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Abstract The article presents an approach to nonlinear con-
trol of fuel cells using differential flatness theory andKalman
filtering. First, it is proven that the dynamic model of fuel
cells is a differentially flat one which means that all its
state variables and control inputs can be expressed as dif-
ferential functions of specific stare variables which are the
so-called flat outputs of the system. By exploiting the differ-
ential flatness properties of themodel its transformation to an
equivalent linear form (canonical Brunovsky form) becomes
possible. For the latter description of the system’s dynamics
the design of a state-feedback controller is achieved. This
control scheme should be also robust to model uncertainties
and external perturbations. To cope with this problem the
state-space description of the PEM fuel cells is extended by
considering as additional state variables the derivatives of
the aggregate disturbance input. Next, a Kalman filter-based
disturbance observer is applied to the linearized extended
model of the fuel cells. This estimation method enables to
identify the disturbance and model uncertainty terms that
affect the system and to introduce a complementary con-
trol element that compensates for the perturbations’ effects.
The efficiency of the proposed control scheme is evaluated
through simulation experiments.
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1 Introduction

A fuel cell is an electrochemical energy device that converts
the chemical energy of the reaction between hydrogen and
oxygen into electricity and heat giving also water as by prod-
uct of the reaction [1–5]. Fuel cells are a renewable power
generation source and their use gets widely deployed in the
smart grid [6–10]. In this article a nonlinear feedback con-
trol method that is based on differential flatness theory is
developed for proton exchange membrane (PEM) Fuel Cells
[11–13]. First it is proven that the dynamic model of the fuel
cells is a differentially flat one. This means that all its state
variables and its control inputs can be expressed as differen-
tial functions of a primary variable which is the so-called flat
output [14–18]. Differential (linear) independence is another
property that holds between the flat output and its deriva-
tives. By exploiting differential flatness properties the fuel
cells’ model can be transformed into an equivalent linearized
description which is the canonical Brunovsky form [19–23].
In the latter representation of the system the design of a sta-
bilizing feedback controller becomes possible.

Another problem that has to be dealt with in the deign
of the fuel cells’ nonlinear controller is that the system is
subjected to model uncertainties and external perturbations.
To compensate for these disturbances it is proposed to use a
Kalman Filter-based disturbance observer in the control loop
[24,25]. The state-space description of the PEM fuel cells
is extended by considering as additional state variables the
derivatives of the aggregate disturbance input. Through the
Kalman Filter recursion and by processing exclusively mea-
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surements of the system’s output it becomes also possible
to identify the perturbation input. The applied Kalman fil-
ter method, also known as derivative-free nonlinear Kalman
filter consists of the Kalman Filter algorithm applied on the
input–output linearized model of the PEM fuel cells. Next,
the feedback control law for the system is modified with
the inclusion of an additional element which annihilates the
aggregate disturbances effects. The performance of this dif-
ferential flatness theory-based control and estimation scheme
is confirmed through simulation experiments.

The structure of the paper is as follows: in “Nonlinear
Dynamics of the Fuel Cells” section the nonlinear dynamics
of the PEM fuel-cells model is analyzed and the associated
states-space description is obtained. In “Linearization of the
Fuel Cells Dynamics Using Differential Flatness Theory”
section it is proven that the dynamic model of the PEM fuel
cells is a differentially flat one.Moreover, by exploting differ-
ential flatness properties an input–output linearized descrip-
tion of the system is obtained. In “Linearization of the Fuel
Cells Dynamics Using Lie Algebra” section linearization of
the PEM fuel cells model is performed using a Lie algebra-
based approach. In “Flatness-Based Control of the Nonlinear
Fuel Cells Dynamics” section flatness-based control is devel-
oped for the PEM fuel cells dynamics while the Kalman
Filter is used in the control loop as a disturbance observer. In
“Simulation Tests” section the stability properties and good
transient performance of the proposed control scheme are
confirmed through simulation experiments. Finally, in “Con-
clusions” section concluding remarks are provided.

2 Nonlinear Dynamics of the Fuel Cells

2.1 Nonlinear Dynamics of PEM Fuel Cells

The PEM fuel cell consists of a polymer electrolyte mem-
brane which is placed between the electrodes (anode and
cathode), as shown in Fig. 1. Ions can be diffused through
the membrane. If an electrical circuit is established between
the anode and the cathode, there will be also a flow of elec-
trons and a potential will appear between the electrodes.

