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Abstract In this manuscript a novel strategy for distributed
and autonomous demand-side energy management among
users of a low-voltage micro-grid is developed. Its deriva-
tion is based on: a) modelling the energy consumption
scheduling of the shiftable loads that belong to a given user
as a noncooperative two-player game of incomplete infor-
mation, in which the user itself plays against an opponent
collecting all the other users of the same micro-grid; b)
assuming that each user is endowed with statistical informa-
tion about its behavior and that of its opponent, so that it can
choose actions maximising its expected utility. Numerical
results evidence the efficacy of the proposed strategy when
employed to manage the charging of electric vehicles in a
micro-grid.

Keywords Demand-side management · Game theory ·
Distributed algorithm · Smart grid · Plug-in hybrid electric
vehicle

Introduction

In recent years a number of research activities in the field
of optimization of smart power grids have addressed the
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problem of demand response (also known as demand side
management, DSM) and, in particular, the development
of new adaptation strategies that allow to match the load
demand of multiple residential end users to the power sup-
ply provided by a single load-serving entity [23]. Generally
speaking, demand response in a multiuser scenario can
be achieved by a) turning currently static consumers into
active consumers and producers (briefly, prosumers) able
to interact with an electric utility (providing time-varying
energy-pricing) in real time and b) scheduling the shiftable
appliances owned by such prosumers in a way that they are
activated in off-peak hours, so that the peak-to-average ratio
(PAR) in load demand is mitigated and the total energy cost
to the utility company is reduced. In developing novel tech-
niques for multiuser demand response, significant attention
has been paid to distributed strategies [6], since they allow
each prosumer to plan, on the basis of some information
(concerning energy pricing or the total hourly usage of other
prosumers), its load scheduling in an autonomous fash-
ion, so that message exchanges between the load serving
entity and the prosumer, or among the users are minimised.
Note that the availability of some form of information shar-
ing among prosumers is fundamental to coordinate their
scheduling actions. However, this need raises the problems
of a) developing a two-way data communication network
interconnecting different users and the utility, and b) pre-
serving prosumer privacy. The last issue is particularly
critical, since it is expected that prosumers are unwilling to
provide updated information about their real-time or daily
energy consumption.

In the technical literature various algorithmic approaches
have been proposed to solve the load scheduling problem in
a multiuser scenario (e.g., see Giannakis et al. ([6], p. 122)
and references therein); one of these approaches is based on
a fundamental theoretical tool, known as game theory [16].

http://crossmark.crossref.org/dialog/?doi=10.1007/s40866-016-0008-z&domain=pdf
mailto:matteo.sola@unimore.it
mailto:giorgio.vitetta@unimore.it


8 Page 2 of 15 Technol Econ Smart Grids Sustain Energy (2016) 1: 8

In particular, the problems of formulating energy consump-
tion scheduling as a multi-player game1 and of developing
autonomous and distributed DSM strategies minimizing
the energy costs have been investigated in Mohsenian-Rad
et al. [11]; Atzeni et al. [1]; Ramachandran et al. [14].
Note, however, that, on the one hand, the cooperative and
non cooperative strategies proposed in Mohsenian-Rad et al.
[11] and Atzeni et al. [1] rely on the assumption that a com-
plete knowledge about the users’ daily needs is available,
so that DSM can be formulated as a day-ahead optimization
process; on the other hand, the solution proposed in [14] is
based on the adoption of an auction mechanism taking place
in a stochastic energy market.

In this manuscript the problem of multiuser load schedul-
ing in a smart micro-grid (MG) scenario [3] is tackled and a
novel DSM strategy for load scheduling is developed resort-
ing to Bayesian game theory. The proposed strategy is based
on a) modelling each prosumer as a player in a repeated
two-player game of incomplete information; b) adopting
a simple virtual pricing model for the power exchanged
by each prosumer with the MG; c) employing a mixed
strategy for payoff maximization. As far as points a) and
b) are concerned, it is also worth mentioning that, unlike
Mohsenian-Rad et al. [11]; Atzeni et al. [1]; Ramachandran
et al. [14], the following assumptions are made in our game
model:

1. Each player does not know the energy scheduling or the
instant (or daily) energy consumption of all the other
prosumers of the same MG, but is only endowed with
statistical information about its and their future over-
all consumptions, so that it can select its actions on the
basis of an expected payoff (i.e., a Bayesian approach
is adopted). Such statistical information about the over-
all power flow in the MG are periodically broadcasted
by a MG supervisor which generates them by process-
ing energy consumption data provided by the MG users
with a fixed delay. This approach allows each prosumer
to operate in an autonomous fashion and to protect its
own privacy.

2. The proposed virtual pricing model refers to the power
flow between the MG and each of its prosumers. Our
focus on the power flow (instead of the energy flow
occurring in time slots of 1 h [1, 11]) is mainly moti-
vated by the highly dynamic nature of the energy supply
from renewable sources usually available in a MG.

It is important to point out that the application of Bayesian
game theory to the DSM problem in smart grids has been

1Applications of game theory to other optimization problems in smart
grid can be found in Saad et al. [15]; Pedrasa et al. [12]; Fouda et al.
[4].

first suggested by Saad et al. ([16], p. 99), where, how-
ever, no specific hint has been given for the development of
novel strategies based on this approach. As far as we know,
our manuscript represents the first contribution to that new
research area.

The remaining part of the manuscript is organized as fol-
lows. The MG model considered in our work is described in
“Micro-Grid Model”. A novel DSM strategy based on game
theory is developed in “Demand-Side Management Based
on Bayesian Game Theory”. Some performance results are
illustrated in “Numerical Results”, where its use in the
management of the recharge of plug-in electric vehicles
(PHEVs) in a MG [19, 22] is analysed.

Micro-Grid Model

In this manuscript we consider a low-voltage residential
smart MG, composed of N prosumers, i.e. distributed
energy producers sharing their resources and dealing with
an energy utility as a single entity (see Fig. 1). Our MG
model has the following relevant features:

– Each prosumer owns the following two types of power
loads: a) unshiftable loads (ULs) which can be turned
on at arbitrary instants of any day; b) shiftable (i.e.,
controllable) loads2 (SLs), whose activation can be
flexibly managed by properly scheduling them within a
specified time interval.

– Each prosumer is equipped with: a) distributed energy
resources (renewable energy sources, RESs, in the con-
sidered scenario); b) a power and data management unit
(called energy gateway, EG), which interfaces the pro-
sumer itself with the MG power and neighbourhood
data network (NAN), controlling local energy sources
and managing some SLs through a home data network
(HAN). Moreover, the n-th prosumer’s EG (with n =
1, 2, ..., N ) provides real time monitoring of the power
pn (t) exchanged by the prosumer itself at time t with
the MG; this quantity is positive (negative) if the power
is absorbed from (supplied to) the MG and satisfies the
inequality

P (n)
g,max < pn (t) < P (n)

a,max (1)

that holds at an arbitrary instant t ; here P
(n)
a,max (P (n)

g,max)
represents the maximum absorbed (generated) power by
the n-th prosumer. It is important to point out that the
power pn (t) can be expressed as

pn (t) = p(r)
n (t) + p(s)

n (t) , (2)

2The specific case of PHEVs to be periodically recharged at prosumer
premises is considered in name “Numerical Results” for its practical
interest [7].
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Fig. 1 Architecture of the
considered MG

where p
(r)
n (t) is a random term accounting for both

the power supplied by the renewable energy sources
of the considered prosumer and the power absorbed by
its ULs, whereas p

(s)
n (t) is a deterministic term exclu-

sively due to its SLs (whose power consumption and
activation time are perfectly known to the prosumer
itself).

