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Abstract The article proposes a method for nonlinear con-
trol of the dynamical system that is formed by a DC–DC
converter and a DC motor, making use of differential flat-
ness theory. First it is proven that the aforementioned system
is differentially flat which means that all its state vector ele-
ments and its control inputs can be expressed as differential
functions of primary state variables which are defined to be
the system’s flat outputs. By exploiting the differential flat-
ness properties of themodel its transformation to a linearized
canonical (Brunovsky) form becomes possible. For the lat-
ter description of the system one can design a stabilizing
feedback controller. Moreover, estimation of the nonmea-
surable state vector elements of the system is achieved by
applying a new nonlinear Filtering method which is known
as Derivative-free nonlinear Kalman Filter. This filter con-
sists of the Kalman Filter recursion applied on the linearized
equivalent model of the system and of an inverse transfor-
mation that is based on differential flatness theory and which
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enables to obtain estimates of the initial nonlinear state-space
model.Moreover, to compensate for parametric uncertainties
and external perturbations the filter is redesigned as a distur-
bance observer. By estimating the perturbation inputs that
affect the joint model of the DC–DC converter and of the DC
motor their compensation becomes possible. The efficiency
of the proposed control scheme is further confirmed through
simulation experiments.

Keywords DC–DC converter · DC motor · Nonlinear
control · Differential flatness theory · Global linearization ·
Asymptotic stability · Kalman Filtering · Disturbance
observer

Introduction

A nonlinear control method, based on differential flatness
theory, is proposed for the model that is formed after con-
necting a DC motor to a DC–DC converter. This scheme can
be used for the exploitation of the power produced by photo-
voltaic units, since the DC–DC converter controls the level
of the produced output voltage. In turn the DC output volt-
age can be fed into DC motors, as for instance in the case
of actuators, mechatronic devices and pumps [1–3]. Nonlin-
ear control approaches for DC–DC converters connected to
DCmotors have been presented in [4–8]. In particular global
linearization approaches and flatness-based control of such
systems have been presented in [9–15]. In this article, a state-
space description is obtained first for the system consisting
of the DC–DC converter and the DC motor. Next,the differ-
ential flatness properties of this model are proven using as
flat output the rotation angle of the motor. Differential flat-
ness means that all state variables and the control input of the
system can be expressed as functions of the flat output and
its derivatives [16–21].

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40903-016-0061-x&domain=pdf


372 Intell Ind Syst (2016) 2:371–380

By proving that the system is a differentially flat one, it is
confirmed that it can be transformed to the linear canonical
(Brunovsky) form [22–28]. After such a transformation the
computation of a stabilizing feedback control input becomes
possible. To estimate the non-measurable state variables of
the system theDerivative-free nonlinearKalmanFilter is pro-
posed [19–21]. This consists of the Kalman Filter recursion
applied on the equivalent linearized model of the system
[29–31]. Moreover, it makes use of an inverse transforma-
tion which is based on differential flatness theory and which
allows to obtain estimates of the state variables of the initial
nonlinearmodel. Next, theDerivative-free nonlinear Kalman
Filter is designed as a disturbance observer. This enables
simultaneous estimation of the state variables of the system
and of disturbance terms affecting it [32,33]. By identifying
such disturbance inputs, their compensation becomes possi-
ble with the inclusion of an additional control term in the
aggregate feedback control signal.

The structure of the article is as follows: in Section
“Dynamics of the Model Formed by the DC–DC Converter
and the DC Motor” an analysis is given about the dynamics
of the model which consists of the DC–DC converter con-
nected to the DC motor. In Section “Differential Flatness
of the Model of the DC–DC Converter and the DC Motor”
the differential flatness properties of the aforementioned sys-
tem are proven. In Section “Transformation of the Dynamic
Model into the Canonical Form” the state-space model of
the system is transformed into the linear canonical form. In
Section “Disturbances Compensation with the Derivative-
Free Nonlinear Kalman Filter” the Derivative-free nonlinear
Kalman is used for estimating the non-measurable state vari-
ables of the system. Moreover, this filter is redesigned as a
disturbance observer so as to estimate additive perturbation
terms affecting this model. In Section “Simulation Tests”
the performance of the control scheme is evaluated through
simulation experiments. Finally, in Section “Conclusions”
concluding remarks are stated.

Dynamics of theModel Formed by theDC–DCCon-
verter and the DC Motor

DC motors controlled through DC–DC converters can be
found in several applications, as for instance in photo-
voltaic power pumps or in desalination units (Fig. 1). Control
is implemented through a pulse-width-modulation (PWM)
approach. The equivalent circuit of the system that is formed
after connecting a DC motor to a DC–DC (buck) converter
is depicted in Fig. 2.