In the considered PEM fuel cell the anode is supplied
with gas that contains hydrogenwhile the cathode is supplied
with gaswhich contains oxygen. The overall electrochemical
dynamics is

Anode 2H2↔4H+ + 4e−
Cathode O2 + 4H+ + 4e−↔2H2O
Overall 2H2 + O2↔2H2O + electricity + heat

(1)

The anode can either be supplied with H2 under pressure
or can be supplied with hydrogen by the reformer which
generates H2 frommethane or other natural gas. The cathode
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Fig. 1 A PEM fuel cells model

is suppliedwith oxygen through an air compressor connected
to an air filter and finally connected to an air flow controller
(valve). On both sides a humidifier is used to prevent drying
of the PEM. To produce a higher voltage, multiple cells are
connected in series and this forms a stack of fuel cells. A
singe cell provides voltage between 0 and 1V.

Conditions about the PEM fuel cells functioning are out-
lined as follows: (1) The temperature of the fuel cells both
at the anode’s and at the cathode’s side is assumed to remain
constant, (2) The anode and the cathode are sufficiently
humidified, (3) it is assumed that the produced water is evap-
orated (4) the inlet reactants are assumed to be supplied
in constant mole fractions. This means that pure hydrogen
100% is fed to the anode. The air supply to the cathode
consists of nitrogen and oxygen at ratios 79 and 21%, respec-
tively, (5) the gases are assumed to follow the ideal gases low.

The dynamics of the fuel cells system is given through the
following two sets of differential equations [2]:

Anode mole conservation:

dPH2
dt = RT

Va
[H2in − H2used − H2out ] (2)

dPH2OA

dt = RT
Va

[H2Oin − H2Oused − H2Oout ] (3)

Cathode mole conservation:

dPO2

dt
= RT

Vc
[O2in − O2used − O2out ] (4)

dPN2

dt
= RT

Vc
[N2in − N2out ] (5)

dPH2Oc

dt
= RT

Vc
[H2Ocin − H2Oc produced

−H2Ocout + H2Ocmbr ] (6)
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In the above state equations H2in,O2in,H2OAin,N2in ,
and H2Ocin are the inlet flow rates of hydrogen, oxy-
gen, nitrogen, anode-side water and cathode-side water.
Moreover, H2out ,O2out ,H2OAout ,N2out and and H2Ocout

are the outlet flow rates of each reactant. Additionally,
H2used ,O2used andH2Oc produced are the usage andproduced
concentrations of the reactants. Furthermore, H2Ombr is the
water concentration transferred through the membrane and
is a function of the stack current and of the humidity (which
is assumed to remain constant). It is also noted that Va is the
anode’s volume and Vc is the cathode’s volume (multiplied
by the reactant’s mass concentration in mole).

2.2 A Nonlinear State Equations Model of the PEM
Fuel Cells

In continuation to the previous analysis a nonlinear model
of the PEM fuel cells system is presented. Focusing on the
cathode, the state vector of the model is defined as x =
[pO2 , pN2 , ωcp, psin]T , where pO2 is the oxugen pressure
at the cathode, pN2 is the nitrogen pressure at the cathode,
ωcp is the compressor’s rotational speed (r/min), and psm is
the supply manifold pressure [10].

By applying the ideal gas law and by considering that the
volume of the cathode is known one has

dpO2
dt = RT

MO2Vca
(WO2,in − WO2,out − WO2,react )

dpN2
dt = RT

MN2Vca
(WN2,in − WN2,out )

(7)

where V is the volume of the cathode, R is the universal
gas constant, and MO2 , MN2 are the mass concentrations (in
mole) of oxygen and nitrogen. The incoming flow rates of
oxygen and nitrogen are given by

WO2,in = xO2Wca,in

WN2,in = (1 − xO2)Wca,in
(8)

where xO2 is the oxygenmass fraction of the inlet air, 1−xO2

is the nitrogen mass fraction of the inlet air, andWca,in is the
mass flow rate entering the cathode which is given by

Wca,in = 1
1+ωatm

kca,in(psm − pin) (9)

where ωatm is the humidity ratio

ωatm = Mv

Ma,ca,in

φca psat (Tatm )
patm−φca psat (Tatm) (10)

Mv is the mass of the vapor in mole, Ma,ca,in is the mass
of the air in mole, φca is the relative humidity in ambient
conditions, psat (Tatm) is the saturation pressure in ambient
temperature, patm is the atmospheric pressure and kca,in is
the cathode inlet orifice constant.

