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Abstract Over the years, graph theory has proven to be
a key tool in power systems modeling and analysis. In this
paper, the authors propose a systematic method for railway
power supply systems (RPSS) description that can be applied
to any AC/DC system. This method represents the differ-
ent elements of the RPSS with a set of subgraphs. Merging
these subgraphs, the representative graph of the whole RPSS
and its associated adjacency and incidence matrices will
be obtained. Once these matrices are obtained, Kirchhoff’s
laws can be easily implemented. In this work, the method
is applied to a DC light traction system. The AC system
that feeds the traction network through power transformers
combined with rectifiers is also included. With the proposed
approach, the variability problems in the system topology
and dimensions are overcome, obtaining an invariant sys-
tem, even when the trains change their relative position, or
when a new train enters into or exits the system.

1 Introduction

In 1900, Poincare established the principles of algebraic
topology introducing the description of graphs by using the
incidence matrix. Then, in 1916, Veblen showed how the
Kirchhoff’s laws could be formulated by applying Poincare
theory [8].
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This was just the beginning of multiple improvements and
innovations in graph theory and its application to power sys-
temsmodeling and analysis. The bulk of these improvements
took place in the decades of 1950’s and 1960’s, when the
classical topological formulas were modified to fit passive
networks containing mutual couplings and active networks.
For example, methods for solving a system of indefinite
linear algebraic equations by applying a directed weighted
graph, known as a signal-flow graph, were proposed in
[7,12,13,16,18,23]. Successive efforts were done to develop
the graph description by means of matrix techniques [4,31].

Nowadays, the graph theory is still in vogue, but new
advances do not only lie on the graph theory itself, but also
on its applications to a wide range of different problems.
Regarding power systems analysis and modeling, three main
graph theory applications have been identified:

• Modeling and analysis of non linear networks [10]. Graph
theory is applied to formulate and describe non-linear net-
works for dynamic analysis, revealing that graph theory is
a very useful tool for complex network description. The
method, known as “two-graph modified nodal analysis”
was used by the Korres et al. in [25] for the sensitivity
analysis of periodically switched linear networks instead
of the state space modeling. In this way, the definition of
state-variables and the equation formulation are avoided.
In [33], the use of switching signal flow graph method
was applied to large signal analysis of non linear circuits
in super-lift converters.

• Observability analysis in power systems. In [11], the graph
theoretic observability analysis is extended to make it
capable of processing switchingbranches in electric power
systems. The authors in [20] identify the maximum num-
ber of observable islands in a measured power system.
The optimal placement of phasor measurement units to
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be combined with power flow techniques in observability
analysis of power systems is determined in [32].

• Power flow techniques [22]. Graph theory is applied to
decompose a large-dimension optimum power flow prob-
lem, with a large number of thermal limit constraints into
a set of medium-dimension problems. In [19], the graph
theory is used to analyze the effect of phase-shifting trans-
formers over the power flow, determining the optimum
number of this kind of devices and their location to reach a
certain control in the whole power system. A new method
to extract all possible radial configurations in a weakly
meshed power system using graph based search methods
is proposed in [1]. In [14] a three-phase distribution power
flow solution for unbalanced radial distribution systems
has been developed based on graph theory. A solution for
coordinating large-scale multi-agent systems is presented
in [21], and in [15] graph theory is used to deploy multi-
ple layers of multi-agent systems to protect sub-systems
around identified loads in a power system.

The RPSS represents a very important part of the traction
system infrastructure, so in order to make properly dimen-
sioning, take correct decisions about future investments, or
just make an accurate estimation of the operation costs, we
need a good estimation of energy consumption and peak
power at each line and substation connecting the AC to the
DC system. For this reason, large efforts have been done to
obtain an accurate, robust, easy to implement and computa-
tionally light power flow method [3,5,26–28,30].

In [2], an unified AD/DC power flow method to simulta-
neously solve the whole equation systemwas proposed. This
method includes several features such as: matrix based for-
mulation in dq coordinates, compact form, a technique based
in graph theory to simulate the train motion and a new pro-
cedure to obtain power flows, losses and injected/absorbed
powers in all nodes. The main advantage is that the system
topology and dimension remain constant, even if a new train
comes into stage or exits the system.