PWM is applied for the converter’s control. The amplitude
of the output voltage Vo is determined by the duty cycle of
the PWM. The on/off state of the switch Q sets voltage u to E
or to 0 for specific time intervals within the sampling period.
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Fig. 2 Circuit of the DC–DC converter connected to a DC motor

The ratio between the time interval in which u = E and the
sampling period defines the duty cycle. By varying the duty
cycle one can control the voltage output Vo, as if a variable
input voltage E was applied to the circuit.

The dynamics of the electrical part of the circuit comes
from the application of Kirchhoff’s laws. It holds:

L
d I

dt
+ Vc = u

Lm
d Ia
dt

+ Rm Ia + Keω = Vc (1)

I = Ic + IR + Ia or I = C
dVc
dt

+ Vc
R

+ Ia

The dynamics of the mechanical part of the circuit comes
from the laws of rotational motion. It holds that:

θ̇ = ω

J ω̇ = −Bω + Ka Ia + τL (2)

where τL is the load’s torque. By defining the state variables
x1 = θ , x2 = ω, x3 = I , x4 = Vc and x5 = Ia one obtains
the following state-space model:

ẋ1 = x2

ẋ2 = − B

J
x2 + Ka

J
x5 + 1

J
τd
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ẋ3 = − 1

L
x4 + 1

L
u

ẋ4 = 1

C
x3 − 1

RC
x4 + 1

C
x5

ẋ5 = 1

Lm
x4 − Rm

Lm
x5 + Ke

Lm
x2 (3)

Without loss of generality it is considered that the load’s
torque is τL = mglsin(x1) (the motor is considered to be
rotating a rod of length l having a mass m at its end), the
previous state-space description is written in the following
matrix form

⎛
⎜⎜⎜⎜⎝

ẋ1
ẋ2
ẋ3
ẋ4
ẋ5

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

x2
− B

J x2 + Ka
J x5 + 1

J mglsin(x1)
− 1

L x4
1
C x3 − 1

RC x4 + 1
C x5

Ke
Lm

x2 + 1
Lm

x4 − Rm
Lm

x5

⎞
⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎝

0
0
1
L
0
0

⎞
⎟⎟⎟⎟⎠
u (4)

Differential Flatness of the Model of the DC–DC
Converter and the DC Motor

Next, the differential flatness properties of the model are
proven. The flat output of the system is taken to be y = x1,
that is the turn angle of the rotor. From the first row of the
model one gets

x2 = ẋ1 = ẏ (5)

From the second row of the model one gets

x5 = ẋ2 + B
J x2 − 1

J mglsin(x1)
Ka
J

⇒x5 = fa(y, ẏ, ÿ) (6)

From the fifth row of the model one gets

x4 = ẋ5 + Ke
Lm

x2 + Rm
Lm

x5
1
Lm

⇒x4 = fb
(
y, ẏ, ÿ, y(3)) (7)

From the fourth row of the model one gets

x3 = ẋ4 + 1
RC x4 + 1

C x5
1
C

⇒x3 = fc
(
y, ẏ, ÿ, y(3), y(4)) (8)

From the third row of the model one gets

u = L
(
ẋ3 + 1

L
x4

)
⇒ u = fd

(
y, ẏ, ÿ, y(3), y(4), y(5)) (9)

Consequently, all state variables and control inputs of the
model are differential functions of the flat output and the
model is a differentially flat one.

Transformation of the Dynamic Model into the
Canonical Form

Knowing that the dynamicmodel of the system that is formed
by the DC–DC converter and the DCmotor is a differentially
flat, its transformation to the linear canonical (Brunovsky)
form is assured. Indeed by differentiating the first row of the
state-space model with respect to time one obtains:

ẋ1 = x2⇒ẍ1 = ẋ2⇒ẍ1 = − B

J
x2 + Km

J
x5 + mglsin(x1)

(10)

By differentiating oncemorewith respect to time one gets:

x (3)
1 = − B

J
ẋ2 + Km

J
ẋ5 + mglcos(x1)ẋ1⇒

x (3)
1 = − B

J

[
− B

J
x2 + Ka

J
x5 + mglsin(x1)

]

+ Km

J

(
Ke

Lm
x2 + 1

Lm
x4 − Rm

Lm
x5

)

+mglcos(x1)ẋ1 (11)

After intermediate operations one obtains:

x (3)
1 =

[(
B

J

)2

+
(
KaKe

J Km

)]
x2

+
[
− Bmgl

J
sin(x1) + mglcos(x1)x2

]