– The following rules are applied by each prosumer in
handling its renewable energy sources and SLs: a) as
suggested in other technical papers (e.g. see Li and
Jayaweera [10]), the renewable energy generated by
itself is exploited to meet its own immediate needs, so
that it absorbs power from the MG when it does not
own renewable energy sources or such sources are tem-
porarily insufficient to satisfy such needs; b) it employs
a distributed and noncooperative strategy for the man-
agement of its SLs, so that real time information about
the activation of such loads (and, generally speaking,
about its power consumption) is not explicitly shared
with all the other MG prosumers.

– The MG interfaces with a public utility by means of a
MG supervisor (MGS), i.e., an upgraded EG capable
of three-phase operation at higher power level, and a
backhaul network (BN). The MG supervisor supervises
the overall behavior of the prosumer community (i.e.,
acts as a MG supervisor) to ensure that MG operation
always conforms to utility requirements and exchanges
useful information with the EGs of the whole MG
through the NAN. In particular, the MG monitors the
overall power

pT (t) =
N∑

n=1

pn (t) (3)

exchanged by all prosumers with the utility; this quan-
tity is subject to the constraint

Sr < pT (t) < Sm (4)

at any instant t ; here Sm (>0) represents the maximum
power that can be absorbed from the public utility and

Sr �
N∑

n=1

P (n)
g,max < 0 (5)

is the maximum power (originating from the MG
renewable energy sources) that can be delivered to the
utility itself.

Demand-Side Management Based on Bayesian
Game Theory

In this Section a brief description of our game model is pro-
vided and, on the basis of this model, a mixed strategy for
the activation of SLs is developed.

Rules and Description of the Game

In the derivation of our strategy the following assump-
tions are made: 1) the EGs of the MG prosumers do not
exchange information, but are able to listen to common
signals, originating from the MG supervisor and provid-
ing proper statistical information about the expected future
power consumption/generation in the MG; 2) when an EG
receives the request of activating a SL from the associated
prosumer, it autonomously decides whether to turn the load
itself on or not; 3) the time axis of any prosumer is divided
in slots to ease the modellization of prosumer actions (the
slot duration is denoted Ts in the following).

Our main goal is mitigating PAR in load demand, while
trying to satisfy most of (if not all) the requests of activa-
tion of SLs submitted by multiple MG prosumers to their
EGs in a certain time interval. To reach this goal, we need to
devise a management strategy for SLs such that: a) if mul-
tiple requests are submitted for turning them on in the same
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interval, their activations are properly scheduled; b) it oper-
ates in a distributed and noncooperative fashion, so that any
explicit information sharing among the MG prosumers is
avoided. To develop this strategy, in the following we focus
on the management of the SLs owned by the n-th prosumer
and assume that: a) this prosumer requests its EG the activa-
tion of its l-th SL (with l ∈ {0, 1, ..., N(n)

sl − 1}, where N
(n)
sl

is the overall number of its SLs) at the time instant t
(n)
l,0 ; b)

if this SL was activated, this would entail the future absorp-
tion3 of P

(n)
l W for T

(n)
l s. The n-th prosumer’s EG (the

n-th EG, briefly), after receiving this request, has to face
an activation dilemma, since it must select one of the fol-
lowing two options: a) satisfy this request; b) reject it (so
that the SL activation is postponed). In our work this EG
is modelled as a player (dubbed player #1 in the follow-
ing), behaving in a rational and selfish fashion, and whose
action set consists of two distinct options, namely “turning
the load on” (briefly, ON) or “keeping it off ” (briefly, OFF).
Moreover, since this EG competes with all the MG other
prosumers in the exploitation of the available energy
resources, the community of the remaining (N − 1) pro-
sumers can be modelled as a single fictitious opponent,
called player #2 in the following and characterized by the
overall power flow

p−n (t) � pT (t) − pn (t) =
N∑

l=1
l �=n

pl (t) , (6)

with

P (−n)
g,max < p−n (t) < P (−n)

a,max, (7)

where P
(−n)
a,max > 0 and P

(−n)
g,max ≤ 0 represent the maxi-

mum absorbed and generated powers, respectively, of the
opponent itself; note that p−n (t) > 0 (< 0) if player #2
absorbs power from (supplies power to) the MG. These con-
siderations have led us to the conclusion that a two player
game model, in place of a substantially more complicated
N player model, can be adopted to describe the interactions
of the n-th prosumer with the rest of the MG. From the n-th
EG (i.e., player #1) perspective, a complete description of

3Note that a pessimistic model for the power consumption profile of
the l-th SL is employed in our work for any l, since, in practice, P (n)

l

represents the maximum power absorbed by such a SL in its activation
interval. This model has been useful in our computer simulations, since
it has allowed us to simplify the computation of the integrals involved
in the strategy we propose. In principle, as it will become clearer in
the following, more realistic profiles could be adopted in our strategy
to improve its accuracy in the management of the MG SLs. However,
this result would be achieved at the price of an increased computa-
tional cost, since the use of a smaller step size in all the numerical
integrations in the time variable t should be required.

this game requires the evaluation of the payoffs associated
with the above mentioned couple of different actions. In the
following, we assume that:

– If player #1 decides to keep its l-th SL off, the payoff
associated with this action is equal to 0 regardless of
the power absorption/generation of the n-th prosumer
and that of all the other prosumers. This choice is moti-
vated by fact this action does not change the operating
conditions of the MG.

– If player #1 decides to turn its l-th SL on, the associated
payoff EPn depends on the expected future behav-
ior of both the n-th prosumer itself and its fictitious
opponent (for this reason, EPn represents an expected
payoff ). In other words, in our model this payoff is
influenced by the statistics of the future power con-
sumption/generation characterizing the whole prosumer
community.

The expression derived for EPn in the following part of this
Section relies on:

1. A simple economic model (i.e., a pricing model) which
establishes that the provision of a service, namely a
power exchange between a prosumer and the MG, is
paid or rewarded with an economic counterpart, rep-
resented by a certain amount of virtual currency,4

expressed in monetary units (mus).
2. The availability of some specific statistical information

at the n-th EG.

Economic Model

As far as point 1) is concerned, we assume that any power
exchange of player #1 with the MG entails a variation in
the total amount of virtual currency owned by itself. In our
model such a variation depends by the MG state and a
specific utility function (called cost function in the follow-
ing). This functions describes the dependence of the rate of
change of the overall amount of the virtual currency owned
by player #1 on both the powers pn (t) and p−n (t). In
particular, in the following it is assumed that:

– The proposed cost function is influenced by the MG
operating conditions, which are represented by a single
state variable; such a variable can take on two different
values only, for simplicity.5 In particular, at any time

4Such a cost/profit can be certainly related to the real cost/profit
but, generally speaking, is evaluated according to different rules, as
explained in more detail below.
5Note that, as it will become clearer in the following, our approach can
be easily extended to the case in which a larger number of MG states
is assumed.
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instant t the MG can operate in its normal state (briefly,
state 0) characterized by

pT (t) ≤ Sc, (8)

where Sc denotes a proper positive power threshold, and
a stress state (briefly, state 1) characterized by

Sc < pT (t) < Sm. (9)

In practice, the former state corresponds to normal oper-
ating conditions for the MG, whereas the latter one is
characterized by a significant power absorption and,
consequently, by some risk of blackout.

