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Abstract In numerical modeling of material behavior,

deformation is calculated with analytical constitutive

equations. When joined with a failure criterion, simulations

can predict plastic stress–strain behavior and eventual

fracture of the material. The Air Force Institute of Tech-

nology (AFIT) uses the Johnson–Cook empirical consti-

tutive equation and damage criterion to model high speed

wear. The Johnson–Cook equations employ material

parameters which must be characterized experimentally for

each material being simulated for accurate results. This

paper describes the testing and analytics used to determine

the Johnson–Cook constitutive and damage material coef-

ficients for treated 4130 steel. The flow and damage

coefficients are calculated and the results are used to con-

struct a finite element model in ABAQUS. This model is

compared against the experimental data for final validation.

Keywords Hypervelocity � Johnson–Cook � Constitutive

model � Split-Hopkinson (Kolsky) bar � Viscoplastic

Introduction

Holloman Air Force Base (HAFB) is home to the 10-mile

long Holloman High Speed Test Track (HHSTT) rocket

sled testing grounds. During test runs, rocket stages

attached to the back of the sled propel the main sled for-

ward at tremendous speeds. An example of one such rocket

sled is shown below in Fig. 1.

The slipper, a component that connects rocket sleds to

the test track rails, is subjected to extreme conditions

during test runs. High strain rates, high temperatures, micro

impact events, friction, and bouncing generated from

rocket propulsion all contribute to material loss of the

slipper contact surface by melting and mechanical wear.

After test runs, the slippers are discarded. It is of interest to

accurately model how much of the slipper material is lost

during test runs, which requires being able to trace the

failure of the material.

Over the years, AFIT has spearheaded modeling the

complex deformation of the slipper by utilizing metallurgi-

cal examination and various finite element and hydrocode

modeling programs [1–4]. Much progress has been made in

developing a robust model that accounts for temperature,

strain rate, the contact surface bouncing, friction, and micro

surface impacts. The finite element model uses the Johnson–

Cook constitutive and damage equations to characterize flow

stress and failure. These equations are emperically-based

and driven by experimentally determined material parame-

ters. AFIT is now attempting to model the wear of a HHSTT

run where the slipper material is a heat treated 4130 steel,

which has not yet been characterized for the constitutive and

damage model. Thus, new characterization is required to

obtain the material constants.

There are several examples of previous characterizations

of steels for the Johnson–Cook model. Armox 500T and

600T, 1010 steel, Mild and DP590 steel, DH-36, and RHA

are a few of the similar materials with published fittings for

the strength portion [5–9]. Full model characterizations

including the damage criteria are more sparse, but there are

publications for HY-80, HY-100, and HY-130 steels,
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Weldox 460 and 4140 steel [10–13]. Each study follows a

similar solving structure, but differ in small ways in

approaching the solving sequence. Some are able to

incorporate significantly higher strain rates and others only

characterize at room temperature, but generally the

approach is the same.

Though there are many studies characterizing the

Johnson–Cook flow equation for other materials, none exist

for 4130 steel with or without a heat treatment. The pre-

sentation of the solving methods of both strength and

damage equations with newly generated experimental data

for comparison makes this work unique.

Mathematical Motivation

Recall that stress–strain curves can be divided into two

portions: an initial, linear, elastic region followed by a non-

linear, plastic region. These segments are divided by the

yield point, where the yield stress and strain ceases to

behave linearly.

Thus, to describe strain occurring at a point within a

model, one can use the definition:

� ¼ �e þ �p ð1Þ

And similarly for strain rate:

_� ¼ _�e þ _�p ð2Þ

where �e is elastic strain, _�e is elastic strain rate, �p is plastic

strain, and _�p is plastic strain rate.

The elastic region of strain can be represented one-di-

mensionally as r
E
, which models recoverable deformation.

The plastic region can be modeled using any number of

constitutive equations that have been developed over the

years describing non-recoverable deformation. The transi-

tion point between the regions (yield point) is determined

numerically by the von Mises yield criterion. Once the

second deviatoric stress invariant (J2) reaches a critical

value, usually the predefined yield strength of the material,

the model transitions from using elastic relations for stress

and strain calculations to the constitutive flow relations [14,

15].

The Johnson–Cook Constitutive Model

AFIT has been using the experimentally-based Johnson–

Cook viscoplastic constitutive equation for its research.

The model is popular due to its versatility, simplicity, and

the ease with which the material parameters can be

obtained [16]. It has the form:

r̂y ¼ ðAþ B�npÞ 1 þ C ln
_�p
_�o

� �
ð1 � T�mÞ ð3Þ

where r̂y is the vonMises or equivalent flow stress, A is the

yield stress, B is the plastic strain coefficient, �p is the

plastic strain, n is the strain hardening coefficient, C is the

plastic strain rate coefficient, _�p is the plastic strain rate, _�0

is a normalizing strain rate, and m is the thermal coeffi-

cient. T� is the homologous temperature, defined as

T� ¼ T � Tref

Tmelt � Tref
ð4Þ

where T is the sample temperature, Tref is a reference

temperature (23 �C for this study), and Tmelt is the melting

temperature of the sample material, for 4130 steel 1432 �C.

A strength (or flow) equation dictates stress–strain

behavior beyond the elastic limit. The first set of paren-

thesis are static stress contributions which include the yield

stress and strain hardening behavior [16]. It is based on

Ludwiks equation:

rflow ¼ ryield þ B�np ð5Þ

where rflow is the post-yield stress, ryield is the yield stress,

and B and n are strain hardening coefficients [17, 18].

