Skip to main content
Log in

Atomic layer reversal on CeO2 (100) surface

二氧化铈(100)表面的原子面反转

  • Letter
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

The structure and properties of CeO2 surfaces have been intensively studied due to their importance in a lot of surface-related applications. Since most of surface techniques probe the structure information inside the outermost surface plane, the subsurface structure information has been elusive in many studies. Using the profile imaging with aberration-corrected transmission electron microscopy, the structure information in both the outermost layer and the sublayers of the CeO2 (100) surface has been obtained. In addition to the normal structures that have been reported before, where the surface is Ce- or O-terminated, a metastable surface has been discovered. In the new structure, there is an atomic layer reversal between the outermost layer and the sublayer, giving a structure with O as the outermost layer for the stoichiometry of normal Ce-terminated surface. The charge redistribution for the polarity compensation has also been changed relative to the normal surface.

摘要

氧化铈表面的结构与性能对氧化铈材料的许多实际应用有着重要的影响, 因此受到了广泛的关注和研究. 由于大多数的表面技术仅限 于获得表面最外层原子的结构信息, 对材料亚表面的结构信息还非常匮乏. 我们基于像差校正高分辨透射电子显微技术, 同时获得了氧化铈 (100)表面和亚表面的结构信息, 从而揭示了氧化铈(100)表面的一种亚稳态. 在这种新结构中, 表面最外层和次外层原子面发生了反转, 使得具 有Ce终结的化学计量比的表面以O原子面暴露在最外层. 伴随这种原子面反转, 为了补偿表面极性的电荷重排也不同于正常的(100)表面.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Corma A, Atienzar P, García H, et al. Hierarchically mesostructured doped CeO2 with potential for solar-cell use. Nat Mater, 2004, 3: 394–397

    Article  Google Scholar 

  2. Gorte RJ, Park S, Vohs JM. Direct oxidation of hydrocarbons in a solid-oxide fuel cell. Nature, 2000, 404: 265–267

    Article  Google Scholar 

  3. Atkinson A, Barnett S, Gorte RJ, et al. Advanced anodes for hightemperature fuel cells. Nat Mater, 2004, 3: 17–27

    Article  Google Scholar 

  4. Mohanty BC, Lee JW, Yeon DH, et al. Dopant induced variations in microstructure and optical properties of CeO2 nanoparticles. Mater Res Bull, 2011, 46: 875–883

    Article  Google Scholar 

  5. Zholobak NM, Shcherbakov AB, Bogorad-Kobelska AS, et al. Panthenol-stabilized cerium dioxide nanoparticles for cosmeceutic formulations against ROS-induced and UV-induced damage. J PhotoChem PhotoBiol B-Biol, 2014, 130: 102–108

    Article  Google Scholar 

  6. Liu KQ, Kuang CX, Zhong MQ, et al. Synthesis, characterization and UV-shielding property of polystyrene-embedded CeO2 nanoparticles. Optical Mater, 2013, 35: 2710–2715

    Article  Google Scholar 

  7. Trovarelli A. Catalytic properties of ceria and CeO2-containing materials. Catal Rev, 1996, 38: 439–520

    Article  Google Scholar 

  8. Ratnasamy C, Wagner JP. Water gas shift catalysis. Catal Rev, 2009, 51: 325–440

    Article  Google Scholar 

  9. Beckers J, Rothenberg G. Sustainable selective oxidations using ceria-based materials. Green Chem, 2010, 12: 939–948

    Article  Google Scholar 

  10. Vivier L, Duprez D. Ceria-based solid catalysts for organic chemistry. ChemSusChem, 2010, 3: 654–678

    Article  Google Scholar 

  11. Campbell CT, Peden CHF. Oxygen vacancies and catalysis on ceria surfaces. Science, 2005, 309: 713–714

    Article  Google Scholar 

  12. Wang F, He S, Chen H, et al. Active site dependent reaction mechanism over Ru/CeO2 catalyst toward CO2 methanation. J Am Chem Soc, 2016, 138: 6298–6305

    Article  Google Scholar 

  13. Cordeiro MAL, Weng W, Stroppa DG, et al. High resolution electron microscopy study of nanocubes and polyhedral nanocrystals of cerium(IV) oxide. Chem Mater, 2013, 25: 2028–2034

    Article  Google Scholar 

  14. Si R, Flytzani-Stephanopoulos M. Shape and crystal-plane effects of nanoscale ceria on the activity of Au-CeO2 catalysts for the watergas shift reaction. Angew Chem Int Ed, 2008, 47: 2884–2887

    Article  Google Scholar 

  15. Fu Q, Saltsburg H, Flytzani-Stephanopoulos M. Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts. Science, 2003, 301: 935–938

    Article  Google Scholar 

  16. Namai Y, Fukui KI, Iwasawa Y. Atom-resolved noncontact atomic force microscopic and scanning tunneling microscopic observations of the structure and dynamic behavior of CeO2(111) surfaces. Catal Today, 2003, 85: 79–91

