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Abstract A new method for feedback control of asyn-
chronous electrical machines is introduced, with application
example the problem of the traction system of electric trains.
The control method consists of a repetitive solution of an
H-infinity control problem for the asynchronous motor, that
makes use of a locally linearized model of the motor and
takes place at each iteration of the control algorithm. The
asynchronous motor’s model is locally linearized round its
current operating point through the computation of the asso-
ciated Jacobian matrices. Using the linearized model of the
electrical machine anH-infinity feedback control law is com-
puted. The known robustness features of H-infinity control
enable to compensate for the errors of the approximative
linearization, as well as to eliminate the effects of external
perturbations. The efficiency of the proposed control scheme
is shown analytically and is confirmed through simulation
experiments.
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Introduction

Efficient control of the traction system of electric trains
is important for improving their performance indexes (e.g.
acceleration, maximum speed, motor’s torque) as well as
their safety features [1–4]. To this end, in the recent years
several research results have been produced on control of
induction motors, which are frequently used for the traction
of electric trains (and particularly of high-speed trains) [5–
8]. Induction motors (IM) have been the most widely used
machines in fixed-speed applications for reasons of cost,
size, weight, reliability, ruggedness, simplicity, efficiency,
and ease of manufacture. The induction motor model is a
highly nonlinear one and is characterized by the difficulty
in measuring certain of its state vector elements (e.g. mag-
netic flux) [9]. With the field-oriented method, the dynamic
behavior of the induction motor is rather similar to that of
a separately excited DC motor [10,11]. A decoupled rela-
tionship is obtained by means of a proper selection of state
coordinates and thus, the rotor speed is asympotically decou-
pled from the rotor flux, while the speed can be controlled
only by varying the stator’s currents [12,13]. On the other
hand certain approaches try to develop control for induc-
tion motors based on feedback linearization of its dynamics
[14–18]. The control performance of the induction motor is
influenced by the uncertainties of motor’s dynamic model,
such as mechanical parameter uncertainty, external load dis-
turbance, and unmodelled dynamics in practical applications.
Thus other approaches try to provide inductionmotor control
with improved robustness features [19–21].
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In this research article a new control method for induc-
tion motors is developed, based on nonlinear H-infinity
control theory. The application of an approximate lin-
earization scheme for the dynamic model of the induction
motor is proposed, based on Taylor series expansion round
the motor’s present operating point. To perform this lin-
earization the computation of Jacobian matrices is needed
while the induced linearization error terms are treated as
disturbances. For the linearized equivalent of the asynchro-
nous motor’s model an H∞ feedback control scheme is
developed. The formulation of the H∞ control problem
is based on the minimization of a quadratic cost function
that comprises both the disturbance and the control input
effects. The disturbance tries to maximize the cost func-
tion while the control signal tries to minimize it, within
a mini-max differential game. The efficiency of the pro-
posed nonlinear H∞ control scheme has been tested through
simulation experiments, which have shown a satisfactory
performance.

Comparing to nonlinear feedback control approaches
which are based on exact feedback linearization of the induc-
tion motor (as the ones based on differential flatness theory
and analyzed in Ref. [22–24]) the proposed H∞ control
scheme is assessed as follows: (i) it uses an approximate lin-
earization approach of the system’s dynamic model which
does not follow the elaborated transformations (diffeomor-
phisms) of the exact linearization methods, (ii) it introduces
additional disturbance error which is due to the approxi-
mative linearization of the system dynamics coming from
the application of Taylor series expansion [25–27], (iii) it
requires the computation of Jacobian matrices, which in the
case of the sixth-order asynchronous motor model can be
also a cumbersome procedure, (iv) unlike exact feedback
linearization, the H∞ control term has to compensate not
only for modelling uncertainties and external disturbances
but needs also to annihilate the effects of the cumulative
linearization error, (v) the H∞ control approach follows an
optimal control method for the computation of the control
signal, however unlike exact feedback linearization control
it requires the solution of Riccati equations which for the
sixth-order induction motor’s model can be again a cumber-
some procedure.

The structure of the paper is as follows: in “Mathemat-
ical Model of the Induction Motor” section, the dynamic
model of the induction motor is analyzed. In “Field Oriented
Control” section, an overview of field-oriented control of
induction motors and the associated dynamic model in the
dq reference frame are given. In “Linearization of the Induc-
tion Motor’s Dynamic Model” section, linearization of the
induction motor’s model is performed round local operating
points and through the computation of Jacobian matrices.
In “The Nonlinear H-infinity Control” section, the nonlin-
ear H∞ feedback control law is formulated. In “Lyapunov

Stability Analysis” section, Lyapunov stability analysis is
provided for the control loop of the asynchronous motor.
In “Robust state estimation with the use of the H∞ Kalman
Filter” section the problem of robust estimation for the induc-
tion motor is treated with the use of the H-infinity Kalman
Filter. In “Simulation Tests” section, the performance of the
proposed control scheme is tested through simulation experi-
ments. Finally, in “Conclusions” section, concluding remarks
are stated.