The present work is focused on the power flow problem.
The network description procedure is expanded and the use
of the graph theory based method applied to AC/DC RPSS
description is explained at length.

The structure of this paper is as follows. “Theoretical
Background” section presents a short theoretical back-
ground; the obtaining of the matrices describing a graph
that are used in successive sections is explained. “Railway
Power System Associated Graph” section defines the RPSS
associated graph, nodes and lines enumeration criteria, and
matrices construction considering the AC and DC subsys-
tems and the trains as static loads (without movement). In
“Train Movement and Influence in System Dimension and
Topology” section the authors explain how to overcome the
problem of the topology variation due to the train movement.

V = {1, 2, 3, 4}

E = {e1, e2, e3, e4}

such that:

e1 = (1, 2)

e2 = (1, 3)

e3 = (3, 2)

e4 = (4, 3)
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Fig. 1 a Digraph G = (V, E); b subgraph of G

In this section the trains are considered like dynamic loads
that can vary their position, but they can also vary in number
since one train can be activated or deactivated in the system.
With the use of the graph theory this problem can be solved
keeping constant the network dimension and topology. In
“Results” section, a case of study is described and analyzed.
Finally, in “Applications” section a set of conclusions are
stated.

2 Theoretical Background

A graph G consists of two finite sets (V, E), where V is the
set of elements called vertices or nodes and E is the set of ele-
ments called edges. Nodes will be represented as 1, 2, . . . , n
and edges as e1, e2, . . . ek . Each edge el is identified with a
pair of nodes (i, j). G is a directed, oriented graph or digraph
if its edges are identified with ordered pairs of nodes. Other-
wise G is an undirected or a non oriented graph. In addition,
a graph is a simple graph if it has no self-loops or multi-
edges [17,29]. The digraph G = (V, E) is depicted in Fig.
1a. Here in after, simple digraphs will be used.

Where:

V = {1, 2, 3, 4}
E = {e1, e2, e3, e4}
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V1 V2

Fig. 2 Complete bipartite graph
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Fig. 3 Complementary subgraphs of graph depicted in Fig. 1a. aCom-
plementary subgraph 1. b Complementary subgraph 2

such that:

e1 = (1, 2)

e2 = (1, 3)

e3 = (3, 2)

e4 = (4, 3)

A subgraph H = (Vh, Eh) of a graph G = (Vg, Eg), is a
graph where Vh and Eh are subsets of Vg and Eg respectively
[9]. In Fig. 1b a subgraph of the digraph depicted in Fig. 1a
is represented.

A bipartite graph G = (V, E) is a graph whose vertices
(set V ) can be divided into two subsets V1 and V2, such that
every edge of E has a vertex in V1 and other in V2. If it exists
an edge (i, j) for every vertex i of V1 and every vertex j
of V2, the graph is called complete bipartite graph, see Fig.
2. This kind of graphs can be also simple digraphs and will
be very useful for describing the connections between trains
and DC nodes, as it will be explained in further sections.

In this paper the authors will use the union of sub-
graphs to form the complete graph of the system. Therefore,
being G1 = (V1, E1) and G2 = (V2, E2) subgraphs of
G = (V, E), the unionG1∪G2 called sumgraph, has V1∪V2
nodes and E1 ∪ E2 edges. If G1 ∪G2 = G, then G1 and G2

are complementary subgraphs of G [9], see Fig. 3.
Every graph can be defined by its adjacency (�) and its

incidence matrix (�). For a graph G with n nodes (graph

order) the � matrix with dimension (n, n) that relates the
connections between nodes is formed as follows [17,29]:

�i, j =
{
number of edges between i and j i �= j

number of self-loops in i i = j
(1)

In this paper, as it wasmentioned, all graphswill be simple
digraphs so (1) can be reformulated as:

�i, j =
{
1 ∃ adjacency between i and j ∧ i > j

0 other cases
(2)

Normally, adjacency matrices are defined as symmetric.
However, according to (2), the matrices are defined as upper
triangular, thus the redundant information storage is avoided
allowing greater efficiency in the use of sparse matrices.

