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Abstract There is a growing trend in steel glass
facades to maximize the transparency of buildings with
structural glass elements e.g. beams, columns, and stiff-
eners. A relatively newway is the use of glass beams in
order to stiffen large glass curtain walls. Although the
material glass is a material that is able to resist very
high compression stresses, structural glass elements
tend to fail because of instability due to their high slen-
derness. In the past years lateral torsional buckling of
glass beams has been studied in many research works.
The studies were limited to the fundamental situation
of a simple beam without lateral restraint. However, in
practice glass beams in glass curtainwalls arefixedover
the whole length to the front glazing panels by means
of structural silicon joints or mechanical fixings. The
load carrying behaviour of beamswith lateral restraints
is different compared to beams with a free lateral dis-
placement. In this work, experimental and theoretical
investigations on the lateral torsional bucklingofmono-
lithic and laminated glass beams with lateral restraint
have been conducted. The objectives were to investi-
gate the load carrying behaviour and to study possible
design methods for stability-critical lateral supported
glass beams. Finite element simulations were carried
out and compared to experimental tests on real size
glass beams made of monolithic and laminated glass.
The design concept is based onwell-known design con-
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cepts using buckling curves and non-dimensional slen-
derness factors.

Keywords Glass beam · Stability · Lateral torsional
buckling · Buckling curves · Lateral restraint

1 Introduction

1.1 General

There is a growing trend in modern steel glass facades
to maximize the transparency of buildings by reduc-
ing the dimension of structural elements e.g. beams,
columns, and stiffeners. A relatively new way is the
use of glass panels as beams in order to stiffen large
glass curtain walls (Fig. 1). However, glass, a mater-
ial that is able to resist very high compression stresses,
tends to fail because of instability due to the high slen-
derness of these elements. In the past years lateral tor-
sional buckling (LTB) of glass beams has been studied
in many research works and design concepts have been
developed. Most of these studies were limited to the
fundamental situation of a simple beam without lateral
restraint of the glass edge.

However, in practice glass beams in glass curtain
walls are fixed over thewhole length to the front glazing
panels bymeans of structural silicon joints or mechani-
cal fixings. The load bearing capacity and also the load
carrying behaviour of beams with lateral restraints is
different compared to beams with a free lateral dis-
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Fig. 1 Glass fins: Leutschenbach school in Zürich. (Gallery 2015)

placement. Currently no design methods exist in order
to design buckling critical glass beams with lateral
restraint. Consequently glass beams are designed as
simply supported beams without lateral restraint and
the real load bearing capacity is significantly underes-
timated.

In a recent research work (Schärer 2015) at the
competence centre for façade engineering at Lucerne
University of Applied Science and Arts, experimen-
tal and theoretical investigations on the LTB of mono-
lithic and laminated glass beams with lateral restraint
have been conducted. The objectives of this research
were to investigate the load carrying behaviour and
to study possible design methods for stability-critical
lateral supported glass beams. Numerical simulations
were carried out and compared to experimental tests
on real size glass beams made of monolithic and lam-
inated glass. Based on these studies a design concept
with buckling curves and non-dimensional slenderness
factors was developed, which is similar to existing
design concepts used in steel construction. The non-
dimensional slenderness factors can be analytically cal-
culated using a numerical derived function of the first
eigenvalue.

1.2 LTB of glass beams

LTB buckling of glass beams made of monolithic
and laminated glass was studied by (Luible 2004;

Holberndt 2006; Kasper 2005; Belis 2005; Foraboschi
2009; Amadio and Bedon 2010) . All these analytical
and experimental studies demonstrated that the load
carrying behaviour and also the load bearing capac-
ity not only depends on the geometry, the interlayer
shear stiffness and the glass strength but also on geo-
metrical and structural imperfections. The shape and
amplitude of geometrical imperfections of structural
glass elements were investigated in (Belis et al. 2011).
Due to imperfections, such as initial out of straight-
ness, second order effects have a significant influence
on the buckling strength of glass beams. Therefore the
assessment of the buckling resistance of glass beams by
means of a calculation of the elastic critical buckling
resistance overestimates the real load bearing capacity
and leads to an unsafe design (Fig. 2).

For this reason different approaches have been
developed and proposed for the LTB design of glass
beams: Analytical models that are able to take into
account second order effects exist for fundamental situ-
ations but an application in practice is fastidious, espe-
cially when laminated glass is used and the interlayer
shear interaction is taken into account. A non-linear
analysis with an appropriate FE-numerical simulation
on the other hand has the advantage that imperfec-
tions and different arbitrary boundary conditions may
be considered. However, a suitable finite element (FE)
simulation requires an appropriate knowledge and rea-
sonable imperfections must be known and applied in
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Fig. 2 Lateral supported glass beams (a), typical load carrying behaviour (b)

a right way. In practices, the LTB design approach
with buckling curves seems to be the most promising
design method. The biggest advantage of the buckling
curve concept in practice is that all parameters having
an influence on the non-linear behaviour of stability
critical structural members, such as geometrical and
material imperfections may directly be implemented.
Similar to steel construction, where the design of sta-
bility critical structural elements with buckling curves
is straight forward, it was shown that this approachmay
also be applied to structural glass members (Luible
2004; Haldimann et al. 2008). However due the dif-
ferent material property and the different origin and
amplitude of initial imperfections these design curves
cannot be directly applied to glass.

The load carrying behaviour of laminated glass
beams with the time and temperature dependant influ-
ence of the interlayer stiffness was investigated by
(Luible 2004;Kasper 2005; Belis 2005) . It was demon-
strated that the shear interaction between interlayer
material and glass results in significantly higher load
bearing capacity of glass beams. (Challamel and Gri-
hammar 2012)studied the influence of the shear stiff-
ness and in (Belis et al. 2013) the influence of mechan-
ical and geometrical properties on the LTB behaviour
of laminated glass beams by means of experimental
tests and numerical simulations. Different existing ana-

lytical calculation models were compared to numer-
ical simulations and results of several test series by
(Bedon et al. 2014). All these studies are limited to the
fundamental situation of glass beams, which are later-
ally not fixed along the edge to e.g. the front glazing of
the façade. In practice, especially when glass beams are
applied in frameless glass facades, the glass beams are
connected to the front glazing by mechanical fixings,
like clamps, or gluedwith structural silicone. The effect
of continuous elastic sealant joints on the LTB behav-
iour of glass beamwas assessed in a theoretical research
in (Bedon et al. 2015). Based on previous researchwork
and parametric FE simulations, analytical solutions are
suggested for the estimation of the elastic critical buck-
ling moment of monolithic glass beams under various
loading conditions. By means of a nonlinear FE analy-
ses, the global LTB responsewas investigated, to assess
the sensitivity to initial geometrical imperfections as
well as the LTB failure mechanism. Finally, a buck-
ling design curve based on numerical simulations was
established, which accounts for the structural contribu-
tion provided by structural silicone joints.