The outlet flow rates of oxygen and nitrogen WO2,out and
WN2,out are calculated from the mass fraction of oxygen and
nitrogen in the stack after reaction

WO2,out = MO2 pO2
MO2 pO2+MN2 pN2+Mv psat

Wca,out

WN2,out = MN2 pN2
MO2 pO2+MN2 pN2+Mv psat

Wca,out
(11)

The flow rate at the cathode’s exitWca,out is calculated by
the nozzle flow equation

Wca,out = CD AT pca√
RT

(
patm
pca

)
1
T

if patm
pca

> ( 2
γ+1 )

γ
γ−1

{
2γ

γ−1 [1 − (
patm
pca

)
γ−1
γ ]

} (12)

where γ is the ratio of the specific heat capacities of the air,
pca = pO2 + pN2 + Psat . The mass flow rate of oxygen is
expressed as

WO2,react = nIst
4F MO2 (13)

where n is the number of cells in the stack, F is the Faraday
number and Ist is the stack current. The compressor’s turn
speed is related to the associated mechanical torque

dωcp
dt = 1

Jcp
(τcm − τcp) (14)

where τcm is the mechanical input torque, τcp is the load
torque [10]

τcm = ηcm
Kv

Rcm
(vcm)kvωcp (15)

τcp = Cp

ωcp

Tatm
ηcp

⎡
⎣(

patm
pca

) γ−1
γ − 1

⎤
⎦Wcp (16)

where kt , Rcm and kv are motor constants, ηcm is a coeffi-
cient that denotes the motor’s mechanical efficiency. Cp is
the specific heat capacity of air and Wcp is the compressor
mass flow rate. The dynamics of the air pressure in the sup-
ply manifold depend on the compressor flow into the supply
manifold Wcp = Aωcp, on the flow out of the supply man-
ifold into the cathode Wco,in and on the compressor flow
temperature Tcp [10]

dpsm
dt

= RTcp
MaVsm

[Wcp − kca,in(psm − pca)] (17)

where Vsm is the supply manifold volume and Tcp is the
temperature of the air leaving the compressor

Tcp = Tatm + Tatm
ηcp

⎡
⎣

(
psm
patm

) γ−1
γ − 1

⎤
⎦ (18)
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The nonlinear state-space model of the PEM fuel-cells
model is based om Eqs. (7), (14) and (17) [10]

ẋ1 = c1(x4−x1−x2−c2)− c3x1Wco,out

c4x1 + c5x2 + c6
− c7ζ (19)

ẋ2 = c8(x4 − x1 − x2 − c2) − c3x2Wco,out

c4x1 + c5x2 + c6
(20)

ẋ3 = −c9x3 − c10

[(
x4
c11

)c12
− 1

]
+ c13u (21)

ẋ4 = c14

{
1 + c15

[(
x4
c11

)c12
− 1

]}
·

[Wcp − c16(x4 − x1 − x2 − c2)] (22)

where the coefficients c1, c2, . . ., c16 are constants. The con-
trol input u depends the motor’s current. The control input ζ
is the stack current (which can be considered as an external
perturbation to the model).

The previous set of state-space equations is also written
in the form

ẋ = f (x) + g(x)u⇒
⎛
⎜⎜⎝
ẋ1
ẋ2
ẋ3
ẋ4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

c1(x4 − x1 − x2 − c2) − c3x1Wco,out
c4x1+c5x2+c6

− c7ζ

c8(x4 − x1 − x2 − c2) − c3x2Wco,out
c4x1+c5x2+c6

−c9x3 − c10
[(

x4
c11

)c12 − 1
]

c14
{
1 + c15

[(
x4
c11

)c12 − 1
]}

·[Wcp − c16(x4 − x1 − x2 − c2)]

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎝

0
0
c13
0

⎞
⎟⎟⎠ u

(23)

3 Linearization of the Fuel Cells Dynamics Using
Differential Flatness Theory

3.1 Differential Flatness of the PEM Fuel-Cells Model

It is proven that the dynamic model of the PEM fuel cells
given in Eqs. (19), (22) is a differentially flat one, which
means that all its state variables and its control inputs can
be written as differential functions of the flat output and its
derivatives.

