Skip to main content
Log in

Robust photoluminescence energy of MoS2/graphene heterostructure against electron irradiation

二硫化钼/石墨烯异质结在电子束辐照轰击下发光能量的鲁棒特性

  • Letter
  • Published:
Science China Materials Aims and scope Submit manuscript

摘要

在许多恶劣的工作环境中, 器件难免会曝露在电子束辐照下. 对于单原子层厚度的二维材料而言, 电子束辐照经常会造成其本征性能的衰减. 如何避开这一影响对于多功能化的二维异质结器件来讲至关重要. 然而, 电子束辐照对于二维异质结的影响至今仍缺乏充分深入的研究. 本工作发现利用异质结的堆垛可以阻碍单层二硫化钼(MoS2)由于电子束辐照带来的性能衰退. 通过在MoS2与基底之间插入单层石墨烯, 在同样剂量的电子束辐照轰击下, 异质结区域的光致发光强度始终大于纯单层MoS2; 而且与纯单层区域明显的发光能量变化相比, MoS2/石墨烯异质结区域的发光能量具有更佳的稳定性. 这一现象归因于石墨烯的阻隔效应: 由于单层石墨烯的存在抑制了基板对MoS2的影响. 此外, 我们也系统地揭示了电子束辐照对MoS2/石墨烯异质结拉曼光谱及电学传输特性的影响. 本工作不仅有助于加深人们对二维异质结辐照效应的认知, 同时也为新型抗辐射器件的设计开辟了新的途径.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Novoselov KS, Geim AK, Morozov SV, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306: 666–669

    Article  Google Scholar 

  2. Jin W, Yeh PC, Zaki N, et al. Direct measurement of the thicknessdependent electronic band structure of MoS2 using angle-resolved photoemission spectroscopy. Phys Rev Lett, 2013, 111: 106801

    Article  Google Scholar 

  3. Mak KF, Lee C, Hone J, et al. Atomically thin MoS2: a new directgap semiconductor. Phys Rev Lett, 2010, 105: 136805

    Article  Google Scholar 

  4. Splendiani A, Sun L, Zhang Y, et al. Emerging photoluminescence in monolayer MoS2. Nano Lett, 2010, 10: 1271–1275

    Article  Google Scholar 

  5. Zhang Y, Chang TR, Zhou B, et al. Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. Nat Nanotechnol, 2014, 9: 111–115

    Article  Google Scholar 

  6. Wu B, Yin J, Ding Y, et al. A new two-dimensional TeSe2 semiconductor: indirect to direct band-gap transitions. Sci China Mater, 2017, 60: 747–754

    Article  Google Scholar 

  7. Lopez-Sanchez O, Lembke D, Kayci M, et al. Ultrasensitive photodetectors based on monolayer MoS2. Nat Nanotechnol, 2013, 8: 497–501

    Article  Google Scholar 

  8. Zhang Y, Tang TT, Girit C, et al. Direct observation of a widely tunable bandgap in bilayer graphene. Nature, 2009, 459: 820–823

    Article  Google Scholar 

  9. Yang X, Li Q, Hu G, et al. Controlled synthesis of high-quality crystals of monolayer MoS2 for nanoelectronic device application. Sci China Mater, 2016, 59: 182–190

    Article  Google Scholar 

  10. Lin Z, Yin A, Mao J, et al. Scalable solution-phase epitaxial growth of symmetry-mismatched heterostructures on two-dimensional crystal soft template. Sci Adv, 2016, 2: e1600993–e1600993

    Article  Google Scholar 

  11. Yu WJ, Liu Y, Zhou H, et al. Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. Nat Nanotechnol, 2013, 8: 952–958

    Article  Google Scholar 

  12. Yang T, Zheng B, Wang Z, et al. Van der Waals epitaxial growth and optoelectronics of large-scale WSe2/SnS2 vertical bilayer p–n junctions. Nat Commun, 2017, 8: 1906

    Article  Google Scholar 

  13. Britnell L, Ribeiro RM, Eckmann A, et al. Strong light-matter interactions in heterostructures of atomically thin films. Science, 2013, 340: 1311–1314

    Article  Google Scholar 

  14. Tongay S, Fan W, Kang J, et al. Tuning interlayer coupling in large-area heterostructures with CVD-grown MoS2 and WS2 monolayers. Nano Lett, 2014, 14: 3185–3190

    Article  Google Scholar 

  15. Li B, Huang L, Zhong M, et al. Direct vapor phase growth and optoelectronic application of large band offset SnS2/MoS2 vertical bilayer heterostructures with high lattice mismatch. Adv Electron Mater, 2016, 2: 1600298