Mathematical Model of the Induction Motor

To derive the dynamicmodel of an inductionmotor the three-
phase variables are first transformed to two-phase ones [14–
17]. This two-phase system can be described in the stator-
coordinates frame α − b, and the associated voltages are
denoted as vsα and vsb, while the currents of the stator are
isα and isb, respectively (see Fig. 1). Then, the rotation angle
of the rotor with respect to the stator is denoted by δ. Next,
the rotating reference frame d − q on rotor, is defined. The
currents of the rotor are decomposed into d − q coordinates,
thus resulting into ird and irq . Since the frame d − q of the
rotor aligns with the frame α − b of the stator after rotation
by an angle δ it holds that

(
irα
irb

)
=

(
cos(δ) −sin(δ)

sin(δ) cos(δ)

)(
ird
irq

)
(1)

The voltage developed along frame α of the stator is given
by

Rsisα + dψsα

dt
= vsα (2)

Fig. 1 AC motor circuit, with the a − b stator reference frame and the
d

′ − q
′
rotor reference frame
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where the magnetic fluxψsα is the result of the magnetic flux
that is generated by current isα of the stator (self-inductance)
and of the magnetic flux which is generated by current irα of
the rotor (mutual inductance), i.e.

ψsα = Lsisα + Mirα (3)

The voltage developed along frame b of the stator is

Rsisb + d

dt
ψsb = usb (4)

where the magnetic fluxψsb is the result of the magnetic flux
that is generated by currrent isb of the stator (self-inductance)
and of the magnetic flux which is generated by current ir b of
the rotor (mutual inductance), i.e.

ψsb = Lsisb + Mir b (5)

Similarly the voltage along frames d and q of the rotor is
calculated as follows

Rr ird + d

dt
ψrd = 0 (6)

Rr irq + d

dt
ψrq = 0 (7)

After intermediate computations the equations of the induc-
tion motor are found to be:

Rsisα + M

Lr

d

dt
ψrα +

(
Ls − M2

Lr

)
d

dt
isα = vsα (8)

Rsisb + M

Lr

d

dt
ψr b +

(
Ls − M2

Lr

)
d

dt
isb = vsb (9)

Rr

Lr
ψrα − Rr M

Lr
isα + d

dt
ψrα + n pωψr b = 0 (10)

Rr

Lr
ψr b − Rr M

Lr
isb + d

dt
ψr b + n pωψrα = 0 (11)

The torque that is applied to the rotor is developed according
to the principle of energy preservation and is given by

T = n pM

Lr
(ψrαisb − ψr bisα) (12)

If the motor has to move a load of torque TL it holds

J ω̇ = T − TL ⇒ ω̇ = T

J
− TL

J
⇒

ω̇ = n pM

J Lr
(ψrαisb − ψr bisα) − TL

J

(13)

Denoting σ = 1− M2

Ls Lr
, the equations of the inductionmotor

are finally written as:

θ̇ = ω (14)

dω

dt
= n pM

J Lr
(ψrαisb − ψr bisα) − TL

J
(15)

dψrα

dt
= − RL

Lr
ψrα − n pωψr b + Rr

Lr
Misα (16)

dψr b

dt
= − RL

Lr
ψr b + n pωψrα + Rr

Lr
Misb (17)

d

dt
isα = MRr

σ Ls L2
r
ψrα + n pM

σ Ls Lr
ωψr b

−
(
M2Rr + L2

r Rs

σ Ls L2
r

)
isα + 1

σ Ls
vsα (18)

d

dt
isb = − n pM

σ Ls Lr
ωψrα + MRr

σ Ls L2
r
ψr b

−
(
M2Rr + L2

r Rs

σ Ls L2
r

)
isb + 1

σ Ls
vsb (19)

Therefore one can define the state vector x = [θ, ω,ψrα,

ψr b, isα, isb]T . Uncertainty can be associated with the value
of the load torque TL , or the value of the components of
the electric circuits of the stator and the rotor. The following
parameters are also defined: α1 = Rr

Lr
, β1 = M

σ Ls Lr
, γ1 =(

M2Rr
σ Ls L2

r
+ Rs

σ Ls

)
, μ1 = n pM

J Lr
. Therefore, the dynamic model

of the induction motor can be written as:

ẋ = f (x) + gαusα + gbusb (20)

In state equations form, the dynamic model of the motor can
be written as

f (x) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x2

μ1(x3x6 − x4x5) − TL
J

α1x3 − n px2x4 + α1Mx5

n px2x3 − α1x4 + α1Mx6

α1β1x3 + n pβ1x2x4 − γ x5

−n pβ1x2x3 + α1β1x4 − γ1x6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(21)

gα =
[
0, 0, 0, 0,

1

σ Ls
, 0

]T

gb =
[
0, 0, 0, 0, 0,

1

σ Ls

]T

(22)

Field Oriented Control

The classical method for induction motors control was intro-
duced byBlaschke (1971) and is based on a transformation of
the stator’s currents (isα) and (isb) and of the magnetic fluxes
of the rotor (ψrα andψr b) to the reference frame d−q which
rotates together with the rotor [14–17]. Thus the controller’s
design uses the currents isd and isq and the fluxes ψr d and
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ψr q . The angle of the vectors that describe the magnetic
fluxes ψrα and ψr b is first defined, i.e.