– The cost function is given by

C (pn/p−n) � −ωA (pT ) · max (pn, 0)

−ωG (pT ) · min (pn, 0)

+ωF (pn, p−n) · g (pn, p−n) (10)

and expresses, for a given p−n (i.e., for a given overall
absorption/generation of player #2) the cost (if nega-
tive) or reward (if positive) in mu/s associated with the
power flow pn.6 In the last expression the first term rep-
resents the cost associated with the power absorbed by
player #1 from the MG, the second one the profit com-
ing from the power supplied by player #1 to the MG,
the third one is a fairness term relating the instanta-
neous power absorption/supply of player #1 with that
of player #2, and ωA (pT ), ωG (pT ) and ωF (pT ) are
3 distinct weight functions (expressed in mu/J), whose
parameters can be adjusted by the MG supervisor (and
broadcasted to all the prosumers) in order to influence
prosumers’ behavior and, in particular, to discourage
them from buying and selling power at the same time in
order to enrich themselves without giving a real power
contribution to the MG.

In our model specific choices have been made for the func-
tions appearing in Eq. 10. In particular, the expression

ωX (pT ) �
{

ω
(i)
X for pT ≤ Sc

ω
(i)
X + ω

(i)
X (pT − Sc)/Sc forpT > Sc

(11)

with X = A or G, where i = 0 (1) in the normal (stress)
state, and ω

(0)
X and ω

(1)
X denote positive parameters, has been

selected for the weight functions of the first two terms con-
tained in the right-hand side (RHS) of Eq. 10. This choice
ensures that, for a given value of pn, the cost or reward in
mu/s remains constant until the MG works in its normal
state; on the contrary, if the MG enters its stress state (i.e., if
pT crosses the threshold Sc), such a cost (reward) increases

6Note that in the following the dependence of powers on the time
variable t is often omitted to ease the reading.

linearly7 with the deviation of pT from Sc in order to dis-
courage (encourage) player #1 to absorb further power from
(supply further power to) the MG if pn > 0 (pn < 0). The
selection of the third term of the RHS of Eq. 10 deserve var-
ious comments. First of all, in formulating a mathematical
expression for this term, it has been assumed that it comes
into play only if the overall power absorption or generation
in the MG is significant and, in particular, if |pT | > SL,
where SL is a positive power threshold not exceeding Sc; in
other words

g (pn, p−n) = 0 (12)

for | pn + p−n |≤ SL. Moreover, the following two cases
have been considered: a) pn and p−n have the same sign
(i.e., sgn (pn p−n) = 1); b) pn and p−n have opposite signs.
In case a), since both players are absorbing power from
(or supplying power to) the MG, player #1 should be dis-
couraged to absorb (supply) further power in order to avoid
an overload (energy overproduction). For this reason, in
these conditions the fairness term should represent an addi-
tional cost charged to player #1; in our model such a cost is
assumed to be proportional to the product between the devi-
ation of |pT | from SL (i.e., the difference (|pT | − SL)) and
the ratio

r (p̃n, p̃−n) �
|p̃n|

|p̃n| + |p̃−n| , (13)

which quantifies the fraction of power absorbed or sup-
plied by player #1 itself; here, p̃n � pn/P

(n)
a,max (p̃n �

pn/P
(n)
g,max) for pn > 0 (pn < 0) and p̃−n � p−n/P

(−n)
a,max

(p̃−n � p−n/P
(n)
g,max) for p−n > 0 (p−n < 0) denote

normalised powers.8 On the contrary, in case b) player
#1 should be encouraged to absorb (supply) further power
from (to) the MG, since its opponent is supplying power
to (absorbing power from) the MG and MG power needs
should be satisfied as much as possible exploiting local
renewable energy sources. For this reason, in these condi-
tions the fairness term should represent a reward for player
#1; in our model such a reward is assumed to be propor-
tional to the product between the deviation (|pT |−SL)) and
the function

h (p̃n, p̃−n) � |p̃n · p̃−n| . (14)

Note that the last factor ensures that, for a given p̃n, the gain
for player #1 increases with |p̃−n|; this means, for instance,
that, if player #1 is consuming a portion of the power gener-
ated by the renewable energy sources owned by player #2,

7Other options can be considered for the function ωX (pT ) (11); our
simulation results have evidenced, however, that it achieves a good
tradeoff between performance and computational complexity.
8Note that the use of such normalised powers is motivated by the need
of putting the two players on the same footing in our game model when
assessing fairness in the exploitation of energy resources.
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Fig. 2 Trend of the cost
function C (pn/p−n) (10)
employed in our game model

its reward will increases as this power gets larger. All these
considerations lead to the expression

g (pn, p−n) � −sgn (pn p−n) u
[|pn + p−n| − SL

] ·
[|pn + p−n| − SL

]
f (p̃n, p̃−n) , (15)

where u[·] represents the unit step function and

f (p̃n, p̃−n) �
{

r (p̃n, p̃−n) ifsgn (pn p−n) = 1
h (p̃n, p̃−n) elsewhere

. (16)

Moreover, to further stress the difference between the above
mentioned cases a) and b), the factor ωF (pn, p−n) appear-
ing in Eq. 10 is defined as

ωF (pn, p−n) �
{

ωF,0 ifsgn (pn p−n) = 1
ωF,1 elsewhere

, (17)

where ωF,0 and ωF,1 are positive parameters. Figure 2
shows the typical trend exhibited by the cost function
C (pn/p−n) (10) when the choices (11), (13)–(16) are made
(the values selected for the parameters ω

(0)
A , ω(1)

A , ω(0)
G , ω(1)

G ,
ωF,0 and ωF,1 are listed in Table 1 of “Numerical Results”);
in analysing this trend, it should be kept into account that
the function g (pn, p−n) takes on negative (positive) values,

that is it is entails a reduction (increase) in the overall
amount of stored virtual currency, when pn and p−n are
concordant (discordant).

Statistical Information Available to MG Prosumers

As far as point 2) (i.e., the statistical information avail-
able to the n-th EG) is concerned, we assume that player
#1 is endowed with the knowledge of two different prob-
ability density functions (pdfs), one related to the overall
power flow in the MG, the other one to the behavior
exhibited by the n-th prosumer. In particular, the n-th EG
statistical knowledge about the whole MG is condensed
in:

1. The first order probability density function (pdf)
f

p
(i)
T

(x; τ) (with τ > t ) referring to the overall power

p
(i)
T (t) absorbed by the MG or supplied to the public

utility in the absence of DSM.
2. The first order pdf f

p
(r)
n

(x; τ) of the random portion

p
(r)
n (t) of pn (t) (see (2)).

Table 1 Values of the main
parameters characterising the
considered MG and the
proposed DSM strategy

MG Cost function

Parameter Value Parameter Value

N 100 ω
(0)
A = ω

(0)
G 30 mu/J

P
(n)
g,max −3 kW ω

(1)
A = ω

(1)
G 200 mu/J

P
(n)
a,max 6 kW ω

(0)
F 10 mu/J

Sm 0.7 · N · P
(n)
a,max W ω

(1)
F 4.5 mu/J

Sr N · P
(n)
g,max W Sc Sm

SL 0.25 · Sm W

T
(n)
l 6 h Activation probability

TD 24 h Parameter Value

Ts 15 mins Ps 0.90, 0.95

δ 0.75
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Actually, as it will become clearer below, what is really
needed in our derivation of the payoff EPn is the knowl-
edge of the joint pdf f

p
(r)
n ,p

(i)
−n

(x, y; τ). In the following we

assume that this pdf can be factored as

f
p

(r)
n ,p

(i)
−n

(x, y; τ) = f
p

(r)
n

(x; τ) f
p

(i)
−n

(y; τ) , (18)

since the statistical behavior of p
(i)
−n is influenced by that

of a number of prosumers (forming player #2), that, gener-
ally speaking, may exhibit different habits in terms of power
consumption/generation than those characterising player #1.