Theflat output of themodel is taken to be y = x1. Equation
(19) is solved with respect to x4. This gives

x4 = 1

(c4y + c5x2 + c6)
{(c4y ẏ + c5 ẏx2 + c6 ẏ)

− (−c1y − c1x2 − c1c2)

(c4y + c5x2 + c6) − c3yWca,out }⇒
x4 = f1(y, ẏ, x2) (24)

or equivalently

x4 = f1(y, ẏ, x2) (25)

By differentiating in time one obtains also

ẋ4 = f1(y, ẏ, ÿ, x2, ẋ2) (26)

Substituting Eqs. (25) into (20) one gets

ẋ2 = f3(y, ẏ, x2) (27)

By differentiating Eq. (19) with respect to time one has

ẍ1 = c1(ẋ4 − ẋ1 − ẋ2)

− c3 ẋ1Wca,out (c4x1 + c5x2 + c6) − c3x1Wca,out (c4 ẋ1 + c5 ẋ2)

(c4x1 + c5x2 + c6)2

(28)

Using the flat output’s notation y = x1 the previous rela-
tion becomes

ÿ = c1( f2 (y, ẏ, ÿ, x2, f3(y, ẏ, x2)) − ẏ − f3 (y, ẏ, x2))

− c3 ẏWca,out (c4y+c5x2+c6)−c3yWca,out (c4 ẏ + c5 f3(y, ẏ, x2))

(c4y + c5x2 + c6)2

(29)

The above equation provides a relation between x2 on the one
side and y and its derivatives of the other side. Therefore, one
obtains

x2 = f4(y, ẏ, ÿ) (30)

By substituting Eqs. (30) into (25) one arrives at

x4 = f2(y, ẏ, f4(y, ẏ, ÿ)) (31)

Next, by differentiating in time Eq. (31) one obtains

ẋ4 = f5(y, ẏ, ÿ, y
(3)) (32)

Thus, one has that state variables x1, x2 and x3 are dif-
ferential functions of the flat output y and its derivatives.
By substituting Eqs. (30), (31) and x1 = y into Eq. (22), one
obtains that x3 is also a differential function of the flat output.
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It holds that

x3 = 1

A

⎡
⎢⎣ ẋ4

c14
{
1 + c15

[(
x4
c11

)c12 − 1
]}

+ c16(x4 − x1 − x2 − c2)

⎤
⎥⎦ (33)

From Eq. (33) one also obtains that x3 is a differential
function of y, and also

ẋ3 = f6(y, ẏ, ÿ, y
(3), y(4)) (34)

Finally, by solving Eq. (21) with respect to the control
input u one obtains that

u = 1

c13

{
ẋ3 + c3x3 + c10

[(
x4
c11

)c12
− 1

]}
(35)

or equivalently

u = f7(y, ẏ, ÿ, y
(3), y(4)) (36)

Consequently, all state variables of the system and its con-
trol input can be expressed as differential functions of the flat
output. This means that the PEM fuel-cells modelis a differ-
entially flat one.

3.2 Transformation of the PEM Fuel Cells Model into a
Canonical Form

By proving that the PEM fuel-cells system is differentially
flat it can be also assured that it can be transformed into an
equivalent linearized form (which is theBrunovsky canonical
form). FromEq. (19), and after omitting the disturbance term
(unknown stack current) one has

ẋ1 = c1(x4 − x1 − x2 − c2) − c3x1Wco,out

c4x1 + c5x2 + c6
(37)

By differentiating with respect to time one gets

ẍ1 = c1(ẋ4 − ẋ1 − ẋ2)

− (c3 ẋ1Wco,out )(c4x1 + c5x2 + c6) − (c3x1Wca,out )(c4 ẋ1 + c5 ẋ2)

(c4x1 + c5x2 + c6)2

(38)

Bu substituting in Eq. (19) the derivatives ẋ1 from Eq.
(19), ẋ2 from Eq. (20) and ẋ4 from Eq. (22) one gets

ẍ1 = c1

(
c14

[
1 + c15

[(
x4
c11

)c12
− 1

]])

×[Ax3 − c16(x4 − x1 − x2 − c2)]
− c1(x4 − x1 − x2 − c2) − (c3x1Wca,out )

(c4x1 + c5x2 + c6)

− c8(x4 − x1 − x2 − c2) − (c3x2Wca,out )

(c4x1 + c5x2 + c6)

− c3(c1(x4 − x1 − x2 − c2) − c3x1Wca,out
c4x1+c5x2+c6

)Wca,out

(c4x1 + c5x2 + c6)

+ (c3x1Wca,out )

(c4x1 + c5x2 + c6)2

×
[
c4(c1(x4 − x1 − x2 − c)) − c3x1Wca,out

c4x1 + c5x2 + c6

+c5(c8(x4−x1−x2−c2)) − c3x2Wca,out

c4x1 + c5x2 + c6

]

