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1 Introduction

Let A be a Lie ring (with addition “+” and multiplication “[−,−]”). An additive
mapping d : A → A is called a derivation of A if

d([x, y]) = [d(x), y] + [x, d(y)]

for any x, y ∈ A. By DerA we denote the set of all derivations of A. It is well known
that DerA is a Lie ring with respect to operations of the point-wise addition “+” and
the point-wise Lie multiplication “[−,−]” defined by rules

(d + δ)(r) = d(r) + δ(r) and [d, δ](r) = d(δ(r)) − δ(d(r))
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for all r ∈ A and d, δ ∈ DerA [11]. The mapping

ada : A � x �→ [a, x] ∈ A

determines a derivation ada of A (so-called inner derivation of A induced by a ∈ A).
The set

adA = {ada | a ∈ A}

of all inner derivations of A is an ideal in DerA.
Let N be the set of positive integers,

[a1, . . . , an, an+1] := [[a1, . . . , an], an+1]

for any n ∈ N and a1, . . . , an, an+1 ∈ A. If Ai ⊆ A, then [A1, . . . , An] is a subgroup
of the additive group A+ of A generated by all [a1, . . . , an], where ai ∈ Ai (i =
1, . . . , n). A Lie ring A is called:

• solvable if there exists n ∈ N such that A(n) = 0, where A(1) := [A, A] = A′,
A(2) := [A′, A′] = A′′ and A(k+1) = [A(k), A(k)] for any k ∈ N,

• abelian if A′ = 0,
• perfect if A′ = A,
• complete if its derivations are inner and the center Z(A) = 0 is zero (i.e. A is
centerless) [13].

Many authors have been investigated the structure of derivation algebra DerL and
its relations with the structure of a (finite or infinite dimensional) Lie algebra L (see
e.g. [6,7,9,12,23–26,28,30,31] and others). In this way Leger [16] has investigated
Lie algebras L over a field of characteristic 0 such that DerL = adL . Luks [20] has
constructed an example of a Lie algebra over a field of characteristic zero with only
inner derivations which is not complete. Su and Zhu [27, Theorem 1.1] have proved
that the Lie algebra of all derivations of a centerless perfect Lie algebra (over any field)
is complete. Augolopoulos [1] has constructed a class of complete Lie algebras over
the complex numbers field that are not semisimple. Interesting results about complete
Lie algebras were obtained by Meng and Wang (see [21], where further references
can be found).

An additive mapping F : A → A is called a generalized derivation of A associated
with a derivation δ ∈ DerA (in the sence of Brešar [4]) if

F([x, y]) = [F(x), y] + [x, δ(y)]

for any x, y ∈ A. The set of all generalized derivations of a Lie ring A we denote by

GDerA.

We will write (F, δ) ∈ GDerA if and only if F is a generalized derivation of A
associated with δ ∈ DerA. Since (δ, δ) ∈ GDerA for any δ ∈ DerA, we conclude
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that

adA ⊆ DerA ⊆ GDerA.

A generalized derivation F of A associated with an inner derivation ada ∈ adA is
called a generalized inner derivation of A. By

IGDerA

wedenote the set of all generalized inner derivations of A. Another types of generalized
derivations was introduced in [8–10,17,29,32] and others.

We shall use the following notation. Let D = DerA,G = GDerA,Δ be a nonempty
subset of D (respectively G). If I ⊆ A and δ(I ) ⊆ I for all δ ∈ Δ, then we say that
I is Δ-closed in A. If I is a Δ-closed ideal of A, then it is called a Δ-ideal of A.
Moreover, Z(A) := {z ∈ A | za = az for all a ∈ A} is the center of A.

Let X ∈ {0,Δ}. By a 0-ideal of R we mean an ideal of R. An ideal Y of a Lie ring
A is called:

• X -semiprime if, for any X -ideal B of A, the condition [B, B] ⊆ Y implies that
B ⊆ Y ,

• X -prime if, for any X -ideals B,C of A, the condition [B,C] ⊆ Y implies that
B ⊆ Y or C ⊆ Y ,

• X -simple if [A, A] � Y and, for any proper X -ideal B of A, it is true that B ⊆ Y ,
• X -primary if, for any X -ideals B,C of A, the condition [B,C] ⊆ Y implies that

B ⊆ Y or
[C, . . . ,C
︸ ︷︷ ︸

m times

] ⊆ Y (1)

for some m ∈ N.

