stresses will start to build up
in the glass. When the glass reaches a uniform low
temperature, say 25 ◦C, the surface will be in com-
pression and the core part in tension. If a cross-section
far from edges is considered, the residual stresses will,
almost, only be in-plane and varying near parabolic
over the thickness. Since equilibrium is required, a
rule of thumb can be derived from this stating that the
residual compressive surface stress will be twice the
tensile stress in the center and that the depth of zero
stress is approximately 21% through the thickness, see
Fig. 3.

1.2 Survey of the correlation between strain energy
and fragment size

Due to these residual stresses, tempered glass will con-
tain strain energy even without any external loading.
Assuming parabolic distribution over the thickness and
a planar hydrostatic stress state everywhere in the plate,

Fig. 3 Section of tempered glass piece showing residual stress
profile away from edges. The contour line represents zero stress

the strain energy per unit surface area (before failure),
U0, can be written as:

U0 = h(1 − ν)

5E
σ 2
s (1)

where h is the thickness, σ 2
s is the surface residual

stress, E and ν are the elastic constants. A derivation of
this can be found in the literature, e.g. Barsom (1968),
Gulati (1997), Nielsen (2016), Reich et al. (2012),War-
ren (2001).

Due to this strain energy, tempered glass will shat-
ter if the residual stress equilibrium is disturbed suf-
ficiently. This can be done either by scratching, cut-
ting or drilling deep into the glass or simply loading
it above its apparent strength.1 The sudden release of
strain energywill cause the glass to fragmenting at such
high speed, that the fragments are accelerated and, if not
hindered, they will move in an explosive manner, see
e.g. Nielsen et al. (2009). There are primarily in-plane
residual stresses in the tempered glass, the displace-
ment of the glass fragments will therefore only be in
the plane of the glass plate, Fig. 4.

Even though scientists have wondered about the
fragmentation of tempered glass since the phenomenon
was first scientifically described in the seventeenth cen-
tury by authors such as Robert Hooke investigating the
so-called Prince Rupert’s Droplets Hooke (1665), there
is still not formulated a theoretical model predicting the
fragment size as function of the initial residual stress
state.

1 apparent strength is the sum of the strength originating from
the material itself and the residual stresses.
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Deformations and strain energy in fragments of tempered glass 135

Fig. 4 The process of failure in tempered glass, captured at
21,000 frames per second

In 1965 an article by Akeyoshi and Kanai (1965) is
published, investigating the relation between the resid-
ual stresses of tempered glass, the thickness of the glass
and the tempering conditions. The experiments are con-
ducted with a varying thickness from 2 to 8 mm and
the central tensile stress is determined by applying a
method of photo-elasticity (Fig. 5). As a sub-study the
fragment density is compared to the thickness and the
residual stresses of the glass. The fragment density is
used as a measure for the degree of tempering. A non-
linear relation is established, but it remains undeter-
mined whether the origin of the relation comes from
the thickness of the glass, the residual stresses or a
combination. Also it is not described in detail how the
number of fragments is determined nor how the resid-
ual stress is measured.

Around the same time, Barsom (1968) establishes
an analytical correlation between the maximum ten-
sile stress and the average particle size by applying

20 40 60 80 100
101

102

103

Fig. 5 The relation between number of fragments and the tensile
residual stress,σc. Graph is reproduced fromAkeyoshi andKanai
(1965)with unit of the abscissae changed toMPa and results from
Eq. 4 added

a method based on linear-elastic fracture mechanics.
By assuming plane stress and that residual stresses
of tempered glass can be modelled by a second-order
polynomium, Barsom finds that the total elastic-strain
energy relates to the central tensile stress to the power of
4. The idea is, that the stored energy dissipates during
the fracture of tempered glass while generating frac-
ture surfaces. From this, Barsom proceeds to estab-
lish a relation between the stored elastic energy and
the area generated by the fracture process by applying
linear-elastic fracture mechanics. It is assumed that the
propagation of cracks is governed solely by the ten-
sile stress, given that the cracks develop in the tensile
zone before the compression zone of the glass. Barsom
states that neutral stress planes are located approxi-
mately 0.21 h from the glass surface, where h is the
thickness of the plate. The maximum tensile stress is
then averaged over 58% of the thickness. This entails
that the average tensile stress is equal to almost 70% of
themaximumtensile stress. Therefore the strain-energy
release rate, G, for a crack propagating due to residual
stresses of the glass is a function of the mean tensile
stress squared and the average mean free fracture path.
Since the value of G = 0.93 = 16.61 is known from
previous studies, one can determine a value of the aver-
age mean free fracture path, which is assumed constant
in the plate. By gained knowledge about the mean ten-
sile stress and the strain-energy release rate combined
with the assumption that a fragment of shattered tem-
pered glass has a hexagonal cross section with sides
equal to the length of the average mean free fracture
path, Barsom finds that the center tensile stress, σc∗, to
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Fig. 6 Center tensile stress σc as a function of base area of
fragment, A