The second set of parenthesis describes the strain rate

behavior. It is based on a simple logarithmic model pro-

posed by Ludwik and used by Lindholm [19].

r ¼ ryieldð1 þ C log _�pÞ ð6Þ

The third set of brackets describes temperature effects,

where increasing temperatures causes the flow stress to

decrease. The homologous temperature is used to normal-

ize the material temperature against a reference tempera-

ture. Thermal contributions are quite important for AFIT’s

research since the rocket sled wear event being modeled

experiences extreme temperature fluctuations.

Fig. 1 Picture of a June 2014 HHSTT sled featuring treated 4130

steel slippers on a 1080 steel track rail, obtained from correspondence

with HAFB
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Furthermore, it allows the model to include the effects of

heat generated internally by the deformation process.

Authors have noted it is more likely that the three behaviors

(static stress, strain rate, and temperature) are more interrelated

than how the model currently is formulated, but it has been

shown to give reasonably accurate prediction for low-mid strain

rate material impacts [18, 20, 21].

Johnson–Cook Failure Criterion

The flow equation dictates the stress–strain behavior of a

material beyond the elastic limit, but does nothing to pre-

dict when the material will fail. For this reason, a damage

criterion is needed to flag at what point the fracture will

occur. The Johnson–Cook damage criterion is shown

below:

D ¼
XD�p

�f
ð7Þ

where D is the accumulating damage, D�p is an increment

of accumulating equivalent plastic strain, and �f is the

equivalent strain to fracture at the current strain, strain rate,

and temperature conditions. Once damage accumulates so

that the value of D is equal to 1, failure of the material has

occurred. In simulations the failed element is phased out by

setting the stress tensors equal to zero [22]. The criterion is

based on calculating the critical failure strain, shown in

Eq. 8 [22].

�f ¼ ½D1 þ D2e�D3Q� 1 þ D4 ln
_�p
_�0

� �
½1 þ D5T�� ð8Þ

where �f is the equivalent strain at failure, D1-D5 are all

experimentally determined coefficients, and Q is the tri-

axiality factor.

The formulation of the failure strain Eq. 8 is similar

compared to the strength Eq. 3. D1–D3 are stress state

coefficients related to void formation in the metal, D4 is

correlated with rate sensitivity, and D5 accounts for tem-

perature effects. The first bracketed set in the equation,

½D1 þ D2e�D3Q�, is based off a model from Hancock and

Mackenzie:

�ef ¼ �en þ ae
�3rm

2r ð9Þ

where �en is the void nucleation strain and a is a material

dependent hole growth rate [23].

The triaxiality factor is the ratio of mean stress to

equivalent stress, which fluctuates throughout deformation.

It serves as a measure of ductility.

Q ¼ rm
�req

ð10Þ

The mean stress is defined as the average of the three

principal stresses:

rm ¼ r11 þ r22 þ r33

3
ð11Þ

The equivalent stress, or vonMises stress, is defined as:

�req ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
3rijrij

2

r
ð12Þ

One can make an observation based on the formulation of

Q: that when a problem is uniaxial, all stress tensors but r11

cancel, leaving a constant Q value. Thus, one-dimension-

ally, the equivalent strain at fracture is equal to the failure

strain. However for all other cases, the two are not nec-

essarily equal.

It should be noted that in the original Johnson–Cook

development, D3Q is actually a positive term in Eq. 8.

Also, Johnson and Cook note that this equation is only

valid for triaxiality values up to 1.5, and beyond that a

different equation must be used [22].

Experimental Testing Program

Material Treatment and Composition

The material of interest is 4130 steel that has undergone a

heat treatment. Annealed 4130 steel is first manipulated to

drawing specifications, heated above its critical austeni-

tizing temperature, 1675 �F (910 �C), quenched, and then

tempered at 1050 �F (566 �C) until it reaches a strength of

120–140 ksi (827–965 MPa). The chemical composition of

4130 steel is listed below in Table 1.

Sample Manufacturing

Experiments were carried out at the University of Dayton

Research Institute (UDRI) with samples supplied by Hol-

loman AFB. Samples were machined from the same treated

AISI 4130 steel used for rocket sled slippers. Two types of

samples were manufactured: notched specimens for triaxi-

ality determination, seen in Fig. 2, and smooth, ASTM sub-

Table 1 Percent composition of alloying elements of 4130 steel [25]

Element Percent composition

Carbon 0.23–0.33

Chromium 0.80–1.10

Iron 97.3–98.2

Manganese 0.40–0.60

Molybdenum 0.15–0.25

Phosphorous B0.035

Silicon 0.15–0.30

Sulfur B0.040
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size E8 dogbone samples for tensile testing seen in Fig. 3.

Prior to experimentation, measurements of the diameters

and lengths of the all samples were recorded.

The notched triaxiality test samples are 2 inches

(50.8 mm) in length with a diameter of 0.325 inches (8.255

mm) and are machined with one of 3 different notch sizes:

0.4, 0.8, and 2.36 mm. Five samples of each notch radius

were fabricated. However, tolerances were unable to be

met on the notch sizes and they were manually turned into

the samples. This left a rough surface finish and uneven

radii. To account for this, the radius of each sample was

measured using digital comparator. Each sample was

measured 3 times, rotating the sample by approximately

120 degrees for each measurement. The radii for 0.4 mm

radius varied between 0.503 and 0.448 mm, the 0.8 mm

radius varied between 0.812 and 0.889 mm, and the

2.36 mm notch varied between 2.55 and 2.49 mm. Results

of these measurements were averaged. The nominal radii

measured at 0.48 ± 0.02, 0.87 ± 0.03, and 2.52

± 0.03 mm, and they were used for calculations and

modeling. These samples were all tested on the servo-hy-

draulic test stand.