1.3 Objectives and methodology

Theobjective of the study (Schärer 2015)was the devel-
opment of a simple design method in order to pro-
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vide structural engineers in practice a safe and eco-
nomic design of glass beams with lateral restraints. As
demonstrated in previous works (Luible 2004; Bedon
et al. 2015) a design approach based on buckling design
curves, a common design practice in structural steel
design, may also be applied for glass. However, due
to different material behaviour and also imperfections,
which have a significant influence on the load bear-
ing capacity, steel buckling curves may not be directly
applied for structural glass elements. Therefore, the
shape of the buckling curve and also the definition
of the non-dimensional slenderness are different for
glass. The main objectives of the work (Schärer 2015)
were:

• the development of a simple analytical and numer-
ical FE model, which is able to describe the
load carrying behaviour of laterally restraint glass
beams,

• the theoretical study of theLTBbehaviour ofmono-
lithic and laminated glass beams by means of sim-
ple analytical models and numerical FE models,

• the experimental study of the LTB behaviour of
monolithic and laminated glass beam with lat-
eral restraints along one edge on real size glass
beams,

• the definition of a suitable design buckling curve
for glass beams based on parametric studies which
were carried out on the developed numerical FE
model.

For the determination of the non-dimensional slen-
derness, which is the basis for the design approach
with design buckling curves, the elastic critical buck-
ling moment or the corresponding elastic critical buck-
ling load must be known. The critical buckling load
may either be calculated with a numerical FE model or
with suitable analytical models. Compared to numeri-
cal models, analytical models have the advantage that
no FE software is required and the calculation may
be carried out much quicker. For glass beams with-
out lateral restraint models exist. For glass beams with
lateral restraint a suitable model was developed in the
present work. The analytical model, in order to calcu-
late the critical buckling load, is based on the principle
of virtual work using the eigenform of the glass beam
as the virtual deformation of the beam. For this rea-
son the shape of the eigenform of lateral restraint glass
beams was studied in a first step by means of a numer-
ical FE model with the computer software (ANSYS

2014). The objective was the definition of a simple ana-
lytical function, which is able to sufficiently approx-
imate the real eigenform shape and, which can then
be applied for the calculation of the critical buckling
moment of the glass beam. In parallel a detailed numer-
ical FE model was developed, which enables to study
the real load carrying behaviour of laterally restraint
monolithic and laminated glass beams and to calculate
the elastic critical buckling load. For this reason, the
model was also applied to compare the elastic critical
buckling loads, calculatedwith the simplified analytical
model, with the numerical results. Experimental buck-
ling tests on real size monolithic and laminated glass
beams were then carried out in order to compare the
real load carrying behaviour comprising all influences,
such as friction effects, time and temperature depen-
dant shear stiffness of the interlayer, with the numerical
model. Numerous parametric studies were then carried
out with the detailed non-linear numerical FE model.
The results have been evaluated and a buckling curve
for the design of lateral restraint glass beams was pro-
posed. The parametric studies are based on imperfec-
tions, which take into account not only the geometrical
imperfection of the glass member itself, but also imper-
fections resulting from installation. Additional lateral
loads, such as wind loads acting on the lateral surface
of the glass beam in outside applications, were not part
of the study. The design curve in this work is limited
to a constant load, acting on the lateral restrained glass
edge. For simplification reasons, the lateral restraint
in this work was assumed as fully rigid and does not
allow any lateral displacement. The rotation around
the glass edge is assumed to be free without any fric-
tion.

A typical connection between a glass fin and a dou-
ble glazed unit is shown in Fig. 3. In this example
a stainless steel profile provided with a special glass
holder profile is glued onto the glass fin. The dou-
ble glazed units are connected to the stainless steel
U-profile with local mechanical clamps, which are
screwed onto a stainless steel shroud with integrated
aluminium screw channel. The clamps are hidden in
the edge sealing of the double glazed unit and work as
a lateral support for the glass fin. An advantage of this
construction is that the structural silicone joint with the
glass fin may be prefabricated in the shop and quality
critical silicon joints do not have to be carried out on
site. The installation of the system on site is similar to
widely used stick systems.
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Fig. 3 Typical glass fin
connection with a double
glazed unit

2 Elastic critical buckling moment

2.1 General

The critical buckling load of laterally restraint glass
beams has already been investigated in the past. In
(Bedon et al. 2015) a state of the art overview and an
analytical approach is presented to determine the elas-
tic critical buckling load of laterally restraint beams.
The approach is based on research works carried out in
the field of steel construction and which was adapted to
glass. The analytical model is able to take into account
an elastic connection due to the silicon joint between
glass beam and the attached front glazing.

In the present work an analytical model was devel-
oped, which is able to determine the elastic critical
buckling load of monolithic and laminated glass beams
with lateral restraints. The model is developed on the
basis of the principle of virtual work (PVW). The
application of the PVW method for the assessment
of the elastic critical buckling of structural members
is straightforward as long as the shape of the buck-
led member is known and as long as the shape may
be described by a mathematical function. For funda-
mental structural elements, such as simply supported
columns, the shape (half-sin) is quite obvious. How-
ever, for laterally restraint glass beams, which show a
rather three dimensional geometry in the buckled state,
the shape is more complex. For this reason a detailed
parametric study of the eigenform was first carried out
in order to establish a simple relation between geom-
etry, applied load and the shape of the buckled glass
beam. The results of the parametric study then allowed

establishing an empirical analytical function, which is
suitable to describe the shapeof the buckledglass beam.

2.2 Parametric study of the eigenform

The study was carried out on numerical FE models
representing a laterally supported simple beam made
of monolithic and laminated glass acc. Figure 2. The
glass beam was subjected to a uniformly applied force
applied at the bottom glass edge. For each glass beam
the eigenvalue, which corresponds to the elastic critical
buckling load qcr , and the eigenform was determined
and analysed. The analysis started with a linear elas-
tic analysis in order to get the stress distribution in the
beam, followed by linear bifurcation analysis. All para-
meters within their range considered in the analysis are
shown in Table 1.