(39)

By differentiating the previous relation once more with
respect to time one gets

x (3)
1 = c1

{
c14

[
c15

[(
x4
c11

c12−1)
ẋ3

)]]
[Ax3 − c16(x4 − x1 − x2 − c2)]

+ c14

[
1 + c15

[(
x4
c11

)
− 1

]]
[Aẋ3 − c16(ẋ4 − ẋ1 − ẋ2)]

− c1(ẋ4 − ẋ1 − ẋ2

− (c3 ẋ1Wca,out )(c4x1 + c5x2 + c6) − (c3x1Wca,out )(c4 ẋ1 + c5 ẋ2)

(c4x1 + c5x2 + c6)2

− c8(ẋ4 − ẋ1 − ẋ2

− (c3 ẋ2Wca,out )(c4x1 + c5x2 + c6) − (c3x2Wca,out )(c4 ẋ1 + c5 ẋ2)

(c4x1 + c5x2 + c6)2

}

− Wca,out

(c4x1 + +c5x2 + c6)2
{−c3(c1(ẋ4 − ẋ1 − ẋ2)

−(c2 ẋ1)Wca,out (c4x1 + c5x2 + c6) − (c3x1Wca,out )(c4 ẋ1 + c5 ẋ2)

(c4x1 + c5x2 + c6)2

}

+ (c3 ẋ1Wca,out )

(c4x1 + c5x2 + c6)2

[
c4

(
c1(x4 − x1 − x2 − c2)

− c3x1Wca,out

c4x1 + c5x2 + c6

)

−c5

(
c8(x4 − x1 − x2 − c2) − c3x2Wca,out

c4x1 + c5x2 + c6

)]

+ (c3x1Wca,out )

(c4x1 + c5x2 + c6)2

[
c4

(
c1(ẋ4 − ẋ1 − ẋ2)

− (c3 ẋ1Wca,out )(c4x1 + c5x2 + c6) − (c3x1Wca,out )(c4 ẋ1 + c5 ẋ2)

(c4x1 + c5x2 + c6)2

c5(c8(ẋ4 − ẋ1 − ẋ2)

− (c3 ẋ2Wca,out )(c4x1+c5x2+c6)−(c3x2Wca,out )(c4 ẋ1+c5 ẋ2)

(c4x1+c5x2+c6)2

)]

− (c3x1Wca,out )

c4x1 + c5x2 + c62

[
c4

(
c1(x4 − x1 − x2 − c2)

− c3x1Wca,out

(c4x1 + c5x2 + c6)

]

+ c5(c8(x4 − x1 − x2 − c2) − c3x2Wca,out

c4x1 + c5x2 + c6

)]
2(c4 ẋ1 + c5 ẋ2)

(40)
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By substituting in the previous relation ẋ3 fromEq. (21) an
input–output linearized description of the system’s dynamics
is obtained in the form

x (3)
1 = f̃ (x) + g̃(x)u (41)

where function f̃ (x) is given by

f̃ (x) = c1

{
c14

[
c15

[(
x4
c11

c12−1)
ẋ4

)]]
[Ax3 − c16(x4 − x1 − x2 − c2)]

+ c14

[
1 + c15

[(
x4
c11

)
− 1

]] [
A

(
−c9x3 − c10

[(
x4
c11

)c12
− 1

])

− c16(ẋ4 − ẋ1 − ẋ2)

]

− c1(ẋ4 − ẋ1 − ẋ2

− (c3 ẋ1Wca,out )(c4x1 + c5x2 + c6) − (c3x1Wca,out )(c4 ẋ1 + c5 ẋ2)

(c4x1 + c5x2 + c6)2

− c8(ẋ4 − ẋ1 − ẋ2

− (c3 ẋ2Wca,out )(c4x1 + c5x2 + c6) − (c3x2Wca,out )(c4 ẋ1 + c5 ẋ2)

(c4x1 + c5x2 + c6)2

}

− Wca,out

(c4x1 + +c5x2 + c6)2

{
−c3

(
c1(ẋ4 − ẋ1 − ẋ2)

− (c2 ẋ1)Wca,out (c4x1 + c5x2 + c6) − (c3x1Wca,out )(c4 ẋ1 + c5 ẋ2)

(c4x1 + c5x2 + c6)2

}

+ (c3 ẋ1Wca,out )

(c4x1 + c5x2 + c6)2

[
c4

(
c1(x4 − x1 − x2 − c2)