the power of four multiplied with the mass of a glass
fragment, M , normalized with the thickness, h, is con-
stant:

σ 4
c∗ ·

(
M

h

)
= 7.73 × 1012

lb5

in.9
(2)

In the above equation, the stress is expressed with a
unit of mass divided by length squared.

The expression is rewritten with the center tensile
stress in MPa, σc, as a function of the fragment base
area, A, since M = V ρ = A h ρ. From this it is
clearly seen that the expression is independent of the
thickness, h. A plot of the function is shown in Fig. 6

σc = 105.81

(
1

A
MPa4 mm2

)1/4

(3)

This equation can also be re-written in order to give
the average number of fragments (or particles) in a
50 mm × 50 mm square, N50, in order to compare
with the results by Akeyoshi and Kanai (1965) given
in Fig. 5. This is done by substituting A = 2500 mm2

N50
in (3) and re-arranging:

N50 =
( σc

14.96 MPa

)4
(4)

Barsom (1968) performs an experimental fragmen-
tation test and measures the particle weight of ran-
dom fragments. It is not stated how the residual
stresses are determined. However for stresses larger

than 6000 psi (approximately 41 MPa) there is a
good compliance between the analytical solution and
the experimental data. Comparing with Fig. 5 it is
seen that the shape of the equation seems reason-
able, however, it lacks the dependency of the glass
thickness, h.

Gulati (1997) establishes a so-called frangibility
model. Again the model assumes that the residual
stresses can be modelled with a second order polyno-
mial, where the surface compression is twice the value
of the central tensile stress. Like Barsom (1968) found,
the initial stored elastic strain energy of the plate is
found to vary linearly with the thickness of the plate
and quadratically with the central tension. Like Bar-
som (1968), Gulati assumes that the fragmentation of
glass is governed solely by the tensile stress. Also it is
assumed that by initiation of the fracture process, only
a fraction of the elastic strain energy is used to gen-
erate new fracture surfaces. Theses fracture surfaces
are assumed smooth and perpendicular to the depth,
and the developed fracture surfaces forms squared frag-
ments. The assumption of squared fragments is based
upon the assumption of uniform biaxial stresses. If N̂ is
the fragment density of the glass per unit surface area,
then it is assumed that the side lengths of one fragment
is 1√

N̂
and so that the area of fragmentation for one

fragment must be 4h√
N̂
. Combining this with the con-

siderations on the elastic strain energy, Gulati finds that
the fragment density depends on the central tension to
the power of 4, but is independent of the thickness of
the plate. A fragmentation test is performed on four
glass plates with a thickness of 2.67 mm and vary-
ing level of tempering. A linear correlation between
the fragment density and the measured central tensile
stress to the power of four is found with good compli-
ance to the frangibility model. A fragmentation test is
also performed on a glass plate of 5.1 mm, and here
it is found that the fragment density is not in compli-
ance with the developed model. Gulati suggests that
the fragment density is related to the plate thickness
despite what the analytical model predicts. Gulati then
concludes that the fragment density is nearly indepen-
dent of the plate thickness under certain conditions; a
thin plate or a high central tension. Gulati also esti-
mates the fraction of used elastic strain energy and
finds that 43% of the initial strain energy is used dur-
ing fragmentation. Gulati applies the analytical model
developed by Barsom (1968) to estimate the same frac-
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Deformations and strain energy in fragments of tempered glass 137

tion and finds that 35% of the initial strain energy is
used.