ρ = tan−1
(

ψrb

ψra

)
(23)

The angle between the inertial reference frame of the stator
and the rotating reference frame of the rotor is taken to be
equal to ρ. The transition from (isα, isb) to (isd , isq) is given
by(
isd
isq

)
=

(
cos(ρ) sin(ρ)

−sin(ρ) cos(ρ)

) (
isα
isb

)
(24)

The transition from (ψrα, ψr b) to (ψr d , ψr q) is given by(
ψr d
ψr q

)
=

(
cos(ρ) sin(ρ)

−sin(ρ) cos(ρ)

) (
ψrα

ψr b

)
(25)

Moreover, it holds that cos(ρ) = ψra||ψ || , sin(ρ) = ψrb||ψ || , and

||ψ || =
√

ψ2
rα + ψ2

rb . Using the above transformation ones

obtains

isd = ψrαisα + ψr bisb
||ψ || ψr d = ||ψ ||

isq = ψrαisb − ψr bisα
||ψ || ψr q = 0 (26)

Therefore, in the rotating frame d −q of the motor there will
be only one non-zero component of the magnetic flux ψrd ,
while the component of the flux along the d axis equals 0.
The new inputs of the system are considered to be vsd , vsq ,
which are connected to vsa, vsb according to the relation

(
vsα
vsb

)
= ||ψ ||·

(
ψra ψrb
ψrb ψra

)−1 (
vsd
vsq

)
(27)

In the new coordinates the induction motor model is written
as:

d

dt
θ = ω (28)

d

dt
ω = μψr d isq − TL

J
(29)

d

dt
ψr d = −αψr d + αMisd (30)

d

dt
isd = − γ isd + αβψr d + n pωisq

+ αMisq
2

ψr d
+ 1

σ Ls
vsd (31)

d

dt
isq = − γ isq − βn pωψr d − n pωisd

− αMisqisd
ψd

+ 1

σ Ls
vsq (32)

d

dt
ρ = n pω + αMisq

ψr d
(33)

Defining the state vector of the motor dynamics in the dq
reference frame as x = [θ, ω,ψrd , isd , isq , ρ] the associated
state-spacemodel becomes ẋ = f (x)+gdvsd +gqvsq , where

f (x) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

x2
μx3x5 − TL

J−αx3 + αMx4

−γ x4 + αβx3 + n px2x5 + αMx25
x3

−γ x5 − βn px2x3 − n px2x4 − αMx4x5
x3

n px2 + αMx5
x3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(34)

gd =
[
0, 0, 0,

1

σ Ls
, 0, 0

]T

gq =
[
0, 0, 0, 0,

1

σ Ls
, 0

]T

(35)

Next, the following nonlinear feedback control law is defined

(
vsd
vsq

)
= σ Ls

⎛
⎝−n pωisq − αMisq

2

ψr d
− αbψr d + vd

n pωisd + bn pωψr d + αMisq is d
ψr d

+ vq

⎞
⎠
(36)

The terms in Eq. (36) have been selected so as to linearize
Eqs. (30) and (32) and to produce first-order linear ODE. The
control signal in the inertial coordinates system a−b will be

(
vsα
vsb

)
= ||ψ ||σ Ls

(
ψsα ψsb

−ψsb ψsα

)
·−1

⎛
⎝−n pωisq − αMisq

2

ψr d
− αβψr d + vd

n pωisd + βn pωψr d + αMisq is d
ψr d

+ vq

⎞
⎠ (37)

Substituting Eq. (36) into Eqs. (30) and (32) one obtains [16]:

θ̇ = ω (38)
d

dt
ω = μψr d isq − TL

J
(39)

d

dt
isq = − γ isq + vq (40)

d

dt
ψr d = −αψr d + αMisd (41)

d

dt
isd = − γ isd + vd (42)

d

dt
ρ = n pω + αM

isq
ψr d

(43)

The system of Eqs. (39) to (43) consists of two linear sub-
systems, where the first one has as output the magnetic flux
ψr d and the second has as output the rotation speed ω, i.e.
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d

dt
ψr d = −αψr d + αMisd (44)

d

dt
isd = −γ isd + vd (45)

d

dt
ω = μψr d isq − TL

J
(46)

d

dt
isq = −γ isq + vq (47)

Ifψr d→ψr
ref
d , i.e. the transient phenomena forψr d havebeen

eliminated and therefore ψr d has converged to a steady state
value, then the two subsystems described by Eqs. (44)–(45)
and (46)–(47) are decoupled.

The subsystem that is described by Eqs. (44) and (45) is
linear with control input vsd , and can be controlled using
methods of linear control, such as optimal control, or PID
control. For instance the following PI controller has been
proposed for the control of the magnetic flux

vd(t) = − kd1(ψr d − ψr
ref
d )

− kd2

∫ t

0
(ψr d(τ ) − ψr d

ref(τ )dτ (48)

If Eq. (48) is applied to the subsystem that is described by
Eqs. (44) and (45), then one can succeed ψr d(t)→ψr

ref
d (t).

If ψr d(t) is not sufficiently measurable using Hall sensors
then it can be reconstructed using some kind of observer or
Kalman Filtering. Now, the subsystem that consists of Eqs.
(46) and (47) is examined. The term T = μψr d

refisq denotes
the torque developed by the motor. The above mentioned
subsystem is a model equivalent to that of a DC motor and
thus after succeeding ψr d→ψr

ref
d , one can also control the

motor’s speed ω, using control algorithms already applied to
the control of DC motors. A first approach to the control of
the speed ω is to use nested PI loops, i.e.

vq = −Kq1(T − Tref) − Kq2

∫ t

0
(T (t) − Tref(t))dτ

Tref = −Kq3(ω − ωref) − Kq4

∫ t

0
(ω(t) − ωref(t))dτ

(49)

From the above it can be seen that field oriented (vec-
tor control) for induction motors requires the tuning of the
several PID-type controllers and this limits the method’s
reliability only round local operating points. Consequently,
the stability and robustness properties of the field-oriented
control for asynchronous motors are doubtful. More effi-
cient control approaches, of proven stability, have to be
searched for. This problem will be solved in the following
sections.