In particular, if the zero ideal 0 of A is a X -simple (respectively X -prime, X -semiprime
or X -primary) Lie ring and X = 0, then A is called simple (respectively prime,
semiprime or primary). Moreover, A/Y is semiprime (respectively prime, simple or
primary) if so is Y . Every Δ-prime Lie ring is Δ-semiprime and every Δ-simple Lie
ring is Δ-prime.

The purpose of this paper is to study relationships between Lie rings A, their
derivation rings DerA (in particular, inner derivation rings IDerA) and generalized
derivation rings GDerA. In many cases every derivation of a simple Lie algebra is
inner (see e.g. [11,24,34,35] and others). Our first result is the following

Proposition 1 Let A be a Lie ring. Then we have:

(1) if D is a simple Lie ring, then one of the following holds:
(a) A is abelian,
(b) D = adA, A/Z(A) is a simple Lie ring and either

(i) A = A′ is simple, or
(ii) A = A′ + Z(A) and A′ is the smallest noncentral ideal of A,

(2) if A is a D-simple Lie ring, then A = A′, Z(A) = 0 and D is complete.
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We say that a subring S is of finite index in A if its additive subgroup S+ has finite
index |A : S| := |A+ : S+| in A+. By analogy with group theory [22], we will say
that a Lie ring A is a Lie FC-ring if, for any a ∈ A, the centralizer

CA(a) = {z ∈ A | [z, a] = 0}

is of finite index in A. If A is FC, then for every a ∈ A there exists an ideal Ia of A
such that [a, Ia] = 0 (Corollary 4). In the proof of this result we use the following

Proposition 2 Let A be a Lie ring. If S is its subring of finite index, then there exists
an ideal I of A such that I ≤ S and |A : I | < ∞.

Since an inner derivation ada : A+ → A+ is an endomorphism of the additive group
A+ for any a ∈ A,

[A, a] � [x, a] �→ x + CA(a) ∈ A/CA(a)

is an additive group isomorphism and the kernel Ker ada = CA(a), we conclude that
A is FC if and only if the image Im ada is finite for any a ∈ A. If the set IDerA is
finite (or equivalently |A : Z(A)| < ∞ by Proposition 3), then A is FC (Lemma 6),
the commutator ideal A′ is finite and there exists a solvable ideal S of A such that
S ≤ A′, A′ = A′′ + S and A′/S is a direct summand of A/S (Corollary 6).

Derivations are very important in the study of structures ofLie algebras. Lie algebras
with semisimple (in particular, simple) derivation algebras have been discussed by
Hochschild [9], Block [3], de Ruiter [5], Elduque and Montaner [7], Walcher [34] and
others. For example, it was proved in [9, Theorem 4.4] that a finite dimensional Lie
algebra L over a field of characteristic 0 is semisimple if and only if its derivation
algebra DerL is semisimple. In this way we prove the next result.

Theorem 1 Let A be a Lie ring. If A is a D-prime (respectively D-semiprime) Lie
ring, then D is prime (respectively semiprime).

An additive mapping T : A → A is called a multiplier of A if

T ([x, y]) = [T (x), y]

for all x, y ∈ A. Then we have

T ([x, y]) = T (−[y, x]) = −[T (y), x] = [x, T (y)].

The set of all multipliers of A we denote by

M(A).

Obviously, for any T ∈ M(A), (T, 0) ∈ GDerA and so

M(A) ⊆ IGDerA.

We obtain the following
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Theorem 2 Let A be a Lie ring. If GDerA/M(A) is a prime (respectively semipri-
me, simple or primary) Lie ring, then Z(A) is a G-prime (respectively G-semiprime,
G-simple or G-primary) ideal of A.

Any unexplained terminology is standard as in [13–15,22,33].

2 Inner derivations

We first give some information about inner derivation rings.

Lemma 1 Let A be a Lie ring. Then we have:

(i) if Δ is a subring of DerA, S is a Δ-closed additive subgroup of A and adS A =
{adt | t ∈ S}, then [adS A,Δ] ⊆ adS A (where adA A = adA),

(ii) if K is an ideal of A, then adK A is an ideal of adA,
(iii) if Φ is an ideal of DerA, then

∇Φ = {x ∈ A | adx ∈ Φ}

is a D-ideal of A,
(iv) if Φ is an ideal of adA, then ∇Φ is an ideal of A,

Proof (i) If s ∈ S and δ ∈ Δ, then δ(s) ∈ S and so

[δ, ads] = adδ(s) ∈ adS A.

