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ABSTRACT Exploring and designing bi-functional catalysts
with earth-abundant elements that can work well for both
hydrogen evolution reaction (HER) and oxygen evolution re-
action (OER) in alkaline medium are of significance for pro-
ducing clean fuel to relieve energy and environment crisis.
Here, a novel Ni/NiO monolithic electrode was developed by a
facile and cost-effective acid promoted activation of Ni foam.
After the treatment, this obtained monolithic electrode with a
layer of NiO on its surface demonstrates rough and sheet-like
morphology, which not only possesses larger accessible surface
area but also provides more reactive active sites. Compared
with powder catalysts, this monolithic electrode can achieve
intimate contact between the electrocatalyst and the current
collector, which will alleviate the problem of pulverization and
enable the stable function of the electrode. It can be served as
an efficient bi-functional electrocatalyst with an overpotential
of 160 mV for HER and 290 mV for OER to produce current
densities of 10 mA cm−2 in the alkaline medium. And it
maintains benign stability after 5,000 cycles, which rivals
many recent reported noble-metal free catalysts in 1.0 mol L−1

KOH solution. Attributed to the easy, scalable methodology
and high catalytic efficiency, this work not only offers a pro-
mising monolithic catalyst but also inspires us to exploit other
inexpensive, highly efficient and self-standing noble metal-
free electrocatalysts for scale-up electrochemical water-split-
ting technology.

Keywords: electrocatalysis, bi-functional, acid promoted activa-
tion, Ni/NiO, water splitting, monolithic electrode

INTRODUCTION
Water electrocatalysis for clean fuel production is an
appealing solution to meet the ever-growing energy de-

mands at no environmental cost [1–4]. And the great
demand of H2 production triggers a body of research
inputs on the water splitting, in which the key fact de-
pends on the innovative exploitation regarding the design
of efficient electrocatalysts helping lower the overpotential
meanwhile obtaining decent reaction rates [5,6]. How-
ever, the most efficient noble-metal based electrocatalysts
suffer from natural resource scarcity and high-cost, which
hampers their broad utilization [7–10]. Although a variety
of non-noble metal-based nanostructured materials such
as Mo2C/MoO2 [11], Co9S8/graphene [12], CoPS [13],
CoMoS [14], NiMoN [15] have been reported, the facts
are still far from satisfactory since these materials are ei-
ther for oxygen evolution reaction (OER) catalysts
working in strongly alkaline conditions or for hydrogen
evolution reaction (HER) catalysts operating in strongly
acidic mediums due to the thermodynamic convenience
[5,16–18]. The inferior efficiency caused by the disparity
of the stability and activity for the same catalyst system in
the operating pH ranges [19,20] limits the practical im-
plementations of these materials as a catalytic electrode in
an integrated electrolyser. Therefore, a formidable chal-
lenge for electrocatalytic water splitting is to explore and
design bifunctional catalysts that can work well for both
HER and OER in the same alkaline medium to accom-
plish overall water splitting.
Up to now, several types of bifunctional materials such

as metal oxides [21], phosphides [22] and nitrides [23]
have been explored as earth-enriched electrocatalysts for
overall water splitting. However, the fabrication of these
powder catalysts usually involves tedious and complicated
steps to get desirable nanostructures. And the obtained
catalysts have to be further loaded onto specific current
collector for subsequent performance tests. During the
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loading process, it is difficult to achieve highly dispersion
of the catalysts over the electrode surface. And the contact
between the electrocatalysts and the current collector is
not so intimate by this post-loading method [24]. As a
result, the pulverized catalysts tend to peel off from the
substrate especially in a working circumstance where lots
of hydrogen and oxygen would continuously bubble up,
leading to gradually decreased catalytic efficiency as well
as limited life span [25]. In comparison, growing the
catalysts directly onto the conductive substrate such as Ni
foam (NF) [26,27], carbon cloth [28,29], carbon fiber
paper [30] and Ti foil [31] can mitigate the problem of
falling off and contact to some extent. However, the
matter of the contact interface between electrocatalysts
and the current collector as well as pulverization issues is
still not fully addressed. Therefore, exploring monolithic
electrodes towards HER and OER consisting of a current
collector immobilized with noble-metal-free catalysts [24]
to enhance the durability of the catalysts remains chal-
lenging.
NF, a widely used electrode that serves as a promising