Nielsen et al. (2009) presents a study of the frac-
ture process of tempered glass. The fracture process is
initiated with a diamond drill to transfer a minimum
of energy to the test specimens. Among other things,
the study shows that fracture in tempered glass takes
place almost simultaneously in compressive and ten-
sile zone. This is questioning the previous studies of
Barsom (1968), Gulati (1997) where only the part of
the strain energy originating from tensile stresses are
assumed to be important in relation to the fracture pro-
cess.

A recently published study by Nielsen (2016) pro-
vides a numerical calculation of the remaining stress
state and strain energy in a tempered glass frag-
ment. The model is based on a linear elastic finite
element model. On the basis of more recent stud-
ies Nielsen et al. (2009), the author of the arti-
cle suggests that it is more reasonable to apply the
total strain energy of the tempered glass. From the
study it is clearly shown that the initial stress state
changes from being plane hydrostatic to becoming
fully three dimensional in the fragment. Tables and
calculation tools for estimating the remaining strain
energy in the fragment with various parameters is pro-
vided. The study is based on a polygonal shape of
the fragments with a varying number of sides (n =
{3, 4, 5,∞}).

1.3 Deformations of a cylindrical fragment

The release of strain energy and redistribution of
stresses when the free surfaces of a fragment is formed
must lead to deformations. Due to the variation of the
initial residual stress over the thickness and poisson
ratio, the deformations in the fragment are not trivial
and easily evaluated. The surface parts where compres-
sive stresses initiallywere present, tend to expandwhile
the center part (initial tensile) do the opposite. This
leads to that an intial straight line through the thick-
ness and along the side of the fragment (before frag-
mentation) becomes curved after the fragmentation, as
illustrated in Fig. 7. This curvature causes an out of
plane deformation due to the rotation (the upper right
corner in Fig. 7). All in all, this leads to a completely
changed residual stress state with significant out-of-
plane stresses.

Fig. 7 Deformations for a cylindrically shaped fragment mod-
elled axisymmetric in ABAQUS. Only 1/4 of the fragment is
modelled due to symmetry

In Fig. 7 is showing an axisymmetric FE model of
one quarter of a cylindrical fragment. The full height
of the fragment is 19 mm and the radius is 9.5 mm. The
initial residual stress state was assumed parabolic with
a compressive surface stress of−100MPa and a center
tensile stress of 50 MPa. The model is linear elastic
assuming a Young’s modulus of 70 GPa and a Pois-
son’s ratio of 0.23. The mesh consists of 2500 second
order axisymmetric displacement elements (CAX8).
The density of the used mesh is fine enough for the
results to be converged (a mesh consisting of only 100
elements would also be enough for determining the dis-
placements).

The plot in Fig. 7 shows a deformed contour plot
of the displacements in the 2-direction. It is also seen
that the top surface of the fragment is curving. It is this
deformation we will experimentally measure and com-
pare to numerical results for a real fragment geometry
in the following.

The work presented in here adds to the current
knowledge, by investigating the strain energy in a given
fragment by deformation measurements and compari-
son with a finite element model of the given fragment
(by means of 3D scanning).

To provide an overview of the paper, the following
list shortly states the steps in the investigation carried
out.

1. Measure residual stresses in a glass plate.
2. Measure surface topology.
3. Break glass plate.
4. Measure surface topology (again).
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Fig. 8 Placement of the three areas on the glass plate. All mea-
sures are in mm

Table 1 Mean residual stresses within each measurement field

Thickness (mm) Field Residual stresses (MPa)

σs σc

19 1 −74.7 42.1

2 −73.5 42.2

3 −74.8 43.1

5. 3D scanning a selected fragment.
6. Import geometry in ABAQUS and carry out the

FE-analysis.
7. Compare results.

2 Experimental method and results

2.1 Measurement of residual stresses

Due to the optical properties of glass, it is possible to
measure the residual stress by stress-optical methods.
The so-called scattered light polariscope (SCALP-04)
is based on this and is used in this investigation for
measuring the residual stresses in the glass plate before
failure. An elaborate explanation of the method can
be found in e.g. Anton and Aben (2003) or Aben and
Guillemet (1993).

Each test specimen is marked with three areas of
20 mm×20 mm as depicted in Fig. 8. Within each area
four measurements of the residual stress are conducted
in direction of both x and y.