The other specimens for this program are smooth

cylindrical dogbones for tension tests. They are 1.15 inches

(29.21 mm) in total length with a gage length of 0.35

inches (8.89 mm) and a minimum diameter of 0.125 inches

(3.175 mm). Again there were issues with the surface finish

of the samples - jitter marks were noted and are seen in

Fig. 4. These specimens were tested on both the Servo-

Hydraulic test stand, and in a Split-Hopkinson Bar

apparatus. The test program for the dogbone specimens is

outlined in Table 2.

Low Strain Rate Tension Test Equipment:

Servo-Hydraulic Test Stand

An MTS servo-hydraulic station (#5), with a load frame

capacity of 89.0 kN equipped with a 44.4 kN actuator is

operated at room temperature for tension tests at lower

strain rates. Load is measured using a load cell calibrated

through 22.2 kN full-scale, and actuator displacement was

measured using a linear variable differential transformer.

Fig. 2 Diagram of notched

triaxiality determination

sample, shown with the 0.8 mm

radius (Dimensions are in

English units)

Fig. 3 Sub-size ASTM E8 threaded dogbone specimen diagram

(Dimensions are in English Units) [24]

Fig. 4 Sub-size ASTM E8 threaded dogbone specimens. Rough

machining visible in jitter marks on the threads of the specimen and

the turning marks on the gage length. Photo credit to Ron Hoffman

Table 2 Test Program carried out at the University of Dayton

Research Institute including the target strain rates and temperatures,

and the number of specimens tested for each strain rate—temperature

combination

Testing device MTS servo Split-Hopkinson bar

Strain rate 0.01/s 0.5/s 500/s 1000/s 1800/s

23 �C 3 3 3 3 3

223 �C 3 3 3

466 �C 3 3 3

707 �C 3 3 3

210 J. dynamic behavior mater. (2016) 2:207–222

123



The full-scale for the stroke was 1 inch (25.4 mm) and a

slack adapter was used to allow the actuator time to ramp

up to speed before applying the test load. A mechanical

extensometer (Epsilon Model 3443-0025-100-HT2) cali-

brated to 5.1 mm (0.2 inches) full-scale with a measuring

range of ?100 %/-5 % was used to measure strain [26].

The servo-hydraulic test stand was run at two different

strain rates: 0.01/s (quasistatic) and 0.5/s (reference).

Normally the reference strain rate is 1/s, however limita-

tions on the testing equipment available at UDRI resulted

in a lower testing rate.

High Strain Rate Tension Test Equipment:

Split-Hopkinson Bar

The Split-Hopkinson Bar (SHB), or Kolsky Bar apparatus

in a tension configuration is used to generate appropriately

high strain rates for the experiments. A schematic of the

set-up is shown in Fig. 5.

The assembly consists of a striker bar, an incident bar, a

material sample, a transmitter bar, and two strain gages

placed on the incident and transmitter bars to collect data.

The bars and projectiles are all made of 0.5 inch (12.7 mm)

diameter Inconel 718. The strain gages are Constantan foil,

type Micro-Measurements type CEA-06-250UW-10C with

a gage length of 6.35 mm and a strain limit of ±5 %. They

are wired as half-bridge and mounted diametrically to one

another, with one on the incident bar and the other on the

transmitter bar. The gage factor is 2.130 ± 0.5 %, and the

specimen-to-gage distance is 6 feet (1.83m) for each gage.

This distance is chosen based on the time needed to mea-

sure strain in a specimen, which is determined by the

striker bar length. The distance chosen allows strain mea-

surements in the specimen of C60 %.

Samples are heated via a Lindbergh Cycle Dyne

induction unit, Model A-50 (9.2KVA). The induction coil

surrounds the collar with the sample inside. The collar has

a hole drilled out to allow the insertion of a thermocouple

to monitor the sample temperature. Heating was achieved

in *20 min for the 223 �C samples, *30 min for the

466 �C samples, and *20 min for the 707 �C samples. For

the 223 and 466 �C samples, the heating rate was held

constant until the target temperature was reached, with no

holding time. For the 707 �C samples, heating rate was

increased while ramping up initially, and then slowed

significantly for the final minutes while approaching

707 �C.

Split-Hopkinson Bar set-ups are extremely useful for

dynamic, high strain rate experiments and can create strain

rates ranging from 100 to 10000/s through the gage length

of the material sample [27]. In this experiment, the pro-

jectile bar is propelled into an incident bar by a gas gun at

velocities ranging from 7 to 19 m/s generating strain rates

from 500 to 1800/s. Depending on the particular set-up of

SHB used, stress waves generated in the sample can either

be compressive or tensile. This study uses a tensile set-up

devised by Nicolas in 1981 whereby a collar is placed

around the specimen so a compressive wave travels over

the specimen and then is reflected back as a tensile wave,

breaking the specimen in tension during the reflection [28].

Split-Hopkinson Bar Stress and Strain

The engineering stress and strain of the experiment can be

obtained by utilizing elastic wave relations and the stress

pulses measured by the strain gages on the incident and

transmitter bars [27]. The relevant equations used are:

�s ¼
2Co

L

Z t

0

ð�RÞdt ð13Þ

and

rs ¼
AH

As

E�t ð14Þ

where �s is the sample strain, Co is the elastic wave speed

of the striker bar (4968 m/s), L is the starting gage length of

the sample (8.89 mm), �R is the reflected strain wave, rs is

the sample stress, AH is the cross-sectional area of the

Hopkinson bars (1.27E-7 m3) and As is the cross-sectional

area of the gage section of the sample. (7.92E-9 m3). The

full derivation of these equations can be found in Chen and

Song’s work for compression, or Cinnamon’s dissertation

for tension [27, 29].