(ii) Since K is an (adA)-closed additive subgroup of A, the result follows from part
(i).

(iii) If x, y ∈ ∇Φ , a ∈ A and δ ∈ D, then adx−y = adx − ady, ad[a,x] =
[ada, adx ], adδ(x) = [δ, adx ] ∈ Φ and consequently x − y, [a, x], δ(x) ∈ ∇Φ .

(iv) By the same argument as in part (iii).
��

Lemma 2 Let A be a Lie ring and Δ a subring of DerA. Then we have:

(i) if B is a Δ-ideal of A, then {δ ∈ Δ | δ(A) ⊆ B} is an ideal of Δ,
(ii) if B is an ideal of A, then {δ ∈ adA | δ(A) ⊆ B} is an ideal of adA,
(iii) if Φ is an ideal of adA, then {a ∈ A | δ(a) = 0 for all δ ∈ Φ} is an ideal of A,
(iv) if B is a Δ-ideal of A, then {x ∈ A | adx (A) ⊆ B} is a Δ-ideal of A,
(v) if B is a Δ-ideal of A, then the centralizer CA(B) = {x ∈ A | adx (B) = 0} of

B in A is a Δ-ideal of A,
(vi) [19, Proposition 2.2] there exists the Lie ring isomorphism

adA � ada �→ a + Z(A) ∈ A/Z(A),

(vii) if B is a Δ-ideal of A, then the center Z(B) is a Δ-ideal of A.

Proof By routine calculations. ��
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Lemma 3 Let A be a Δ-semiprime Lie ring, B its nonzero Δ-ideal, where ∅ �= Δ ⊆
D. Then the following are true:

(i) A is nonabelian,
(ii) Z(A) = 0, i.e. A is centerless,
(iii) B ∩ CA(B) = 0,
(iv) Z(B) = 0,
(v) CA(A′) = 0,
(vi) if A is Δ-prime, then CA(B) = 0.

Proof (i)–(ii) Evident.
(iii) Inasmuch as B ∩ CA(B) is a Δ-ideal of A in view of Lemma 3 (v) and

[

B
⋂

CA(B), B
⋂

CA(B)
]

= 0,

we deduce that B ∩ CA(B) = 0.
(iv) In view of Lemma 2 (vii), [A, Z(B)] is aΔ-ideal of A and [A, Z(B)] ⊆ Z(B).

However,

[[A, Z(B)], [A, Z(B)]] = 0

and therefore [A, Z(B)] = 0. Then we find that Z(B) ⊆ Z(A) = 0.
(v) It is easy to see that A′ is nonzero,

[z, A] ⊆ A′ ⋂CA(A′) = 0

for any z ∈ CA(A′) and so z ∈ Z(A). Hence z = 0 by (ii).
(vi) It holds in view of Lemma 2 (v). ��

Corollary 1 Let A be a Lie ring. Then we have:

(i) if A is simple, then adA is a simple Lie ring,
(ii) if adA is simple, then A/Z(A) is a simple Lie ring and

A = A′ + Z(A) (2)

(and then A′ is the smallest noncentral ideal of A),
(iii) if A is a prime (respectively semiprime) Lie ring, then so is adA,
(iv) if A/Z(A) is a primary Lie ring, then so is adA,
(v) if adA is prime (respectively semiprime or primary), then so is A/Z(A).

Proof (i) and (iii)–(v) It follows in view of Lemma 2 (vi).
(ii) Obviously that A is nonabelian and therefore A′ �= 0. Lemma 2 (vi) implies

that the quotient Lie ring A/Z(A) is simple. Using the fact that

adA′ A = [adA, adA] = adA (3)

and A′ � Z(A) we deduce that A satisfies Eq. (2). ��
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Corollary 2 Let A be a semiprime Lie ring. Then adA is simple if and only if so is A.

Let p be a prime,

F(A) := {a ∈ A | a is of finite order in the additive group A+}

the torsion part and

Fp(A) := {a ∈ F(A) | pna = 0 for some nonnegative integer n}

the torsion p-part of a Lie ring A.