The study was first carried out on full models of
the glass beams with typical dimensions in order to
evaluate the first four eigenvalues and to determine the
corresponding eigenform shapes Fig. 4. As expected,
for the given system and within the considered range of
parameters, the smallest elastic critical buckling load
qcr corresponds to the first eigenvalue (Table 2). Gener-
ally, the first eigenform corresponds to the most critical
shape of the geometrical imperfection, which needs to
be considered for the development of a LTB design
concept for glass beams. For the studied system, the
first eigenform was characterized by one single half
sine wave. Because of the symmetric shape of the first
eigenform, the model was then reduced to a half model
and all further investigations have been performed on
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Table 1 Parametric study
of the eigenform

Parameter Monolithic glass Laminated glass
(2 and 3 glass layer)

Length (mm) 200–30,000 200–8000

Height (mm) 50–500 50–500

Thickness (mm) 4, 12, 19 4, 12, 19

Ratio: length/height 1–60 1–60

Interlayer thickness (mm) – 1.52

Young’s modulus interlayer (MPa) 0.1–2000

Number of simulations 400 400

Fig. 4 Eigenform geometry
of a laterally restrained
glass beam (view from top):
EF1 (top) to EF4 (bottom)

Table 2 Critical buckling load for the first four eigenform shapes (EF1 to EF4): beam length 6000 mm; beam height 300 mm; thickness
12 mm (mono) and 12/1.52/12 mm (lam.); EPVB 1.0 MPa

Monolithic glass Laminated glass (2 glass layers)

qcr,i[kN/m] qcr,i/qcr,EF1[%] qcr,i[kN/m] qcr,i/qcr,EF1[%]
Eigenform 1 (EF1) 4.1 100 8.9 100

Eigenform 2 (EF2) 4.2 102 9.1 102

Eigenform 3 (EF3) 5.0 122 10.6 119

Eigenform 4 (EF4) 5.1 124 10.8 121

the simplified model. It is important to notice that for
other structural systems, other load distributions and
different support conditions the first eigenvalue and
elastic critical buckling load may correspond to a dif-
ferent shape. In (Schärer 2015) also the influence of
different interlayer stiffness on the eigenform has been
studied. It turned out that the interlayer stiffness has
only a slight influence on the eigenform as the shapes

are almost identical. However a higher interlayer shear
stiffness results in significantly higher critical buckling
load.

The resulting shapes of all eigenforms were then
evaluated and compared in a non-dimensional diagram.
The beam length is indicated on the horizontal axis and
the lateral displacement at the beam axis v with the
amplitude 1 is indicated on the vertical axis (Fig. 5).
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Fig. 5 Lateral displacement
of the eigenform for
different glass thicknesses
and l/h ratios

Fig. 6 Simplified relation
between lateral
displacement and torsional
rotation of a laterally
restraint glass beam
(half model)

It can be seen in the diagram that the eigenform shape
of monolithic glass beams with lateral restraints solely
depends on the ratio between beam length l and beam
height h. The glass thickness has no influence on the
shape of the eigenform. Beams with small l/h ratios
are characterized by a lateral deformation, which spans
over the entire glass edge. On the other hand, beams
with higher l/h ratios show only a local lateral dis-
placement, which is concentrated at the beam cen-
tre. Eigenforms of beams with identical l/h ratios are
almost identical. The same conclusion could be drawn
for laminated glass: the shear stiffness of the interlayer
material has only a marginal influence on the eigen-

form of the beam and the eigenform mainly depends
on the l/h ratio (Schärer 2015).

The lateral displacementv of thebeamaxis, obtained
by the 800 simulated beams, were then analysed in
detail. The objective was to find a mathematical cor-
relation between the l/h ratio and the lateral displace-
ment, which then enables to describe the eigenform of
the glass beam by a simplemathematical function. This
mathematical formulation can then be applied with the
PVW method in order analytically calculate the elas-
tic critical buckling load of a laterally restraint glass
beam. Figure 6 explains the correlation between the
lateral displacement at the beam aixs v(x), the lateral
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Fig. 7 Eigenform geometry
(lateral displacement at the
centre of the beam axis):
comparison between FE
model and simplified
approximation
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displacement at the top edge 2v(x) and the rotation of
the beam axis θ(x). The latter is defined by v(x) and the
height h/2. In (Schärer 2015) two different approaches
were discussed, whereas the definition according Eq.
(1) appears to be themost appropriate. The formulation
of v(x) in this approach requires the definition of a so
called critical length lcr,LT , a fictive length, which is a
function of the l/h ratio of the beam.With this formula
the laterally displacement v(x) and the rotation θ(x)of
laterally restraint glass beams may be approximately
described.

v(x) = A · sin
(

πx

lcr,LT

)
(1)

lcr,LT = ϕ · l (2)

ϕ(x) = 0.79 · α−0.54 (3)

α = l

h
(4)

θ (x) = 2 · v (x)

h
(5)

In Fig. 7 the correlation of the lateral displacement at
the beam axis v(x) between numerical results and the
approximated function is shown for different l/h ratios.
The diagram demonstrates that especially for l/h ratios
between 8 and 25, which are typical ratios of glass
beams in practice, the correlation between numerical
results and the approximated function is good.

2.3 Elastic critical buckling moment calculated with
the PVW

Thanks to the simplified shape function of the lat-
eral displacement v(x) and the beam rotation θ(x), the
elastic critical buckling load of laterally restraint glass

beams qcr may be determined with the principle of vir-
tual work (PVW). The functions, which are developed
in the previous section, are applied as virtual displace-
ments for the calculation of the internal and external
work. The bending moment My(x) about the strong
axis of the beam is defined as:

My (x) = 1

2
qz

(
x · l − x2

)
(6)

Thedeformation in z-direction, due to the applied exter-
nal uniformly distributed load q is assumed to be zero.
Therefore, also the resulting external work δW I

ext due
to the applied load q becomes zero.

δW I
ext = 0 (7)

The external work δWII
ext results from second order

effects, which are caused by the external load qand the
rotation of the beam cross section θ(x). Due the beam
rotation in the deformed position the applied load devi-
ates from the shear centre and thus the load eccentricity
causes an external work.

δWII
ext = −

l∫
0

(
qz · zq · δθ(x) · θ(x)

)
dx (8)

The inner work δW I
int due to first order effects is caused

by the lateral deformation and the rotation of the beam
cross section.