Linearization of the Induction Motor’s Dynamic
Model

As shown in “Field Oriented Control” section, the nonlinear
state space equation of the induction motor, expressed in the
dq reference frame, is given by

ẋ = f (x) + gdvsd + gqvsq (50)

where the state vector has beendefined as x = [θ, ω,ψrd , isd ,
isq , ρ] while functions f (x), ga(x) and gb(x) have been
defined as

f (x) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x2

μx3x5 − TL
J

−αx3 + αMx4

−γ x4 + αβx3 + n px2x5 + αMx25
x3

−γ x5 − βn px2x3 − n px2x4 − αMx4x5
x3

n px2 + αMx5
x3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(51)

gd =
[
0, 0, 0,

1

σ Ls
, 0, 0

]T

gq =
[
0, 0, 0, 0,

1

σ Ls
, 0

]T

(52)

Then, the Jacobian matrix of the vector field f (x) is:

A = Jφ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
0 0 μx5 0 μx3 0
0 0 −α αM 0 0

0 n px5 αβ − αMx25
x23

−γ n px2 + 2αMx5
x3

0

0 −βn px3 − n px4 −βn px2 + αMx4x5
x23

−n px2 − αMx5
x3

−γ − αMx4
x3

0

0 n p −αMx5
x23

0 αM
x3

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(53)
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Moreover, linearization of the motor’s dynamics with
respect to the control input variables u1, u2 gives the Jacobian
matrix

B = [Jga Jgb ] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0
0 0
0 0
1

σ Ls
0

0 1
σ Ls

0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(54)

Thus, after linearization round its current operating point, the
induction motor’s dynamic model is written as

ẋ = Ax + Bu + d1 (55)

Parameterd1 stands for the linearization error in the induction
motor’s dynamic model appearing in Eq. (55). The refer-
ence setpoints for the asynchronous motor are denoted by
xd = [xd1 , . . . , xd6 ]. Tracking of this trajectory is succeeded
after applying the control input u∗. At every time instant the
control input u∗ is assumed to differ from the control input
u appearing in Eq. (55) by an amount equal to 
u, that is
u∗ = u + 
u

ẋd = Axd + Bu∗ + d2 (56)

The dynamics of the controlled system described in Eq. (55)
can be also written as

ẋ = Ax + Bu + Bu∗ − Bu∗ + d1 (57)

and by denoting d3 = −Bu∗+d1 as an aggregate disturbance
term one obtains

ẋ = Ax + Bu + Bu∗ + d3 (58)

By subtracting Eq. (56) from Eq. (58) one has

ẋ − ẋd = A(x − xd) + Bu + d3 − d2 (59)

Bydenoting the tracking error as e = x−xd and the aggregate
disturbance term as d̃ = d3−d2, the tracking error dynamics
becomes

ė = Ae + Bu + d̃ (60)

The above linearized formof the inductionmotor’smodel can
be efficiently controlled after applying anH-infinity feedback
control scheme.

The Nonlinear H-infinity Control

Mini-max Control and Disturbance Rejection

The initial nonlinear model of the induction motor is in the
form

ẋ = f (x, u) x∈Rn, u∈Rm (61)

Linearization of the system (asynchronous motor) is per-
formed at each iteration of the control algorithm round its
present operating point (x∗, u∗) = (x(t), u(t − Ts)). The
linearized equivalent of the system is described by

ẋ = Ax + Bu + Ld̃ x∈Rn, u∈Rm, d̃∈Rq (62)

where matrices A and B are obtained from the computation
of the Jacobians

A =

⎛
⎜⎜⎜⎜⎜⎝

∂ f1
∂x1

∂ f1
∂x2

· · · ∂ f1
∂xn

∂ f2
∂x1

∂ f2
∂x2

· · · ∂ f2
∂xn

· · · · · · · · · · · ·
∂ fn
∂x1

∂ fn
∂x2

· · · ∂ fn
∂xn

⎞
⎟⎟⎟⎟⎟⎠

|(x∗,u∗) (63)

B =

⎛
⎜⎜⎜⎜⎜⎝

∂ f1
∂u1

∂ f1
∂u2

· · · ∂ f1
∂um

∂ f2
∂u1

∂ f2
∂u2

· · · ∂ f2
∂um

· · · · · · · · · · · ·
∂ fn
∂u1

∂ fn
∂u2

· · · ∂ fn
∂um

⎞
⎟⎟⎟⎟⎟⎠

|(x∗,u∗) (64)

and vector d̃ denotes disturbance terms due to linearization
errors. Theproblemof disturbance rejection for the linearized
model that is described by

ẋ = Ax + Bu + Ld̃

y = Cx (65)

where x∈Rn , u∈Rm , d̃∈Rq and y∈Rp, cannot be handled
efficiently if the classical LQR control scheme is applied.
This is because of the existence of the perturbation term d̃ .
The disturbance term d̃ apart from modeling (parametric)
uncertainty and external perturbation terms can also repre-
sent noise terms of any distribution.