Remark 1 If A is a Δ-prime Lie ring, then one of the following holds:

(i) F(A) = 0,
(ii) pA = 0 for some prime p.

Indeed, if F(A) is nonzero, then Fp(A) �= 0 for some prime p. From pA �= 0 it
follows that

Ω1 := {a ∈ Fp(A) | pa = 0} �= 0

and [pA,Ω1] = 0, a contradiction. Hence pA = 0.

Lemma 4 Let A be a centerless Lie ring. If Φ is an ideal of DerA, then

Φ
⋂

adA = 0 ⇔ Φ = 0.

Proof In fact, ifΦ ∩adA = 0, then 0 = [d, ada] = add(a) and therefore d(a) ∈ Z(A)

for any d ∈ Φ and a ∈ A. Consequently d = 0. ��
Lemma 5 If A is a D-simple Lie ring, then

adA = [adA, adA] (4)

is the smallest nonzero ideal of D (and so A is perfect).

Proof It is easy to see that A′ is a nonzero D-ideal of A, Z(A) = 0 and therefore
A′ = A by Corollary 1. Let Φ be a nonzero ideal of D. By Lemma 4,

Φ1 := Φ
⋂

adA �= 0.

Then ∇Φ1 �= 0 is a D-ideal of A by Lemma 1(i i i) and consequently ∇Φ1 = A. Then
adA ⊆ Φ, Eqs. (4) and (3) are true and adA is the smallest nonzero ideal of D. ��
Corollary 3 Let A be a Lie ring. Then the following hold:

123



604 São Paulo J. Math. Sci. (2019) 13:597–614

(1) [adA, adA] is a simple (respectively semiprime, prime or primary) Lie ring if and
only if so is

A′/ (

A′ ⋂ Z(A)
)

,

(2) if A is semiprime and [adA, adA] is a simple Lie ring, then A′ is the smallest
nonzero ideal of A.

Proof (1) If a, b ∈ A, then the rule

[adA, adA] � [ada, adb] �→ [a, b] +
(

A′ ⋂ Z(A)
)

∈ A′/ (

A′ ⋂ Z(A)
)

induces a Lie ring isomorphism.
(2) Let I be a nonzero ideal of A. Then 0 �= [I, I ] ⊆ A′. Since adI A is a nonzero

ideal of the Lie ring adA, we deduce that

ad[I,I ]A = [adI A, ad I A] = [adA, adA] = adA′ A.

Moreover, Z(A) = 0 and therefore A′ = [I, I ] ⊆ I . Hence A′ is the smallest
nonzero ideal of A.

��

3 Lie FC-rings

Proposition 2 is analogous with the Lewin result [18, Lemma 1].

Proof of Proposition 2. Since every Lie ring is a Leibniz ring, Proposition 2 follows
from [2, Proposition 5.2]. We prove it here in order to have the paper more self-
contained. Suppose that |A : S| = n for some n ∈ N and the quotient group

A+/S+ = {a1 + S+, . . . , an + S+}

for some elements a1, . . . , an ∈ A. Let s ∈ S. The rule

gs : A+/S+ � a + S+ �→ [a, s] + S+ ∈ A+/S+

determines an endomorphism gs of the additive group A+/S+. Since A+/S+ is finite,
its endomorphism ring End(A+/S+) is the ones. Then the group homomorphism

g : S+ � s �→ gs ∈ End(A+/S+)

has the kernel Kg := {s ∈ S | [A, s] ⊆ S} of finite index in S. The rule

ϕ(i1,...,ik ) : Kg � w �→ ϕ(w,i1,...,ik ) ∈ End(A+/S+),
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where k ∈ N, (i1, . . . , ik) ∈ Nk and

ϕ(w,i1,...,ik ) : A+/S+ � r + S+ �→ [[. . . [[w, a ji1
], a ji2

], . . . , a jik
], r ] + S+ ∈ A+/S+

is an endomorphism of A+/S+, determines a group homomorphism. Then the set

{ϕ(w,i1,...,ik ) | w ∈ Kg, k ∈ N and (i1, . . . , ik) ∈ Nk}

is finite, every kernel Ker ϕ(w,i1,...,ik ) is of finite index in Kg and therefore we deduce
that

I :=
⋂

w ∈ Kg

(i1, . . . , ik) ∈ Nk

Ker ϕ(w,i1,...,ik )

is of finite index in Kg (and consequently in A). Moreover, I ≤ S and

[I, A, . . . , A
︸ ︷︷ ︸

k times

] ≤ S

for any k ∈ N. Hence

I0 := I +
∞
∑

k=1

[I, A, . . . , A
︸ ︷︷ ︸

k times

]

is an ideal of finite index in A such that I0 ≤ S. ��
Corollary 4 If A is a Lie FC-ring, then, for every a ∈ A, there exists an ideal Ia of
finite index in A such that [a, Ia] = 0.