δW I
int = −

l∫
0

(
E Iz · δv′′(x) · v′′(x)

+GJT · δθ ′(x) · θ ′(x)
)
dx (9)
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The inner work δW II
int results from inner forces due

to second order effects multiplied with the lateral
deformation and the rotation of the beam cross sec-
tion. Whereas the bending moment about the weak
axis Mz(x) is determined with the product of bend-
ing moment about the strong axis My(x) and rotational
deformation of the beam axis θ(x).

δW I I
int = −

l∫
0

(
My(x) · δv′′(x) · θ(x)

+ My(x) · δθ(x) · v′′(x)
)
dx (10)

The total sum of external and internal work is then:

δWtot =
∑ (

δW I
ext + δW I I

ext + δW I
int + δWII

int

)
(11)

As the total resulting stiffness has only one degree of
freedom, the matrix has the dimension of n·m=1. After
partial derivation with respect to real and virtual defor-
mations the determinant is set to zero. This results in
one single unknown parameter, the load qz . The deter-
mined load qz corresponds to the critical lateral tor-
sional buckling load qcr .

M =
[

d

d A

(
d

dδA
δWtot

)]
→ |M | != 0 → qcr (12)

With the critical lateral torsional buckling load qcr , the
critical buckling moment Mcr,LT may be calculated.
Due to the approximated reduced length lcr,LT , the
bending moment My,cr(x) around the strong axis has
to be adapted to:

My,cr (x) = 1

2
qcr

((
x + 1

2

(
l − lcr,LT

))
l

−
(
x + 1

2

(
l − lcr,LT

))2
)

(13)

The presented approach with an approximated defor-
mation function in order to determine the elastic critical
buckling load of lateral restraint glass beams may be
applied tomonolithic and laminated glass cross section.
However, the shear interaction between interlayer and
glass in case of laminated glass has a significant influ-
ence on the torsional stiffness and as a consequence
also on the buckling behaviour and the elastic critical
buckling moment Mcr,LT . The bending stiffness E Iz
and the torsional stiffness GJT of a laminated glass

cross section, taking into account the shear interaction,
is higher. However, the increase in stiffness depends
on the shear stiffness of the interlayer material. Typical
interlayermaterials show a strong temperature and time
dependant shear stiffness. Therefore, in common appli-
cations in practice shear interaction effects may range
from “no shear interaction effect” to “full shear inter-
action”, whereas the latter corresponds to a monolithic
cross section with the thickness of the laminated glass
package. For structural calculations the bending stiff-
ness E Iz and the torsional stiffness GJT of laminated
glass cross section may then be replaced by an equiv-
alent bending EIz,e f f and torsional stiffness GJT ,eff

based on an equivalent thicknesses for bending and tor-
sion.

In many research works different mechanical mod-
els have been developed in order to determine the
bending and torsional stiffness of sandwich cross sec-
tions such as laminated glass (Challamel and Griham-
mar 2012; Kasper 2005). In this work the equivalent
bending E Iz,eff and torsional stiffness GJT ,eff was cal-
culated according the sandwich model developed in
(Stamm and Witte 1974).

2.4 Comparison with the numerical model

The analytical model, presented in the previous para-
graph, to determine the elastic critical bucklingmoment
of laterally restraint glass beams was compared to the
numerical model which was used for the study of the
eigenform in paragraph 2.2. The comparison was car-
ried out for different glass beam geometries with a
length 3000mm ≤ l ≤ 9000mm a height of 50mm ≤
h ≤ 1800mm and a thickness of 6mm ≤ t ≤ 19mm.
The l/h ratio varied from 5 to 60. The results for
monolithic glass are displayed in Fig. 8, whereas the
analytically calculated elastic critical buckling load
qcr,analytical is compared to the numerically calculated
elastic critical buckling load qcr,FE as a function of the
ratio l/h on the x-axis. The deviation between the ana-
lytically and numerically calculated critical buckling
load qcr is in the range between 97 and 103 %. It can
be noticed that the analytical approach over- or under-
estimated the numerically calculated buckling load by
maximum2.6%.Thehighest deviation occurs for beam
geometries with a ratio l/h ≤ 5 and l/h ≥ 60. The
difference for geometries l/h ≤ 5 is because the load
carrying behaviour deviates from beam theory and the
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Fig. 8 Comparison of critical buckling load qcr calculated with
analytical and numerical model

influence of membrane stiffening effects are getting
significant.

However in the typical range of practical applica-
tions with 10 ≤ l/h ≤ 20 the analytical model overes-
timates the critical buckling load of laterally restraint
glass beams by maximum 3 %. The non-dimensional
slenderness of a beam is defined as:

λLT =
√

MRk,y

Mcr,LT
=

√
qRk,y
qcr,LT

(14)

with the characteristic strength of the beam in bending
MRk,y and the elastic critical lateral torsional buckling
moment Mcr,LT . This means, a calculation of the slen-
derness of monolithic glass beams with the simplified
analytical approach leads to an overestimation of max-
imum (2.6%)1/2 = 1.6%.

The same investigations were made with laminated
glass beamswith two glass layers. The comparisonwas
carried out for glass beam geometries with a length
4000mm ≤ l ≤ 8000mm a beam height of 150mm ≤
h ≤ 450mm and a glass thickness of 6mm ≤ t ≤
19mm. The interlayer thickness tint was 1.52 mmwith
a shear stiffness 0.1N/mm2 ≤ Eint ≤ 100N/mm2.
The l/h ratio varied from 9 to 53. The analytically
calculated elastic critical buckling load qcr,analytical
was compared to the numerically calculated elastic
critical buckling load qcr,FE , whereas the deviation
between the analytically and numerically calculated
critical buckling load qcr is between 97 and 109 %.
Therefore, a calculation of the slenderness of laminated
glass beams with the simplified analytical approach
leads to an underestimation of (3%)1/2 = 1.7% and
overestimation of the slenderness of (9%)1/2 = 3.0%.

3 Numerical simulation

The FE model, which was initially developed for the
study of the eigenform, was further elaborated, in order
to study the non-linear buckling behaviour of glass
beams with lateral restraints comprising initial imper-
fections (Fig. 9). The model was created with the FE
software (ANSYS 2014) with solid elements. Prelimi-
nary studies with different mesh sizes were carried out
in order to find an optimal mesh size with respect to the
quality of the results and computation time. Finally a
mesh was applied with one element per layer through
the thickness of the beam. The element size along the
beam was varied in such a way that the results con-
verged with a difference of less than 1 %. The beam
was laterally restraint at the bottom edge and the verti-
cal edges by stiff lateral supports. All supports allowed
a free rotation of the edge. The load was applied at the
bottom edge of the beam. Due to symmetrical bound-
ary conditions and symmetrically applied loads, only a
half model of the glass beam was used in order reduce
computational cost.