In the H∞ control approach, a feedback control scheme is
designed for trajectory tracking by the system’s state vector
and simultaneous disturbance rejection, considering that the
disturbance affects the system in the worst possible manner.
The disturbances’ effect are incorporated in the following
quadratic cost function:
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J (t) = 1

2

∫ T

0
[yT (t)y(t)

+ ruT (t)u(t) − ρ2d̃T (t)d̃(t)]dt, r, ρ > 0 (66)

The significance of the negative sign in the cost function’s
term that is associated with the perturbation variable d̃(t) is
that the disturbance tries to maximize the cost function J (t)
while the control signal u(t) tries to mininize it. The physical
meaning of the relation given above is that the control signal
and the disturbances compete to eachotherwithin amini-max
differential game. This problem of mini-max optimization
can be written as

minumaxd̃ J (u, d̃) (67)

The objective of the optimization procedure is to compute
a control signal u(t) which can compensate for the worst
possible disturbance, that is externally imposed to the system.
However, the solution to the mini-max optimization problem
is directly related to the value of the parameter ρ. This means
that there is an upper bound in the disturbances magnitude
that can be annihilated by the control signal.

H-infinity Feedback Control

For the linearized system given by Eq. (65) the cost function
of Eq. (66) is defined, where the coefficient r determines the
penalization of the control input and the weight coefficient

ρ determines the reward of the disturbances’ effects. It is
assumed that:

It is assumed that (i) The energy that is transferred from the
disturbances signal d̃(t) is bounded, that is

∫ ∞
0 d̃T (t)d̃(t)dt

< ∞, (ii) thematrices [A, B] and [A, L] are stabilizable, (iii)
the matrix [A,C] is detectable. Then, the optimal feedback
control law is given by

u(t) = −Kx(t) (68)

with

K = 1

r
BT P (69)

where P is a positive semi-definite symmetric matrix which
is obtained from the solution of the Riccati equation

AT P + PA + Q − P

(
1

r
BBT − 1

2ρ2 LL
T
)
P = 0 (70)

where Q is also a positive definite symmetric matrix. The
worst case disturbance is given by

d̃(t) = 1

ρ2 L
T Px(t) (71)

The diagram of the considered control loop is depicted in
Fig. 2.

Fig. 2 Diagram of the control
scheme for the train’s induction
motor
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The Role of Riccati Equation Coefficients in H∞
Control Robustness

The parameter ρ in Eq. (66), is an indication of the closed-
loop system robustness. If the values ofρ > 0 are excessively
decreased with respect to r , then the solution of the Riccati
equation is no longer a positive definitematrix. Consequently
there is a lower bound ρmin of ρ for which the H∞ control
problem has a solution. The acceptable values of ρ lie in the
interval [ρmin,∞). If ρmin is found and used in the design
of the H∞ controller, then the closed-loop system will have
increased robustness. Unlike this, if a value ρ > ρmin is
used, then an admissible stabilizing H∞ controller will be
derived but it will be a suboptimal one. The Hamiltonian
matrix

H =
(
A −

(
1
r BB

T − 1
ρ2 LL

T
)

−Q −AT

)
(72)

provides a criterion for the existence of a solution of the Ric-
cati equation Eq. (70). A necessary condition for the solution
of the algebraicRiccati equation to be a positive semi-definite
symmetric matrix is that H has no imaginary eigenvalues
[22].

Lyapunov Stability Analysis

Through Lyapunov stability analysis it will be shown that the
proposed nonlinear control scheme assures H∞ tracking per-
formance for the inductionmotor, and that in case of bounded
disturbance terms asymptotic convergence to the reference
setpoints is succeeded.

The tracking error dynamics for the asynchronous motor
is written in the form

ė = Ae + Bu + Ld̃ (73)

where in the induction machine’s case L = I∈R2 with I
being the identity matrix. Variable d̃ denotes model uncer-
tainties and external disturbances of the motor’s model. The
following Lyapunov equation is considered

V = 1

2
eT Pe (74)

where e = x − xd is the tracking error. By differentiating
with respect to time one obtains

V̇ = 1

2
ėT Pe + 1

2
ePė⇒

V̇ = 1

2
[Ae+Bu+Ld̃]T P+ 1

2
eT P[Ae+Bu+Ld̃]⇒

(75)

V̇ = 1

2
[eT AT + uT BT + d̃T LT ]Pe

+ 1

2
eT P[Ae + Bu + Ld̃]⇒ (76)

V̇ = 1

2
eT AT Pe + 1

2
uT BT Pe + 1

2
d̃T LT Pe

+ 1

2
eT P Ae + 1

2
eT PBu + 1

2
eT PLd̃ (77)

The previous equation is rewritten as

V̇ = 1

2
eT (AT P + PA)e +

(
1

2
uT BT Pe + 1

2
eT PBu

)

+
(
1

2
d̃T LT Pe + 1

2
eT PLd̃

)
(78)

Assumption For given positive definitematrix Q and coeffi-
cients r and ρ there exists a positive definite matrix P , which
is the solution of the following matrix equation

AT P + PA = −Q + P

(
1

r
BBT − 1

ρ2 LL
T
)
P (79)

Moreover, the following feedback control law is applied to
the system

u = −1

r
BT Pe (80)

By substituting Eqs. (79) and (80) one obtains

V̇ = 1

2
eT

[
−Q + P

(
1

r
BBT − 1

2ρ2 LL
T
)
P

]
e

+ eT PB

(
−1

r
BT Pe

)
+ eT PLd̃⇒ (81)