In the same way, the graph G with n nodes and k edges
is fully defined by the (k, n) dimension incidence matrix (�)
[9,24], defined as:

�i, j =

⎧⎪⎨
⎪⎩
1 i edge incident and directed from j

−1 i edge incident and directed to j

0 i edge not incident on j

(3)

3 Railway Power System Associated Graph

The RPSS will be represented by a graph, replacing each
element by an edge or node, independently of the element
nature.A typical network as shown inFig. 4,will be described
as a digraph, characterized by the aforementioned matrices.
The whole RPSS system can be divided into three different
subsystems:

• DC subsystem.
• AC subsystem.
• AC/DC substations. Link subsystem.

Each subsystem can be represented by a subgraph of the
complete system graph. Each subsystem has the following
nodes:

• DC subsystem: Trains, DC terminals in rectifier substa-
tions and cross points in catenaries. The number of nodes
in this subsystem will be nDC

N = nt + nDC
S . Where nt is

the number of trains and nDC
S the number of nodes for the

basic DC topology.
• AC subsystem: AC nodes and secondary of power trans-
formers (AC/DC substation or link nodes). The number of
nodes for this subsystemwill be nAC

N = nLN +nAC
S . Where

nLN is the number of link nodes and nAC
S is the number of

AC network nodes.
• Link subsystem: It does not have own nodes. It only has
vertices representing the power converters.
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Fig. 4 AC/DC Rail power
system

AC/DC AC/DCAC/DC

G

G

AC

DC

Link

Therefore, the graph describing the whole AC/DC system
will be a nN order graph, where:

nN = nDC
N + nAC

N (4)

The (nN , nN ) adjacency matrix representing this system,
can be calculated as:

�T OT = �DC + �L + �AC (5)

where �DC , �L , �AC are the DC, the link and the AC sub-
graphs adjacencymatrices, respectively. Thesematrices have
to be total dimension (nN , nN ), in order to compute �T OT

according to (5). �DC , �L , �AC represent each subgraph
adjacencies, but considering that all nodes will appear in
each subgraph. For example, the graph described by �DC

will have all nodes represented in it. However, neither the
AC or the link node will present adjacencies.

From now on, �DC∗
, �L∗

and �AC∗
will denote sub-

graphs with their particular dimension. Therefore, �DC∗

and �AC∗
will represent the subgraphs with their subsys-

tem nodes. However, the link subsystem does not have own
nodes, so its dimension will vary with the number of no-train
type DC nodes and with all link nodes in the AC subsystem.

3.1 Node Enumeration Criteria and Subgraphs
Matrices

The criteria used to list nodes begins with the trains and get
on with the rest of nodes in DC, then the link nodes, and
finally the AC nodes. Thus the vector with all nodes in the
system will be as follows:

vn = [ vnDC vnAC ] (6)

vnDC = [ t sDC ] (7)

vnAC = [ l sAC ] (8)

where vnDC and vnAC are the node vectors of DC and AC
subsytem respectively; t , sDC , l and sAC are the vectors
containing the train type nodes, DC topology nodes, link
nodes and AC power system nodes. The system of Fig. 4 can
be depicted following this criteria in Fig. 5.

According to this enumeration criteria and the adjacency
matrix definition in (2) , the � describing the RPSS will be
a block matrix (see Fig. 6) where lined zones correspond to
non zero values.

The (nDC
N , nDC

N ) dimension matrix �DC∗
will be defined

as:

�DC∗ =
⎛
⎜⎝

�t t
(nt ,nt )

�ts
(nt ,nDC

S )

0 �ss
(nDC

S ,nDC
S )

⎞
⎟⎠ (9)

where:

• �t t is the adjacency matrix representing connections
between trains.

• �ts is the adjacency matrix representing connections
between trains and DC topology nodes.

• �ss is the adjacency matrix representing real connections
between DC nodes.

Thesematriceswill define threeDC subsystem subgraphs.
If only the train positions in Fig. 4 were considered, �t t

would be a null matrix because there is no adjacency between
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Fig. 5 Edge and node
enumeration criteria
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Fig. 6 Whole system block adjacency matrix

trains. All cases must be considered as it will be explained
in “Train movement and influence in system dimension and
topology” section because it may be the case in which
two trains were in the same line, resulting in an adjacency
between them. To formulate �T OT following (5), �DC will
be completed to total dimension:

�DC =
(

�DC∗
0(nDC

N ,nAC
N )

0(nAC
N ,nDC

N ) 0(nAC
N ,nAC

N )

)
(10)

The formulation of �L for any system is shown in (11). As
it can be observed this matrix has only non-zero terms in the
positions corresponding to DC topology nodes (nDC

S ) and

link nodes (nLN ). Then �L∗
will be a (nDC

S , nLN ) dimension
matrix.