substrate for the support of many catalysts, possesses
unique features such as good electrical conductivity, in-
trinsic strength, corrosion resistance, high surface area
and low cost [26,32]. However, the intrinsic activity of
metallic nickel towards HER or OER under alkaline
conditions is not so good. Here, we successfully developed
an integrated electrode based on metallic NF with robust
electrocatalytic properties by a facile acid-promoted ac-
tivation process. Benefiting from the increased accessible
surface area and active sites, the novel acid-activated
electrode presents considerable activity and alkaline-sta-
bility toward the HER and OER. Specifically, the obtained
electrode demonstrates the overpotentials of 160 mV for
HER and 290 mV for OER to produce current density of
10 mA cm−2 and exhibits high tolerance and durability
under harsh basic conditions, which enables it compar-
able to the reported noble metal-free catalysts. Ad-
ditionally, compared with other 3D electrodes with
excellent electrochemical performance, such as WSe2 [33],
np-Co2P [34], CP/CTs/Co-S [35], this acid activation
process of 3D NF electrode has the advantages of sim-
plicity, low cost and mass-production. Compared with
traditional powder catalysts, the 3D monolithic electrode
with decent catalytic stability is actually preferable for
practical use by tailoring the size of the electrode to adapt
to different electrochemical devices. This work may pave
a viable way of fabricating cheap and highly efficient
electrodes for the electrochemical water splitting tech-
nology.

EXPERIMENTAL SECTION

Sample preparation
All reagents were directly used without any further pur-
ification. The activated NF (ANF) was obtained by an acid
promoted activated process. Briefly, prior to activation,
NF was cut into pieces (2 cm×3 cm) and cleaned with
distilled water and ethanol in turn and then left dry in air.
Afterwards, a few pieces of NF were directly immersed
into 200 mL of 3 mol L−1 HCl aqueous solution which was
heated on a hotplate at the setting temperatures of 60, 90,
120 and 150°C, respectively, for different time (10, 20, 30
and 40 min). And the corresponding inner temperature of
HCl solution was tested to be about 50, 60, 70 and 80°C.
In this paper, all the activation temperature refers to the
value of hotplate, not that of the HCl solution. Then, the
ANF was removed and cleaned with distilled water to
remove any extra HCl solution. Finally, the ANF was
dried at room temperature for further experiments.

Material characterization
X-ray diffraction (XRD) data of the activated samples
were obtained by using a PANalytical B.V. Empyrean
diffractometer. The morphology and microstructure of
the samples were observed by scanning electron micro-
scopy (SEM, FEI Sirion 650). The elemental analysis was
investigated using X-ray photoelectron spectroscopy
(XPS, Thermo Fisher ESCALAB 250.)

Electrochemical measurements
The electrochemical performances were carried out on a
typical three-electrode electrochemical cell using a CHI
760e electrochemistry workstation (Chenhua, Shanghai)
with an electrolyte solution of 1.0 mol L−1 KOH The ob-
tained Ni/NiO electrode served as the working electrode
with a graphite rod counter electrode and a Hg/HgO (in
1.0 mol L−1 KOH) reference electrode. Before each mea-
surement, the electrolyte was purged by ultra-high pure
nitrogen (> 99.999%) at least for 30 min, and the N2

bubbling was then maintained over the entire duration of
the electrochemical experiments. The polarization curves
of the HER and OER were conducted in electrolyte with a
scan rate of 5 mV s−1. The cyclic voltammetry (CV) plots
used to probe the electrochemical double layer capaci-
tance at non-faradaic potential to estimate the effective
electrode surface area were swept between 0.6 and 0.75 V
in 1.0 mol L−1 KOH with the scanning rates of 20, 40, 60,
80 and 100 mV s−1. Current density-time (i-t) curves were
measured for characterizing the stability of HER, OER
and overall water splitting in 1.0 mol L−1 KOH. The ac-
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celeration degradation test (ADT) was conducted by 5,000
potential cycling under corresponding HER or OER re-
gion at a scan rate of 100 mV s−1. Electrochemical im-
pedance spectroscopy (EIS) was performed by scanning
the frequency from 105 to 0.01 Hz at −0.1 V vs. reversible
hydrogen electrode (RHE) with an amplitude of 5 mV.
For overall water splitting, electrochemical measurements
were carried out in a two-electrode setup in 1.0 mol L−1

KOH solution using ANF as the anode and cathode. All
displayed voltammetry were iR-corrected to account for
any uncompensated resistance. The uncompensated re-
sistance was measured by EIS. The calculation of current
densities was based on the actual area of electrode that
was immersed in the electrolyte and the height of elec-
trode was carefully adjusted. All the potentials measured
in our work were calibrated with RHE according to the
equation: ERHE = EHg/HgO + 0.0591pH + 0.098.