V̇ = −1

2
eT Qe +

(
1

r
PBBT Pe − 1

2ρ2 e
T PLLT

)
Pe

− 1

r
eT PBBT Pe) + eT PLd̃ (82)

which after intermediate operations gives

V̇ = −1

2
eT Qe − 1

2ρ2 e
T PLLT Pe + eT PLd̃ (83)

or, equivalently

V̇ = −1

2
eT Qe − 1

2ρ2 e
T PLLT Pe

+ 1

2
eT PLd̃ + 1

2
d̃T LT Pe (84)

Lemma The following inequality holds

1

2
eT Ld̃ + 1

2
d̃ LT Pe − 1

2ρ2 e
T PLLT Pe ≤ 1

2
ρ2d̃T d̃ (85)
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Proof The binomial (ρα − 1
ρ
b)2 is considered. Expanding

the left part of the above inequality one gets

ρ2a2 + 1

ρ2 b
2 − 2ab ≥ 0 ⇒ 1

2
ρ2a2 + 1

2ρ2 b
2 − ab ≥ 0 ⇒

ab − 1

2ρ2 b
2 ≤ 1

2
ρ2a2⇒ 1

2
ab + 1

2
ab − 1

2ρ2 b
2≤ 1

2
ρ2a2

(86)

The following substitutions are carried out: a = d̃ and b =
eT PL and the previous relation becomes

1

2
d̃T LT Pe + 1

2
eT PLd̃ − 1

2ρ2 e
T PLLT Pe ≤ 1

2
ρ2d̃T d̃

(87)

Equation (87) is substituted in Eq. (84) and the inequality is
enforced, thus giving

V̇≤ − 1

2
eT Qe + 1

2
ρ2d̃T d̃ (88)

Equation (88) shows that the H∞ tracking performance cri-
terion is satisfied. The integration of V̇ from 0 to T gives

∫ T

0
V̇ (t)dt ≤ −1

2

∫ T

0
||e||2Qdt + 1

2
ρ2

∫ T

0
||d̃||2dt ⇒

2V (T ) +
∫ T

0
||e||2Qdt ≤ 2V (0) + ρ2

∫ T

0
||d̃||2dt (89)

Moreover, if there exists a positive constant Md > 0 such
that

∫ ∞

0
||d̃||2dt ≤ Md (90)

then one gets

∫ ∞

0
||e||2Qdt ≤ 2V (0) + ρ2Md (91)

Thus, the integral
∫ ∞
0 ||e||2Qdt is bounded. Moreover, V (T )

is bounded and from the definition of the Lyapunov function
V in Eq. (74) it becomes clear that e(t) will be also bounded
since e(t) ∈ �e = {e|eT Pe≤2V (0) + ρ2Md}.

According to the above and with the use of Barbalat’s
Lemma one obtains limt→∞e(t) = 0.

Robust State Estimation with the Use of the H∞
Kalman Filter

A Kalman Filter for the linearized model of the induction
motor that is given in Eq. (55) can be designed to cope with

the case of maximum errors of some linear combination of
states for worst case assumptions of process noise, measure-
ment noise and disturbances. This can be useful in state
estimation for the induction motor, as a method for model
uncertainty compensation. Filters designed to minimize a
weighted norm of state errors are called H∞ or minimax
filters [28,29].

The discrete-time H∞ filter uses the same state-space
model as the Kalman Filter, which has the form

x(k + 1) = A(k)x(k) + B(k)u(k) + w(k)

z(k) = C(k)x(k) + v(k) (92)

E[w(k)] = 0, E[w(k)w(k)T ] = Q(k)δi j , E[v(k)] = 0,
E[v(k)v(k)T ] = R(k)δi j and E(w(k)v(k)T ) = 0. The
update of the state estimate is again given by

x̂(k) = x̂−(k) + K (k)(z(k) − C(k)x̂−(k)) (93)

that minimizes the trace of the covariance matrix of the state
vector estimation error

J = 1

2
E{x̃(k)T ·x̃(k)} = 1

2
tr(P−(k)) (94)

where x̃−(k) = x(k) − x̂−(k) and P−(k) = E[x̃−(k)T

·x̃−(k)]. The H∞ filtering approach defines first a transfor-
mation

d(k) = L(k)x(k) (95)

where L(k)∈Rn×n is a full rank matrix. The use of the trans-
formation given in Eq. (95) allows certain combinations of
states to be given more weight than others. Next, defining
the estimation error variable d̃1(i) = d(i) − d̂(i), the cost
function of the H∞ filter is initially formulated as

J (k) =
k−1∑
i=0

d̃(i + 1)T S(i)d̃(i + 1)/b

b = x̃−(0)T P−(0)−1 x̃−(0)

+
k−1∑
i=0

wT (i + 1)Q(i + 1)−1w(i + 1)

+
k−1∑
i=0

vT (i)R(i)−1v(i) (96)

where Si is a positive-definite symmetric weighting matrix.
It can be observed that both matrices S(k) and L(k) appear
in the cost function and thus affect the solution x̂−(k + 1)
of the optimization problem. The objective is to find state
vector estimates x̂−(k) and x̂(k) that keep the cost function
below a given value 1/θ for worst case conditions, i.e.
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J (k) <
1

θ
(97)