The numerical FE calculation was carried out in a
multi-step analysis as described in (Luible 2004) and
(Haldimann et al. 2008):

• Creating the model with appropriate elements,
mesh size and material definition.

• Application of the boundary conditions such as ver-
tical and lateral supports and loads. In case of lam-
inated glass, applied conditions have to allow for
free rotation and shear deformation of the glass.

• Start of the simulation with a modal analysis of the
system. The resulting eigenvalue corresponds to the
critical buckling load, the resulting first eigenvector
corresponds to thefirst critical buckling shapeof the
initial deformation.

• Application of an initial deformation using a scaled
shape of the first eigenform of the system. The
amplitude of the deformed shape represents the
total imperfection of the glass beam.

• Non-linear incremental structural analysis on this
‘imperfect’ system.

• Post-processing in order to identify the maximum
deflection and principal surface stress.

An ideal elastic material behaviour was assumed for
glass and the interlayer material. In reality, interlayer
materials show a visco-elastic time- and temperature
dependent behaviour. The material behaviour of inter-
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Fig. 9 Numerical FE model (ANSYS 2014): FE half model (left), FE model after eigenvalue analysis (right)

layermaterials was studied inmany researchworks and
simplified material models, which allow determining
an equivalent shear stiffness for a given temperature and
load duration. Based on these simplified material mod-
els, on manufacturers material specifications and own
experimental studies, the equivalent interlayer shear
stiffnesswas determined for the non-linear FE analysis.

A comparison of the numerical FE model with the
experimental investigations carried out on monolithic
and laminated glass beams is addressed in the next
chapter.

4 Experimental investigation

4.1 Test setup

In order to study the load carrying behaviour of laterally
restraint glass beams in reality and in order to validate
the developed numerical non-linear FE model, lateral
torsional buckling tests on glass beams have been per-
formed in the material test lab at Lucerne University of
Applied Science and Arts. The focus of the tests was
more on the load carrying behaviour of the glass beams
and the influence of initial imperfections on the deflec-
tion behaviour. This non-linear load deflection behav-
iour was then compared to the non-linear FE model
results. The tested system corresponds to a simply sup-
ported glass beam, which is laterally supported at the
bottom glass edge as it is shown in Fig. 2. In contrast to
the system in Fig. 2, the load is not applied as a contin-
uous load but as a local concentrated force at half span.

A special test set-up, as shown in Fig. 10 was devel-
oped and built for the intended lateral torsional buck-
ling tests. The tested glass beams were installed on a
massive steel frame, which enabled an easy installa-

tion of the different supports and the pneumatic load
introduction device at the bottom. The steel frame was
also used to fix the displacement transducers for the
monitoring of the lateral beam deflections.

The glass beam was fixed at both extremities by so
called fork supports. They support the glass beam in
vertical and lateral direction over the beam height but
at the same time allows a free rotation of the beam end
around the z-axis. The bottom edge of the glass beam
was laterally fixed by eight specially machined alu-
minium supports (Fig. 11a). They allow a free move-
ment in vertical direction, a free rotation around the
longitudinal axis of the glass edge, but at the same time
prevent a lateral displacement of the glass beam. The
lateral supports at the bottom of the glass edge con-
sist of round aluminium peace, which were glued onto
the glass beam. L shaped steel profiles on each side
of the aluminium pieces hold the glass edge in position
and prevent a lateral displacement under loading. PTFE
sheets in order to reduce friction have been installed
between L profiles and aluminium pieces. Due to the
geometry of the aluminium pieces the rotation axis of
the glass beam was 20 mm below the glass edge. The
numerical models, which were used for the compari-
son, have been adapted accordingly.The loadwas incre-
mentally applied as a concentrated force at half span
of the beam with a special device. A U-shaped steel
flat with a pinned connection to the steel bar, which
was fixed to the pneumatic cylinder at the bottom, was
glued onto the glass beams (Fig. 11b). The axis of the
pinned connection was also at 20 mm distance from
the glass edge similar to the lateral supports. Before the
glue was applied, the centred position of the steel piece
could be adjusted with the help of distance screws.

During the tests, the applied force was measured
and recorded by a load cell, which was placed between
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Fig. 10 Test set up for the lateral torsional buckling tests

Fig. 11 Lateral glass
restraints (a) and load
introduction device (b)

pneumatic cylinder and steel flat. The lateral deflec-
tion of the glass beamwasmeasured with displacement
transducers at the centre of the beam and at nine loca-
tions: at the position of the load application and above
each of the eight lateral supports (Fig. 11b). Also the
vertical beam displacement was measured at the top
edge of the beam.

The geometry and number of the test specimens is
summarized in Table 3. In total three monolithic glass
beams and four laminatedglass beamshavebeen tested.
In Fig. 12 a typical deformed laterally supported glass
beam after buckling is shown. It can be seen that the
lateral displacement of the top glass edge exceeds the
thickness of the glass.
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Table 3 Geometry of all
tested glass beam

Parameter Monolithic glass Laminated glass (2 glass layer)

Length (mm) 3100 3100

Height (mm) 300 300

Thickness (mm) 1 × 6; 2 × 8 6

Ratio: length/height 10 10

Interlayer thickness (mm) – 1.52

Interlayer – Saflex RB 41/EVASAFE G77

Number of tests 3 4

Fig. 12 Support, load
introduction of the glass
beam and buckled glass
beam during the test

4.2 Comparison with the numerical model

The objective of the lateral torsional buckling tests was
the investigation of the load carrying behaviour for a
comparative study with the numerical FE model. The
numerical model has been adapted to the situation of
the buckling test. The bottom edge of beam is laterally
restraint only locally at nine points and the axis of the
pinned connection is located at 20 mm distance from
the glass (Fig. 11). The load in the Fe model was also
applied as a concentrated load at half span. The load
during the test was not increased up to glass failure.
Therefore one glass beam could be used for several
tests.