− c3x1Wca,out

c4x1 + c5x2 + c6

)

− c5

(
c8(x4 − x1 − x2 − c2) − c3x2Wca,out

c4x1 + c5x2 + c6

)]

+ (c3x1Wca,out )

(c4x1 + c5x2 + c6)2

[
c4

(
c1(ẋ4 − ẋ1 − ẋ2)

− (c3 ẋ1Wca,out )(c4x1 + c5x2 + c6) − (c3x1Wca,out )(c4 ẋ1 + c5 ẋ2)

(c4x1 + c5x2 + c6)2

− c5(c8(ẋ4 − ẋ1 − ẋ2)

− (c3 ẋ2Wca,out )(c4x1+c5x2+c6)−(c3x2Wca,out )(c4 ẋ1 + c5 ẋ2)

(c4x1 + c5x2 + c6)2

)]

− (c3x1Wca,out )

c4x1 + c5x2 + c62

[
c4

(
c1(x4 − x1 − x2 − c2)

− c3x1Wca,out

(c4x1 + c5x2 + c6)

]

+ c5(c8(x4 − x1 − x2 − c2) − c3x2Wca,out

c4x1 + c5x2 + c6

)]
2(c4 ẋ1 + c5 ẋ2)

(42)

and function g̃(x) is given by

g̃(x) = c1

(
c14

[
1 + c15

[
(
x4
c11

)c12 − 1

]]
Ac13

)
(43)

4 Linearization of the Fuel Cells Dynamics Using
Lie Algebra

One can attempt linearization of the PEM fuel cells dynamics
using also Lie algebra. The linearizing output z1 = x1 is
defined. It holds that

z2 = L f z1⇒z2 = ∂z1
∂x1

f1 + ∂z1
∂x2

f2 + ∂z1
∂x3

f3 + ∂z1
∂x4

f4⇒
z2 = f1⇒z2 = c1(x4 − x1 − x2 − c2)

− c3x1Wca,out

c4x1 + c5x2 + c6
⇒

z2 = ż1 (44)

Similarly

z3 = L f z2 ⇒ z3 = ∂z2
∂x1

f1 + ∂z2
∂x2

f2 + ∂z2
∂x3

f3 + ∂z2
∂x4

f4

(45)

which after intermediate operations gives

z3 = L2
f z1 = ż2 = ẍ1 (46)

Equivalently

L f z3 = ∂z3
∂x1

f1 + ∂z3
∂x2

f2 + ∂z3
∂x3

f3 + ∂z3
∂x4

f4 (47)

By performing intermediate operations and by using Eq. (42)
one finds that

L f z3 = L2
f z1 = f̃ (x) (48)

Moreover, one finds that

Lgz1 = ∂z1
∂x1

g1 + ∂z1
∂x2

g2 + ∂z1
∂x3

g3 + ∂z1
∂x4

g4 = 0 (49)

Similarly

LgL f z1 = ∂z2
∂x1

g1 + ∂z2
∂x2

g2 + ∂z2
∂x3

g3 + ∂z2
∂x4

g4 = 0 (50)

Equivalently

LgL
2
f z1 = ∂z3

∂x1
g1 + ∂z3

∂x2
g2 + ∂z3

∂x3
g3 + ∂z3

∂x4
g4⇒

LgL
2
f z1 = ∂z3

∂x3
c13⇒LgL

2
f z1 = ∂ ẍ1

∂x3
c13 (51)

and using the previously computed relation about ẍ1 that was
given in Eq. (39) one has the result of Eq. (43), that is

LgL
2
f z1 = c1

(
c14

[
1 + c15

[(
x4
c11

)c12
− 1

]]
Ac13

)
⇒

LgL
2
f z1 = g̃(x) (52)

According to the above, the relative degree of the system
is r−1 = 2⇒ r = 3. Consequently, by applying Lie algebra
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one arrives again at the input–output linearized description
of the system

z31 = (L3
f z1) + (LgL

2
f z1)u

z31 = f̃ (x) + g̃(x)u. (53)

5 Flatness-Based Control of the Nonlinear Fuel
Cells Dynamics

Using the input–output linearized description of the system,
that is

x (3)
1 = f̃ (x) + g̃(x)u (54)

and using also that x1 = y, and by defining v = f̃ (x)+g̃(x)u
one gets

y(3) = v (55)

The control input that is actually applied to the PEM fuel-
cells system is

u = 1

g̃(x)
[v − f̃ (x)] (56)