It is also important to point out that in any real world
implementation of the proposed approach specific learning
algorithms need to be developed for estimating the above
mentioned pdfs on the basis of load/generation data. In
particular, we note that:

– On the one hand, the pdf f
p

(i)
T

(x; τ) can be estimated

by the MG supervisor and then its description (based on
a parsimonious parametric representation of this func-
tion) can be periodically (e.g., once every hour or once
every half an hour) broadcasted to all the prosumers.
This task unavoidably requires the exact knowledge of
the past consumption habits of all the prosumers and, in
particular, of a) the time instants at which any prosumer
would like to instantly turn on its SLs and b) the power
absorption these activations would entail. For this rea-
son, each of the MG EGs is expected to memorise the
above mentioned data and periodically send them to the
MG supervisor with a certain delay (so that the real
time or day ahead loads of the MG prosumers remain
unknown to potential eavesdroppers and privacy is sub-
stantially preserved). Once the required data have been
acquired, refined machine learning tools and, in par-
ticular, regression models can be exploited by the MG
supervisor to reliably predict the statistical behavior of
a prosumer community on the basis of both these data
and weather forecasts (e.g., [2, 8, 13, 18, 20, 21]).

– On the other hand, the estimation of the pdf f
p

(r)
n

(x; τ)

can be accomplished by the n-th prosumer’s EG storing
its real time consumption data over a number of dif-
ferent days and exploiting machine learning tools for a
reliable prediction of the statistics of p

(r)
n (t).

– The approximation f
p

(i)
−n

(y; τ) ∼= f
p

(i)
T

(x; τ) can be

adopted for the evaluation of the payoff EPn if the
number N of MG prosumers is large.

Evaluation of the Expected Payoff

Given C (pn/p−n) (10) and the knowledge of the statistical
information described above, the expected payoffEPn asso-
ciated with the ON action can be evaluated as follows. First,
the expected overall cost ECn(p

(s)
n ; t

(n)
l,0 , t

(n)
l,1 ) charged to

player #1 in the interval [t (n)
l,0 , t

(n)
l,1 ] (with t

(n)
l,1 � t

(n)
l,0 + T

(n)
l )

for its power flow is defined as the integral of the cost func-
tion C (pn/p−n) (10), averaged with respect to both p

(r)
n (t)

and p
(i)
−n(t), over the interval [t (n)

l,0 , t
(n)
l,1 ], i.e. as (note that

pn (t) < Sm − p−n (t); see Eqs. 4 and 6)

ECn

(
p

(s)
n ; t

(n)
l,0 , t

(n)
l,1

)

�
∫ t

(n)
l,1

τ=t
(n)
l,0

∫ Sm−P
(n)
a,max

x2=P
(−n)
g,max

∫ min(P (n)
a,max ,Sm−x2)

x1=P
(n)
g,max

C (x1/x2)

·f
p

(r)
n ,p

(i)
−n

(
x1 − p

(s)
n (τ ) , x2; τ

)
dx1dx2dτ.

(19)

Then, the expected payoff EPn associated with the ON
action of player #1 is defined asthe difference between the
expected cost resulting from the activation of the considered
load at t = t

(n)
l,0 and that associated with keeping it off, i.e.

as

EPn

(
p

(s)+
n , p

(s)−
n ; t

(n)
l,0 , t

(n)
l,1

)
� ECn

(
p

(s)+
n ; t

(n)
l,0 , t

(n)
l,1

)

−ECn

(
p

(s)−
n ; t

(n)
l,0 , t

(n)
l,1

)
,

(20)

where p
(s)+
n (t) and p

(s)−
n (t) denote the function p

(s)
n (t)

(see Eq. 2) associated with the ON action and the
OFF action, respectively. A simplified expression for
EPn(p

(s)+
n , p

(s)−
n ; t

(n)
l,0 , t

(n)
l,1 ) (20) can be derived as follows.

First of all, substituting (18) in (19) yields

ECn

(
p

(s)
n ; t

(n)
l,0 , t

(n)
l,1

)

∼= ∫ t
(n)
l,1

τ=t
(n)
l,0

∫ Sm−P
(n)
a,max

x2=P
(−n)
g,max

f
p

(i)
−n

(x2; τ)

· ∫ min(P (n)
a,max ,Sm−x2)

x1=P
(n)
g,max

C (x1/x2)

·f
p

(r)
n

(
x1 − p

(s)
n (τ ) ; τ

)
dx1dx2dτ.

(21)

A further simplification can be obtained by replacing
min(P (n)

a,max, Sm − x2) with P
(n)
a,max in the upper limit of the

innermost integral appearing in the RHS of the last for-
mula; note that this approximation is motivated by the fact
that the integrand function takes on negligible values in the
region which has been included in integration domain by
modifying the above mentioned limit. This produces

ECn

(
p

(s)
n ; t

(n)
l,0 , t

(n)
l,1

)

∼= ∫ t
(n)
l,1

τ=t
(n)
l,0

∫ Sm−P
(n)
a,max

x2=P
(−n)
g,max

f
p

(i)
−n

(x2; τ)

· ∫ P
(n)
a,max

x1=P
(n)
g,max

C (x1/x2) · f
p

(r)
n

(
x1 − p

(s)
n (τ ) ; τ

)
dx1dx2dτ.

(22)

Finally, substituting (22) in the RHS of Eq. 20 yields, after
some manipulation,

EPn

(
p

(s)+
n , p

(s)−
n ; t

(n)
l,0 , t

(n)
l,1

)

∼= ∫ Sm−P
(n)
a,max

p−n=P
(−n)
g,max

β
(
p−n, p

(s)+
n p

(s)−
n ; t

(n)
l,0 , t

(n)
l,1

)
dp−n,

(23)
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where

β
(
p−n, p

(s)+
n , p

(s)−
n ; t

(n)
l,0 , t

(n)
l,1

)

�
∫ t

(n)
l,1

τ=t
(n)
l,0

f
p

(i)
−n

(p−n; τ)
∫ P

(n)
a,max

x=P
(n)
g,max

C (x/p−n )
[
f

p
(r)
n

(
x − p

(s)+
n (τ ) ; τ

)

−f
p

(r)
n

(
x − p

(s)−
n (τ ) ; τ

)]
dx dτ

(24)

can be interpreted as an expected cost density, since it shows
how the expected overall cost EPn(p

(s)+
n , p

(s)−
n ; t

(n)
l,0 , t

(n)
l,1 )

(23) distributes over the p−n axis in the reference interval
[t (n)

l,0 , t
(n)
l,1 ]. Actually, in our work a generalized expression of

β(p−n, p
(s)+
n , p

(s)−
n ; t

(n)
l,0 , t

(n)
l,1 ) (24), including a discount

factor δ (0 < δ < 1) [5], has been employed. This choice
is motivated by the fact that: a) in our model the game is
repeated by player #1 every Ts s until the l-th SL is turned
on or a maximum activation delay is reached; b) gener-
ally speaking, the activation interval of the considered load
covers N

(n)
l slots (i.e., T

(n)
l = N

(n)
l Ts); c) the quantity

β(p−n, p
(s)+
n , p

(s)−
n ; t

(n)
l,0 , t

(n)
l,1 ) (24) can be expressed as the

sum of N
(n)
l terms, each referring to a distinct time slot and

to which a weight decreasing exponentially with the slot
index can be assigned [5]. This leads to the new expression

β̃
(
p−n, p

(s)+
n , p

(s)−
n ; t

(n)
l,0 , t

(n)
l,1

)

= 1−δ

1−δ
N

(n)
l

∑N
(n)
l −1

z=0 δz·
βz

(
p−n, p

(s)+
n , p

(s)−
n ; t

(n)
l,0

)
dp−n

(25)

for the expected cost density, where

βz

(
p−n, p

(s)+
n , p

(s)−
n ; t

(n)
l,0

)

� β
(
p−n, p

(s)+
n , p

(s)−
n ; t

(n)
l,0 + zTs, t

(n)
l,0 + (z + 1)Ts

)
.

