Skip to main content
Log in

Fast synthesis of uniform mesoporous titania submicrospheres with high tap densities for high-volumetric performance Li-ion batteries

快速制备均匀的高振实密度亚微米级二氧化钛介孔球及其在锂离子二次电池中的应用

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

High-tap density electrode materials are greatly desired for Li-ion batteries with high volumetric capacities to fulfill the growing demands of electric vehicles and portable smart devices. TiO2, which is one of the most attractive anode materials, is limited in their application for Li-ion batteries because of its low tap density (usually <1 g cm−3) and volumetric capacity. Herein, we report uniform mesoporous TiO2 submicrospheres with a tap density as high as 1.62 g cm−3 as a promising anode material. Even with a high mass loading of 24 mg cm−2, the TiO2 submicrospheres have impressive volumetric capacities that are more than double those of their counterparts. Moreover, they can be synthesized with ~100% yield and within a reaction time of ~6 h by optimizing the experimental conditions and formation mechanism, exhibiting potential for large-scale production for industrial applications. Other mesoporous anode materials, i.e., high-tap density mesoporous Li4Ti5O12 submicrospheres, are fabricated using the generalizedmethod. We believe that our work provides a significant reference for the industrial production of mesoporous materials for Li-ion batteries with a high volumetric performance.

摘要

随着人们对电动汽车和可穿戴电子产品需求的增加, 开发具有高体积比容量的锂离子二次电池非常必要, 特别是制备高振实密度的电极材料尤为重要. TiO2是一种具有应用前景的阳极材料, 然而它们的振实密度普遍较低(通常小于<1 g cm−3). 本论文报道了一种均匀的亚微米级TiO2介孔球, 其振实密度高达1.62 g cm−3. 以其作为锂离子二次电池的阳极材料时, 在高达24 mg cm−2的负载量的情况下, TiO2介孔球的体积比容量比其他对比TiO2材料的体积比容量高出2倍之多. 制备该TiO2介孔球仅需6 h的反应时间且产率接近100%, 因此其工业化生产可能性很大. 此外, 该制备方法的普适性非常好,其他高振实密度介孔材料, 如亚微米级Li4Ti5O12介孔球, 也可采用类似方法制备. 因此,本工作可为工业化制备高振实密度介孔材料及其在高体积比容量锂离子二次电池中的应用提供重要借鉴.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gogotsi Y, Simon P. True performance metrics in electrochemical energy storage. Science, 2011, 334: 917–918

    Article  Google Scholar 

  2. Ghidiu M, Lukatskaya MR, Zhao MQ, et al. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature, 2014, 516: 78–81

    Google Scholar 

  3. Zhang C, Yang QH. Packing sulfur into carbon framework for high volumetric performance lithium-sulfur batteries. Sci ChinaMater, 2015, 58: 349–354

    Google Scholar 

  4. Saravanan K, Ananthanarayanan K, Balaya P. Mesoporous TiO2 with high packing density for superior lithium storage. Energy Environ Sci, 2010, 3: 939–948

    Article  Google Scholar 

  5. Liang J, Yu XY, Zhou H, et al. Bowl-like SnO2@carbon hollow particles as an advanced anode material for lithium-ion batteries. Angew Chem Int Ed, 2014, 53: 12803–12807

    Article  Google Scholar 

  6. Wagemaker M, Mulder FM. Properties and promises of nanosized insertion materials for Li-ion batteries. Acc Chem Res, 2013, 46: 1206–1215

    Article  Google Scholar 

  7. Li W, Wu Z, Wang J, et al. A perspective on mesoporous TiO2 materials. Chem Mater, 2014, 26: 287–298

    Article  Google Scholar 

  8. Qiu B, Xing M, Zhang J. Mesoporous TiO2 nanocrystals grown in situ on graphene aerogels for high photocatalysis and lithium-ion batteries. J Am Chem Soc, 2014, 136: 5852–5855