�L =

⎛
⎜⎜⎝
0(nDC

N ,nDC
N )

0(nt ,nLN ) 0(nt ,nAC
S )

�L∗
0(nDC

S ,nAC
S )

0(nAC
N ,nDC

N ) 0(nAC
N ,nAC

N )

⎞
⎟⎟⎠ (11)

�AC∗
, with dimension (nAC

N , nAC
N ) describingAC subsystem

graph, could be formulated as follows:

�AC∗ =
⎛
⎝ 0(nLN ,nLN ) �tra f o

0(nAC
S ,nLN ) �s AC

⎞
⎠ (12)

where �tra f o, with dimensions (nLN , nAC
S ), is the adjacency

matrix describing transformers, and �s AC is the adjacency
matrix describing lines between AC nodes, and its dimen-
sions (nAC

S , nAC
S ).

The total dimension matrix �AC describing the AC sub-
graph will be:

�AC =
⎛
⎝ 0(nDC

N ,nDC
N ) 0(nDC

N ,nAC
N )

0(nAC
N ,nDC

N ) �AC∗

⎞
⎠ (13)

Now Eq. (5) can be completed as:

�T OT = �DC + �L + �AC

=

⎛
⎜⎜⎜⎜⎝

�DC∗ 0 0

�L∗
0

0
0

�AC∗
0

⎞
⎟⎟⎟⎟⎠ (14)
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Fig. 7 AC/DC system graph

3.2 Edge Enumeration Criteria and Incidence Matrix
Formulation

With the same criteria used for nodes, the edges will be enu-
merated. First the DC subsystem edges, then the link edges
and finally the AC subsystem edges. Thus starting with the
DC subgraph, the edge enumeration criteria starts number-
ing all outgoing node 1 edges following an ascending order

based on the end node. Then all the outgoing node 2 edges
and so on. Thereafter, with same criteria, link edges and AC
edges will be numerated.

This criteria can be observed in Fig. 5, applied to the exam-
ple of Fig. 4. As it was discussed in previous sections, the
authors used digraphs for describing the system, however the
edge direction are not displayed in Fig. 5. These directions
allow to set a reference direction for the different physical
variables involved on each edge (i.e. currents or powers).

With the node and edge enumeration criteria exposed, the
vector containing all system edges is as follows:

ve = [
eDC eL eAC

]
(15)

where eDC , eL and eAC are the vectors containing DC, link
and AC edges respectively. At the same time eAC can be
divided in transformer edges (etra f o) and AC lines edges
(elineAC ):

eAC = [
etra f o elineAC

]
(16)

The total number of edges (ne) in the graph describing the
AC/DC RPSS will be:

ne = nDC
e + nLe + nAC

e (17)

where nDC
e ,nAC

e and nLe are the number of edges in DC, AC
and link subsystem respectively.

For the DC subsystem, the number of edges can be com-
puted as the sum of the edges of the three subgraphs that form
it:

nDC
e = ntte + ntse + nsse (18)
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Fig. 8 System subgraphs. a DC subsystem subgraph. b AC subsystem subgraph. c Links subsystem subgraph
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Fig. 9 Constant dimension
AC/DC rail power system
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where ntte are edges between trains, ntse edges between trains
and DC topology nodes and nsse are edges corresponding to
DC lines without trains.

The link subsystem edges (nLe ) represent the AC/DC sub-
station rectifiers.

Finally, in the AC subsystem, the edges represent AC lines
(nlineACe ) and transformers (ntra f oe ).

nAC
e = ntra f oe + nlineACe (19)

From each subgraph, the incidence matrix is obtained
from its adjacency matrix. Then the �T OT with dimension
(ne, nN ), is computed:

�T OT =
⎛
⎜⎝

�DC∗
0

0 �L∗
0

0 �AC∗

⎞
⎟⎠ (20)

Being�DC∗
of dimension (nDC

e , nDC
N ),�L∗

of dimension
(nLe , nDC

S + nLN ) and �AC∗
of dimension (nAC

e , nAC
N ).