A spectrum of strain rates is needed to demonstrate the

effect of strain rate on flow stress. For this specific SHB

set-up, 500/s is on the low end of strains that can be gen-

erated and 1800/s is on the high end. Similarly, the plastic

behavior in a variety of thermal environments needs to be

observed. The range of temperatures are room temperature

Fig. 5 Schematic of Split-Hopkinson Bar experiment. The striker bar

impacts the incident bar, sending a stress pulse through the specimen

and the transmitter bar. Strain gages record the incident, transmitted,

and reflected pulse signals
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(23 �C) and then 1
6
, 1

3
, and 1

2
of the melting temperature

based on English units. In SI units, they are (223 �C),

(466 �C), and (707 �C).

Data Reduction

For brittle materials, it is relatively simple to convert

engineering stress and strain to true stress and strain using

Eqs. 15 and 16.

rtrue ¼ rengð1 þ �engÞ ð15Þ

�true ¼ ln ð1 þ �engÞ ð16Þ

where reng and �eng are engineering stress and strain.

These equations are only reliable until the cross-sec-

tional area begins to shrink during the necking process of

failure [30]. This makes Eqs. 15 and 16 ideal for brittle

materials which exhibit little to no necking. For ductile

materials that exhibit significant necking, the only way to

obtain true stress–strain curves is to use Eqs. 17 and 18,

which require having continuous measurement of the

changing cross-sectional area.

rtrue ¼ reng
Ao

Ai

ð17Þ

�true ¼ ln
Ao

Ai

ð18Þ

where Ai is the current area and Ao is the original starting

area.

The changing area can be measured using high speed

cameras or digital image correlation. Since our specimens

in the Split-Hopkinson Bar device were enclosed in a metal

collar during test runs, neither of these options were viable.

Sasso has presented an area change approximation method

correcting for necking present in high strain rate tension

Hopkinson bar experiments [31]. This was applied to the

engineering stress and strain to obtain true stress and strain

data for the Split-Hopkinson data. The correction used was:

A0

A

� �
linear

¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð3 � �engÞ

1 þ �eng

s
� 1

 !�2

ð19Þ

By approximating the changing area and assuming the

radial and tangential stresses are equal due to isotropy, the

stress obtained by substituting Eqs. 19 in 17 results in the

measurement of average axial stress. It is only the axial

stress because it is assumed that the area reduction is

constant and does not take any curvature into account. The

Bridgman correction factor, seen in Eq. 20, provides a

method of estimating the additional contributions from the

progressing curvature in the sample as failure is taking

place [32].

reqv ¼
raxial

ð1 þ 2R=aÞ lnða=2RÞ ð20Þ

The Bridgman correction factor is regularly used to

account for the additional hoop stresses generated from

necking. It is a geometry-based measurement which again

requires continuous measurement of the necking area

dimensions during failure, or straining a sample beyond

necking but not to failure to obtain curvature measurements

[32] [33]. For steels, there is a popular function that

approximates these measurements and it is used in this

work [30, 32].

B ¼ 0:0684x3 þ 0:0461x2 � 0:205xþ 0:825 ð21Þ
rB ¼ Brtrue ð22Þ

where x ¼ log10 �true and is true for valid for strain values

0:12� �true � 3. Correction is not required for strains below

0.12. These corrections will allow an axial curve to rep-

resent the overall response of a 3D effect.

Experimental Results

The following figures show the experimental curves

obtained from the experiments. Figure 6 shows the aver-

aged quasistatic and 0.5/s data, performed on the MTS

servo-hydraulic test stand at room temperature. The results

in Figs. 7, 8, and 9 were carried out on the SHB test stand

at strain rates ranging from 500/s to 1800/s and tempera-

tures ranging from room temperature to 707 �C. Figure 7

shows the 500/s curves, Fig. 8 shows the 1000/s curves,

and Figure 9 shows the 1800/s curves.

In the 500/s experimental data, there is an unusual trend

that continues throughout all of the results, where the

23°C 0.01/s (Quasistatic) Ave Data
23°C 0.5/s Ave. Data
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Fig. 6 Averaged experimental data for the 0.01/s (quasistatic) and

0.5/s (reference) strain rates
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fracture strain decreases with increasing temperature up

until the highest temperature. There is some strain soften-

ing that becomes more pronounced with increasing tem-

perature, until the highest temperature where there actually

appears to be strain hardening.

The 1000/s results again show unusual failure strain

behavior. The increased strain rate reduces the yield strain

for the room temperature and 223 �C experiments, and the

thermal softening appears to be more pronounced for the

223 and 466 �C curves. The difference in flow stress

between the two is decreasing. Conversely, the 707 �C
results have a more pronounced increase in flow stress with

increasing strain. There is noise in these results particu-

larly. Testing performed on the same test stand after the

data collection for this project confirmed this is mostly due

to alignment issues.

The 1800/s curves still keep with the same unusual

failure strain pattern as with the 500 and 1000/s curves. In

general, the thermal data is showing a lot more noise than

the previous strain rates. The effects from thermal soften-

ing are minimal, and again the 707 �C shows no signs of it.

The 223 and 466 �C curves are now overlapping.

Coefficient Determination

Johnson–Cook Strength Coefficient Determination

Determining the Johnson–Cook strength coefficients is a

fairly straight-forward process of isolating a portion of the

strength equation through normalization, plotting it against

the experimental data, and performing a curve fit. The

Johnson–Cook strength equation is again stated:

r̂y ¼ ðAþ B�npÞ 1 þ C ln
_�p
_�o

� �
ð1 � T�mÞ ð23Þ

The static stress terms, yield stress (A) and isothermal

strain (B and n), are found using data from the averaged

0.5/s strain rate tensile experiments. A is determined by the

0.2 % offset method. First the elastic modulus (E) is

determined by calculating the slope of the linear portion of

the stress–strain curve, and then the slope is offset by

0.2 %. The intersection of the experimental curve and the

0.2 % offset line is the yield stress of the material. This is

shown in Fig. 10. The curve is a typical one for a low-alloy

carbon steel, and we are able to determine a yield stress of

673 MPa and an elastic modulus of 160 GPa.
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Fig. 7 Averaged experimental data for the 500/s strain rates
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Fig. 8 Averaged experimental data for the 1000/s strain rates
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Fig. 9 Averaged experimental data for the 1800/s strain rates
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B and n are found by plotting the logarithmic reference

0.5/s plastic stress and strain, isolated using Eqs. 24 and 25

below.

rplastic ¼ rtrue � A ð24Þ

�plastic ¼ �true �
A

E
ð25Þ

The logarithmic plastic stress is plotted against the loga-

rithmic plastic strain while the curve exhibits hardening.