Figure 13 shows the result of lateral torsional buck-
ling tests carried on a 6 mm and an 8 mm monolithic
glass beam. Each glass beam was tested three times.
For both specimens the maximum initial imperfection
was determined with 1.9 mm. In both diagrams an ini-
tial deviation between numerical FE model and test
results can be observed. This is due to friction effects

at the supports. Once the laterally deflection starts
to develop and the influence of friction becomes less
important, the measured lateral deflection of the tested
beam approaches quickly the theoretical line resulting
from the numerical simulation. It can also be noted that
the applied force asymptotically approaches but never
exceeds the elastic critical buckling load Fcr , which
was calculated with the numerical model. All three
tests, which were carried out on the same specimen
show an almost identical load carrying behaviour.

In order to simulate the exact behaviour of tested
beam, the amplitude of the initial imperfection of the
FE model was set to 1.9 mm. The 1.9 mm amplitude
and the shape correspond to the initial imperfection
of the test, whereas 1.0 mm was the measured initial
imperfection of the tested glass beam and 0.9 mm an
additional imperfection due to the test rig, supports, etc.

The critical buckling load was one of the criteria
for the chosen geometry of the tested glass beams. The
geometry results in critical buckling loads of the first
and the second eigenform, which are very close. This
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Fig. 13 Comparison between LTB test and numerical simulation: 6 mm (specimen A3) and 8 mm (specimen A2) monolithic glass

means, the shape of the beam in its buckled state, either
conform to thefirst eigenform, or conform to the second
eigenform, depends strongly on the shape of the initial
natural imperfection of the beam. In case the initial
imperfection is closer to the first eigenform, the beam
buckles in the first eigenform shape. In case the ini-
tial imperfection is closer to the second eigenform, the
beam starts to buckle in the second eigenform shape.

In the tests, which are shown in Fig. 13, the ini-
tial imperfection shape did not correspond to the first
eigenform and the measured amplitude of 1.0 mm was
relatively small. As a consequence and as expected, the
beam buckled in its second eigenform. However, an
important observation during test was that some of the
tested beams, which first started to buckle in the second
eigenform, suddenly “jumped” back to the shape of the
first eigenform. This leads to the important conclusion
that even if the initial imperfection does not correspond
to first eigenform and even the beam starts to buckle in
a shape conform to a higher order eigenform, the beam
may suddenly change its deformed shape conform to
the first eigenform. Thus a design concept, like design
buckling curves, must be developed and based on a crit-
ical initial imperfection, which represents a scaled first
eigenform.

Due to the time and temperature dependant shear
stiffness of the interlayer in laminated glass the load
was applied in a different way compared to monolithic
glass. A define load was instantaneously applied on the
glass beam and the development of the maximum lat-
eral deflection was monitored and recorded over time.
With the numerical FE model single deflection results
have been calculated, which were based on an equiva-
lent shear modulus for a given load duration and tem-

Fig. 14 Typical LTB test with a laminated glass beamwith PVB:
lateral displacement at beam centre

perature. The applied load for laminated glass beams
with PVB interlayer (Saflex RB 41) was 10,000 N the
applied load for laminated beams with EVA interlayer
(EVASAFE G77) was 16,000 N.

Figure 14 shows the result of a typical lateral tor-
sional buckling test with lateral restraint compared to
the results of the numerical simulation. The correlation
between test result and the calculated results (red dots)
is good. An equivalent shear modulus for load dura-
tions of 60 s, 900 s, 1800 s, 2700 s and 3600 s was
applied for the numerical calculations. The maximum
initial imperfection of the tested glass beam was 2.5
mm.

All other tests are summarized in (Schärer 2015).
The tests with PVB interlayer show a similar and good
correlation with the numerical model. Therefore, it can
be concluded that the developed numerical model is
able to describe the load carrying behaviour of a lam-
inated glass beam subject to lateral torsional buckling.
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However the correlation between the tested laminated
glass beams with EVA interlayer and the numerical
model was not satisfying. The calculated lateral defor-
mations, based on the shear stiffness values provided
by the manufacturer, were much higher than the mea-
sured displacements in the tests. It turned out that the
provided shear stiffness values for EVA interlayer were
to low and further experimental studies in order to get
more realistic material data is required.

5 Design concept

5.1 General

Different design concepts for stability critical struc-
tural members of glass are discussed in (Haldimann
et al. 2008). The lateral torsional buckling design with
design curves, such as those adopted in steel and tim-
ber design provide a simple and efficient approach. This
approach is also applicable for glass. Buckling curves
give reduction factors χLT in order to determine the
load bearing capacity of stability critical structural ele-
ments, as a function of the slenderness ratio λ̄LT . The
slenderness ratio of glass beams was already defined in
chapter with Eq. (14), whereas the required character-
istic bending strength MRk,y is given by the character-
istic strength of the glass beam and the elastic critical
buckling moment Mcr,LT may be determined with the
approach presented in chapter 2, in (Bedon et al. 2015)
or with a suitable numerical FE model.

Buckling design curves are a function of the struc-
tural system, the boundary and support conditions,
the applied loads (concentrated, continuous, etc.) the
glass type and of the imperfections. Buckling design
curves for glass beams have been developed for exam-
ple in (Haldimann et al. 2008) for beams without lat-
eral restraint and in (Bedon et al. 2015) for beams with
lateral elastic restraint. In the present research work
(Schärer 2015) a buckling design curve for glass beams
with a rigid lateral support as shown in Fig. 3 and a
continuous constant load (Fig. 2) was developed. The
numerical model, whichwas described in chapter 3 and
verified by the experimental tests, was used to generate
reduction factors. The buckling design curve was then
defined as a lower boundary line of all these generated
reduction factors. The non-linear numerical paramet-
ric FE simulations were carried out on a wide range

of different beam geometries, glass compositions and
interlayer shear stiffness values.

5.2 Assumed initial imperfection

The non-linear load carrying behaviour strongly depe-
nds on the initial imperfection of the glass beams.
Therefore the assumption of a realistic and reason-
able initial imperfection is important for the non-linear
numerical parametric FE simulations, the resulting
reduction values and also the quality of the resulting
bucklingdesign curve. For the lateral torsional buckling
design of glass beams in practice realistic imperfection
values should not only comprise the initial geometrical
imperfection of the structural glass member resulting
from production, they also have to address imperfec-
tions due to installation. For this reason three imperfec-
tion components have been identified and considered
in the subsequent development of the buckling curve:

• 	1: imperfection due to an initial rotation (Fig. 15a);
• 	2: imperfection due to misalignment from the the-

oretical axis after installation (Fig. 15b);
• 	3: remaining initial imperfection due to production

after installation (Fig. 15c).