RESULTS AND DISCUSSION
A schematic representation of the activated process of NF
is shown in Fig. 1. In short, a few pieces of NF (2 cm×
3 cm) were soaking into the 3 mol L−1 HCl solution at
different temperatures for different time, respectively (see
EXPERIMENTAL SECTION for the detailed process).
During the acid treatment process, the surface Ni was first
dissolved in 3 mol L−1 HCl solution, which can be seen
from the color changes of the solutions (Fig. S1). Subse-
quently, the newly exposed highly reactive surface was
prone to be oxidized by the dissolved oxygen in the so-
lution and the oxygen in the air to form a new nickel
oxide layer. The morphology and the microstructure of
NF and ANF electrode or Ni/NiO electrode were acquired
by SEM and the results are demonstrated in Fig. 2. From
the SEM images of Fig. 2a, c, e, it can be seen that the
surface of pristine NF is smooth in general though a bit

uneven, whereas the NF becomes rough and numerous
ravines and even some pores are formed after the acid
treatment (Fig. 2b, d). SEM image (Fig. 2f) with higher
magnification reveals that a layer of sheet-like structure is
formed after the acid treatment process. Furthermore,
with the increase of the activation temperature from 60 to
120°C and longer treatment time from 10 to 30 min
(higher temperature and time will lead the NF to be
corroded and broken, see Fig. S2), the NF would be

Ni foam surface Activated Ni foam surface

NiOH+ O2

Acid promoted activation

Figure 1 Schematic illustration of the activation process to prepare the monolithic Ni/NiO electrode.
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Figure 2 SEM images of bare NF (a, c, e) and the obtained Ni/NiO
electrode for activating the NF at 120°C for 30 min (b, d, f).
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etched more seriously and form more rough surface (Fig.
S3).
XRD and XPS were carried out to identify the elemental

composition and valence state before and after acid-
treatment. As displayed in Fig. 3a, only the signals of
metallic nickel are observed because the formation of NiO
on the surface of NF was too little to be detected. Fig. S4a,
b show the typical XPS survey spectra of NF and Ni/NiO
obtained at different temperatures and time. All spectra
were calibrated with the C 1s peak to 284.8 eV. Only
signals of Ni, O and C elements are observed, which in-
dicates that no other impurities were introduced during
the activation process. The Ni 2p core-level XPS spectra
are displayed in Fig. 3b, in which two Ni 2p core levels
(2p1/2 and 2p3/2) and two satellite peaks are observed. The
binding energy separation between core levels Ni 2p1/2

(872.95 eV) and Ni 2p3/2 (855.39 eV) is 17.56 eV, which
matches with electronic states of NiO [36]. While the
peaks located at 852.0 and 869.15 eV are associated with
the typical binding energies for Ni 2p3/2 and Ni 2p1/2 of Ni0
[37] respectively. Meanwhile, compared with the pristine
NF, the Ni 2p intensities of the Ni2+ peaks of Ni/NiO
samples become stronger with the increase of activated