The data is then fit linearly to obtain the slope (n) and the

intercept, which is used to find the B coefficient by raising

10 to the power of the intercept. This is shown in Fig. 11.

The region of plastic hardening was small, and it was found

that this fitting portion was subjective to how much data

was included or excluded. B was calculated to be 190 MPa

and n, 0.1538.

To continue, a dynamic reference strain (�ref ) must be

defined. It is used as a reference point for comparing

dynamic stress values when calculating C and m. The value

is chosen from the reference data, and must be large

enough that the stress is in the flow region, but not so large

as to be greater than the ultimate tensile strength of the

material where failure or necking has begun to occur. In

other studies, the value has ranged between 5 and 10 % [3,

20]. For this study, the reference strain is found by plotting

the experimental 0.5/s plastic stress–strain curve against

the solved r ¼ ðAþ B�npÞ curve. The point when the two

curves meet is taken as the reference strain, found to be 4%

of the total strain for our data, as seen below in Fig. 12.

Room temperature 0.01, 0.5, 500, 1000, and 1800/s

tensile data is used to calculate the strain rate coefficient C.

To isolate the strain rate effects, the flow equation is nor-

malized against the static stress and thermal stresses:

r̂y
ðAþ B�nref Þð1 � T�mÞ ¼ 1 þ C ln

_�p
_�o

� �
ð26Þ

Since only room temperature data is used, the thermal term

cancels.

r̂y
ðAþ B�npÞ

¼ 1 þ C ln
_�p
_�o

� �
ð27Þ
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Fig. 10 0.2 % offset fit for treated 4130 using averaged 0.5/s tension

data. The calculated Young’s Modulus and yield stress are 160,000

MPa and 673 MPa respectively
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Fig. 11 Curve fit for Johnson Cook strain rate coefficients B and n of

treated 4130 steel. The plastic portion of the quasistatic curve that

exhibits strain hardening is isolated and fit linearly. B is 10 raised to

the power of the intercept, found here to be 190 MPa, and n is the

slope of the line, 0.1538

Ave 0.5/s Data

σ = A+Bεn

0 0.05 0.1 0.15 0.2
0

100

200

300

400

500

600

700

800

900

True Strain

T
ru

e 
S

tr
es

s 
(M

P
a)

Fig. 12 0.5/s average reference stress–strain curve plotted against the

solved r ¼ ðAþ B�npÞ curve. The two curves come together between

0.03 and 0.04 of the total strain. The reference strain 0.04 was chosen

as it produced the best fitting results
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A, B, and n are the constants solved for previously, and

here �ref is the dynamic reference strain 0.04. The r̂y term

is the dynamic stress found from the experimental true

stress–strain curve at 0.04 strain.

The normalized stresses for each strain rate are plotted

against the natural log of their strain rates producing a plot

that can be linearly fitted to obtain the value for C, found to

be 0.017. This is shown in Fig. 13.

The fit shows good correlation with other Johnson–Cook

fits for metals, and indicates that the 4130 steel flow stress

does have a response dependence on strain rate [3, 20].

When fitting the for the thermal coefficient, the low

strain rate data is excluded (0.01, 0.5/s) as is any room

temperature data. The 500, 1000, and 1800/s strain-stress

curves for 223, 466, and 707 �C temperatures (approxi-

mately 1/6, 1/3, and 1/2 the melting temperature) are all

used. As before, the dynamic stress obtained at the refer-

ence strain is normalized to isolate the thermal portion of

the curve. This is done by dividing the experimental stress

at the reference strain by the room temperature stress

portions as seen in Eq. 28.

r̂y

ðAþ B�npÞð1 þ C ln
_�p
_�o
Þ
¼ ð1 � T�mÞ ð28Þ

The logarithms of the normalized stress and the homolo-

gous temperature are plotted against each other, and the

slope of the linear fit of the data represents m as in Fig. 14.

Each strain rate is plotted and fitted individually,

resulting in a spread of m values. The value of m is chosen

based on which one gives the best analytical results when

compared to the experimental data.

Damage Coefficients

A similar process is undertaken to calculate the Johnson–

Cook damage coefficients. Recall the damage equation:

�f ¼ ½D1 þ D2e�D3Q� 1 þ D4 ln
_�p
_�0

� �
½1 þ D5T�� ð29Þ

where �f is the equivalent plastic strain at fracture, Q is the

stress triaxiality factor, �0 is the reference strain rate (0.5/s),

_�p is the plastic strain rate, T� is the homologous temper-

ature, and D1–D5 are the damage coefficients.

The first step is calculating the triaxiality-dependent

factors D1–D3. The notched specimens’ geometry and

failure strains are used to calculate initial triaxiality and

coefficient values using an equation developed by Bridg-

man and used by Hopperstad and Borvik:

Q0 ¼ 1

3
þ ln 1 þ a0

2R0

� �
ð30Þ

where a0 is radius of the initial cross-sectional area of the

notched specimen and R0 is the radius of the specimen

notch [34, 36].