+ Ka

J Lm
x4 +

[
− BKa

J 2
− KaRm

J Lm

]
x5 (12)

By differentiating once more with respect to time one
arrives at:

x (4)
1 =

[(
B

J

)2

+
(
KaKe

J Lm

)]
ẋ2

+
[
− Bmgl

J
cos(x1)ẋ1 − mglsin(x1)ẋ1x2

+mglcos(x1)ẋ2]

+ Ka

J Lm
ẋ4 +

[
− BKa

J 2
− KaRm

J Lm

]
ẋ5 (13)

which after intermediate operations gives

x (4)
1 =

[(
B

J

)2 (
KaKe

J Lm

)
+ mglcos(x1)

]

×
[
− B

J
x2 + Ka

J
x5 + mglcos(x1)

]

+
[
− Bmgl

J
cos(x1)x2 − mglsin(x1)x

2
2

]
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+ Ka

J Lm

[
1

c
x3 − 1

RC
x4 + 1

C
x5

]

+
[
− BKa

J 2
− KaRm

J Lm

]
·
[
1

c
x3 − 1

RC
x4 + 1

C
x5

]

(14)

By differentiating oncemorewith respect to time one gets:

x (5)
1 = − [mglsin(x1)ẋ1] ·

[
− B

J
ẋ2 + Ka

J
ẋ5 + mglcos(x1)

]

+
[(

B

J

)2

+ KaKe

J Lm

]
+ mglcos(x1)

·
[
− B

J
ẋ2 + Ka

J
ẋ5 + mglcos(x1)ẋ1

]

+
[
Bmgl

J
sin(x1)ẋ1x2 − Bmgl

J
cos(x1)ẋ2

−mglcos(x1)ẋ1x
2
2 − mglsin(x1)2x2 ẋ2]

+ Ka

J LmC

(
− 1

L

)
x4 + Ka

J LmC

(
1

L

)
u (15)

The input–output linearized system is also written in the
concise form:

y(5) = f (y, . . . , y(5)) + g(y, . . . , y(5))u (16)

and by defining v = f (y, . . . , y(5)) + g(y, . . . , y(5))u one
gets the equivalent description

y(5) = v (17)

For the previous description, the design of a stabilizing
feedback controller gives:

u = y(5)
d − k1

(
y(4) − y(4)

d

) − k2
(
y(3) − y(3)

d

)

− k3(ÿ − ÿd) − k4(ẏ − ẏd) − k5(y − yd) (18)

while the control input that is actually exerted on the sys-
tem is

u = 1

g(y, . . . , y(5))

[
v − f (y, . . . , y(5))

]
(19)

with the previous control law the closed-loop dynamics
becomes

e(5) + k1e
(4) + k2e

(3) + k3ë + k4ė + k5e = 0 (20)

Thus, through suitable selection of the feedback control
gains ki i = 1, . . . , 5 so as the associated characteristic poly-
nomial to be a Hurwitz stable one, it is assured that

lim
t→∞ e(t) = 0 (21)

Disturbances Compensation with the Derivative-
Free Nonlinear Kalman Filter

Next, the problem of disturbances compensation is treated.
Without loss of generality it is assumed that additive
input disturbances d̃ affect the linearized model of the
converter

y(5) = v + d̃ (22)

and that these disturbances are described by their time deriv-
atives up to order 3, that is d̃(3) = fd . Actually, every signal
d̃ can be equivalently described by its time derivatives up
to order n and the associated initial conditions. However,
since estimation of the signal d̃ and of its derivatives is
going to be performed with the use of Kalman Filtering,
there is no prior constraint about knowing these initial con-
ditions.

The state vector of the DC–DC converter’s model is
extended by introducing as additional state variables the dis-
turbance inputs and their derivatives. Thus, z1 = y, z2 = ẏ,

z3 = ÿ, z4 = y(3), z5 = y(4), z6 = d̃ , z7 = ˙̃d and z8 = ¨̃d.
In this manner, and by defining the extended state vector
Z = [z1, z2, . . . , z8]T one arrives at a state-space descrip-
tion into the linear canonical (Brunovsky) form:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ż1
ż2
ż3
ż4
ż5
ż6
ż7
ż8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

z1
z2
z3
z4
z5
z6
z7
z8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0
0 0
0 0
0 0
1 0
0 0
0 0
0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(
v

fd

)
(23)

zm = (
1 0 0 0 0 0 0 0

)
Z (24)

The previous description of the system is written in the
linear state-space form:

ż = Az + Bṽ

zm = Cz (25)

Toperformsimultaneous estimationof thenon-measurable
state vector elements and of the disturbance inputs the fol-
lowing disturbance observer is defined