�T OT could be obtained from�T OT directly, however by
doing this, a link edge could be numerated before a DC edge.
Based on Fig. 5, if the incidence matrix is directly computed
from �T OT , all edges outgoing 1 will be first numerated,
then all outgoing 2 and so on. But node 3 shows an adja-
cency with a link node, so an edge from the link subsystem
would be numerated before the rest of the DC edges outgoing
nodes 4 and 5. Consequently in Fig. 5, e5 corresponding to
adjacency (4, 5) would be (3, 7), changing the �T OT struc-
ture substantially.

In Fig. 7 the graph representing the whole systemwith the
trains positioned as in the example of Fig. 5 is depicted. In
Fig. 8 the subgraphs representing the three subsystems are
shown.
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Fig. 11 Set of subgraphs that represents the DC network topology. a
Sub-graph describing all possible connections between trains (complete
type graph).bSub-graph describing connections between trains andDC
topology nodes (complete bipartite graph). c Sub-graph describing the
real DC network topology

4 Train Movement and Influence in System
Dimension and Topology

Until now, it was explained how RPSS can be represented
with a graph, and how this graph is completely defined
through a set of matrices. However, the RPSS is not a static
network. The dynamic variation is derived from the move-
ment of loads (trains) in the DC subsystem.

In order to analyze the DC subsystem properly, two main
problems must be solved. The first one has to do with the
number of trains in the system at a given instant. This number
is not constant and provokes a change in the problem dimen-
sion among different instants. The second issue lies on trains
movement, which produces changes in the relative position
of nodes during the simulation. Traditionally, to overcome
these difficulties a new problem is set out for each instant.

These problems do not lead to major issues when the sys-
tem is small and the time interval is not too long.However, the
disadvantages of the traditional way of solving the problem
arise when a real system must be studied during a significant

period of time. Themain drawbacks of the traditional solving
method can be summarized as:

• A procedure to determine which trains are in the system at
each step of simulation and its position should be devel-
oped. A new topology must be defined at each instant,
varying the number of nodes, their relative positions and
the lines connecting them.

• An enumeration criteria should be designed to identify
each network element (node or line) at each instant. Since
the same criteria is applied to different instants, differ-
ent indexes can be assigned to the same element at two
different instants.

• Due to this last point, theremay be changes in the node and
edge vectors, both in dimension and components, making
very difficult to compare different instants. Even if the
vectors corresponding to different instants had the same
dimension, a given position of the vector may belong to
different elements. Hence, a tracking subroutine should
be necessary to find an element in the vector at different
instants.

On account of this, the authors propose a partial modi-
fication of this procedure to overcome the aforementioned
difficulties.

4.1 Solution to System Dimension Variability

The solution to keep constant the dimension of the system is
to consider all the trains appearing in the temporal interval
of study to be represented in the graph, regardless of whether
they are physically or not in the system. Throughout this
section, the authors will work with a three trains case, as
shown in Fig. 9.

The enumeration criteria is the same explained in “Node
enumeration criteria and subgraphs matrices” section. For
system depicted in Fig. 9, nt is 3, then DC topology nodes
will begin with index 4.

4.2 Solution to System Topology Variability

With the node enumeration criteria above described a partic-
ular node will always represent the same train or the same
node regardless the instant. However, the train movement
continues causing changes in the system topology.

Assuming for instance one instant in the system depicted
in Fig. 9, in which only train 1 is located between nodes 4
and 5, with the edge enumeration criteria explained in “Edge
enumeration criteria and incidence matrix formulation” sec-
tion, the edges will be e1 = (1, 4), e2 = (1, 5), e3 = (5, 6),
e4 = (5, 7) and e5 = (6, 7) (graph shown in Fig. 10a). Sup-
posing that the train moves toward node 7, there will be an
instant when the train will be situated between nodes 5 and 7,
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Fig. 12 DC Subsystem graphs . a DC subsystem graph. b Subgraph t t . c Subgraph ts. d Subgraph ss

therefore e1 = (1, 5) and e2 = (1, 7). Also, for this second
instant if a new train (train 2) appears between nodes 7 and 6,
two new edges e3 = (2, 6) and e4 = (2, 7) will emerge. The
edge between node 5 and 6 would become e6 = (5, 6) and
e5 will connect nodes 4 and 5 (e5 = (4, 5)), (see Fig. 10b).
Therefore, the influence of train movement in the dimension
of the edges vector and the change in the adjacency repre-
sented by the same edge ei in two different instants is proved.