(26)

In our game model the goal of player #1 is the maximization
of its expected payoffEPn. For this reason, the optimal pure
strategy for the n-th prosumer can be formulated as

t̂
(n)
l,0 = arg max

t̃
(n)
l,0 ∈S

(n)
0

EPn(p
(s)+
n , p(s)−

n ; t̃
(n)
l,0 , t̃

(n)
l,0 + T

(n)
l ), (27)

where S
(n)
0 = {tp|tp = t

(n)
l,0 +pTs; p = 0, 1, ...} is the set of

all the possible activation instants. Note that the dependence
of the expected payoff EPn(p

(s)+
n , p

(s)−
n ; t

(n)
l,0 , t

(n)
l,1 ) on the

power consumption originating from all the other prosumers
makes the derivation of an equilibrium point for the strategy
(27) a non trivial task.

In our work, however, we decided not to adopt the
strategy expressed by Eq. 27 for the following reasons:

– As already mentioned above, an updated estimate of
the pdf f

p
(i)
−n

(y; τ) is periodically broadcasted by the

MG supervisor and, similarly, an estimate of the pdf

f
p

(r)
n

(x; τ) is evaluated by the n-th EG at least on a
daily basis. For this reason, the cost function appearing
in the RHS of Eq. 27 may take on substantially differ-
ent values if computed at different epochs and needs to
be recomputed any time the above mentioned pdfs are
updated.

– The n-th prosumer could be interested in the activation
of multiple SLs it owns (e.g., an air conditioner and a
PHEV) in the same time interval; this need should be
efficiently managed.

These considerations and some previous work on node man-
agement in cooperative communications [17, Sec. 5] have
led us to developing themixed strategy illustrated in the next
Paragraph.

Proposed Mixed Strategy

In our game model player #1 repeats the game at the instants
t
(n)
p = t

(n)
l,0 + pTs , with p = 0, 1, ..., Kn − 1, until it

opts for the ON action or the maximum number Kn of
consecutive attempts is reached. In the p-th attempt (with
p = 0, 1, ..., Kn −1) the selection of a specific action in the
given action set is randomized and, in particular, is based
on the probabilities P

(n)
on [p] and (1 − P

(n)
on [p]) assigned to

the ON and OFF actions, respectively; here P
(n)
on [p] repre-

sents the activation probability for the n-th prosumer in the
considered attempt. It is important to point out that:

– Given the set of probabilities {P (n)
on [p] ; p =

0, 1, ..., Kn − 1}, the probability P
(n)
s of a success (i.e.,

the probability that the ON action is selected in Kn

attempts) is given by

P (n)
s = P (n)

on [0]+
Kn−1∑

l=1

P (n)
on [l]

l−1∏

k=1

(
1 − P (n)

on [k]
)

(28)

– If P
(n)
on [p] did not change over the Kn attempts, i.e.

P
(n)
on [p] = P

(n)
on for any p, the last formula would

produce

P (n)
s = 1 −

(
1 − P (n)

on

)Kn

, (29)

then, in this case, the activation probability

P (n)
on = 1 −

(
1 − P (n)

s

)1/Kn ∼= P
(n)
s

Kn

(30)

should be selected in each attempt to ensure a probabil-
ity of success equal to P

(n)
s .

Our mixed strategy aims at adjusting the probabilities
{P (n)

on [p] ; p = 0, 1, ..., Kn − 1} in a way that the reduction
in the expected payoff EPn(p

(s)+
n , p

(s)−
n ; t

(n)
l,0 , t

(n)
l,1 ) (i.e., the

decrease in the virtual currency owned by the n-th pro-
sumer) evaluated on the basis of the expected cost density
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(25), isminimized, on the average, over the set of prosumers.
The derivation of this strategy has been partially inspired by
Sergi and Vitetta [17] and can be motivated as follows. To
begin, let us define the daily average (tb denotes the begin-
ning of the considered day and TD = 86400 s its duration)

β̄
(
p−n, p

(s)+
n , p

(s)−
n

)

� 1
TD

∫ TD+tb
τ=tb

β̃
(
p−n, p

(s)+
n , p

(s)−
n ; τ, τ + T

(n)
l

)
dτ.

(31)

of the expected cost density β̃(p−n, p
(s)+
n , p

(s)−
n ; t

(n)
l,0 , t

(n)
l,1 )

(25) and the function

ϕ
(
p−n, p

(s)+
n , p

(s)−
n ; t

(n)
l,0 , t

(n)
l,1

)

� β̃
(
p−n, p

(s)+
n , p

(s)−
n ; t

(n)
l,0 , t

(n)
l,1

)
−β̄

(
p−n, p

(s)+
n , p

(s)−
n

)
,

(32)

which expresses, for a given p−n, the deviation of this
expected cost density from its average. Then, the deviation
of the expected payoff EPn(p

(s)+
n , p

(s)−
n ; t

(n)
l,0 , t

(n)
l,1 ) from its

daily average in the considered time interval (t
(n)
l,0 , t

(n)
l,1 ) can

be expressed as

�EPn(p
(s)+
n , p

(s)−
n ; t

(n)
l,0 , t

(n)
l,1 )

� EPn(p
(s)+
n , p

(s)−
n ; t

(n)
l,0 , t

(n)
l,1 ) − EP n(p

(s)+
n , p

(s)−
n )

= ∫ Sm−P
(n)
a,max

p−n=P
(−n)
g,max

ϕ
(
p−n, p

(s)+
n , p

(s)−
n ; t

(n)
l,0 , t

(n)
l,1

)
dp−n,

(33)

where

EP n(p
(s)+
n , p

(s)−
n )

�
∫ Sm−P

(n)
a,max

p−n=P
(−n)
g,max

β̄
(
p−n, p

(s)+
n , p

(s)−
n

)
dp−n.

(34)

The integration domain�(n) = [P (−n)
g,max, Sm−P

(n)
a,max] of the

integral appearing in the RHS of Eq. 33 can be partitioned
into the set

	(n) �{
p−n|p−nε�

(n), ϕ
(
p−n, p

(s)+
n , p

(s)−
n ; t

(n)
l,0 , t

(n)
l,1

)
< 0

}

(35)

and its complement 	(n) with respect to �(n); consequently,
(33) can be rewritten as

�EPn(p
(s)+
n , p

(s)−
n ; t

(n)
l,0 , t

(n)
l,1 )

= ∫
	(n) ϕ

(
p−n, p

(s)+
n , p

(s)−
n ; t

(n)
l,0 , t

(n)
l,1

)
dp−n

− ∫
	(n)

∣∣∣ϕ
(
p−n, p

(s)+
n , p

(s)−
n ; t

(n)
l,0 , t

(n)
l,1

)∣∣∣ dp−n.