˙̂z = Aoẑ + Bov + K f (zm − ẑm)ẑm = Coẑ (26)

where Ao = A, Co = C and
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Fig. 3 Tracking of setpoint 1 for the system consisting of the DC–DC converter connected to the DC motor. a State variables x2 = ω and x3 = I ,
b state variables x4 = Vc and x5 = Ia

Bo = (
0 0 0 0 1 0 0 0

)T
(27)

The observer’s gain is computed through the Kalman Fil-
ter’s recursion [29–31]. To apply Kalman Filtering on the
linearized equivalent model of the system, which is also
known as Derivative-free nonlinear Kalman Filter, matrices
Ao, Bo,Co are subjected to discretization with the use of
common discretization methods. The filter also comprises
an inverse transformation based on differential flatness the-
ory and on Eqs. (5), (6), (7) and (8), which enables to
obtain state estimates of the initial nonlinear model. The
discrete-time equivalents of the aforementioned matrices
are denoted as Ad , Bd and Cd . The Kalman Filter’s algo-
rithm consists of a measurement update and a time-update
stage. By denoting as Q, R the process and measure-
ment noise covariance matrices, as P− the state vector
error covariance matrix prior to measurement taking and
by P the state vector error after measurement taking one
has

Measurement update

K f (k) = P−(k)CT
d [Cd P

−(k)CT
d + R]−1

x̂(k) = x̂−(k) + K f (k)[zm − ẑm]
P(k) = P−(k) − K f (k)Cd P

−(k) (28)

Time update

P−(k + 1) = Ad P(k)AT
d + Q

x̂−(k + 1) = Ad x̂(k) + Bdv(k) (29)

Simulation Tests

The efficiency of the proposed control scheme was tested
through simulation experiments. Flatness-based control was
applied to the system consisting of the DC–DC converter
and of the DC motor. The only measurable state variable of
the system was taken to be the rotor’s turn angle x1 = θ .
The Derivative-free nonlinear Kalman Filter was used as
a disturbance observer, for estimating simultaneously the
non-measurable state variables of the model and the addi-
tive disturbance inputs that were affecting it. Indicative
values for the parameters of the electric circuit formed by
the DC–DC converter and the DC motor, that is shown
in Fig. 2 are as follows [13]: E = 56V, R = 61.7�,
L = 118.6 mH, C = 114.4µF, Ra = 0.965� and
La = 2.22 mH while the moment of inertia of the rotor
is J = 118.2× 10−3 kgm2.

The obtained results are depicted in Figs. 3, 4, 5, 6, 7,
and 8. The real value of the state variable is depicted with
the blue line, the estimated value of it is depicted with the
green linewhile the reference setpoint is depictedwith the red
line. It can be noticed that, despite implementation of a state
estimation-based control scheme and despite the presence of
external disturbances, the flatness-based control succeeded
fast and accurate tracking to the reference setpoints for all
state variables of the system.

The control inputs exerted on the systemwhich consists of
the DC–DC converter, are shown in the bottom rows of Figs.
9, 10, and 11. These diagrams depict the ratio between the
control input that is applied to the DC–DC converter and the
constant voltage E (Fig. 2). This ratio provides information

123



376 Intell Ind Syst (2016) 2:371–380

0 5 10 15 20 25 30 35 40
−10

−5

0

5

10

time (sec)

ω

0 5 10 15 20 25 30 35 40
−50

0

50

time (sec)

I

0 5 10 15 20 25 30 35 40
−50

0

50

time (sec)

V
c

0 5 10 15 20 25 30 35 40
−10

−5

0

5

10

time (sec)

I a

(a) (b)

Fig. 4 Tracking of setpoint 2 for the system consisting of the DC–DC converter connected to the DC motor. a State variables x2 = ω and x3 = I ,
b state variables x4 = Vc and x5 = Ia
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Fig. 5 Tracking of setpoint 3 for the system consisting of the DC–DC converter connected to the DC motor. a state variables x2 = ω and x3 = I ,
b state variables x4 = Vc and x5 = Ia

about the implementation of PWM control of the converter
and the associated duty cycle. Moreover, in the top rows
of Figs. 9, 10, and 11 one can see that the Kalman Filter-
based disturbance observer provides accurate estimates of
the additive disturbance inputs that affected the converter’s
and motor’s model. By identifying in real-time these per-
turbation terms their compensation became possible, after
including an additional input to the feedback control sig-
nal.