The residual stresses are measured for the test spec-
imen with a thickness of 19 mm. The mean principal
stresses for each of the threefields can be seen inTable 1
and according to themanual of the SCALP-04 the accu-
racy of the measurements is approximately ±5%.

Fig. 9 Test setup with test specimen in Form TalySurf Series 2.
During the measurement, the test specimen is tilted (not shown)

2.2 Measurement of surface topology

2.2.1 Measuring equipment: form TalySurf series 2

To determine the deformation of the glass surface
within each field, a measurement of the surface profile
is performed. This is done by Taylor Hobson’s Form
TalySurf Series 2 as shown in Fig. 9.

A stylus traverses the surface, from which the
metrology is wanted. A pickup converts the vertical
movements of the stylus to an electrical signal which
is then amplified and recorded.

The uncertainty of the measured vertical displace-
ment is ±0.145 μm. The reported uncertainty is based
on a standard uncertainty multiplied by a coverage fac-
tor, k = 2, providing a level of confidence of approxi-
mately 95%.

2.2.2 Surface topology

The residual stress state of the test specimen is deter-
mined for an area of 20 mm × 20 mm.

Themeasurements of the surface topology are there-
fore executed over an area of 24 mm × 24 mm aiming
to center the area of determined residual stresses, see
Fig. 10.
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Deformations and strain energy in fragments of tempered glass 139

Fig. 10 Measurement schemeof surface topology.Themeasure-
ment direction with high point density is referred to as primary
measurement direction (x1) and the other as secondary measure-
ment direction (x2). All measurements are in mm

The surface topology is measured two times. The
first measurement is conducted with x as the primary
measurement direction, x1, and y as the secondarymea-
surement direction, x2. The specimen is then rotated
90◦ and y is now the primary direction of measure-
ments, x1.

The primary direction of the measurement consists
of 2400 points (100 points per mm), while the sec-
ondary direction only has 49measurement points. Also
the secondary measurement direction is affected by a
sinusoidal movement of the stylus.

The primary and the secondary measurement direc-
tions are orthogonal. An example of measurements
along the primary and secondary directions are shown
in Fig. 11.

In Fig. 11a it is clearly seen that the test speci-
men is tilted during the measurements. The software
SPIP is used to level the measurements with the func-
tion Global levelling which is clearly seen by com-
paring Fig. 11a and c. This function calculates a first
order plane of the measurements and then subtracts the
first order plane. Themeasurements are conducted both
before and after fragmentation of the glass. The mea-
sured data can be used to obtain a surface plot of the
measured area, showing a mapped fragmentation pat-
tern. The surface plots are used to compare the true
fragmentation pattern to the measured one.

2.3 Fragmentation of tempered glass

After the first surface topology measurement of the
glass plate, the test specimen is brought to failure.

The fragment size is directly related to the stored
elastic strain energy of the tempered glass and there-
fore it is essential that no energy is transferred to
the glass during fragmentation as this will have an
effect on the size of the glass fragments. The frag-
mentation of the tempered glass is therefore initi-
ated by drilling with a diamond drill (with a diam-
eter of 2.5 mm). By this method, the added energy
when failure starts is minimized and assumed to be
zero.

The fragmented glass must be held together to
ensure the possibility of measuring the surface topol-
ogy after fragmentation. Therefore the edges of the
glass is taped. It is here assumed that the stiffness of
the tape is low enough to allow the fragmentation and
expansion of the glass freely.

The point of initiating the fragmentation of the test
specimen is shown in Fig. 12. The point is placed rel-
atively far away from the edges to ensure the stress
distribution as depicted in Fig. 3. Also in reasonable
distance to themeasuring areas even though themethod
of initiating fragmentation by drilling should trans-
fer a minimum of energy to the test specimen. When
the test specimen is prepared, the drill is lowered to
the surface of the glass and the drilling begins. The
glass is expected to fragment, when the tensile stresses
overcome the compressive stresses. During the drilling
water is used to cool the drill and remove dust from the
hole to prevent over-heating and excessive wear of the
drill.

2.4 Identification of fragments

After the test specimen is fragmented, a surface topol-
ogy measurement is conducted once again. Due to
relatively large depth of cracks through field 1 and
2, it is not possible to recognize the fragmentation
pattern from the topology measurements. However,
this was possible for field 3 as shown in Fig. 13
where the identification of two specific fragments is
given.