The dynamic variation of the system only affects the DC
subsystem. In order to construct an invariant dimension sys-
tem, we consider that all trains are connected among them
and with all DC topology nodes, thus covering all the pos-
sibilities. Thereafter, only edges representing trains that are
physically in the system will be activated. So from now on,
�DC∗

and �DC∗
construction will take into account all pos-

sible connections.

The graph representing the whole DC system will be con-
structed considering all possible connections. It is
comprised of three subgraphs, as it is represented in
Fig. 11:

• Subgraph describing all possible connections between
trains, Fig. 11a. It must be noticed that the case where
all trains are running between two DC nodes can exist. To
cover all possibilities, this graph is a complete type graph;
that is, a simple one in which every pair of distinct nodes
are connected by a unique edge [29].

• Subgraph describing connections between trains and DC
topology nodes, Fig. 11b. Every train can be connected to
every DC topology node at different simulation steps. In
this case the subgraph symbolizing these connections is a
complete bipartite graph between trains and DC nodes.
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Table 1 DC subsytem edges

Subsystem Adjacency Edge Adjacency Edge

DC subsystem (1, 2) e1 (2, 7) e11

(1, 3) e2 (3, 4) e12

(1, 4) e3 (3, 5) e13

(1, 5) e4 (3, 6) e14

(1, 6) e5 (3, 7) e15

(1, 7) e6 (4, 5) e16

(2, 3) e7 (5, 6) e17

(2, 4) e8 (5, 7) e18

(2, 5) e9 (6, 7) e19

(2, 6) e10

• Subgraph describing the real DC network topology,
Fig. 11c. It represents the real topology of the DC sys-
tem without trains.

The adjacency matrix corresponding to the DC subsys-
tem can be calculated as the sum of the abovementioned
subgraphs adjacency matrices.

�DC∗ = �t t + �ts + �ss

=
(

�t t
(nt ,nt )

0

0 0

)
+

(
0 �ts

(nt ,nDC
S )

0 0

)

+
(
0 0
0 �ss

(nDC
S ,nDC

S )

)

=
⎛
⎝�t t

(nt ,nt )
�ts

(nt ,nDC
S )

0 �ss
(nDC

S ,nDC
S )

⎞
⎠ (21)

The number of edges of DC subsystem can be calculated as:

nDC
e = ntte + ntse + nsse (22)

ntte = nt (nt − 1)

2
(23)

ntse = nt × nDC
S (24)

The number of edges in the third subgraph (nsse ) only
depends on the number of real lines connecting DC topol-
ogy nodes. The Eq. (23) represents the number of edges of
a complete graph of nt nodes. Equation (24) represents the
number of edges in a complete bipartite graph of nt nodes
in V1 and nDC

S nodes in V2, [29].
Once the DC subsystem is computed considering all pos-

sible connections, the invariant part of RPSS (links and AC
subsystems) is added.

In Fig. 12 the graph representing the whole DC subsystem
and the three subgraphs are represented. In Tables 1 and 2
the edges are listed for each subsystem.

Table 2 Links and AC subsytem edges

Subsystem Adjacency Edge

Links subsystem (4, 8) e20

(6, 9) e21

(7, 10) e22

AC subsystem (8, 12) e23

(9, 13) e24

(10, 14) e25

(11, 12) e26

(11, 14) e27

(11, 16) e28

(12, 15) e29

(13, 14) e30

(13, 15) e31

Table 3 Train position

Train Location

Instant t Instant t + �t

Node Distance (%) Node Distance (%)

1 (4, 5) 90 (5, 7) 10

2 (5, 7) 20 (5, 7) 50

3 (5, 6) 10 (4, 5) 80

5

1 2

3

4 6 7

(a)

4 6 7

5 1 23

(b)