Remark 1 Differential flatness theory leads to a system-
atic approach for achieving global linearization of nonlinear
dynamical systems. Differential flatness theory allows to
define the class of nonlinear systems which admits a global
linearization transformation. Actually, all differentially flat
systems can be expressed in the linear canonical state-space
form through transformations of their state variables. It holds
that: (i) All single input models are differentially flat and can
be transformed into the linear canonical form (this is the case
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Fig. 6 Tracking of setpoint 4 for the system consisting of the DC–DC converter connected to the DC motor. a state variables x2 = ω and x3 = I ,
b state variables x4 = Vc and x5 = Ia
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Fig. 7 Tracking of setpoint 5 for the system consisting of the DC–DC converter connected to the DC motor. a State variables x2 = ω and x3 = I ,
b state variables x4 = Vc and x5 = Ia

of the DC–DC converter). (ii) Differential flatness holds for
MIMO models that admit static feedback linearization.and
which can be transformed into the linear canonical form
through a change of variables (diffeomorphism) and feed-
back of the state vector, (iii) Differential flatness holds for
MIMO models that admit dynamic feedback linearization,
This is the case of some underactuated systems. In the latter
case the state vector of the system is extended by considering
as additional state variables some of the control inputs and

their derivatives, (iv) Finally, a more rare case is the so-called
Liouvillian systems. These are systems for which differential
flatness properties hold for part of their state vector (consti-
tuting a flat subsystem)while the non-flat state variables can
be obtained by integration of the elements of the flat subsys-
tem. In conclusion, a necessary and sufficient condition for a
system to admit a global linearizing transformation into the
canonical form is to be differentially flat. Differentially flat
systems form the widest class to which global linearization-
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Fig. 8 Tracking of setpoint 6 for the system consisting of the DC–DC converter connected to the DC motor. a State variables x2 = ω and x3 = I ,
b state variables x4 = Vc and x5 = Ia
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Fig. 9 Top row Kalman Filter-based estimation of disturbance inputs
affecting the model of the DC–DC motor and the DC motor, bottom
row ratio u/E between the time-varying control input u applied to the

DC–DC converter and the constant DC input E , in case of a tracking
setpoint 1 b tracking setpoint 2

based controlmethods can be applied (this is amore extended
class of systems than the one related with Lie algebra-based
control). For the reasons analyzed above, out of all nonlin-
ear control theories, differential flatness theory is the one that
provides themost efficient tools for solving nonlinear control
problems.

Remark 2 The purpose of proving that a system is differ-
entially flat is that this is a confirmation that the nonlinear

system can be finally transformed into an equivalent linear
form through a change of state variables (diffeomorphisms).
Therefore, by showing that (i) all state variables of the
model of the DC–DC converter can be expressed as dif-
ferential functions of its flat output, (ii) the flat output and
its derivatives are differentially independent which means
that they are not connected through a relation in the form
of a differential equation, then it is assured that the con-
verter’s model is differentially flat. Next, by keeping the
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Fig. 10 Top row Kalman Filter-based estimation of disturbance inputs
affecting the model of the DC–DC motor and the DC motor, bottom
row ratio u/E between the time-varying control input u applied to the

DC–DC converter and the constant DC input E , in case of a tracking
setpoint 3 b tracking setpoint 4
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Fig. 11 Top row Kalman Filter-based estimation of disturbance inputs
affecting the model of the DC–DC motor and the DC motor, bottom
row ratio u/E between the time-varying control input u applied to the

DC–DC converter and the constant DC input E , in case of a tracking
setpoint 5 b tracking setpoint 6

relations which express the state-variables of the converter
as functions of its flat output, and by deriving succes-
sively the flat output with respect to time one arrives at the
equivalent input–output linearized form of the system, as
well as to an equivalent canonical (Brunovsky) state-space
form.

Conclusions

Flatness-based control has been proposed for the model con-
sisting of a DC–DC converter connected to a DC motor.
First,it was proven that this system is differentially flat and
that the turn angle of themotor stood for the flat output. It was
demonstrated that all state variables and the control input of
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the model could be expressed as differential functions of the
flat output. By exploiting its differential flatness properties
the state-space model of the system was transformed into
the linear canonical (Brunovsky) form. For the equivalent
linearized description of the system a stabilizing feedback
controller was designed.

Next, state estimation-based control was implemented
with the use of the Derivative-free nonlinear Kalman Filter.
This filtering method consisted of the Kalman Filter recur-
sion applied on the equivalent linearized model of the system
and of an inverse transformation that was based on differ-
ential flatness theory and which provided estimates of the
state variables of the initial nonlinear model. Moreover, by
redesigning this filter as a disturbance observer it became
possible to estimate simultaneously the state vector of the
model and additive perturbation terms affecting it. The effi-
ciency of the proposed control schemewas further confirmed
through simulation experiments.
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