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Abstract Bladder cancer is a common malignancy of the

urinary tract, which generally develops in the epithelial lining

of the urinary bladder. The specific course of treatment

depends on the stage of bladder cancer; however, therapeutic

strategies typically involve intravesical drugdelivery to reduce

toxicity and increase therapeutic effects. Recently, metallic,

polymeric, lipid, and protein nanoparticles have been intro-

duced to aid in the treatment of bladder cancer. Nanoparticles

are also commonly used as pharmaceutical carriers to improve

interactions between drugs and the urothelium. In this review,

we classify the characteristics of bladder cancer anddiscuss the

types of nanoparticles used in various treatment modalities.

Finallywe summarize thepotential applications andbenefits of

various nanoparticles in intravesical therapy.
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1 Introduction

Urothelial cancer of urinary bladder is an epithelial cancer

in which abnormal cells in the epithelial lining multiply

without control [1, 2]. The most common type of bladder

cancer is transitional cell carcinoma (TCC), also referred to

as urothelial cell carcinoma (UCC). Over the last two

decades, various nanoparticle technologies have been used

in the detection and treatment of cancers of the breast [3],

oral cavity [4], lung [5], cervix [6], and brain [7].

Nanoparticles are also used as pharmaceutical carriers in

drug delivery systems comprising organic and inorganic

materials [8, 9], and many state-of-the-art techniques

incorporate liposomal [10], polymer-drug conjugates [11]

and micellar formulations [12]. Furthermore, a consider-

able number of nanoparticle platforms are currently in the

preclinical stages of development [13]. In this review, we

classify the various types of bladder cancer according to

their clinical characteristics and summarize how various

nanoparticles are applied in intravesical bladder cancer

therapy. This work is of particular importance at this time,

due to recent findings showing that the use of nanoparticles

in the treatment of urothelial cancer in the urinary bladder

can reduce negative side effects and recurrence rates.

2 Current Treatment of Urothelial Cancer
of the Urinary Bladder

Bladder carcinomas the fourth most common malignancy in

America and the fifth most common disease among Euro-

pean males [14]. Furthermore, the prevalence of this

malignancy of the urinary tract tends to increase with eco-

nomic development [15–17]. The most typical symptom of

this malignancy is painless hematuria, with microscopic or

gross hematuria presenting in more than 85 % of patients

[18]. Depending on the severity of hemorrhaging, the color

of urine can range from normal, to dark yellow, to bright red

or cola [19]. Other symptoms include increased frequency

and urgency of urination, dysuria, and abdominal pain [20].
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The five-year average survival rate among patients with

bladder cancer is approximate 60 %; however, bladder

cancer is associatedwith a high recurrence rate, which results

in a longer course of disease with greater per-patient finan-

cial cost compared to other cancers [21].

The bladder is a hollow, distensible organ used for the

storage of urine [22]. It is composed of mucosa, submucosa,

detrusor muscle, and perivesical fat. Bladder cancer typically

begins in the mucosa layer, namely, transitional epithelial

tissue [23]. TCC comprises over 90 % of bladder cancers;

other bladder cancer types include squamous cell carcinoma

(SCC, about 7–8 %), adenocarcinoma (1–2 %), and carci-

nosarcoma (\1 %) [24]. Furthermore, most diagnosed cases

(70–85 %) involve a superficial (non-muscle invasive) form

of the disease [25–27]. Bladder cancer staging is classified

according to the location and spread of tumors (i.e. stage Tis,

Ta and T1-4; Fig. 1), and how to directly against superficial

bladder cancer is a key issue that must be resolved in order to

improve disease prognosis [28–31].

Determining the appropriate course of treatment

depends on the stage of bladder cancer [32, 33]. In the case

of non-invasive bladder tumors, the gold standard of pri-

mary therapy is transurethral resection of the bladder tumor

(TUR-BT), which allows the bladder to retain functional-

ity; however, TUR-BT commonly results in tumor relapse

[21]. This has led to the widespread use of Bacillus Cal-

mette–Guérin (BCG) [34] or chemotherapy agents [35],

such as Mitomycin C, Adriamycin, Epirubicin or Thiotepa,

as adjuvant therapies through intravesical instillation.

Chemical agents [36–38], such as Mitomycin C, can

restrain the DNA, RNA, and proteins to suppress the pro-

liferation of cancer cells. However, these agents have a

number of negative side effects, such as chemical cystitis

and other irritating symptoms. Furthermore, long-term

chemical cystitis can lead to bladder contraction and a

reduction in functionality. Patients suffering from unfa-

vorable differentiation associated with the recurrences of

cancer are generally administered intravesical therapy in

the form of immune agent BCG [39, 40]. Adverse reactions

to these chemical therapies include cystitis (67 %), fever

(25 %), haematuria (23 %), and/or increased frequency of

urination (71 %) [41]. In some cases, the use of these

treatments has been associated with severe toxicity, leading

to septicemia, disseminated intravascular coagulation, and

multiple organ failure, which can reduce a patient’s desire

to be treated [42–44].