By rewriting Eq. (96) and substituting Eq. (92) a modified
cost functional is obtained

Ja(k) = −1

θ
x̃−(0)

T
P−(0)x̃−(0) +

k−1∑
i=0

�(i)

�(i) = (x(i + 1)− x̂−(i + 1))T Wi (x(i + 1)− x̂−(i + 1))

− 1

θ
(wT (i + 1)Q(i + 1)−1w(i + 1) + (y(i)

−C(i)x−(i))T R(i)−1(y(i) − C(i)x−(i))) (98)

and

W (i) = L(i)T S(i)L(i) (99)

This cost function does not include the dynamic model of the
system given in Eq. (92) and this is added by using a vector
of Lagrange multipliers λ(i + 1). This gives

J (k) = −1

θ
x̃−(0)T P−(0)x̃−(0)

+
k−1∑
i=0

(
�i +2

λ(i + 1)T

θ

)
(A(i)x̂(i)+B(i)u(i)

+w(i) − x(i + 1)) + 2λ(0)T

θ
x(0) − 2λ(0)T

θ
x(0)

(100)

The cost function of the filter given inEq. (100) can be used as
the basis for the solution. It is aimed tofind equations defining
x̂−(k + 1), or equivalently a measurement weighting matrix
(similar to the Kalman gain matrix), that minimizes the cost
for worst case assumptions about x(0), w(i) and y(i). Thus,
the optimization objective is formulated as

J ∗(k) = min
xi

max
x(0),w(i),y(i)

J (k) (101)

It is noted that the estimation algorithm has knowledge of
the output measurement y(i) but no knowledge about the
initial conditions of the system x(0) and the process noise
w(i). Under this assumption, the estimation should be able
to compensate for worst case values for the unknown para-
meters. This is a game theoretic problem that is solved in two
steps.

In the first step of optimization, partial derivatives of
J (k) with respect to x(0), w(i) and λ(i) are set to zero so
as to maximize the cost function of Eq. (100), now being
dependant only on the terms x̂−(k + 1) and y(k) which
are included in �i . In the second step of optimization, the
partial derivatives of J (k) with respect to x̂−(k + 1) and
y(k) are set to zero, to obtain a condition for the filter’s gain

matrix that minimizes this cost functional. From the opti-
mization conditions ∂ J (k)/∂x0 = 0T , ∂ J (k)/∂w(i) = 0T ,
∂ J (k)/∂λ(i) = 0T ones obtains an expression of J (k) as
function of x̂−(k + 1) and y(k). Next, from the optimization
conditions ∂ J (k)/∂ x̂−(i + 1) = 0T , and ∂ J (k)/∂ y(i) = 0T

one obtains the filter’s equations.
The recursion of the H∞ Kalman Filter, for the model of

the induction motor, can be formulated again in terms of a
measurement update and a time update part:

Measurement update:

D(k) = [I − θW (k)P−(k) + CT (k)R(k)−1C(k)P−(k)]−1

K (k) = P−(k)D(k)CT (k)R(k)−1 (102)

x̂(k) = x̂−(k) + K (k)[y(k) − Cx̂−(k)]

Time update:

x̂−(k + 1) = A(k)x(k) + B(k)u(k)

P−(k + 1) = A(k)P−(k)D(k)AT (k) + Q(k)
(103)

where it is assumed that parameter θ is sufficiently small to
assure that the term P−(k) − θW (k) + CT (k)R(k)−1C(k)
will be positive definite. When θ = 0 the H∞ Kalman Filter
becomes equivalent to the standard Kalman Filter. It is noted
that apart from the process noise covariance matrix Q(k)
and the measurement noise covariance matrix R(k) the H∞
Kalman filter requires tuning of the weight matrices L and
S, as well as of parameter θ .

Simulation Tests

The performance of the proposed nonlinear H∞ control
scheme for asynchronous motors is tested in tracking of vari-
ous setpoints. First setpoints were defined independently for
the rotation speed and the magnetic flux of the rotor. Next,
based on these values, setpoints for the stator currents isd and
isq were also computed. As shown in the simulation experi-
ments these setpoints can vary dynamically and even in that
case the proposed nonlinear H-infinity controller succeeds
the accurate setpoints tracking.

As it can be observed in Figs. 3, 4, 5 the feedback control
scheme of the induction motor enabled accurate conver-
gence to the reference setpoints. Yet simple, the considered
H∞ control law succeeded precise tracking of the refer-
ence signals. In comparison to feedback control methods for
asynchronous motors which are based on exact lineariza-
tion, the nonlinear H∞ control requires the solution of an
algebraic Riccati equation at each iteration of the control
algorithm. The known robustness features of H∞ control are
the ones that permit to compensate for the approximation
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Fig. 3 Nonlinear H∞ control of the asynchronous motor. a Convergence of the rotor’s angular speed ω and stator’s magnetic flux ψsd to setpoint
1. b Convergence of the stator’s currents to the reference setpoints
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Fig. 4 Nonlinear H∞ control of the asynchronous motor. a Convergence of the rotor’s angular speed ω and stator’s magnetic flux ψsd to setpoint
2. b Convergence of the stator’s currents to the reference setpoints

errors which were induced to the linearized model of the
induction motor.

The tracking performance of the control method is shown
in Tables 1 and 2. It can be observed that the tracking error for
all state variables of the inductionmotorwas extremely small.
Besides, in the simulation diagrams one can note the excel-
lent transient performance of the control algorithm, which
means that convergence to the reference setpoints was suc-

ceeded in a smooth manner, while also avoiding overshoot
and oscillations.