The next proposition is an analogue of [2, Theorem 5.2].

Proposition 3 Let A be a Lie ring. Then the set IDerA is finite if and only if |A :
Z(A)| < ∞.

Proof (⇒) Suppose that IDerA = {adui | i = 1, . . . ,m} for some m ∈ N and
u1, . . . , um ∈ A. If x ∈ A, then there exists s = s(x) ∈ N such that 1 ≤ s ≤ m and
adx = adus . Hence x ∈ us + Z(A) and A/Z(A) = {ui + Z(A) | i = 1, . . . ,m} is
finite.

(⇐) Since
A/Z(A) = {a1 + Z(A), . . . , an + Z(A)} (5)

for some n ∈ N and a1, . . . , an ∈ A and, for every x ∈ A, there exists i = i(x)
(1 ≤ i ≤ n) such that x ∈ ai + Z(A), we see that adx = adai . Thus

IDerA = {adx | x ∈ A} = {adai | i = 1, . . . , n}

is finite. ��
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Corollary 5 Let A be a Lie ring. Then the following hold:

(1) if |A : Z(A)| < ∞, then the commutator ideal A′ is finite,
(2) if IDerA is finite, then the commutator ideal A′ is finite.

Proof For a proof, see [2, Lemma 5.12]. ��
Lemma 6 Let A be a Lie ring. Then the following hold:

(1) if A′ is finite, then A is FC,
(2) if IDerA is finite, then A is FC.

Proof (1) Let a ∈ A. Since ada is an endomorphism of A+ and Z(A) ≤ CA(x) =
Ker ada , we conclude that

A/CA(a) = A/Ker ada ∼= [A, a] ≤ A′

is finite for any a ∈ A. Hence A is FC.
(2) follows immediately from part (1). ��

Lemma 7 If A is a finitely generated Lie FC-ring, then its commutator ideal A′ is
finite.

Proof Suppose that A is generated by some elements x1, . . . , xn ∈ A. Inasmuch as
|A : CA(xi )| < ∞ for i = 1, . . . , n and

Z(A) =
n

⋂

i=1

CA(xi ),

we have that Z(A) is of finite index in A and, by Corollary 5, A′ is finite. ��
Lemma 8 If F is a finite ideal of a Lie ring A, then |A : CA(F)| < ∞.

Proof Suppose that F = {x1, . . . , xn}. Then

[xi , A] ∼= A/CA(xi )

for any xi ∈ F what implies that

n
⋂

i=1

CA(xi ) ≤ CA(F)

and the result follows. ��
Recall that M is a minimal ideal of a Lie ring A if M �= 0 and, for any ideal I of

A, the implication

0 ≤ I ≤ M ⇒ I = 0 or I = M

holds. If M is a minimal nonzero ideal of A, then [M, M] = M (i.e. M is perfect) or
[M, M] = 0.
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Lemma 9 If M is a perfect minimal ideal of a Lie ring A, then the quotient Lie ring
A/CA(M) is prime.

Proof If B,C are ideals of A such that [B, M] �= 0 and [C, M] �= 0, then [B, M] =
M = [C, M] and M ≤ [B,C]. This yields that [[B,C], M] �= 0 and so A/CA(M) is
prime. ��
Lemma 10 If F is a finite ideal of a Lie ring A, then the following hold:

(1) if F is a perfect minimal ideal, then A = F ⊕ CA(F) is a direct sum of ideals,
(2) if F does not contain nonzero nonabelian ideal of A, then there exist perfect

minimal ideals B1, . . . , Bk of A such that Bi ≤ F (i = 1, . . . k), A = B1⊕· · ·⊕
Bk ⊕ C is a direct sum of ideals and F ∩ C is solvable,

(3) F contains a solvable ideal S of A such that F = F ′ + S and the quotient Lie
ring A/S = (F/S) ⊕ K is a direct sum for some its ideal K .