Despite the fact that BCG is currently the most com-

monly used intravesical therapy in superficial bladder

cancer treatment, many studies have reported that this

agent is only able to delay early recurrence [45]. Further-

more, the widespread use of BCG and chemotherapy cau-

ses bladder cancer patients to suffer from high rates of

recurrence and rapid disease progression [46, 47]. Thus,

compared with other instillation agents, BCG appears

somewhat limited in its therapeutic effectiveness [48].

Conversely, nanoparticle technology, which has been used

in recent years, has shown great promise in increasing the

efficacy of drugs and preventing adverse reactions. The

field of medicine stands to benefit significantly from

advances in nanotechnology, specifically from improve-

ments in detection imaging and tumor therapy [49].

Nanoparticle technologies were developed to be controlled

drug delivery systems with unique targeting for cancer

treatment [50]. Many kinds of delivery systems have been

developed for bladder cancer therapy using different

materials and types of nanoparticles, such as metal/gold,

polymeric, liposome and lipid, and protein nanoparticles.

3 Application of Nanoparticles in Urinary Bladder
Cancer

3.1 Metal/Gold Nanoparticles

Metal nanoparticles arewidely used in engineering aswell as

biomedical sciences [51]. These include magnetic nanopar-

ticles ‘‘Fe3O4, Fe-Au alloy’’ [52, 53] as well as gold [54] and

silver [55] nanoparticles, which may be conjugated with

antibodies, ligands, or other drugs in order to modify func-

tional groups [56]. Important developments are being made

in the field of nanotechnology for applications in magnetic

separation, the enrichment of the target analytes, targeted

drug delivery, targeted gene delivery, and diagnostic imag-

ing. Important imaging modalities which aid in the visual-

ization of disease states, include MRI, CT, PET, ultrasound,

SERS, and optical imaging [57–61].

Fig. 1 A schematic diagram illustrating the classification of bladder

cancer: Tis carcinoma in situ (‘flat tumour’); T1 tumour invades

subepithelial connective tissue; T2 tumour invades muscle; T3 tumour

invades perivesical tissue; T4 tumour invades prostate, uterus, or

vagina
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Because of outstanding biocompatibility, gold was

among the first metallic biomaterial to be developed [62].

Furthermore, gold nanoparticles (GNPs) have strong

spectral absorption properties when the diameter of the

gold particle is smaller than the wavelength of the

incoming ray [63]. When nanoparticles absorb energy at a

specific wavelength, conduction band electrons from the

surface of the particle become polarized and produce

instantaneous dipole forces, leading to coherent dipole

oscillation in a phenomenon referred to as surface plasma

resonance (SPR) [64–66]. Various factors affect the prop-

erties of SPR, such as size, shape of the nanoparticles as

well as other variables related to chemical structure. The

absorption wavelength presents a non-linear red shift

associated with the diameter or aspect ratio of the gold

nanoparticles.

Laser induced thermotherapy involves the use of a laser

to induce heat in tissue, which in-turn leads to coagulative

necrosis that destroys tumor cells [67–69]. Plasmonic

photothermal therapy (PPTT) applies the optical properties

of SPR to assist laser-induced thermotherapy. This tech-

nique uses GNPs to enhance the effects of target therapy

[69, 70]. Specifically, GNPs absorb specific wavelengths of

light suitable for the generation of thermal energy while

enhancing spatial selectivity in the application of hyper-

thermia therapy. One novel adjuvant therapy based on heat

effects involves the use of specially designed nanomateri-

als with high photothermal conversion capability, such as

nanospheres, nanoshells, nanorods, nanocages [69]. This

treatment provides obvious benefits even after a short

treatment time and achieves a hyperthermic state with

relatively low laser power, thereby avoiding injury to

adjacent healthy tissue.

GNPs provide excellent biocompatibility, modulability,

and optical properties [71, 72]. In addition, GNPs are able

to modify particular nucleic acids and protein molecules to

facilitate the rapid detection of abnormal genes or cancer

cells, which makes it possible to diagnose diseases more

quickly and easily [73]. The superior photothermal prop-

erties of GNPs, compared with other nanoparticles (e.g.

core–shell silica nanoparticles, magnetic nanoparticles,

cerium oxide ‘‘CeO2, TiO2, ZnO’’, and quantum dots), has

resulted in a gradual shift from these materials to the use of

GNPs [69]. GNPs also provide excellent chemical stability

and a strong affinity to biomolecules, which facilitates the

detection and treatment of cancer. Indeed, the biocompat-

ibility and non-cytotoxic properties of GNPs have the

greatest potential for future clinical applications. Thus far,

GNPs have been most widely applied in the treatment of

breast cancer, oral cavity cancer, lung cancer, cervical and

brain cancer [74–76]. Indeed, results from previous studies

have revealed that GNPs offer obvious therapeutic benefits

to cancer patients. For example, in one study, exposure to a

laser was shown to damage cancer cells; however, GNPs

require only half the laser power of regular laser treatment

[69]. Combining particles with antibodies or proteins that

target the overexpressed antigen in the tumor has also been

shown to enhance the therapeutic benefits [69].