After the surface topology measurements the glass
fragments are separated, and fragments are chosen for
further processing (3D scanning and numerical mod-
elling). It is possible to identify and separate two frag-
ments from field 3. These are labelled F3.1 and F3.2 in
Fig. 13.
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Fig. 11 Example of surface topology measurement before frag-
mentation. Top left a primary direction: before global levelling.
Top right b secondary direction: before global levelling.Middle

left c primary direction: after global levelling. Middle right d
secondary direction: after global levelling. Bottom: sketch over
the measurement directions within one 20 mm × 20 mm area
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Fig. 12 Test setup for fragmentation of test specimen showing
point of initiating fragmentation and diamond drill. All measures
are in mm

Fig. 13 Identification of fragment pattern and individual frag-
ments in field 3

3 Numerical method

3.1 Modeling the geometry of a real fragment

In order to obtain an accurate model of the surface
geometry of the fragment after fragmentation it is nec-
essary to know the geometry of the fragment before
failure. Obviously, this is not possible, however, if we
assume that the fragments (deformed) geometry can be
used for the fractured surfaces and the top and bottom
surfaces can bemodelled straight we obtain a relatively
good estimate.

This geometry is obtained by the SeeMa Lab Struc-
tured Light Scanner. The scanner consists of both hard-

Fig. 14 Fragment F3.1 depicted as a photograph b point cloud
from 3D scan c faceted solid from both top and side view

ware components (including cameras, projector and
rotation stage), and software for calibration, scanning
and reconstruction.

Since the scanner uses structured light, the glass
fragmentmust be covered to obtain a non-reflective and
non-refractive surface. For this purpose, a chalk spray
paint is applied as even and thin-layered as possible.
Figure 14a shows the painted fragments.

The scanner depicts the surface of the fragment by
rotating the fragment with steps of 40◦ from 0◦ to 359◦.
With every step, a point cloud is obtained and the steps
are automatically aligned by the SeeMa software devel-
oped by the Eco3D group at Technical University of
Denmark. Each fragment is scanned both horizontally
andvertically and the two scans are alignedduring post-
processing. As the point clouds are aligned they can be
reconstructed as a surface. In the software MeshLab,
this can be done by Poisson Surface Reconstruction.
The function generates a mesh build up by triangu-
lar shaped facets seeking to form a smooth surface. In
Fig. 14 the physical fragment, point cloud and faceted
solid is presented.

3.2 Creating a FE-model for the fragment

The FE-model of the real fragment is based on the
geometry found by 3D scanning as discussed in the
last section. Due to the linearity, the remaining stress-
/strain state can be found by applying the initial planar-
hydrostatic residual state, leaving all surfaces without
any constraints. In order to avoid rigid body motions

123



142 J. H. Nielsen, M. Bjarrum

Fig. 15 Constraints and coordinate system on fragment

Table 2 Finite element model parameters

Fragment F3.1 F3.2

hFEM mm 18.44 18.65

E GPa 70

ν – 0.23

σs MPa −74.8

σc MPa 43.1

The parameter hFEM is the thickness of the modelled glass

the model needs to be constrained in six points as illus-
trated in Fig. 15.

The properties used for the modeling are given in
Table 2. It should be noted that the residual stresses
are applied in the same manner as described in Nielsen
(2016) using a non-physical thermal expansion coef-
ficient and a specific temperature field as shortly
sketched below:

σ(z) = Eα

1 − ν
ΔT (z) (5)

where the temperature profile, ΔT (z), is given from
the measured stress profile.

The elements used are second order (displacement)
3D tetrahedral, namedC3D10 in thefinite element soft-
wareABAQUS.Due to the complexity of the geometry,

Fig. 16 Contour plot of displacement in transverse direction (z)

Fig. 17 Sketch of the paths along which the deformation was
measured on the surface of the two fragments

a really coarsemeshwas not possible. The convergence
on the results were investigated for different meshes
containing between 15,561 elements and 61,681 ele-
ments with a maximum deviation of less than 0.5%. A
plot showing both the applied mesh and the transverse
displacement for the fragment is given in Fig. 16.