Proof (1) ByLemmas 9 and 8, K := A/CA(F) is a finite prime (and therefore simple)
Lie ring. Since K is perfect and F � CA(F), we deduce that

(F + CA(F))/CA(F) = A/CA(F)

and the result follows.
(2) It is easy to see that F contains a minimal ideal B1 of A and B1 is nonabelian. By

part (1), A = B1 ⊕CA(B1) is a direct sum of ideals. Since F is finite, we obtain
the assertion by finite number of steps.

(3) Suppose that S is an ideal generated by all solvable ideals of A that are contained
in F . Then F/S is a finite semiprime Lie ring (and consequently it is a direct sum
of finitely many nonabelian minimal ideals of A/S) in view of part (1). This gives
that F = F ′ + S. The rest it follows from part (2).

��
Corollary 6 Let A be a Lie ring. If IDerA is finite, then the commutator ideal A′ is
finite and there exists a solvable ideal S of A such that S ≤ A′, A′ = A′′ + S and
A/S = (A′/S) ⊕ K is a direct sum of ideals for some abelian ideal K .

Proof By Proposition 3 and Corollary 5, A′ is finite and so the result holds by Lemma
10. ��

4 Generalized derivations

Let

CDerA := {h ∈ DerA | h(A) ⊆ Z(A)}

be the set of all central derivations of A. The structural properties of a Lie algebra L
with central inner derivations (i.e. adL ⊆ CDerL) was studied by Tôgô [30].

Lemma 11 Let A be a Lie ring. Then:
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(i) GDerA is a Lie ring,
(ii) F(Z(A)) ⊆ Z(A) for any F ∈ GDerA,
(iii) CDerA is an ideal of GDerA,
(iv) GDerA = M(A) + DerA, where M(A) is an ideal of GDerA, and

M(A)
⋂

DerA ⊆ CDerA,

(v) IGDerA = M(A) + adA, where M(A) is an ideal of IGDerA, and

M(A)
⋂

adA ⊆ CDerA,

(vi) if B is a D-closed ideal of A, then

IBGDerA := {F ∈ GDerA | F is associated with some ada, where a ∈ B}

(in particular, M(A) = IOGDerA = IZ(A)GDerA ⊆ IGDerA := IAGDerA) is
an ideal of GDerA,

(vii) C(A) := {k ∈ M(A) | k(A) ⊆ Z(A)} is an ideal of GDerA,
(viii) if (F, δ), (F, μ) ∈ GDerA, then δ + CDerA = μ + CDerA,
(ix) if (F, ada), (F, adb) ∈ GDerA for some a, b ∈ A, then [a − b, A] ⊆ Z(A).

Proof Assume that (F, δ), (H, d) ∈ G, T ∈ M(A), h ∈ CDerA and x, y ∈ A.

(i) We see that (F − H, δ − d) ∈ G,

[F, H ]([x, y]) = F([H(x), y] + [x, d(y)]) − H([F(x), y] + [x, δ(y)])
= [[F, H ](x), y] + [x, [δ, d](y)]

and so ([F, H ], [δ, d]) ∈ G.
(ii) Evident.
(iii) Since h(A) ⊆ Z(A) for h ∈ CDerA, we have that [F, h](A) ⊆ Z(A), i.e.

[F, h] ∈ CDerA.
(iv) The equality

[F, T ]([x, y]) = [[F, T ](x), y]

implies that [F, T ] ∈ M(A) and so M(A) is an ideal of G. Moreover,

(δ−F)([x, y])=[δ(x), y] + [x, δ(y)] − [F(x), y] − [x, δ(y)] = [(δ − F)(x), y]

and thus δ − F ∈ M(A). If h ∈ D ∩ M(A), then

[h(x), y] = h([x, y]) = [h(x), y] + [x, h(y)].

From this it follows [x, h(y)] = 0 and therefore h(A) ⊆ Z(A).
(v) By the same argument as in (iv).
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(vi) If (K , ada), (M, adb) ∈ IBGDerA, then (K −M, ada−b) ∈ IBGDerA and

[F, K ]([x, y]) = F([K (x), y] + [x, ada(y)]) − K ([F(x), y] + [x, δ(y)]) =
= [[F, K ](x), y] + [x, adδ(a)(y)] (6)

that is ([F, K ], adδ(a)) ∈ IBGDerA.
(vii) If k ∈ C(A), then

[F, k]([x, y]) = [[F, k](x), y] = 0

and consequently [F, k] ∈ C(A).
(viii)–(ix) If (F, δ), (F, μ) ∈ G for some δ, μ ∈ D, then

[x, δ(y)] = [x, μ(y)]

and therefore [x, (δ − μ)(y)] = 0. This means that (δ − μ)(A) ⊆ Z(A)

and the result follows.