    Article  Google Scholar 

  17. Namai Y, Fukui K, Iwasawa Y. Atom-resolved noncontact atomic force microscopic observations of CeO2 (111) surfaces with different oxidation states: surface structure and behavior of surface oxygen atoms. J Phys Chem B, 2003, 107: 11666–11673

    Article  Google Scholar 

  18. Esch F, Fabris S, Zhou L, et al. Electron localization determines defect formation on ceria substrates. Science, 2005, 309: 752–755

    Article  Google Scholar 

  19. Huang JL, Li Z, Duan HH, et al. Formation of hexagonal-close packed (HCP) rhodium as a size effect. J Am Chem Soc, 2017, 139: 575–578

    Article  Google Scholar 

  20. Lin Y, Wu Z, Wen J, et al. Imaging the atomic surface structures of CeO2 nanoparticles. Nano Lett, 2014, 14: 191–196

    Article  Google Scholar 

  21. Haigh SJ, Young NP, Sawada H, et al. Imaging the active surfaces of cerium dioxide nanoparticles. ChemPhysChem, 2011, 12: 2397–2399

    Article  Google Scholar 

  22. Wang L, Wang Y, Zhang Y, et al. Shape dependence of nanoceria on complete catalytic oxidation of o-xylene. Catal Sci Technol, 2016, 6: 4840–4848

    Article  Google Scholar 

  23. Blöchl PE. Projector augmented-wave method. Phys Rev B, 1994, 50: 17953–17979

    Article  Google Scholar 

  24. Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B, 1996, 54: 11169–11186

    Article  Google Scholar 

  25. Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp Mater Sci, 1996, 6: 15–50

    Article  Google Scholar 

  26. Andersson DA, Simak SI, Johansson B, et al. Modeling of CeO2, Ce2O3, and CeO2−x in the LDA + U formalism. Phys Rev B, 2007, 75: 035109

    Article  Google Scholar 

  27. Zhang C, Michaelides A, King DA, et al. Oxygen vacancy clusters on ceria: decisive role of cerium f electrons. Phys Rev B, 2009, 79: 075433

    Article  Google Scholar 

  28. Tasker PW. The stability of ionic crystal surfaces. J Phys C-Solid State Phys, 1979, 12: 4977–4984

    Article  Google Scholar 

  29. Skorodumova NV, Baudin M, Hermansson K. Surface properties of CeO2 from first principles. Phys Rev B, 2004, 69: 075401

    Article  Google Scholar 

  30. Nolan M, Grigoleit S, Sayle DC, et al. Density functional theory studies of the structure and electronic structure of pure and defective low index surfaces of ceria. Surf Sci, 2005, 576: 217–229

    Article  Google Scholar 

  31. Bhatta UM, Ross IM, Sayle TXT, et al. Cationic surface reconstructions on cerium oxide nanocrystals: an aberration-corrected HRTEM study. ACS Nano, 2012, 6: 421–430

    Article  Google Scholar 

  32. Möbus G, Saghi Z, Sayle DC, et al. Dynamics of polar surfaces on ceria nanoparticles observed in situ with single-atom resolution. Adv Funct Mater, 2011, 21: 1971–1976

    Article  Google Scholar 

  33. Ling Y, Wang Z, Wang Z, et al. A robust carbon tolerant anode for solid oxide fuel cells. Sci China Mater, 2015, 58: 204–212

    Article  Google Scholar 

  34. Capdevila-Cortada M, López N. Entropic contributions enhance polarity compensation for CeO2 (100) surfaces. Nat Mater, 2016, 16: 328–334

    Article  Google Scholar 

  35. Lin Y, Wu Z, Wen J, et al. Adhesion and atomic structures of gold on ceria nanostructures: the role of surface structure and oxidation state of ceria supports. Nano Lett, 2015, 15: 5375–5381

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National natural Science Foundation of China (51525102, 51390475, 51371102 and 21673277) and the National Basic Research Program of China (2015CB654902). In this work we used the resources of the National Center for Electron Microscopy in Beijing and Shanghai Supercomputer Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong Yu  (于荣).

Additional information

Jinglu Huang is a PhD candidate at the School of Materials Science and Engineering, Tsinghua University, under the supervision of Prof. Rong Yu. She received her Bachelor’s degree from Zhejiang University in 2012. Her current research focuses on the atomic configuration and electronic structure of local structures in materials.

Rong Yu is a professor of the School of Materials Science and Engineering, Tsinghua University. He received bachelor’s degree in 1996 from Zhejiang University, and PhD in 2002 from the Institute of Metal Research, Chinese Academy of Sciences. His research interests include surface science and catalysis of metals and oxides, microstructure of intermetallics, and structural transition and interfaces in transition metal oxides.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, J., Yu, Y., Zhu, J. et al. Atomic layer reversal on CeO2 (100) surface. Sci. China Mater. 60, 903–908 (2017). https://doi.org/10.1007/s40843-017-9082-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-017-9082-1

Keywords

Navigation