Then, a stabilizing feedback controller for the system is
defined as

v = y(3)
d − k1(ÿ − ÿd) − k2(ẏ − ẏd) − k3(y − yd) (57)

and one gets the closed-loop dynamics

(y(3) − y(3)
d ) + k1(ÿ − ÿd) + k2(ẏ − ẏd) + k3(y − yd)⇒

e(3) + k1ë + k2ė + k3e = 0 (58)

and by choosing the feedback gains ki , i = 1, 2, 3 so as the
characteristic polynomial associatedwith the tracking error’s
differential equation to be a Hurwitz one, gives

limt→∞e(t) = 0⇒limt→∞y(t) = yd(t)⇒
limt→∞x1(t) = x1,d(t) (59)

Next, the problem of compensation of model uncertainties
and external perturbations [such as the unknown stack cur-
rent c7ζ given in Eq. (19)] has to be treated. The linearized
dynamics of the system is written as

y(3) = v + d̃ (60)

where d̃ represents the cumulative disturbance terms. With-
out loss of generality it is assumed that the disturbance is
modelled by the associated 3rd order derivative, plus initial

conditions. Since estimation is going to be performed with
the use of the Kalman filter and the filter’s convergence is not
dependent on knowledge of initial conditions, the latter can
be omitted from the problem’s formulation. The following
state variables are defined

z1 = y z2 = ẏ z3 = ÿ

z4 = d̃ z5 = ˙̃d z6 = ¨̃d (61)

The extended state vector of the system is Z = [z1, z2,
. . . , z6]T . It holds that
⎛
⎜⎜⎜⎜⎜⎜⎝

ż1
ż2
ż3
ż4
ż5
ż6

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

z1
z2
z3
z4
z5
z6

⎞
⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0
0 0
1 0
0 0
0 0
0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

(
v

d(3)

)

(62)

z1 = (
1 0 0 0 0 0

)
Z (63)

Defining the extended control input as ṽ = [v d̃(3)]T , the
above state-space description of the extended system is also
written as

Ż = AZ + Bṽ

z1 = CZ (64)

Next, a disturbance estimator is designed for the extended
state-space model of the system. This has the form

˙̂z = Aoẑ + Bov + K f (z1 − ẑ1)

ẑ1 = Co Ẑ (65)

where Ao = A, Co = C and

Bo = (
0 0 1 0 0 0

)T (66)

By applying commondiscretizationmethods, the discrete-
time equivalents of matrices Ao, Bo and Co are obtained.
These are written as Ad , Bd and Cd respectively. In this
estimation problem the process and measurement noise
covariance matrices are denoted as Q(k) and R(k) respec-
tively, while the estimation error’s covariance matrix is
denoted as P(k). The disturbance estimator’s gain is com-
puted with the use of the Kalman Filter recursion [26–28].

Measurement update:

K f (k) = P−(k)C−
d (k)[Cd(k)P

−(k)CT
d (k) + R(k)]−1

x̂(k) = x̂−(k) + K f (k)[z1(k) − Cd(k)Ẑ(k)]
P(k) = P−(k) − K f (k)Cd(k)P

−(k) (67)

123



114 Intell Ind Syst (2016) 2:107–117

0 5 10 15 20
1.5

2

2.5

3

3.5

4

4.5

time

y1

0 5 10 15 20
−3

−2

−1

0

1

2

3

4

5

time

d 
−

 d
es

t 

(b)(a)

Fig. 2 a Convergence of state variable x1 = PO2 (green line) to setpoint 1 (red line) b Kalman filter-based estimation (blue line) of the aggregate
disturbance d̃ (red line) that affects the PEM fuel cells model

Time update:

P−(k + 1) = Ad(k)P(k)Ad(k)
T + Q(k)

x̂−(k + 1) = Ad x̂(k) + Bdv(k) (68)

To compensate for the disturbance’s effects, the control
input that is actually exerted on the system is

v∗(k) = v(k) − d̂(k) (69)

It is noted that the feedback control input is actually com-
puted with the use of the estimated state vector

v∗(k) = yd(k) − k1( ˆ̈y − ÿd)

− k2( ˆ̇y − ẏd) − k3(ŷ − yd) − d̂(k). (70)

6 Simulation Tests

The performance of the proposed differential flatness theory-
based control scheme has been confirmed through simulation
experiments. In the results which are presented in Figs. 2, 3,
4 and 5 it can noticed that the developed control scheme
achieves fast and accurate tracking of the reference set-
points. Besides, it can be noticed that the proposed Kalman
Filter-based disturbance observer enables to identify fast the
aggregate term of model uncertainties and external pertur-
bations that affect the control loop. This permits finally to
compensate for the disturbance’s effects.