The equation uses the same (a
R
Þ ratio developed by

Bridgman for smooth necking specimens, but here is

applied to predict plastic conditions of pre-strained, not-

ched specimens.

Recall, the triaxiality value is always fluctuating

throughout deformation. But for a mathematical
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Fig. 13 Curve fit for the strain rate coefficient Johnson Cook C for

treated 4130 steel. The stress at a reference strain (in this study, 0.03)

is normalized against the 0.5/s stress and plotted at the natural log of

each room temperature strain rate (0.01, 0.5, 500, 1000, and 1800/s).

The points are linearly fit, and the slope is the value of C, 0.017
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Fig. 14 Curve fitting for the Johnson Cook thermal coefficient m of

treated 4130 steel. The stress at the same reference strain is found for

each strain rate (500, 1000, 1800/s) and at each temperature (223,

466, 707 �C) and normalized against their respective room temper-

ature counterparts. Then the normalized strains are subtracted from

one and plotted against the natural log of the homologous temperature

and fit linearly for each of the strain rate resulting in three separate

linear fits. Each slope is an m value, and in this study the final chosen

value of m is 1.07
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simplification for the purpose of this coefficient fitting, one

can assume that during straining the hydrostatic stress (rm)

and equivalent stress (r̂) change at the same rate and and

the plastic strain is constant across the necking cross sec-

tion [23, 34]. This creates a constant triaxiality value. In an

investigation by Mackenzie et al., it was found that using

the initial triaxiality as the constant value results in an

under-prediction of stress triaxiality in large notches by as

much as 20 % for large a/R ratios, but the difference

decreases as the notch size decreases [35]. Thus it is shown

to provide a good conservative value for ductility mea-

surement [36].

The initial triaxiality results from Eq. 30 and failure

strains of the notched specimens are used to calculate the

first coefficients, D1–D3. The failure strains from the ten-

sion tests of the notched specimens are plotted against the

triaxialities. The curve is fitted in MATLAB using the

Levenberg–Marquardt numerical solving method, a stan-

dard method for solving non-linear least squares problems.

For those unfamiliar with the algorithm, the Levenberg–

Marquardt method fits a set of data points to a parame-

terized function by minimizing the sum of squares of the

errors between the data points and the function [37]. It is

one of the most popular optimization method used for

solving nonlinear problems, and combines two different

solving algorithms: the method of steepest descent and the

Gauss–Newton method. The Method of Steepest Descent

(or Gradient Descent Method) finds a minimum moving

point to point by calculating a slope gradient until the value

is within a small amount of error. However, depending on

the particular function, this can be a time-consuming pro-

cess hence the method has a poor rate of convergence. The

Gauss–Newton Method assumes the function is locally

quadratic, and minimizes the sum of squares errors by

finding the minimum of the quadratic. As the errors

become smaller, the algorithm switches from behaving like

the steepest descent method to the Gauss–Newton method

[37]. By combining the two methods, the rate of conver-

gence and the overall fit is improved.

The resulting D1–D3 fit is seen in Fig. 15.The fit looks

good, and the coefficient value compares well to other

similar metals.

For D4 and D5, the solving process mirrors that of C and

m in that a reference point is used, though rather than a

dynamic reference strain it is a triaxiality value [20]. This

triaxiality is selected from the range of triaxialities used in

the notch fitting, and is chosen based on which produces

the best fit when compared to the experimental data. In this

study it was found to be the largest triaxiality: 1.33. The

resulting normalized equations are seen in Eqs. 31 and 32.

The fits for D4 and D5 are seen in Figs. 16 and 17.

�f
½D1 þ D2e�D3Qref � ¼ 1 þ D4 ln

_�p
_�0

� �
ð31Þ

�f

½D1 þ D2e�D3Qref � 1 þ D4 ln
_�p
_�0

h i ¼ ½1 þ D5T�� ð32Þ
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Fig. 15 Curve fit for the Johnson–Cook damage ductile metal failure

void coeffieicnts D1, D2, and D3 for treated 4130 steel. The failure

strains of the triaxiality specimens are plotted against their calculated

triaxiality Eq. 9. These points are fit using the Levenburg–Marquardt

algorithm, and found to be -0.1895, 0.7324, and 0.6633
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Fig. 16 The failure strains of treated 4130 steel are found at each

room temperature strain rate (0.01, 0.5, 500, 1000, 1800/s) and

normalized against the triaxiality data at a calibrated reference

triaxiality (1.33). These are plotted against the natural log of each of

the strain rates and fit linearly. There are three different fits for each of

the three triaxialities that are being calibrated. The slope of the line is

D4, and the calibrated value is 0.0291
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Figure 16’s trend is along the lines of what is seen in

other documentation, however the slope for the smaller

triaxiality values are higher than other metals’ reported

values [20]. Figure 17 is a departure from what is expected.

While it is not unusual for increasing strain rates to cause

earlier fracture strains, typically the increase of tempera-

ture would induce more ductile behavior and thus larger

fracture strains. The decrease in failure strain with

increasing temperature until the final highest temperature is

odd. However the value of D5 does fall within other

reported values, despite the linear fit not matching the data

well.

Results

A finite element model was created in ABAQUS to vali-

date the calculated coefficients. ABAQUS explicit mode is

used as opposed to implicit mode. Explicit mode is geared

for involved wave mechanics problems, which is ideal for a

high strain rate deformation problem. The step time used

was 1e-6 s to ensure enough data points were collected to

form a smooth curve. Material properties used for model-

ing can be found in Tables 3 and 4.