(36)

Note that the first term appearing in the RHS of the last
expression, being positive, provides an improvement in
terms of virtual currency, whereas the second one, namely

−
∫

	(n)

∣∣∣ϕ
(
p−n, p

(s)+
n , p(s)−

n ; t
(n)
l,0 , t

(n)
l,1

)∣∣∣ dp−n, (37)

being of opposite sign, accounts for a loss of virtual cur-
rency. Let us now set an equilibrium point in our game
model by defining a reference power level, denoted P̄r , for
the overall power flow pT (t) (3) (and, consequently, for
p−n (t) (6), since p−n (t) ∼= pT (t)). Then, let us parti-
tion the integration domain 	(n) (35) in the (not necessarily
connected) sets

	
(n)
+ �

{
p−n|p−n ∈ 	(n), p−n > P̄r

}
(38)

and

	
(n)
− �

{
p−n|p−n ∈ 	(n), p−n < P̄r

}
(39)

and define the error signal

en [p] �
∫
p−nε	

(n)
−

∣∣∣ϕ
(
p−n, p

(s)+
n , p

(s)−
n ; t

(n)
l,0 , t

(n)
l,1

)∣∣∣ dp−n

− ∫
p−nε	

(n)
+

∣∣∣ϕ
(
p−n, p

(s)+
n , p

(s)−
n ; t

(n)
l,0 , t

(n)
l,1

)∣∣∣ dp−n.

(40)

It is important to point that:

– The two integrals appearing in the last formula rep-
resent the areas of specific regions subtended by the
function ϕ(p−n, p

(s)+
n , p

(s)−
n ; t

(n)
l,0 , t

(n)
l,1 ) (32), as exem-

plified by Fig. 3, which refers to the MG scenario
described in “Numerical Results” and to a case in which
a positive value is obtained for en [p] (40).

– From the definition (40) it can be easily inferred that,
if en [p] is positive, the n-th prosumer expected loss
associated with a MG power absorption larger than P̄r

(i.e., with a MG operating above its equilibrium point)
is smaller than that expected in the opposite case.

Fig. 3 Representation of the function ϕ(p−n, p
(s)+
n , p

(s)−
n ; t

(n)
l,0 , t

(n)
l,1 )

(32) versus p−n for the recharge of a PHEV in a specific time interval
(the scenario described in “Numerical Results” is considered). The ref-
erence power power threshold P̄r and the areas measured by the two
integrals appearing in the RHS of Eq. 40 are also shown. Note that in
this case a positive value is obtained for en [p], since the area associ-
ated with the domain 	

(n)
+ (38) (area of the red region) is smaller than

that associated with 	
(n)
− (39) (area of the blue region)



8 Page 10 of 15 Technol Econ Smart Grids Sustain Energy (2016) 1: 8

Consequently, when en [p] is positive, player #1 should
be encouraged to make the activation of its l-th SL more
likely by increasing the activation probability P

(n)
on [p]; of

course, the opposite should occur when en [p] is negative.
These considerations suggest to develop a strategy based
on the signal en [p] for the adaptation of P

(n)
on [p] (with

p = 0, 1, ..., Kn − 1), which, on the basis of what has been
just illustrated, should exhibit a monotonically increasing
dependence on such a signal. In our work the formula

P (n)
on [p] = P̄n + γnẽn [p] (41)

has been adopted for its simplicity; here, P̄n defines a ref-
erence probability level, γn is a real positive parameter and

ẽn [p] � �n (en [p]) , (42)

where

�n (e) �

⎧
⎨

⎩

−P̄nγ
−1
n for e < −P̄nγ

−1
n

e for − P̄nγ
−1
n < e < (1 − P̄n)γ

−1
n

(1 − P̄n)γ
−1
n for e > (1 − P̄n)γ

−1
n

(43)

represents a (prosumer-dependent) clipping function, intro-
duced to limit the range of Pon [p], evaluated on the basis of
Eq. 41, to the interval [0, 1]. The use of Eq. 41 requires the
knowledge of the parameters P̄n and γn . In practice, in our
work

P̄n = P
(n)
s

Kn

(44)

has been selected for the reference probability level, as
suggested by Eq. 30; in other words, the value assigned
to P̄n corresponds to that each element of the sequence
{P (n)

on [p]} should take on if all the attempts made by the
n-th EG were equally likely (note that a large Kn should
be always expected). On the contrary, the optimization
approach adopted in the evaluation of γn is based on the fol-
lowing considerations. Substituting (42) in (41) and (41) in
(28) yields the expression

P
(n)
s = fs

(
P̄n, γn

) = P̄n + γn�n (en [0])
+ ∑Kn−1

l=1

[
P̄n + γn�n (en [l])

]

· ∏l−1
k=1

(
1 − P̄n − γn�n (en [k])

)
,

(45)

which shows that the probability P
(n)
s exhibits a com-

plicated nonlinear dependence on the parameter γn (note
that a change in the value of this parameter modifies the
thresholds appearing in the function �n (e) (43)). The rela-
tionship between the desired probability of success P

(n)
s

and the couple of parameters (P̄n, γn) is exemplified by
Fig. 4, which illustrates, for different values of P

(n)
s and a

specific sequence {en [l]}, the loci satisfying the condition
fs(P̄n, γn) = P

(n)
s . From this figure it can be easily inferred

that, in the considered case, if P̄n is selected according to
Eq. 44, two distinct values of γn (denoted γ

(0)
n and γ

(1)
n

in the following, with γ
(0)
n < γ

(1)
n ) satisfying the equality

Fig. 4 Representation of the loci associated with a few values of P
(n)
s

in γn-P̄n plane; a specific prosumer (i.e,. a specific value of n) is
considered, but the prosumer index is omitted to ease the reading

fs(P
(n)
s K−1

n , γn) = P
(n)
s are found. Note that these val-

ues lead to two substantially different sets of probabilities
{P (n)

on [p] ; p = 0, 1, ..., Kn − 1}. In our work γ
(1)
n (i.e., the

largest value of γn) has been always selected to emphasise
the weight of the error en [p] in the evaluation of P

(n)
on [p] on

the basis of Eq. 41; in addition γ
(1)
n has been evaluated by

means of a simple direct search method [9]. Consequently,
our strategy consists of the following steps:

1. Assign the desired value to the success probability
P

(n)
s .

2. Evaluate P̄n = P
(n)
s /Kn (see Eq. 44).

3. Compute the elements of the set
{en [p] , p = 0, 1, ..., Kn − 1} by means of Eqs.
24–26, (31), (32), (38)–(40).

4. Evaluate γn by solving the equation P
(n)
s =

fs

(
P̄n, γn

)
(see Eq. 45).

5. Compute the elements of the set
{ẽn [p] = �n (en [p]) , p = 0, 1, ..., Kn − 1} (the
value of γn evaluated in the previous step is used in
Eq. 43).

6. Set the time index q to zero.
7. Compute the activation probability P

(n)
on [q] using Eq.

41.
8. Generate a random number rn belonging to the interval

[0, 1].
9. If rn < P

(n)
on [q], turn the l-th SL on (so that the acti-

vation procedure is over); otherwise, keep this SL off
and proceed with the next step.

10. Increase the index q by one and compare it with Kn. If
q is less than Kn, wait for Ts s and go back to step 7)
in order to repeat the game; otherwise (i.e., if q=Kn)
assign new values to the parameters P

(n)
s and Kn and

restart the game from step 1), if desired.