Remark 1 The article has proposed a new nonlinear filtering
and control method that is based on differential flatness the-
ory and that can be applied to the control problem of PEM
fuel cells. By demonstrating that PEM fuel cells model sat-
isfies differential flatness properties its transformation to the
canonical Brunovsky formbecomes possible and this enables
to solve both the state estimation and the control problem.
Moreover, by transforming the system into the linear canon-
ical form, the separation principle holds and this allows to
confirm separately stability and convergence conditions for
the controller and the observer. The feedback gains of the
flatness-based controller are chosen such that the poles of
the closed-loop system are strictly found in the left complex
semiplane. To solve the associated state estimation problem
a new nonlinear filtering method, under the nameDerivative-
free nonlinear Kalman Filter, has been developed. The filter
consists of the Kalman Filter recursion on the linearized
equivalent model of the system that is obtained after applica-
tion of the differential flatness diffeomorphism. Moreover, it
comprises an inverse transformation, based again on differ-
ential flatness theory, which enables to compute estimates
for the state variables of the initial nonlinear model. By
redesigning the Derivative-free nonlinear Kalman Filter as
a disturbance observer it becomes also possible to estimate
in real-time modelling uncertainty and external perturbation
terms that affect the PEM fuel cells model.

Remark 2 The proposed flatness-based control method
exhibits specific advantages against other nonlinear control
approaches such as sliding mode control or backstepping
control. First about sliding mode control it is noted that
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Fig. 3 a Convergence of state variable x1 = PO2 (green line) to setpoint 2 (red line) b Kalman filter-based estimation (blue line) of the aggregate
disturbance d̃ (red line) that affects the PEM fuel cells model
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Fig. 4 a Convergence of state variable x1 = PO2 (green line) to setpoint 3 (red line) b Kalman Filter-based estimation (blue line) of the aggregate
disturbance d̃ (red line) that affects the PEM fuel cells model

its application to the PEM fuel cells models is not recom-
mended for the following reasons (i) the system is not in
an input–output linearized form and therefore the selection
of the sliding surface is not a straightforward procedure,
(ii) uncertainty ranges for the model of PEM fuel cells and
for external perturbations are not known, (iii) the switching
control term of sliding mode control can cause undesirable
oscillations and unacceptable transients for the PEM fuel
cells’ state vector, (iv) the solution of the state estimation

problem with the use of a sliding mode observer will be
also of inferior performance comparing to Kalman filter-
ing due to chattering phenomena, (v) there is no direct and
easy to implement stability proof for the joint sliding-mode
controller and sliding-mode observer scheme. Second, about
backstepping control it is noted that its application to the
model of the PEM fuel cells model is not possible because
this model is not found in the backstepping integral (triangu-
lar) form. For the PEM fuel cells model to be brought to such
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Fig. 5 a Convergence of state variable x3 = ωcp (green line) to setpoint 1 (red line) b Convergence of state variable x4 = psm (green line) to
setpoint 1 (red line)

a form a prior transformation is needed, but this falls again
to the problem of writing the PEM fuel cells’ model in the
canonical (Brunovsky) form through differential flatness dif-
feomorphisms. Similarly, in the backstepping approach there
is no direct solution to the state and disturbances estimation
problem for the PEM fuel cells model.

7 Conclusions

A new nonlinear control method, that is based on differen-
tial flatness theory, has been proposed for the PEM fuel cells
model. First it has been proven that differential flatness prop-
erties hold for the PEM fuel cells dynamics. This means that
all state variables and the control input of the system can be
expressed as differential functions of a particular state vari-
able which is the so-called flat output. Next, by exploiting
differential flatness properties it has been shown the system
can be transformed into an equivalent input–output linear
form, for which the design of a state feedback controller
becomes possible.

Another problem that had to be dealt with in the design of
this nonlinear feedback controller was robustness against to
model uncertainties and external perturbations. To this end
a Kalman Filter-based disturbance observer has been used
in the control loop. The linearized state-space description of
the system has been extended by considering as additional
state variables the aggregate control input and its derivatives.
Next, by processing the sequence of measurements of the
system’s output the Kalman Filter-based estimator enabled

to identify the perturbation term and to compensate for them
by including an additional element in the feedback control
law.
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