The model is an axisymmetric representation of the sub-

size E8 dogbone specimen with a clamped boundary con-

dition on one end and a positive displacement boundary

condition on the other, resulting in the creation of a tensile

stress within the gage section, as seen in Fig. 18. The

dimensions match those of the sub-size E8 specimens used,

with minor simplifications (omitting the threads and

approximating the radius of curvature as a straight line). It

is composed of 405 quadrilateral linear axisymmetric ele-

ments (CAX4R in ABAQUS notation) with 492 nodes. A

predefined temperature field is used to apply the different

temperature states. The displacement boundary condition is

applied using a tabular amplitude based on target strain rate

calculations. Strain rate can be expressed:

_� ¼ d�

dt
ð33Þ

where a change in strain d� is occurring over a time step dt.

The strain expanded is:

� ¼ L� L0

L0

ð34Þ

where L is the current length of the gage section and L0 is

the original gage length. By substituting Eq. 34 and a time

step into Eq. 33, one can solve for a change in displacement

in the gage section.
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Fig. 17 The failure strains of treated 4130 steel are found at each

strain rate (500, 1000, 1800/s) for each temperature (23, 223, 466,

707 �C) and normalized against the triaxiality data at the chosen

reference triaxiality. These are plotted against the correlating

homologous temperature and fit linearly. As in the thermal m fitting,

each strain rate is plotted separately to allow for calibration. The slope

of the line is D5, and the calibrated value is 0.7162

Table 3 Mechanical, elastic, and thermal material properties of 4130

steel used for ABAQUS finite element simulation

Property Symbol Value

Density q 7850 kg/m3

Poisson’s ratio m 0.29

Elastic modulus E 160 GPa

Specific heat cp 523 J/kg �C
Inelastic heat fraction b 0.9

Table 4 Summary of Johnson–Cook Strength and damage coeffi-

cients calculated for treated 4130 steel

Strength coefficients Damage coefficients

A 673 MPa D1 -0.1895

B 190 MPa D2 0.7324

n 0.1538 D3 0.6633

C 0.017 D4 0.0291

m 1.07 D5 0.7162

Fig. 18 ABAQUS Explicit finite element model of an approximated

sub-size E8 dogbone specimen in tension subjected to the same

temperatures and strain rates the Split Hopkinson Bar specimens

experienced
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L� L0 ¼ _�L0dt ð35Þ

A tabular time-amplitude table was created By solving the

equation for 1000/s for a series of increasing time steps. By

adjusting the value of the U2 displacement, one could scale

the strain rate to a different strain rate (0.5 = 500/s, 1 =

1000/s, 1.8 = 1800/s).

The experimental and simulation results are plotted

against each other in Figs. 19, 20, and 21. Each fig-

ure features all temperatures (23, 223, 466, and 707 �C) run

at the same strain rate. Figure 19 shows the 500/s curves,

Fig. 20 shows the 1000/s curves, and Fig. 21 shows the

1800/s curves. Dashed lines indicate the simulated runs,

and solid lines indicate averaged experimental curves.

The 500/s curves all show good agreement between

experimental and simulated flow stresses at all tempera-

tures. The flow stress decreases as the run temperature

increases, which matches what is seen in experiments and

what is simulated. The simulated failure strains are larger

than what occurred experimentally for the 223 and 466 �C
runs, but are fairly close to the 23 and 707 �C experimental

curves. The simulations does show some thermal softening,

which becomes more prominent as the temperature

increases.

In the 1000/s curves, the flow stress shows good

agreement between simulated and experimental 223, 466,

and 707 �C curves, and the 23 �C curve is improves over

the 500/s runs. Again the failure strain is over-predicted in

simulations for 23 and 707 �C, but is very close to the 23

and 707 �C experimental runs.

The 1800/s flow stresses are spot on for the 23 and

707 �C curves. The noise in the 223 �C curves and the

466 �C curves makes it difficult to differentiate where

exactly they land, but the predicted flow stresses do give

reasonable predictions. As in the other cases, the failure

strain is still over-predicted for the mid-range temperatures,

but is a little under-predicted for the 23 �C experimental

failure strain, and ever more so for the 707 �C experi-

mental failure strain.

Discussion

The Johnson–Cook constitutive and damage coefficients

can be compared to other characterizations for similar

materials. Table 5 contains a few materials regularly used

in aerodynamic applications that have been characterized.
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Fig. 19 Stress–strain curve for 500/s impacts at various temperatures.

Dashed lines are experimental data, and solid lines are analytically

obtained through finite element analysis
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Fig. 20 Stress–strain curve for 1000/s impacts at various tempera-

tures. Dashed lines are experimental data, and solid lines are

analytically obtained through finite element analysis
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466°C 1800/s Sim. Data
707°C 1800/s Sim. Data
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Fig. 21 Stress–strain curve for 1800/s impacts at various tempera-

tures. Dashed lines are experimental data, and solid lines are

analytically obtained through finite element analysis
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Comparing the strength coefficients, the yield strength A

is a bit low, but is expected as per the specifications of the

the heat treatment. The strain hardening coefficients B and

n are lower than those compared, but match more closely

with materials like Tungsten or VascoMax 300 [3, 16]. The

strain rate coefficient C matches well with the other

materials, which all show little strain rate dependence on

flow stress. The thermal coefficient m is on the low side,

but is still reasonable.

Comparing the damage coefficients, void formation

coefficients D1, D2, and D3 are all within expected ranges.

The strain rate coefficient D4 is higher than the other

reported materials, indicating a stronger influence of strain

rate on the fracture strain. The thermal coefficient D5 is

also within the expected ranges, but is suspect since the

experimental fitting was not linear.

The values of the coefficients themselves are within the

expected ranges. When actually using them in the Johnson–

Cook model, it generally gives good results, but it is better

at some temperatures (room, 707 �C) than others (223 and

466 �C) for failure strains. Consider Table 6 for a com-

parison. The flow equation does give good results, though

the results at room temperature ares under-predicted.