When using this strategy, the following considerations
should be always kept into careful consideration:
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1. In any MG a certain number of types of SLs can be
envisaged, where a type could be uniquely identified
by the couple (absorbed power, absorption duration). If
the n-th prosumer wants to turn on N

(n)
t distinct SLs

(belonging, generally speaking to different types) in the
same time interval, its EG is expected to evaluate N

(n)
t

distinct probabilities (41), one for each of them. Note
that turning a specific SL on entails an abrupt change
in the function p

(s)
n (t); consequently, the probabilities

for all the other SLs waiting for activation need to be
recomputed when this occurs.

2. The game is repeated once every Ts sec. In principle,
the value selected for the slot interval Ts should be pro-
portional to the correlation time of the overall power
pT (t) of the MG; this indication is motivated by the
fact that, if the OFF action has been selected by a given
prosumer in a certain repetition of its game, the next
attempt should be made when the overall power flow in
MG has undergone a significant change.

3. The energy resources available in a MG are shared
on the basis of a probabilistic mechanism; in princi-
ple, this does not ensure that the important constraint
pT (t) < Sm (see Eq. 4) is met at an arbitrary instant.
When SL scheduling is not sufficient to avoid the risk of
an overload in the MG, the MG supervisor is expected
to broadcast a message of selective detachment to all
the MG prosumers, in order to require the immediate
disconnection of a given portion of (if not all) the active
SLs from the power grid.

4. The reference power level P̄r plays an important role
in game evolution, since a change in its value (which
is selected by the MG supervisor and broadcasted to all
the prosumers) modifies the equilibrium of the whole
MG. It is reasonable to fix the value of this thresh-
old on the basis of the consumption expected over the
whole day; in practice, exploiting the available statis-
tical information, the MG supervisor can evaluate the
overall energy consumption expected in the considered
day and, consequently, can obtain the average overall
power expected in the same day. Following these indi-
cations, in our simulation P̄r has been updated on a
daily basis and in the k-th day

P̄r = Pav[k]
� 1

TD

∫ TD+tb[k]
τ=tb[k]

∫ Pa,max

x=Pg,max
x f

p
(i)
T

(x; τ) dx dτ
(46)

has been selected; here, Pav[k] represents the average
power flow in the whole MG expected over the con-
sidered day and tb[k] denotes the beginning of the day
itself. This choice is motivated by the fact that: a) the
average daily requests of the MG prosumers should
be really satisfied through proper scheduling of their

SLs; b) limited fluctuations of the overall power pT (t)

should be expected in the MG operating conditions
associated with this equilibrium point (in other words,
the MG PAR should be mitigated).

Finally, it is important to point out that providing
an accurate estimate of the computational complexity
of the proposed strategy is not easy. In fact, the most
computationally efficient task in the proposed procedure
is represented by the computation of the error signal
en [p] (with p = 0, 1, ..., Kn − 1) on the basis of
Eq. 40. This requires the integration of the function
ϕ(p−n, p

(s)+
n , p

(s)−
n ; t

(n)
l,0 , t

(n)
l,1 ) (32) over the time and user

dependent domains 	
(n)
+ (38) and 	

(n)
− (39); in turn,

this function depends on β̃(p−n, p
(s)+
n , p

(s)−
n ; t

(n)
l,0 , t

(n)
l,1 )

(25) and β̄(p−n, p
(s)+
n , p

(s)−
n ) (31), which involve two

dimensional and three dimensional integrations, respec-
tively, of the same function. This leads to the conclusion
that the complexity of our strategy is dominated by the
four dimensional integral resulting from the integration of
β̄(p−n, p

(s)+
n , p

(s)−
n ) in the computation of Eq. 40. For this

reason, in order to estimate such a complexity, an upper
bound on the number of floating point operations (FLOPs)
required for this integration9 has been assessed in the spe-
cific scenario considered in “Numerical Results”. In doing
so, distinct weights have been assigned to different types of
operations; in particular, the weights {3, 3, 2, 2, 1, 0} have
been assigned to exponentials, roots, divisions, multiplica-
tions, additions and comparisons, respectively.

Numerical Results

The performance of our strategy has been assessed by means
of computer simulations for a MG collecting N = 100
residential prosumers. In all our simulations the following
assumptions have been made:

1. Each prosumer has subscribed a contract for the sup-
ply of P

(n)
a,max = 6 kW, of which 3.6 kWh are explicitly

devoted to the recharge of its PHEV (which is assumed
to be its only SL for simplicity and requires 6 h for
a full recharge). Moreover, it is able to generate up to
−P

(n)
g,max = 3 kW thanks to its photovoltaic panels.

The power level generated by the photovoltaic panels
of a given prosumer in a specific day has been obtained
by superimposing the average power profile for these
renewable energy sources in the considered season
(spring in our simulations) with a zero mean random

9This bound refers to the case in which both the integration domains
	

(n)
+ (38) and 	

(n)
− (39) include all possible values of p−n.
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Gaussian process (in practice, an auto-regressive model
of order one has been adopted) to account for daily
fluctuations.

2. Each prosumer owns 15 home appliances, each charac-
terized by a specific probability mass function (pmf).
The pmf associated with a specific appliance describes
its activation probability over a single day (a 15 m step
size has been used along the time axis), is prosumer
independent and is based on typical behaviors of home
users. In practice, the set of all the pmfs defines the pro-
sumer profile of daily power consumption; a specific
realization of the daily power consumption for a MG
prosumer is shown in Fig. 5 (a 1 h step size is used in
this representation to ease the reading). Note, however,
that a Gaussian model has been adopted for approx-
imating f

p
(r)
n

(x; τ), since it provides an accurate and
parsimonious representation of this pdf; its parameters
(mean value and variance) are perfectly known to the n-
th prosumer for any n, so that an ideal knowledge of the
pdf f

p
(r)
n

(x; τ) is available to its EG.

3. A Gaussian model has been also adopted for the pdf
f

p
(i)
T

(x; τ) referring to the overall power flow of the

MG in the absence of DSM; its parameters (mean
value and variance) are perfectly known to all the pro-
sumers, that employ the approximation f

p
(i)
−n

(y; τ) ∼=
f

p
(i)
T

(x; τ), as already mentioned in the previous

Section.
4. The values of the parameters listed in Table 1 have been

adopted by all the prosumers for the proposed DSM
strategy.

5. In each simulation run, MG load demand has been
observed over 3 consecutive days (i.e., 72 h correspond-
ing to 288 slot intervals, each of 15 min), so that a sort of
steady state condition has been achieved in the middle

(second) day; the recharge requests have been concen-
trated in the second day for all the PHEVs in order to
assess the efficacy of the proposed DSM strategy in the
presence of a relevant load demand. Moreover, in each
simulation run, new realizations for the random compo-
nents {p(r)

n (t) , n = 0, 1, ..., N − 1} of prosumer power
and for the instants {t (n)

0 , n = 0, 1, ..., N − 1} at which
the PHEV recharge requests are submitted, have been
generated.