Fig. 13 DC subsytem scheme for instants defined in Table 3. a Instant
t . b Instant t + �t

5 Results

For the example depicted in Fig. 9 two different instants will
be studied. The trains are located as described in Table 3,
where the column Distance represents the train position
as a percentage of the total line length. The DC subsystem
schemes for the considered positions are depicted in Fig. 13.
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Fig. 14 DC subsystem graphs
for instants defined in table 3. a
Instant t . b Instant t + �t

3

4

9

11

13

14

19

1

2

3

4

5

6

7

(a)

12

13

17

19

4

1

11

3

6

1

4

5

2

7

(b)

Comparing both schemes, it can be observed that edge (6, 7)
is invariant. Edges (1, 5), (3, 5) and (2, 7) also appear in both
instants.

Figure 14 shows the graphs corresponding to the two
instants. The edges existing for each case are depicted. It can
be observed that the edge representing the adjacency (6, 7),
is e19 in both cases. Furthermore, the adjacencies appearing
in both cases ((1, 5), (3, 5) and (2, 7)) are represented by the
same edges (e4, e13 and e11).

Table 4 shows the “active” and “non active” edges at each
instant and Fig. 15 shows the�T OT and�T OT for the exam-
ple.

6 Applications

One of the possible applications of these theory is the fast
formulation of all Kirchhoff’s current and voltage laws in al
lines and nodes of a railway system. For instance, by means
of the � matrix, all current and voltage Kirchhoff laws can
be expressed in a compact form as follows [2,6]:

g(z) = MzT = 0 (25)

where z is the vector representing voltage and current mag-
nitudes. And M can be expanded as follows. �DC and �AC

represent the DC and AC subsystems topology respectively.
RDC

B is the branch resistance matrix of the DC subsystem.
RAC

B and XAC
B are the resistance and reactance matrices

respectively, representing the impedance between AC nodes.
I identity matrix. And S is a block diagonal matrix. The first

Table 4 Active DC subsystem edges in instants depicted in Fig. 13

Subsystem Instant t Instant t + �t

Adjacency Edge Adjacency Edge

DC Subsystem (1, 2) e1 (1, 2) e1

(1, 3) e2 (1, 3) e2

(1, 4) e3 (1, 4) e3

(1, 5) e4 (1, 5) e4

(1, 6) e5 (1, 6) e5

(1, 7) e6 (1, 7) e6

(2, 3) e7 (2, 3) e7

(2, 4) e8 (2, 4) e8

(2, 5) e9 (2, 5) e9

(2, 6) e10 (2, 6) e10

(2, 7) e11 (2, 7) e11

(3, 4) e12 (3, 4) e12

(3, 5) e13 (3, 5) e13

(3, 6) e14 (3, 6) e14

(3, 7) e15 (3, 7) e15

(4, 5) e16 (4, 5) e16

(5, 6) e17 (5, 6) e17

(5, 7) e18 (5, 7) e18

(6, 7) e19 (6, 7) e19

block is an identity matrix, the second block is a diagonal
matrix denoted as SL

(ns ,ns )
. Element sii belonging to SL is 1

if the DC substation i is connected to the AC network and
sii is 0 when the DC substation i is not connected to the AC
grid.
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Fig. 15 Matrices for scheme
Fig. 9. Where + symbol implies
1 and open circle symbol −1 . a
�T OT . b �T OT

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

ΛDC∗

ΛL∗

ΛAC∗

(a)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

5

10

15

20

25

30

ΓDC∗

ΓL∗

ΓAC∗

(b)

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−RDC
B �DC

−RAC
B XAC

B �AC

−XAC
B −RAC

B �AC

(�DC )T S

(�AC )T

−I
(�AC )T

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(26)

7 Conclusions

As it was demonstrated, with the proposed method, a com-
plex RPSS can be easily characterised and described even
when it has multiple loads that change their relative posi-
tion with the time. By means of the described technique
the Kirchhoff Current laws and the Kirchhoff voltage laws
can be formulated in a extremely easy compact form. The
proposed method has been developed for a railway traction
system, but it could be also applied to any power system,
being specially useful for those systems in which loads and
generators vary their relative positions. Another application
might be a system with combination of AC and DC sys-
tems as for example High Voltage Direct Current (HVDC)
systems.
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