temperatures, which indicates the increased amount of
nickel oxide on the surface of ANF. Furthermore, the
corresponding lower intensity of the characteristic Ni0
peaks also validates the generation of nickel oxide on the
ANF surface. In order to further clearly exhibit the acti-
vated promoted self-growth of NiO on the NF surface at
the increased activated temperatures, we fitted the peak
areas of the Ni 2p and then calculated the proportion of
Ni2+/Ni0. From Fig. 3c–e, it can be concluded that the
value of the Ni2+/Ni0 varies from 4.49 to 26.06, which
further confirms the above conclusion. In the O 1s spectra
(Fig. 3f), the peak at 529.5 eV reveals the existence of Ni–
O–Ni bond, which is consistent with NiO electronic state,
and the peak at 531.6 eV is attributed to oxygen vacancies,
while the peak at 532.5 eV may be due to the adsorbed
water or possibly adsorbed O2 [38,39]. In addition, the O
1s peak intensity of the Ni/NiO sample gradually in-
creases with the increasing activated temperatures (Fig.
S5), which further proves the formation of NiO on the NF
surface due to the acid activation process. In addition to
the temperature, activation time may also influence the
formation of surface NiO, so conditional experiments
were conducted for different activation time. Similar re-
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Figure 3 XRD and XPS analyses of the obtained Ni/NiO electrodes with NF treated at different temperatures. (a) XRD patterns. (b) XPS spectra of Ni
2p. (c–e) The fitting of the peak areas of Ni2+ and Ni0. (f) XPS spectra of O 1s.
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sults are exhibited in Fig. S6, where increasing the acti-
vation time does not change the main composition of the
products (Fig. S6a) and the peak intensities of Ni2+ 2p and
O 1s also increase with the increase of the activation time
(Figs S6 and S7). The combination of XRD and XPS
measurement results indicate that the activated NF has a
core of Ni and some NiO on its surface.
The electrocatalytic properties of the Ni/NiO electrode

were firstly studied by HER in strong alkaline solution
using a typical three-electrode setup. Fig. 4a presents the
representative polarization curves (with iR compensa-
tion). As can be clearly seen, bare NF possesses quite weak
catalytic activity, while in sharp contrast, all the Ni/NiO
samples display enhanced HER performance, implying
that the activation process can effectively improve the
HER catalytic properties of NF. In addition, the NF-120
exhibits remarkably high activity with an onset potential
of ~73 mV and an overpotential of 160 mV vs. RHE at the
current density of 10 mA cm−2 (NF-60, NF-90 and the
bare NF display overpotentials of 195, 176 and 288 mV,
respectively). This overpotential is comparable to or even
smaller than those of many reported values for non-Pt
HER catalysts in basic aqueous media, including Co-
NRCNTs (370 mV) [40], MoB (225 mV) [41], WP (250
mV) [28], porous Co-based film (375 mV) [42], MoP (276

mV) [43], and WN NAs/CC (285 mV) [44], (see Fig. 4b
and Table S1 in the Supplementary information for more
details). The influence of activation time on the catalytic
properties of the Ni/NiO electrode is depicted in Fig. S8a.
It is apparent that with the increased activation time from
10 to 30 min, the overpotential of the Ni/NiO decreases
from 196 to 160 mV. All these results showed that the NF-
120 (30 min) exhibited higher catalytic activity than other
samples. Given the facts above, we proposed that the
enhanced HER catalytic activity may be due to the fol-
lowing reasons: (1) the metallic Ni substrate with ex-
cellent conductivity enables it to transport charge and
electron effectively. (2) Intimate contact between the Ni
substrate and electrochemically active NiO reduces the
interface resistance and facilitates the interfacial charge
transfer. (3) The Ni/NiO electrode with rough surface
contributes to larger accessible surface area, which is fa-
vorable for enhancing the electrolyte-material contact
area and providing more reactive sites for the improve-
ment of HER performance.
The linear regions of the Tafel plots (Fig. 4c and Fig.

S8b) were fitted into the Tafel equation (blog (j) + a,
where b is the Tafel slop and j is the current density),
yielding 68 mV dec−1 for NF activated at 120°C for
30 min. This further indicates that NF-120 has better
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catalytic performance and rivals the performance of many
basic-stable HER catalysts, such as NiCoP/rGO (b = 124.1
mV dec−1) [45], CP/CTs/Co-S (b = 131 mV dec−1) [35],
MoS2 nanosheets (b = 100 mV dec−1) [46], and FeP NWs
(b = 75 mV dec−1) [47], (see Table S1 for more details).
Generally, a Tafel slope of 116, 38, and 29 mV dec−1 was
expected if the rate-determining step in HER was Volmer,
Heyrovsky, and Tafel reactions, respectively [48]. Thus
the experimentally observed Tafel slope of 68 mV dec−1

for NF-120 implies that hydrogen evolution behavior
occurring on the surface follows a Volmer−Heyrovsky
mechanism. The lowest overpotential and smallest Tafel
slope (Fig. 4a, c) for NF-120 imply its superior HER ac-
tivity.
The CV measurement with different scan rates was

employed to evaluate the double-layer capacitance (Cdl) at
the solid/liquid interface of all electrodes for better
comparison of the activity of Ni/NiO described here