��
Corollary 7 Let A be a Lie ring. Then the following hold:

(1) if Z(A) = 0, then

GDerA = M(A) + DerA, IGDerA = M(A) + adA and M(A)
⋂

DerA = 0,

(2) if A is a simple (respectively semiprime or prime) ring, then the Lie rings
GDerA/M(A) and DerA are isomorphic.

Proof (1) If Z(A) = 0, then CDerA = 0 and the result holds by Lemma 11 (iv) and
(v).

(2) Since Z(A) is an ideal of A, we deduce that Z(A) = 0. The rest follows in view
of part (1).

��
Let Φ ⊆ GDerA, Γ ⊆ DerA,

TΦ = {d ∈ DerA | there is H ∈ Φ that is associated with d ∈ DerA},
UΓ = {H ∈ GDerA | H is associated with some d ∈ Γ }

and

ΣΦ = {a ∈ A | there exists H ∈ Φ that is associated with ada}.

Lemma 12 Let A be a Lie ring. Then the following hold:

(i) if Φ is an ideal of GDerA, then TΦ is an ideal of DerA,
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(ii) if Γ is an ideal of DerA, UΓ is a nonzero ideal of GDerA (in particular, U0 =
M(A)),

(iii) if Φ is an ideal of IGDerA (respectively GDerA), then ΣΦ is an ideal (respec-
tively a D-ideal) of A.

Proof For a proof, see [2, Lemma 5.7]. ��
Lie algebras L with abelian derivation algebras DerL was studied, in particular, in

[29].

Lemma 13 Let A be a Lie ring and (F, d) ∈ GDerA. Then we have:

(i) if F = 0, then d(A) ⊆ Z(A),
(ii) if d(A) ⊆ Z(A), then F ∈ M(A),
(iii) if GDerA is an abelian Lie ring, then DerA is abelian,
(iv) if A �= 0, then M(A) �= 0.

Proof For a proof, see [2, Lemma 5.4]. ��
Lemma 14 Let A be a Lie ring and (M, ada) ∈ IGDerA. Then the following hold:

(i) if M = 0, then [a, A] ⊆ Z(A),
(ii) if [a, A] ⊆ Z(A), then M ∈ M(A),
(iii) if IGDerA is an abelian Lie ring, then adA is abelian,
(iv) if A is abelian, then IGDerA = M(A).

Proof For a proof, see [2, Lemmas 5.4 and 5.5]. ��
Lemma 15 Let A be a Lie ring, B its ideal. Then:

(i) ifΦ is an ideal ofGDerA, thenΦ∩IGDerA = 0 implies that [δ(A), A] ⊆ Z(A)

for any δ ∈ TΦ ,
(ii) the following conditions are equivalent:

(a) IBGDerA ⊆ M(A),
(b) B ⊆ Z(A),
(c) adB A = 0,

(iii) there exist Lie ring isomorphisms:
(d)

DerA/CDerA � δ + CDerA �→ δ + M(A) ∈ GDerA/M(A),

(e)

adA
/

(

adA
⋂

CDerA
)

� ada +
(

adA
⋂

CDerA
)

�→ ada

+M(A) ∈ IGDerA/M(A).

Proof (i) If (F, δ) ∈ Φ and (H, ada) ∈ IGDerA, then ([F, H ], adδ(a)) ∈ IGDerA
and so adδ(a) ∈ CDerA by Lemma 14 (i).

(ii)–(iii) are evident. ��
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Corollary 8 Let A be a Lie ring. If adA is a semiprime (respectively prime or simple)
Lie ring, then IGDerA/M(A) is a semiprime (respectively prime, or simple) Lie ring.

Proof If a ∈ A and adb ∈ CDerA ∩ adA, then [a, b] ∈ Z(A) and [ada, adb] =
ad[a,b] = 0. Then CDerA ∩ adA = 0 because adA is semiprime (respectively prime
or simple) and so adA is isomorphic to IGDerA/M(A) by Lemma 15 (iii). ��
Lemma 16 Let A be a nonnilpotent Lie ring. If A is primary, then the quotient Lie
ring so is IGDerA/M(A).