Moreover, the performance of the nonlinear H-infinity
control scheme was tested in the case of functioning of
the asynchronous motor under disturbances. It was assumed
that additive input disturbances affected the induction motor.
These were described by sinusoidal voltages of amplitude
equal to 10 % of the mean value of the control inputs. The
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Fig. 5 Nonlinear H∞ control of the asynchronous motor. a Convergence of the rotor’s angular speed ω and stator’s magnetic flux ψsd to setpoint
3. b Convergence of the stator’s currents to the reference setpoints

Table 1 Tracking RMSE without disturbances

RMSEω RMSEψrd
RMSEisd

Setpoint1 0.0016 0.0032 0.0007

Setpoint2 0.0017 0.0030 0.0005

Table 2 Tracking RMSE under disturbances

RMSEω RMSEψrd
RMSEisd

Setpoint1 0.0060 0.0063 0.0030

Setpoint2 0.0047 0.0062 0.0030

obtained results, shown in Table 2, confirm that despite the
effects of perturbation inputs the tracking accuracy for the
motor’s state variables was satisfactory.

Finally, the suitability of the H-infinity Kalman Filter for
estimating non-measurable state variables of the asynchro-
nous motor is shown if Fig. 6. The measured state variables
of the motor where x1 = θ , x4 = ird and x5 = irq . The esti-
mated state variables,whichwere finally used in the feedback
control loop where x̂2 = ω̂ and x̂3 = ψ̂rd . It can be noticed
that, despite the missing sensory information, accurate track-
ing of the reference setpoints was succeeded.

Remark 1 Comparing the proposed nonlinear H-infinity
control approach against backstepping nonlinear control for
induction motors one should take into account that back-
stepping control is a special case of flatness-based control and
actually it is a global linearizingmethod [24,30,31]. Thus for

the nonlinear backstepping control of induction motors hold
the same remarkswhich have been state in the introduction of
the article, in the comparison between global linearization-
based control methods and nonlinear H-infinity control [32].
Yet, conceptually more simple, nonlinear H-infinity control
can perform equally well to global linearization-based con-
trol methods. On the other hand, it should be noted that
backstepping control is applicable to a limited class of sys-
tems, that is systems written in the integral backstepping
(triangular) form. Consequently, the proposed nonlinear H-
infinity control method is applicable to a wider range of
electric machines and traction systems.

Remark 2 Comparing the proposed nonlinear H-infinity
control approach against sliding mode controllers and
sliding-mode observers for induction machines, it can be
noted that the latter control and estimation approaches exhibit
specific drawbacks. First, due to the use of a switching control
term, sliding-mode controllers and sliding-mode observers
exhibit chattering which means vibratory dynamics and an
undesirable transient performance for the control loop [33].
On the other hand, H-infinity control succeeds smooth vari-
ations of the control input and good transient characteristics
for the control loop. Second, in sliding-mode control it is
necessary to know beforehand the uncertainty boundaries
for the system’s dynamics. Unlike this, in the design of
H-infinity control no such assumption is made while the
suitable selection of the attenuation coefficient ρ appearing
in the Riccati Eq. (70) can finally provide the control loop
with maximum robustness to model uncertainty and external
perturbations.
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Fig. 6 NonlinearH-infinity control of the asynchronousmotor through
estimation of non-measurable state variables with the use of the H-
infinityKalman Filter. aEstimation (green line) of state variable x2 = ω

(blue line) and convergence to the reference setpoint (red line).bEstima-
tion (green line) of state variable x3 = ψrd (blue line) and convergence
to the reference setpoint (red line)

Conclusions

A new nonlinear feedback control method has been devel-
oped for induction motors, based on approximate lineariza-
tion and the use of H∞ control and stability theory. It has been
shown that the proposed induction motor control scheme
enables the state vector elements of the electrical machine
to track accurately all reference setpoints. The first stage
of the proposed control method is the linearization of the
motor’s dynamic model using first order Taylor series expan-
sion and the computation of the associated Jacobianmatrices.
The errors due to the approximative linearization have been
considered as disturbances that affect, together with external
perturbations, the motor’s model.

At a second stage the implementation of H∞ feedback
control has been proposed. Using the linearized model of
the induction motor an H-infinity feedback control law is
computed at each iteration of the control algorithm, after
previously solving an algebraic Riccati equation. The known
robustness features of H-infinity control enable to compen-
sate for the errors of the approximative linearization, as well
as to eliminate the effects of external perturbations. The effi-
ciency of the proposed control scheme for induction motors
is shown analytically and is confirmed through simulation
experiments.

Comparing to other nonlinear control methods which are
based on the exact linearization of the electrical machine’s
model it can be stated that the proposed H∞ control uses
the approximately linearized model of the induction motor
without implementing elaborated state transformations (dif-

feomorphisms) that finally bring the system to a linear form.
Of course the computation of Jacobian matrices and the need
to solve at each iteration of the algorithm a Riccati equation
is also a computationally cumbersome procedure, especially
for state-space models of large dimensionality. Moreover,
this approximate linearization introduces additional pertur-
bation terms which the H∞ controller has to eliminate.
The continuous need for compensation of such cumulative
linearization errors brings the H∞ controller closer to its
robustness limits.
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