    Article  Google Scholar 

  16. Liu J, Cao H, Jiang B, et al. Newborn 2D materials for flexible energy conversion and storage. Sci China Mater, 2016, 59: 459–474

    Google Scholar 

  17. Huo N, Tongay S, Guo W, et al. Novel optical and electrical transport properties in atomically thin WSe2/MoS2 p-n heterostructures. Adv Electron Mater, 2015, 1: 1400066

    Article  Google Scholar 

  18. Wang X, Huang L, Peng Y, et al. Enhanced rectification, transport property and photocurrent generation of multilayer ReSe2/MoS2 p–n heterojunctions. Nano Res, 2016, 9: 507–516

    Article  Google Scholar 

  19. Yuan H, Liu X, Afshinmanesh F, et al. Polarization-sensitive broadband photodetector using a black phosphorus vertical p–n junction. Nat Nanotechnol, 2015, 10: 707–713

    Article  Google Scholar 

  20. Liu Z, Zhang Y, Zhao H, et al. Constructing monodispersed MoSe2 anchored on graphene: a superior nanomaterial for sodium storage. Sci China Mater, 2017, 60: 167–177

    Article  Google Scholar 

  21. Li Y, Huang L, Li B, et al. Co-nucleus 1D/2D heterostructures with Bi2S3 nanowire and MoS2 monolayer: one-step growth and defectinduced formation mechanism. ACS Nano, 2016, 10: 8938–8946

    Article  Google Scholar 

  22. López-Polín G, Gómez-Navarro C, Parente V, et al. Increasing the elastic modulus of graphene by controlled defect creation. Nat Phys, 2015, 11: 26–31

    Article  Google Scholar 

  23. Bertolazzi S, Bonacchi S, Nan G, et al. Engineering chemically active defects in monolayer MoS2 transistors via ion-beam irradiation and their healing via vapor deposition of alkanethiols. Adv Mater, 2017, 29: 1606760

    Article  Google Scholar 

  24. Parkin WM, Balan A, Liang L, et al. Raman shifts in electronirradiated monolayer MoS2. ACS Nano, 2016, 10: 4134–4142

    Article  Google Scholar 

  25. Komsa HP, Kotakoski J, Kurasch S, et al. Two-dimensional transition metal dichalcogenides under electron irradiation: defect production and doping. Phys Rev Lett, 2012, 109: 035503

    Article  Google Scholar 

  26. Zhou Y, Jadwiszczak J, Keane D, et al. Programmable graphene doping via electron beam irradiation. Nanoscale, 2017, 9: 8657–8664

    Article  Google Scholar 

  27. Fox DS, Zhou Y, Maguire P, et al. Nanopatterning and electrical tuning of MoS2 layers with a subnanometer helium ion beam. Nano Lett, 2015, 15: 5307–5313

    Article  Google Scholar 

  28. Liu K, Hsin CL, Fu D, et al. Self-passivation of defects: effects of high-energy particle irradiation on the elastic modulus of multilayer graphene. Adv Mater, 2015, 27: 6841–6847

    Article  Google Scholar 

  29. Tongay S, Suh J, Ataca C, et al. Defects activated photoluminescence in two-dimensional semiconductors: interplay between bound, charged and free excitons. Sci Rep, 2013, 3: 2657

    Article  Google Scholar 

  30. Tan Y, Liu X, He Z, et al. Tuning of interlayer coupling in largearea graphene/WSe2 van der Waals heterostructure via ion irradiation: optical evidences and photonic applications. ACS Photonics, 2017, 4: 1531–1538

    Article  Google Scholar 

  31. Nan H, Wang Z, Wang W, et al. Strong photoluminescence en-hancement of MoS2 through defect engineering and oxygen bonding. ACS Nano, 2014, 8: 5738–5745

    Article  Google Scholar 

  32. Nan H, Wu Z, Jiang J, et al. Improving the electrical performance of MoS2 by mild oxygen plasma treatment. J Phys D-Appl Phys, 2017, 50: 154001

    Article  Google Scholar 

  33. Zandiatashbar A, Lee GH, An SJ, et al. Effect of defects on the intrinsic strength and stiffness of graphene. Nat Commun, 2014, 5

  34. Carpenter C, Maroudas D, Ramasubramaniam A. Mechanical properties of irradiated single-layer graphene. Appl Phys Lett, 2013, 103: 013102

    Article  Google Scholar 

  35. Weerasinghe A, Ramasubramaniam A, Maroudas D. Thermal conductivity of electron-irradiated graphene. Appl Phys Lett, 2017, 111: 163101