Proof Assume thatΦ,Λ are ideals of IGDerA such that [Φ,Λ] = 0. ByLemma14 (i),
[[ΣΦ,ΣΛ], A] ⊆ Z(A). Since A is nonnilpotent primary (and therefore Z(A) = 0),
we deduce that [ΣΦ,ΣΛ] = 0. This implies that ΣΦ = 0 (and then Φ ⊆ M(A)) or

[ ΣΛ, . . . ,ΣΛ
︸ ︷︷ ︸

m times

] = 0

(and consequently

[ Λ, . . . ,Λ
︸ ︷︷ ︸

m times

] ⊆ M(A)

for some positive integer m. Hence IGDerA/M(A) is a primary Lie ring. ��

5 Proofs

Proof of Proposition 1. (1) Let D be a simple Lie ring. Then D and A are nonzero.
Since adA is an ideal of D, we deduce that adA = 0 (and then A is abelian) or
adA = D. Assume that adA = D and K is arbitrary noncentral ideal of A. Then

0 �= adK A = adA

by Lemma 1 (ii) and so A = K + Z(A). This means that A := A/Z(A) ∼= adA is a
simple Lie ring. Then it is nonabelian and therefore A

′ �= 0. Consequently A
′ = A

and A = A′ is simple or Eq. (2) follows.
(2) Let A be a D-simple Lie ring. Then 0 �= A′ = A and Z(A) = 0. By the same

argument, as in the proof of Theorem 1.1 (i) from [27], D = adA is complete. ��
Proof of Theorem 1. (a) Let A be a D-prime Lie ring. Then Z(A) = 0. Assume that
Φ,Λ are nonzero ideals of D such that [Φ,Λ] = 0. By Lemma 4,

Φ1 := Φ
⋂

adA �= 0 and Λ1 := Λ
⋂

adA �= 0

and ∇Φ1,∇Λ1 are nonzero. Since

ad[∇Φ1 ,∇Λ1 ]A = [ad∇Φ1
A, ad∇Λ1

A] = [Φ1,Λ1] = 0,
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we see that

[∇Φ1,∇Λ1 ] ⊆ Z(A) = 0.

By Lemma 1 (iii), ∇Φ1 and ∇Λ1 are D-ideals of A and we obtain a contradiction.
Hence D is prime.

(b) If A is a D-semiprime Lie ring, then we can obtain that D is semiprime by the
same argument as in part (a). ��
Proof of Theorem 2. (a) Assume that G/M(A) is a prime Lie ring and B,C are G-
ideals of A such that

[B,C] ⊆ Z(A). (7)

Then IBGDerA, ICGDerA are ideals of G by Lemma 11 (vi) and

[IBGDerA, ICGDerA] ⊆ M(A) (8)

in view of Eq. (6). Then, by the primeness of G/M(A), IBGDerA ⊆ M(A) or
ICGDerA ⊆ M(A) what implies that B ⊆ Z(A) or C ⊆ Z(A) by Lemma 15 (iii),
and hence Z(A) is G-prime.

(b) If G/M(A) is a semiprime Lie ring, then we can prove by the same argument
as in case (a).

(c) Assume that G/M(A) is a simple Lie ring and B is a G-ideal of A. Then
IBGDerA is an ideal of G and consequently

IBGDerA ⊆ M(A)

(and so B ⊆ Z(A) by Lemma 15 (ii)) or

G/M(A) = IBGDerA/M(A).

In the second case we have M(A) �= IBGDerA = IGDerA = GDerA. Then adB A =
adA what gives that A = B + Z(A). This means that Z(A) is G-simple.

(d) Let G/M(A) be a primary Lie ring and B,C be G-ideals of A such that Eq. (7)
is true. Then Eq. (8) is true (and so IBGDerA ⊆ M(A)) or

[ICGDerA, . . . , ICGDerA
︸ ︷︷ ︸

m times

] ⊆ M(A)

for some positive integer m). Then B ⊆ Z(A) or

[C, . . . ,C
︸ ︷︷ ︸

m times

] ⊆ Z(A)

and consequently Z(A) is a G-primary ideal of A. ��
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