The selection of the probability P
(n)
s and the evaluation

of the related parameter Kn for the n-th customer (see Para-
graph 3.5) deserve the following comments. On the one
hand, the value of P

(n)
s should be chosen on the basis of a

fairness criterion; more specifically, customers accepting a
longer waiting time for the recharge of their PHEV should
be satisfied with higher probability. On the other hand, the
value of the parameter Kn is influenced not only by such
a waiting time, but also by the selection of the instant t

(n)
max

within which the recharge of the PHEV for the n-th pro-
sumer (with n = 0, 1, ..., N − 1) should be completed;
in fact, the parameter Kn represents the number of time
slots contained in the interval starting at t = t

(n)
p (instant

at which the p-th repetition of the game occurs) and end-
ing at t = t

(n)
max. In our simulations the values of P

(n)
s

and t
(n)
max have been selected on the basis of the interval

[ti , tf ] in which the n-th prosumer requires the recharge
of its PHEV to start; in particular, the following 4 distinct
possibilities have been envisaged for all the prosumers: 1)
P

(n)
s = 0.9 and t

(n)
max = 17:00 if [ti = 0:00, tf = 7:00]; 2)

P
(n)
s = 0.9 and t

(n)
max = 24:00 if [ti = 7:00, tf = 14:00];

3) P
(n)
s = 0.95 and t

(n)
max = 7:00 of the next day if [ti =

14:00, tf = 20:00]; 4) P
(n)
s = 0.95 e t

(n)
max = 11:00 of

the next day if [ti = 20:00, tf = 24:00]. Moreover, in
our simulations, if the recharge of a given PHEV had not

Fig. 5 Representation of a
specific realization for the daily
power consumption associated
with 15 home appliances
(unshiftable loads) owned by a
MG prosumer
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started (finished) yet at t = t
(n)
max, the game has been repeated

(the recharge has been continued) until that PHEV has been
fully recharged; in doing so the values of P

(n)
s and Kn have

remained unchanged.
Some numerical results are illustrated in Figs. 6, 7, 8

and 9. In particular, in Fig. 6 a sample function of the
overall power pT (t) (blue curve) absorbed (if positive)
by the MG prosumers from the public utility or deliv-
ered (if negative) by the MG to the utility itself is illus-
trated for the considered three day interval in the pres-
ence (lower picture) and in the absence (upper picture)
of the developed DSM strategy; in both cases the over-
all power pPHEV (t) (red curve) absorbed by the PHEVs
only is also shown. These results evidence that the schedul-
ing of PHEVs may substantially lower the peaks in load
demand due to SLs. This conclusion is also supported
by Fig. 7 that shows the pdf fPAR (x) of the percentage
improvement in the MG PAR due to DSM with respect
to the case in which DSM is not employed. In fact, these
results show that the use of DSM yields a 34 % average
improvement in the MG PAR; note that this improvement
is substantially better than that provided by the game theo-
retic distribute strategy developed in Mohsenian-Rad et al.
[11], where a 17 % improvement is achieved in a different
scenario.

Figure 8 shows the pdfs fD (x) of the waiting time D

(expressed in number of time slots) in the activation of
PHEVs. In particular, the 4 upper figures refer to the 4 dis-
tinct intervals [ti , tf ] in which the prosumers require the
recharge of their PHEVs to start (i.e., [ti = 0:00, tf =
7:00], [ti = 7:00, tf = 14:00], [ti = 14:00, tf =
20:00] and [ti = 20:00, tf = 24:00]); the lower figure,
instead, refers to the whole day. It is important to note
that:

Fig. 6 MG overall power pT (t) (blue curve) and overall power
pPHEV (t) (red curve) absorbed by the PHEVs over a three day inter-
val in the absence (upper picture) and in the presence (lower figure) of
DSM

Fig. 7 Pdf fPAR (x) of the percentage improvement in the MG PAR
due to the proposed DSM strategy

– The largest average delay is experienced by a PHEV
in the intervals [14:00, 20:00] and [20:00, 24:00] in
which most of load demand is concentrated.

– The delay distribution is influenced not only by the
overall load demand, but also by the power limit P (n)

a,max

set on the power consumption of each prosumer; in fact,
a SL cannot be turned on by the n-th prosumer if its
power limit P

(n)
a,max is exceeded because of this new

activation.

Further simulation results have evidenced that:

1. In the considered scenario the percentage of prosumers
for whom the PHEV recharge has been completed
within t

(n)
max are: a) 91.3 % for the requests submitted

in the intervals [ti = 0:00, tf = 7:00]; b) 96.7 % in
the interval [ti = 20:00, tf = 24:00]; c) 91.2 % in the

Fig. 8 Pdf fD (x) of the waiting time D (expressed in number of time
slots) in the activation of the PHEVs. The 4 upper figures refer to the
[ti = 0:00 , tf = 7:00], [ti = 7:00, tf = 14:00], [ti = 14:00, tf =
20:00] and [ti = 20:00, tf = 24:00]; the lower figure, instead, refers
to the whole day
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Fig. 9 Realization of the
expected payoffs
{EPn, n = 1, 2, ..., 100}
evaluated for the activation of
the PHEVs owned by all the
MG prosumers in the presence
(blue dots) and in the absence
(red dots) of DSM

1 10 20 30 40 50 60 70 80 90 100
−4

−3

−2

−1

0
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interval [ti = 7:00, tf = 14:00]; d) 97.0 % in the inter-
val [ti = 14:00, tf = 20:00]. These percentages have
been estimated by averaging the data acquired over 100
distinct days of the same season.

2. The PAR improvement is influenced by the discount
factor δ; in the considered scenario optimal perfor-
mance is obtained for 0.6 < δ < 0.8 (for this reason,
δ = 0.75 has been selected in generating the data shown
in this Section).

3. The gap between the expected payoff EPn (20) evalu-
ated for the activation of the PHEV owned by the n-th
prosumer in the presence of the proposed DSM strategy
and that computed in the absence of DSM may exhibit
significant variations from prosumer to prosumer. This
is exemplified by Fig. 9, which shows a realization of
the values of the above mentioned expected payoffs
{EPn, n = 1, 2, ..., 100} evaluated in the presence of
DSM (blue dots) and in the absence of it (red dots) for
all the MG prosumers; note that the line that connects
the two dots referring to a specific user is blue (red) if
the first value is greater (smaller) than the second one.
These results show that, in this specific case, 78 pro-
sumers of the whole community benefit from the DSM
strategy in terms of virtual currency. Extensive simu-
lations have also evidenced that, on the average, 75 %
of the prosumer population gets an improvement in the
expected payoff thanks to the use of the DSM strategy;
in particular, the mean expected payoff for the PHEV
activation is -0.84 mu in the presence of DSM and -1.31
mu in the absence of it.

Finally, as already mentioned in the previous Section, an
upper bound on the computational complexity has been
evaluated in the considered scenario under the assumptions
that the following step sizes are used in all the numeri-
cal integrations involved in the evaluation of en [p] (40):
�t = 15 m, �p−n = 1 kW and �pn = 100 W for the time
(t), pn and p−n variables, respectively. This has led us to the
conclusion that, in the considered scenario, the evaluation of
the set of errors {en [p] ; p = 0, 1, ..., Kn − 1} requires less

than 15 GFlops; we believe that, since this computation has
to be repeated every 15 m in our case, the assessed complex-
ity could be managed by low cost programmable hardware
platforms available on the market.

Conclusions

In this manuscript a distributed DSM strategy relying on
statistical information about prosumer consumption and the
overall consumption of a MG has been developed. The pro-
posed strategy allows to schedule SLs in way to mitigate
fluctuations in load demand, while substantially preserving
user privacy. Numerical results referring to the use of our
strategy in the management of the recharge of PHEVs evi-
dence that a significant reduction in the MG PAR can be
achieved. Ongoing research work concerns the investigation
of the effects of a mismatch between the real statistics of
load demand/power generation and those available to the
prosumers for the evaluation of their expected payoffs, and
the management of energy storage units in a MG.
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