    Article  Google Scholar 

  36. Krasheninnikov AV, Banhart F. Engineering of nanostructured carbon materials with electron or ion beams. Nat Mater, 2007, 6: 723–733

    Article  Google Scholar 

  37. Yu Y, Yu Y, Xu C, et al. Engineering substrate interactions for high luminescence efficiency of transition-metal dichalcogenide monolayers. Adv Funct Mater, 2016, 26: 4733–4739

    Article  Google Scholar 

  38. Mak KF, He K, Lee C, et al. Tightly bound trions in monolayer MoS2. Nat Mater, 2013, 12: 207–211

    Article  Google Scholar 

  39. Cançado LG, Jorio A, Ferreira EHM, et al. Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Lett, 2011, 11: 3190–3196

    Article  Google Scholar 

  40. Pimenta MA, Dresselhaus G, Dresselhaus MS, et al. Studying disorder in graphite-based systems by Raman spectroscopy. Phys Chem Chem Phys, 2007, 9: 1276–1290

    Article  Google Scholar 

  41. Dong H, Liu H. Elastic properties of VO2 from first-principles calculation. Solid State Commun, 2013, 167: 1–4

    Article  Google Scholar 

  42. Liu M, Shi J, Li Y, et al. Temperature-triggered sulfur vacancy evolution in monolayer MoS2/graphene heterostructures. Small, 2017, 13: 1602967

    Article  Google Scholar 

  43. Tongay S, Zhou J, Ataca C, et al. Broad-range modulation of light emission in two-dimensional semiconductors by molecular physisorption gating. Nano Lett, 2013, 13: 2831–2836

    Article  Google Scholar 

  44. Sun Y, Wang R, Liu K. Substrate induced changes in atomically thin 2-dimensional semiconductors: Fundamentals, engineering, and applications. Appl Phys Rev, 2017, 4: 011301

    Article  Google Scholar 

  45. Yuan ZQ, Hou JW, Liu K. Interfacing 2D semiconductors with functional oxides: Fundamentals, properties, and applications. Crystals, 2017, 7: 265

    Article  Google Scholar 

  46. Hou J, Wang X, Fu D, et al. Modulating photoluminescence of monolayer molybdenum disulfide by metal-insulator phase transition in active substrates. Small, 2016, 12: 3976–3984

    Article  Google Scholar 

  47. Late DJ, Liu B, Matte HSSR, et al. Hysteresis in single-layer MoS2 field effect transistors. ACS Nano, 2012, 6: 5635–5641

    Article  Google Scholar 

  48. Radisavljevic B, Kis A. Mobility engineering and a metal–insulator transition in monolayer MoS2. Nat Mater, 2013, 12: 815–820

    Article  Google Scholar 

  49. Castro Neto AH, Guinea F, Peres NMR, et al. The electronic properties of graphene. Rev Mod Phys, 2009, 81: 109–162

    Article  Google Scholar 

  50. Geim AK, Novoselov KS. The rise of graphene. Nat Mater, 2007, 6: 183–191

    Article  Google Scholar 

  51. Kwak JY, Hwang J, Calderon B, et al. Electrical characteristics of multilayer MoS2 FET’s with MoS2/graphene heterojunction contacts. Nano Lett, 2014, 14: 4511–4516

    Article  Google Scholar 

  52. Xie L, Liao M, Wang S, et al. Graphene-contacted ultrashort channel monolayer MoS2 transistors. Adv Mater, 2017, 29: 1702522

    Article  Google Scholar 

  53. Kim BJ, Jang H, Lee SK, et al. High-performance flexible graphene field effect transistors with ion gel gate dielectrics. Nano Lett, 2010, 10: 3464–3466

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (11774191, 51727805, and 51672152), the Open Research Fund Program of the State Key Laboratory of Low- Dimensional Quantum Physics (KF201603), and the Thousand Youth Talents Program of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Liu  (刘锴).

Additional information

Shengzhe Hong obtained his bachelor’s degree at Taipei University of Technology in 2015, and is now a postgraduate student at Tsinghua University. His research interests are focused on the effects of electron-beam irradiation on twodimensional materials and heterostructures.

Kai Liu obtained his PhD degree from Tsinghua University in 2008. He joined Tsinghua University as an associtate professor in 2015 after a period of postdoctoral research at the Lawrence-Berkeley National Lab, USA. His current research is focused on syntheses and applications of low-dimensional materials and their composites or heterostructures.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, S., Fu, D., Hou, J. et al. Robust photoluminescence energy of MoS2/graphene heterostructure against electron irradiation. Sci. China Mater. 61, 1351–1359 (2018). https://doi.org/10.1007/s40843-018-9255-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-018-9255-9

Navigation