Note that the first three temperatures, 23, 223, and

466 �C actually show a decrease in failure strain, then it

more than doubles at 707 �C. This could be for a number of

reasons. Steel is an allotropic material, and at raised tem-

peratures will undergo phase transformations altering its

structure and material behavior, notably ductility. The

highest temperature run in the experiment, 707 �C, is close

to the transformation temperature point of steel (732 �C).

The steel may be undergoing a phase change which

increases the ductility.

Published thermal properties of 4130 steel seem to

support this idea. Right around 700 �C, the specific heat

capacity begins to deviate from it’s previously linear trend

and starts to spike [40]. Figure 22 shows that right around

the highest experimental temperature, the behavior

deviates significantly. This most likely explains the sudden

uptake in ductility at 707 �C.

To attempt to improve the failure strain predictions, the

damage coefficients were calculated a second time

excluding the 707 �C data shown in Fig. 23. This changed

D5 from 0.7162 to -0.8053. The failure results are com-

pared in Table 7.

The failure strains are closer to the experimental values

and significantly more precise. This solution is only viable

for a the 23–466 �C temperature range though, so for

AFIT’s modeling efforts where the temperature reaches the

melting point, it is less than ideal for use.

There is another curiosity in addition to the non-linear

failure strains. At 466 �C the material exhibits high strain

rate sensitivity, raising the flow stress almost to the level of

the 223 �C curve. This is not seen as dramatically at any

other temperature.

Most likely this is a result of atomic interplay between

strain rate and thermal factors that the model is not built to

take into account. Fundamentally, plastic deformation is

caused by atomic movement driven by dislocation shifting

in a material’s microstructure. Predicting dislocation

movement is acknowledged to be extremely challenging, as

there are many different competing factors that may be

causing the shifts. Which factor is dominating is dependent

on the structural arrangement of the material and the

conditions the material is subjected to. However, knowl-

edge of the primary drivers can be critical to forming an

accurate model. For example, Couque showed in his

research that at strain rates over 1000/s, dislocation

movement switched from being thermally activated to

viscously activated. He was able to compensate for this in

his model and improve his results [41].

Figuring out the dislocation intricacies happening during

deformation, while extremely interesting, will be time

consuming and may not be the quickest approach for

addressing AFIT’s present modeling challenges. If the

Table 5 Comparison of

Johnson–Cook strength and

damage coefficients for various

metals

Coefficient 4340 steel [22] S7 tool steel [38] 1045 steel [39] Ti06Al4V [20] Treated 4130 steel

A 792 1539 553 862 673

B 510 476 600 331 190

n 0.26 0.18 0.23 0.34 0.15

C 0.014 0.012 0.013 0.012 0.017

m 1.03 1.00 1.00 0.80 1.08

D1 0.05 -0.8 0.06 -0.09 -0.19

D2 3.44 2.1 3.31 0.25 0.732

D3 -2.12 0.5 1.96 0.5 0.663

D4 0.002 0.002 0.002 0.014 0.029

D5 0.61 0.61 0.58 3.87 0.716
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fracture details are not of interest, the flow model does do a

good job and would be acceptable for modeling. However,

if the failure of the material is of interest, the damage

model does not seem to be a reliable option. This is

especially true considering that the material being model at

AFIT is at temperatures much higher than the ones run in

these experiments and the fracture does not occur in a

consistent manner.

The fact that the fracture behavior does not have a

consistent trend may mean that the Johnson–Cook model

may not be the best choice of a damage criterion for high

temperature applications. It may be worth investigating

other materials-based damage models for simulation pur-

poses, or doing additional characterization work at higher

temperatures to get an improved fit for a larger temperature

range. Another idea is to simply modify the Johnson–Cook

equation to fit the experimental results for this particular

material. This is a common practice, and a published

example can be found in Couque’s work [41].

Table 6 Failure Strains of 4130 steel as measured experimentally and as predicted using the Johnson–Cook failure equation, with calculated

percent differences

Temperature (�C) Strain rate Experimental failure strain Simulated failure strain Percent difference

23 570 0.455 0.419 7.91

23 1172 0.480 0.421 12.3

23 1793 0.493 0.415 15.8

223 497 0.363 0.454 25.1

223 1116 0.395 0.460 16.5

223 1761 0.356 0.463 30.1

466 542 0.295 0.496 68.1

466 1095 0.330 0.502 52.1

466 1757 0.304 0.508 67.1

707 525 0.686 0.536 21.9

707 1045 0.513 0.544 6.04

707 1680 0.706 0.547 22.5
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Fig. 22 Variation of 4130 specific heat capacity C with temperature.

Behavior of a and C begins differing right around 1300 �F, or roughly

700 �C [40]. Where the specific heat capacity suddenly peaks, the

thermal diffusivity dramatically dips
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Fig. 23 The failure strains of treated 4130 steel are found at each

strain rate (500, 1000, 1800/s) for each temperature (23, 223, 466 �C)

and normalized against the triaxiality data at the chosen reference

triaxiality. These are plotted against the correlating homologous

temperature and fit linearly. As in the thermal m fitting, each strain

rate is plotted separately to allow for calibration. The slope of the line

is D5, and the calibrated value is -0.8503
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Conclusions

This paper has shown the methodology used in determining

the parameters of a plastic strain rate formulation (John-

son–Cook Constitutive and Damage models). Results from

the coefficient solving are then used in a finite element

model and compared directly against experimental data.

The modeled curves are shown to generally have good

strength comparison over a large range of strain rates and

temperatures, however the results become less accurate at

lower temperatures. The damage model over-predicts mid-

temperature failure strains and does not track with the non-

linear failure strain behavior observed experimentally. The

Johnson–Cook damage criterion may need modifications to

more accurately predict failure of this particular steel.
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