[49,50]. Cdl was linearly proportional to the effective active
surface area [51], and it could be estimated by plotting the
Δj (ja - jc) at 0.67 V vs. RHE against the scan rate, where
the slope was twice as the Cdl. The CVs were collected in
the region of 0.62 ~ 0.72 V (vs. RHE), where the current
response comes only from the charging of the double
layer (Figs S9 and S10), and the linear slope of the ca-
pacitive current against scan rate was used to represent
the electrochemically active surface area. From Fig. 4d
and Fig. S8c, it is clearly that the Cdl of NF-120 (398
μF cm−2) is higher than other Ni/NiO electrodes obtained
at different activation conditions. This suggests that in-
creasing activation temperature and treatment time will
create more exposed active sites in the Ni/NiO series,
which is beneficial to the enhanced HER activity.
EIS was performed to shed light on the HER kinetics

and interface reactions on the surface of the catalysts.
Nyquist plots (Fig. 4e and Fig. S8d) reveal an obviously
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decreased charge transfer resistance after the acid-acti-
vation, which means more rapid charge transfer kinetics.
The improved charge transfer ability could promote the
combination of electrons and Hads, and benefit the
electrical integration to minimize concomitant Ohmic
losses [52,53], and thus the electrocatalytic activity was
enhanced. The good HER performance of Ni/NiO can be
attributed to the low hydrogen adsorption impedance and
fast charge-transfer kinetics on the surface of the elec-
trode.
In addition to good catalytic activity, durability is also a

key concern for all catalysts. After continuous CV scan-
ning for 5,000 cycles in 1.0 mol L−1 KOH at a scan rate of
100 mV dec−1, the polarization curve overlays almost ex-
actly with the initial one (Fig. 4f). And the current density
shows no apparent debasement for 10 h long time test
(inset of Fig. 4f). Besides, XRD (Fig. 5a) and XPS analyses
(Fig. 5b, c and Fig. S11) of this catalyst electrode suggest
that after long period stability test, the main components
of the catalyst are still nickel and oxide element though a
slight decrease of NiO (the negligible lower intensity of

the O 1s) owing to the electrochemical reduction (Fig. 5c
and Fig. S11). SEM image (Fig. 5d) indicates that this
catalyst electrode still maintains most of its morphology
after 5,000 cycles. All these results confirm the stable
performance of this self-standing non-noble HER elec-
trocatalyst.
Besides HER performance, the activity of Ni/NiO for

electrochemical oxidation of water to produce oxygen was
also evaluated. Fig. 6a and Fig. S12a show the iR corrected
polarization curves of the activated NF in an anodic di-
rection. Similar to its HER performance, the activated NF
displays obviously enhanced OER activity. Among the
samples, NF-120 electrode by 30 min activation shows the
best activity. The bare NF electrode shows poor OER
activity, and the overpotential to generate 10 mA cm−2 is
450 mV. In contrast, the activated NF is highly active
towards OER. With the changes of activation temperature
and time, Ni/NiO electrodes deliver an overpotential
varying from 350 (NF-60) to 290 mV (NF-120) for OER
at the current density of 10 mA cm−2. The peak at 1.35 V
vs. RHE observed in Fig. 6a for Ni/NiO is ascribed to the
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Figure 6 (a) LSV curves for bare NF and the obtained Ni/NiO at different temperatures (60,90,120°C) with a scan rate of 5 mV s−1 for OER in
1.0 mol L−1 KOH. (b) Comparison of the overpotential and Tafel slope for Ni/NiO with other reported noble-metal free catalysts. (c) Tafel slopes for
different Ni/NiO samples. (d) LSV curves of NF-120 catalysts in 1.0 mol L−1 KOH before and after long-term 5,000 cycles, and the inset is the
corresponding time-dependent current density curve at a static overpotential.
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redox of Ni3+/Ni2+, which agrees with most of the reported
Ni-based bifunctional electrocatalysts [54]. Tafel plots
derived from polarization curves were conducted to
evaluate the reaction kinetics (Fig. 6c and Fig. S12b). The
resulting Tafel slope of NF-120 is 46 mV dec−1, smaller
than that of the other catalysts (51, 52, 53 and 63
mV dec−1 for NF-90, NF-60, NF-20 min and NF-10 min).
This is a sign of more favorable kinetics with a more rapid
oxygen evolution rate. The low overpotential and small
Tafel slope underline the excellent oxygen evolution ef-
ficiency of NF-120, which rivals most the state-of-the-art
non-noble metal OER catalysts working in alkaline media,
such as NiD-PCC (η10 mA cm−2 = 360 mV, b = 98 mV dec−1)
[55], Ni3Fe/N-C (η10 mA cm−2= 370 mV, b = 77 mV dec−1)
[56], CoCoLDH (η10 mA cm−2= 393 mV, b = 59 mV dec−1)
[57], and Co3(PO4)2@N-C (η10 mA cm−2= 317 mV, b = 62
mV dec−1) [58] (see Fig. 6b and Table S2 in the Supple-
mentary information for more details). Additionally,
continuous 5,000 cycles of CV scanning exhibits almost
no degradation in current density (Fig. 6d). And the
corresponding time-dependent current density curve