The initial rotation of the glass beam after installa-
tion	1 represents a deviation of the structural element
after installation in such a way that the angle between
the double glazed units is not orthogonal (Fig. 15a). The
value of h/300 is common for structural steel mem-
bers used in steel glass curtain walling. As glass fins
typically are supported at both extremities with steel
brackets and steel connections this value may also be
applied for structural glass beams.

The initial imperfection	2 represents a local lateral
misalignment from the theoretical axis after installation
(Fig. 15b). Referring to the common practice in steel
construction, it may be assumed also for glass beams
that the axis is not in line with the theoretical axis after
the glass beams are installed and fixed to the double
glazed units. The value of 5 mm is a common value
used for structural steel members in facades and has
been adopted here.

The initial imperfection component 	3 results from
the initial geometrical imperfection after production.
The initial out of plane curvature of glass beams after
production was studied in (Belis et al. 2011). A maxi-
mum value of l/400 was recommended for the lateral
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Fig. 15 Assumed imperfections for laterally restraint glass beam: a initial rotation, b lateral deviation from theoretical axis over the
length, c remaining initial imperfection after installation

torsional buckling design of glass beams. The evalua-
tion of the measured initial deformation was carried on
glass beams without lateral restraints. For a 6000 mm
long glass fin this would result in a maximum devia-
tion from the straight axis of the beam of 15 mm. From
aesthetical point of view it is questionable if such a
misalignment will be accepted in practice. The bend-
ing stiffness of the glass beams around the weak axis
is small and in practice the glass fins will be aligned
during installation in order to meet the architectural
requirements. Therefore, in (Schärer 2015) only the
remaining out of plane curvature was considered after
aligning the glass beam to the theoretical straight axis.
A parametric study on the FE model on glass beams
with the dimensions used for the development of the
buckling design curve was carried out in advance. It
turned out that after aligning amaximum remaining out
of plane curvature of only 1 mm is left, which needs to
be considered as remaining imperfection.

The total maximum initial imperfection applied for
the numerical parametric calculation of the reduction
factors becomes then:

	tot = 	1 + 	2 + 	3 = h

300
+ 5mm + 1mm (15)

5.3 Development of a buckling curve

Based on the defined initial imperfection, numerical
simulations with the non-linear FE model have been

performed. The range of parameters within which the
simulations were carried out, are shown in Table 4. All
parameters have been chosen in order to cover a wide
range of typical application of glass beams in practice.

The simulations were carried out using an incre-
mental non-linear analysis, whereas the load carrying
behaviour was monitored by recording the maximum
tensile stress on the glass surface and the maximum
lateral deflection as a function of the applied load. The
simulations were carried out on monolithic glass and
laminated glass with two and four glass layers. An
initial geometrical imperfection was considered in the
simulation model, whereas the shape corresponded to
the first eigenform, which was scaled to have the maxi-
mum amplitude given by Eq. (15). Themaximum char-
acteristic buckling strength was identified, when the
maximum tensile stress somewhere on the glass surface
first exceeds the maximum glass strength. The charac-
teristic buckling strength divided by the characteristic
bending strength of the glass results in a reduction fac-
tor. With the given three characteristic glass strength
values for annealed, heat strengthened and fully tough-
ened glass, each simulation database was used generate
three reduction factors. Thanks to this approach 520
data points could be generated in order to establish a
design buckling curve.

All generated data points, based on the parameters
in Table 4, are displayed as reduction factors in the dia-
gram in Fig. 16. The data points seem to be randomly
distributed above a lower boundary line. A correlation
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Table 4 Parametric numerical simulations

Parameter Monolithic glass Laminated glass (2 glass layer) Laminated glass (4 glass layer)

Length (mm) 3000, 6000, 9000 3000, 6000, 9000 9000

Height (mm) 150, 300, 450, 600 150, 300, 450 600

Thickness (mm) 6, 12, 19 6, 12, 19 12, 19

Ratio: length/height 5 to 60 5 to 60 15

Char. glass strength fk (MPa) 45, 70, 120 45, 70, 120 45, 70, 120

Young’s modulus glass (MPa) 70,000 70,000 70,000

Interlayer thickness (mm) – 1.52 1.52

Young’s modulus interlayer (MPa) – 0.01, 0.1, 1.0, 10, 100 0.01, 0.1, 1.0, 10, 100

Data point results for buckling curve 100 400 20

Fig. 16 Simulated
reduction factors and
proposed design buckling
curve
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between the glass composition (AN, HS, FT), glass
strength and reduction factor is not noticeable and the
interlayer shear stiffness has no influence on the buck-
ling curve. It is worth noticing that the reduction factors
for slenderness values > 1.6 are higher than the elas-
tic critical buckling strength given by the Euler buck-
ling curve. This effect was already observed in other
research works (Luible 2004) and is due to post buck-
ling effects. In this case the load carrying behaviour of
the glass beam deviates from the typical beam theory
and stiffening effects occur due to the membrane load
carrying behaviour.

Based on all generated data points, a buckling curve
for glass beamswith a rigid lateral restraintwas defined.
In this context the well-known functions used in struc-
tural steel design have been adopted. The parameters of
these functions have beenmodified and adjusted in such

a way that the design curve represents a lower bound-
ary of all generated data points. The resulting design
buckling curve (Fig. 15) described with Eqs. (16) and
(17) is able to provide reliable buckling reduction fac-
tors for laterally supported monolithic and laminated
glass beams with rigid lateral restraints.

χLT = 0.9


 +
√


2 − λ̄2LT

+ 0.06 ≤ 1.0 (16)


 = 0.5
(
1 + 0.12

(
λ̄LT − 0.3

) + λ̄2LT

)
(17)

5.4 Design concept

The lateral torsional buckling design of a glass beam
with lateral restraint then becomes straight forward
with the condition:
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MEd ≤ MRd,LT (18)

whereas MEd is the design value of the bending
moment due to the applied loads and MRd,LT is the
design buckling resistance, which is given by

MRd,LT = χLT MRd,y (19)

with the design value of the bending strength around
the strong axis

MRd,y = WyσRd (20)

The design value of the tensile strength of glass σRd

may be taken from existing glass design codes.