Previous studies have reported the application of mod-

ified gold nanoparticles in bladder cancer. These modified

nanoparticles include gum arabic-coated radioactive [77],

hyaluronic acid functionalized fluorescent [54], epigallo-

catechin-3-gallate [75], and antibody-coated silica nano-

shells [78, 79]. To destroy tumor cells and preserve normal

cells, a targeting system is required. In target therapy,

monoclonal antibodies serve as the aiming system of

nanoparticles. For different cancer cells, individualized

targets are chosen according to the expression of antigens,

such as transferring, Her-2, and epidermal growth factor

receptor (EGFR) in breast cancer [80–82] and EGFR in

oral and epidermal cancers [83, 84]. Globally, bladder

cancer is a common cause of carcinomatosis. To target

bladder cancer, EGFR, mucin 7, and cytokeratin 20 are

commonly used [85–87]. Figure 2, the TEM, shows the

bladder cancer cell is targeted by antibody modified GNPs

and some endocytosis is found.

3.2 Polymeric Nanoparticles

Polymeric nanoparticles can be made from a wide range of

polymers, including natural or synthetic substances composed

of macromolecules such as ‘‘poly(lactide-coglycolide)’’,

‘‘poly(lactic acid)’’, ‘‘poly(e-caprolactone)’’, ‘‘chitosan’’, and
‘‘poly(alkyl cyanoacrylates)’’ [88–91]. However, many poly-

meric nanoparticles are toxic to patients; therefore, improving

biocompatibility and reducing cytotoxicity of polymeric

nanoparticles is imperative for biomedical applications. The

composition of polymeric nanoparticles can be varied for the

Fig. 2 TEM (960,000) illustrates that the bladder cancer cell is

targeted by antibody (anti-EGFR) modified GNPs. Endocytosis is

noticed
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delivery of specific drugs to the surface of specific cells [91].

The first step in using a polymeric carrier is the design a

polymeric structure that is biodegradable to ensure that they

retain their properties in vivo only for as long as needed.

Specifically, biodegradability ensures that polymeric carriers

degrade into small molecules that can be metabolized and

excreted from the body. Previous studies on the treatment of

bladder cancer with drugs formulated by polymeric nanopar-

ticles have shown considerable promise [92, 93]. Compared

with other drug delivery systems, polymeric nano-carriers are

easier to synthesize, less expensive, and provide superior

biocompatibility and biodegradability. They are also non-im-

munogenic, non-toxic, and water soluble.

3.3 Liposome and Lipid Nanoparticles

Liposomes are artificially-synthesized mono-layer or bi-

layer phospholipid vesicles, which have been developed for

the transport of molecules, such as drug molecules,

nucleotides, protein, and plasmids [94, 95]. Previous

studies have indicated that large negatively-charged mul-

tilamellar vesicles improve binding affinity and increase

the inhibition of four various human bladder tumor cell

lines: 253J, J82, T24, and TCCSUP [96, 97].

Oncogene overexpression is one of the major causes of

urothelial carcinoma; therefore, the silencing of oncogenes

via small interfering RNA (siRNA) coated with liposomes

may provide an effective approach to the prevention of

bladder cancer [98, 99]. Moreover, the intravesical instil-

lation of liposomes encapsulated with cytotoxic agents has

been found to improve the efficacy of intravesical therapies

used in the treatment of bladder cancer [100, 101]. Indeed,

one highly feasible treatment modality involves intravesical

administration of plasmid-containing liposomes, such as IL-

2 [102, 103], IL-4 [104], IL-12 [105], interferon-gamma

[106], and granulocyte macrophage colony-stimulating

factor [107]. Furthermore, in a number of clinical trials, it

has been found that intravesical liposomes have similar

therapeutic efficacy and can improve the pain score of

patients without unanticipated adverse effects [108, 109].

Two lipid nanoparticle systems have previously been

applied in cancer therapy: solid lipid nanoparticles (SLNs)

and nanostructured lipid carriers (NLCs), both of which are

composed of lipids instead of phospholipids [110–112].