presents only a slight degradation for 10 h (inset of Fig.
6d), which could be due to the hindrance of bubbles re-
maining on the surface of the electrode. To get more
insight into the catalytic properties of the Ni/NiO elec-
trode, the spent electrode after OER electrochemical test
was further characterized by XRD and XPS. The XRD
pattern reveals that the diffraction peaks of nickel from
the used electrode are still retained (Fig. 5a), indicating
excellent stability of Ni/NiO under the OER conditions.
While the survey XPS spectrum exhibits that the Ni/NiO
electrode still consists of Ni and O as the major compo-
nents (Fig. S11), an increased amount of O appeared in
the post-OER sample, likely arising from hydroxylation
upon continuous OER electrolysis. Furthermore, the SEM
image (Fig. 5e) of the spent OER catalyst still shows a
rough surface similar to the fresh Ni/NiO sample, in-
dicating remarkable structural robustness.
CV data recorded between −0.4 and 2.0 V (vs. RHE)

reveals that the obtained NF electrode in this study is
capable of acting as an efficient bifunctional HER and
OER catalyst (Fig. 7a), which is in accordance with the
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Figure 7 (a) CV curves of Ni/NiO obtained at 120°C in 1.0 mol L−1 KOH with a scan rate of 100 mV s−1. (b) Schematic illustration of two-electrode
cell using NF-120 for both anode and cathode for water splitting. (c) Current–potential response of an alkaline electrolyzer using NF-120 as catalyst
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above analysis. With that in mind, an electrolyzer was
conducted with the same catalyst both as the cathode and
anode (NF-120||NF-120) for the electrochemical full wa-
ter spitting in alkaline medium (Fig. 7b). As shown in Fig.
7c, the overall water-splitting of the NF-120 electrolyzer
exhibits overall voltage of 1.72 V at 10 mA cm−2, which is
lower than the pristine NF electrolyzer due to the faster
charge-transfer kinetics. In addition, the performance of
this NF-120 electrode is comparable to some reported
bifunctional catalysts, including CP/CTs/Co-S (η10 mA cm−2=
1.74 V) [35], Ni3S2/NF (η13 mA cm−2= 1.76 V) [59] and Cox-
PO4/CoP (η10 mA cm−2= 1.91 V) [42]. Furthermore, the NF-
120 shows good stability upon continuous operation and
only a slight deactivation is observed after 10 h (Fig. 7d),
indicating excellent durability in long-term electro-
chemical process.

CONCLUSIONS
In conclusion, a facile acid-treatment process has been
carried out to develop a monolithic Ni/NiO electrode for
efficient electrochemical water spitting. After being im-
mersed in HCl solution for 30 min, the effect of acid-
etching not only results in the formation of a layer elec-
trochemical active NiO on the electrode surface but also
promotes the formation of rough and sheet-like mor-
phology, which not only enhances the surface area but
also facilitates the charge collection and transport. After
acid treatment, the NF activated at 120°C for 30 min is
found to show decent catalytic activity when used as a
bifunctional electrocatalyst for both HER and OER
compared to other self-supporting non-noble metal free
catalysts. Small Tafel slopes (68 mV dec−1 for HER and 46
mV dec−1 for OER) and benign durability up to 10 h in-
dicate excellent catalytic kinetics and enhanced stability.
More importantly, this present activation process has the
advantages of simplicity, low cost and scalable production
in one activation process. Our work provides new ground
to further expand the search for new electrocatalysts that
do not contain expensive noble metals for applications.
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