4 Numerical results and discussion

In the following, the measurements of the two frag-
ments F3.1 and F3.2 are given. The path of the mea-
surments along the surface is sketched in Fig. 17

4.1 Comparison with experiments

In Figs. 18 and 19 the topologymeasurements are com-
pared to the finite element results for both fragments.
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Fig. 18 Fragment F3.1: topology measurement compared to
finite element model. The vertical axis with variable, u, rep-
resenting the deflection curves from the surface topology data

(TM) and the numerical model. The different plots shows differ-
ent sections in the surface

Since the topology was only measured relatively the
curves were brought to coincide at x = 0. The experi-
mental results yields the deformations in the thickness
direction of the top-surface which can be compared to
the FE-model. This alone does not validate the mod-
elling of stresses and strains, however, with a prior
knowledge of the stress distribution the correctness of
the model is strongly supported.

For the comparison between the measurements and
the model, a scattering degree of correlation is seen.
Especially towards the edges of the fragments, devi-
ations are observed. The kinks in the experimen-
tal curves are due to the transition to another frag-
ment.

It is believed that this is due to that the software
used for transforming the 3D scan into a FE-model did
smoothing out the sharp edges. But also that the topol-
ogymeasurementswere carried out before the fragment
was isolated. From e.g. Nielsen et al. (2009) it is seen
from a scanning electron image that the crack pattern
in tempered glass is “bridged”. This effect indicates
that the surfaces of the fragment was not completely
free as assumed in the model. This also fits well with
the plots where some scatter of the corrolation is seen.
It would be recommended to separate the fragments
before measuring the surface topology in the future.

Another issue is to find the exact same path across
the fragment. In the plots, several measured paths (TM)
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Fig. 19 Fragment F3.2: topology measurement compared to
finite element model. The vertical axis with variable, u, rep-
resenting the deflection curves from the surface topology data

(TM) and the numerical model. The different plots shows differ-
ent sections in the surface

are shown together with the FEM solution. The paths
(TM) are across the fragment top-surface and are par-
allel with 0.5 mm distance All paths TM are along the
primary measurement direction, x1.

4.2 Parametric study on fragment deformation

In line with Nielsen (2016), a parametric study using
a cylindrical fragment is carried out. The FE-model
is setup in the same way as described in the before
mentioned paper and similar to what is described in
Sect. 3.2. In this paper the parametric study is focusing
on the deformations of the top surface of the fragment.

The parameter, s, used in the plots is a coordinate from
the center (s = 0) to the edge of the fragment at the
top surface.

4.2.1 Initial stress state versus deformation

This parametric study shows, as expected, a linear rela-
tion between the surface deformations and the initial
residual stresses, see Fig. 20.As expected, the deforma-
tions are seen to increasewith themagnitude of residual
stresses. Due to linearity, all curves can be brought to
coincide by simply dividing the displacement, uz , with
the initial stress, σ∞.
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Fig. 20 Relation between initial residual compressive surface
stress, σ∞, and surface deformation for a 19 mm high fragment
with a radius of 9.5 mm
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Fig. 21 Relation between glass thickness and surface deforma-
tion for a fragment with same diameter as thickness and an initial
stress, σ∞ = 100 MPa

4.2.2 Glass thickness versus deformation

The thickness of the glass is obviously impacting the
deformations of the surface of the fragment. This is
shown in Fig. 21.

The effect is linear and if the parameter, s, is nor-
malised and the same for the displacements, uz , one
single curve will be obtained.

4.2.3 Fragment size versus deformation

The deformation is also dependent on the size of the
fragments as shown in Fig. 22. The parameter, s, is the
coordinate from the center of the fragment to the edge.
It is seen that fragments ranging from a radius of less
than 2–19 mm is given. From the figure it is seen that
the relation is not simple and that for large fragments
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Fig. 22 Relation between fragment size and surface deformation

there will be a small dent at the center of the fragment
opposed to what is seen for the smaller fragments.

5 Conclusion

From the obtained results in the paper it can be con-
cluded that it is possible to experimentally determine
the change of surface shape of a fragment. From the
results, a numerical model for estimating the deforma-
tions in a fragment of tempered glass is seen to provide
reasonable results. The same model is also capable of
calculating stresses/strains and other deformations.

In future workmore experiments should be included
and the scanning of the geometry could be done by the
use of X-ray tomography in order to get a more precise
scan without the need for spray paint on the fragment.
TheX-raymethodwould also allow for including inter-
nal cracks in the modeling of fragments.
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