SLNs are prepared from a single purified lipid and forma

crystalline lattice which allows the incorporation of small

molecular drugs. NLCs allow a mixture of lipid types to

create a lipid matrix as imperfect as possible. Because of

their unique size dependent properties, SLNs are at the

forefront of the rapidly developing field of nanotechnology,

with numerous potential applications in drug delivery

[113]. The ability to incorporate drugs into nanocarriers

offers a new vehicle for drug delivery that could be used to

improve drug targeting. Indeed, over the past few years,

nanostructured lipid carriers have been attracting consid-

erable interest as alternative carriers for anticancer phar-

maceuticals. However, many anticancer mixtures are

limited with regard to solubility and specificity and are

toxic to normal tissue [114]. These mixtures are also

associated with poor specificity and steadiness, pharma-

ceutical resistance, rapid degradation, the need for large-

scale output procedures, a fast release of the pharmaceu-

tical from its carrier scheme, the residues of the organic

solvents utilized in the output method and the toxicity from

the polymer with esteem to the carrier scheme are antici-

pated to be overcome through use of the nanostructured

lipid carrier.

3.4 Protein Nanoparticles

Colloidal drug carrier systems provide selective drug tar-

geting through the use of modified protein nanoparticles,

which reduces the effects of drug toxicity [78, 115]. Protein

materials used in vivo solves the enzyme-induced degrad-

able problem and provides considerable advantages over

colloidal carriers, such as liposomes and cell ghosts. They

are composed of biological components capable of deliv-

ering a range of molecules, both large and small. Indeed,

protein nanoparticles have already been employed as

pharmaceutical carriers in a number of cancer therapies

[97, 116]. For example, protein nanoparticles can be used

in the delivery of protein therapeutics to the lung. They can

also be incorporated into biodegradable polymer micro-

spheres/nanospheres to facilitate the controlled release

depot or oral delivery. Many researchers are currently

focused on the preparation of nanoparticles using proteins

such as albumin, gelatin, gliadin, and legumin. In intrav-

esical therapy, commercial paclitaxel contains Cremophor,

which can cause micelle formation and interfere with the

transportation of paclitaxel across the urothelium. To

improve the delivery of paclitaxel in intravesical therapy

against bladder cancer, Lu et al. [117] developed a pacli-

taxel-loaded gelatin protein nanoparticle. Results from that

study as well as other research have demonstrated the

potential of protein nanoparticles as drug delivery systems

for parenteral, peroral, and ocular administration, and may

also be a vaccine adjuvant.

4 Discussion and Conclusions

The aim of using nanoparticles in cancer treatment is to

increase drug specificity and thereby improve treatment

outcomes. Indeed, the unique properties of metallic, poly-

meric, lipid, and protein nanoparticles have been shown to

provide considerable benefits in the treatment of superficial
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urothelial cancer. Intravesical drug delivery is superior to

oral therapy in the treatment of bladder cancer, which

enables the administration of drugs directly to bladder

lesions and reduces the risk of systemic side effects [118].

However, intravesical therapy has limited therapeutic

efficacy due to the bladder permeability barrier and peri-

odic bladder discharge. Fortunately, the development of

nanoparticles as pharmaceutical carriers has helped to

overcome many of these disadvantages. Previous evidence

(mostly from animal studies) has supported the application

of nanotechnology in intravesical therapy through the

retention of drugs in the bladder and the enhancement of

drug permeability in bladder cancer [117, 119]. Doubt-

lessly, nanoparticles will continue to play a dominant role

in the coming generations of intravesical therapy against

bladder diseases. However, to reduce the risk of distant

metastasis, the standard treatment for muscle-invasive

bladder cancer remains radical cystectomy, as opposed to

regional or systemic drug therapy. As a result, the focus in

the application of nanotechnology in bladder cancer treat-

ment remains on non-muscle invasive forms of the disease.

Adjuvant therapy in conjunction with nanoparticles lowers

the rate of recurrence and reduces the risk of negative side

effects associated with traditional intravesical chemother-

apy and immune therapy [69].

The excellent photothermal properties of GNPs have led

to their application in a variety of treatment techniques

which target cancer cells [69, 120, 121]. For example,

GNPs can be used to rapidly detect abnormal genes or

cancer cells, which improves cancer diagnosis and treat-

ment. In addition, GNPs possess good biocompatibility,

good modulability, non-cytotoxicity, and highly specific

optical properties. These characteristics suggest that GNPs

can benefit a far wider range of clinical applications. Fur-

thermore, differences in electrical charges between GNPs

and proteins allow antibody fragments to be conjugated

with GNPs [69, 83, 122]. Thus, developing an improved

nanoparticle system capable of delivering intact drugs or

molecules to the urothelium without severe side effects is a

worthy goal for future research.
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