6 Summary and conclusions

In this paper results of a recent researchwork on the lat-
eral torsional buckling of laterally restraint glass beams
with a stiff lateral support subjected to a continuous
uniformly distributed load have been presented. The
objectives of this research were to investigate the load
carrying behaviour and to develop a design method for
stability-critical lateral supported glass beams. Numer-
ical simulations were carried out and compared to
experimental tests on real size glass beams made of
monolithic and laminated glass. Based on these stud-
ies a design concept with buckling curves and non-
dimensional slenderness factors was developed, an
approach which is similar to existing design concepts
used in steel construction. In order to establish a buck-
ling design curve a considerable amount of non-linear
numerical simulations have been performed and data
points representing the reduction factors havebeengen-
erated. The proposed buckling design curve represents
a lower boundary line of all generated data points.

The slenderness factor is defined by the elastic criti-
cal buckling moment, which may be calculated with
existing analytical approaches, numerical models or
with the method shown in this paper. The approach in
this paper is based on the principle of virtual work and
on the assumption that the shape of the buckled glass
beam corresponds to the first eigenform. A preliminary
study of the shape of the eigenform was carried out in
order to establish a simple analytical function. It was
demonstrated that the developed analytical function is
suitable to describe the shapeof the buckledglass beam.
The resulting elastic critical buckling moment shows a

good agreement with the numerical result for mono-
lithic glass beams.

Initial imperfections, which have a significant influ-
ence of the load bearing capacity and as a consequence
also on the design buckling curve, have been discussed
and established in the paper. Three relevant imper-
fection components have been quantified and applied
for the parametric numerical simulations used for the
development of the design buckling curve. Beyond the
initial imperfection due to production, also imperfec-
tions due tomisalignment during installation have been
considered in the study.

Lateral torsional buckling tests on real size glass
beams made of monolithic and laminated glass beams
have been performed in order to validate the devel-
oped numerical model. For this purpose, a special test
rig was developed. Especially for monolithic glass and
laminated glass beams with PVB interlayer, the test
results show a good agreement with the numerical sim-
ulations. However for laminated glass with EVA inter-
layer detailed and reliable properties of the interlayer
material are required.

As shown in the researchwork, it is possible to estab-
lish a design concept for laterally restraint glass beams
based on buckling design curves. However, in order to
complete the design also the lateral support has to be
verified and it has to be checked that the glass fixing is
able to transfer the occurring lateral forces. A suitable
lateral support is necessary to hold the glass fin in place
and to avoid a premature failure of the glass fixing. A
comprehensive study of these reaction support forces
on the fixing points was not subject of this research
work and needs to be investigated in the next stage. Pre-
liminary studies with the developed numerical models
demonstrated that the required support forces are high
and that the load bearing capacity of typical structural
silicon joints are not sufficient.

Conflict of interest Onbehalf of all authors, the corresponding
author states that there is no conflict of interest.

References

Amadio, C., Bedon, C.: Buckling of laminated glass elements
in out-of-plane bending. Eng. Struct. 32(11), 3780–3788
(2010)

ANSYS, A.: Academic research. Release 15, 1 (2014)
Bedon, C., Belis, J., Amadio, C.: Structural assessment and

lateral-torsional buckling design of glass beams restrained
by continous sealant joints. Eng Struct 102, 214–229 (2015)

123



Lateral torsional buckling of glass beams... 171

Bedon, C., Belis, J., Luible, A.: Assessment of existing analytical
models for the lateral torsional buckling analysis of PVB an
SG laminated glass beams via viscoelastic simulations and
experiments. Eng. Struct. 60, 52–67 (2014)

Belis, J.: Kipsterkte van monolithische en gelamineerde glazen
liggers. Ghent University, Ghent (2005)

Belis, J., Bedon,C., Louter,C.,Amadio,C., van Impe,R.: Experi-
mental an analytical assessment of lateral trosional buckling
of laminated glass beams. Eng. Struct. 51, 295–305 (2013)

Belis, J., Luible, A., Mocibob, D., Vandenbroek, M.: On the
size and shape of initial out-of-plane curvatures in structural
glass components. Constr. Build. Mater. 25(5), 2700–2712
(2011)

Challamel, N., Grihammar, U.A.: Lateral-torsional buckling of
vertically layered compostie beams with interlayer slip
under uniform moment. Eng. Struct. 34, 505–513 (2012)

Foraboschi, P.: Analytical solution of two-layer beam taking into
account nonlinear interlayer slip. J. Eng. Mech. 135, 1129–
1146 (2009)

Gallery, S. P.: (n.d.). Steve’s Photo Gallery. Retrieved 12 2015,
from Steve’s Photo Gallery: http://www.stevesgallery.net/
displayimage.php?album=search&cat=0&pos=24, (2015)

Haldimann, M., Luible, A., & Overend, M.: Structural Use of
Glass (Bd. Structural EngineeringDocument SED). Zürich:
International Association for Bridge and Structural Engi-
neering IABSE, ISBN 978-3-85748-119-2, (2008)

Holberndt, T.: Entwicklung eines Bemessungskonzeptes für
den Nachweis von stabilitätsgefährdeten Glasträgern unter
Biegebeanspruchung. Frauenhofer IRB Verlag, Stuttgart
(2006)

Kasper, R.: Tragverhalten von Glasträgern. Shaker Verlag,
RWTH Aachen (2005)

Luible, A.: Stabilität von Tragelementen aus Glas. Lausanne,
(2004)

Schärer, D.: Beitrag zum Kippen mit gebundener Drehachse.
Lucerne University of Applied Science and Arts, Horw
(2015)

Stamm, K., Witte, H.: Sandwichkonstruktionen—Berechnung,
Fertigung, Ausführung. Springer, Wien (1974)

123

http://www.stevesgallery.net/displayimage.php?album=search&cat=0&pos=24
http://www.stevesgallery.net/displayimage.php?album=search&cat=0&pos=24

	Lateral torsional buckling of glass beams with continuous lateral support
	Abstract
	1 Introduction
	1.1 General
	1.2 LTB of glass beams
	1.3 Objectives and methodology

	2 Elastic critical buckling moment
	2.1 General
	2.2 Parametric study of the eigenform
	2.3 Elastic critical buckling moment calculated with the PVW
	2.4 Comparison with the numerical model

	3 Numerical simulation
	4 Experimental investigation
	4.1 Test setup
	4.2 Comparison with the numerical model

	5 Design concept
	5.1 General
	5.2 Assumed initial imperfection
	5.3 Development of a buckling curve
	5.4 Design concept

	6 Summary and conclusions
	Conflict of interest
	References