    Article  Google Scholar 

  9. Liu Y, Che R, Chen G, et al. Radially orientedmesoporous TiO2microspheres with single-crystal-like anatase walls for high-efficiency optoelectronic devices. Sci Adv, 2015, 1: e1500166

    Google Scholar 

  10. Liu Y, Elzatahry AA, Luo W, et al. Surfactant-templating strategy for ultrathin mesoporous TiO2 coating on flexible graphitized carbon supports for high-performance lithium-ion battery. Nano Energy, 2016, 25: 80–90

    Article  Google Scholar 

  11. Guan BY, Yu L, Li J, et al. A universal cooperative assembly-directedmethod for coating ofmesoporous TiO2 nanoshells with enhanced lithium storage properties. Sci Adv, 2016, 2: e1501554

    Google Scholar 

  12. Yu XY, Wu HB, Yu L, et al. Rutile TiO2 submicroboxes with superior lithium storage properties. Angew Chem Int Ed, 2015, 54: 4001–4004

    Article  Google Scholar 

  13. Saito M, Nakano Y, Takagi M, et al. Improvement of tap density of TiO2(B) powder as high potential negative electrode for lithium ion batteries. J Power Sources, 2013, 244: 50–55

    Article  Google Scholar 

  14. Chen D, Caruso RA. Recent progress in the synthesis of spherical titania nanostructures and their applications. Adv Funct Mater, 2013, 23: 1356–1374

    Article  Google Scholar 

  15. Liu H, Bi Z, Sun XG, et al. Mesoporous TiO2-B microspheres with superior rate performance for lithium ion batteries. Adv Mater, 2011, 23: 3450–3454

    Article  Google Scholar 

  16. Trang NTH, Ali Z, Kang DJ. Mesoporous TiO2 spheres interconnected by multiwalled carbon nanotubes as an anode for high-performance lithium ion batteries. ACS Appl Mater Interfaces, 2015, 7: 3676–3683

    Google Scholar 

  17. Zhu K, Tian J, Liu Y, et al. Submicron-sized mesoporous anatase TiO2 beads with a high specific surface synthesized by controlling reaction conditions for high-performance Li-batteries. RSC Adv, 2013, 3: 13149–13155

    Article  Google Scholar 

  18. Zhao T, Luo W, Deng Y, et al. Monodisperse mesoporous TiO2 microspheres for dye sensitized solar cells. Nano Energy, 2016, 26: 16–25

    Article  Google Scholar 

  19. Zhang Y, Shi Y, Liou YH, et al. High performance separation of aerosol sprayed mesoporous TiO2 sub-microspheres from aggregates via density gradient centrifugation. J Mater Chem, 2010, 20: 4162–4167

    Article  Google Scholar 

  20. Hong MP, Kim JY, Vemula K, et al. Synthesis of monodisperse mesoporous TiO2 spheres with tunable sizes between 0.6 and 3.1 μm and effects of reaction temperature, Ti source purity, and type of alkylamine on size and monodispersity. Chem Commun, 2012, 48: 4250–4252

    Article  Google Scholar 

  21. Chen D, Cao L, Huang F, et al. Synthesis of monodisperse mesoporous titania beads with controllable diameter, high surface areas, and variable pore diameters (14−23 nm). J Am Chem Soc, 2010, 132: 4438–4444

    Article  Google Scholar 

  22. Yan K, Qiu Y, Chen W, et al. A double layered photoanode made of highly crystalline TiO2 nanooctahedra and agglutinated mesoporous TiO2 microspheres for high efficiency dye sensitized solar cells. Energy Environ Sci, 2011, 4: 2168–2176

    Article  Google Scholar 

  23. Roh DK, Seo JA, Chi WS, et al. Facile synthesis of size-tunable mesoporous anatase TiO2 beads using a graft copolymer for quasisolid and all-solid dye-sensitized solar cells. J Mater Chem, 2012, 22: 11079–11085

    Article  Google Scholar 

  24. Wang L, Tomura S, Maeda M, et al. Synthesis of mesoporous TiO2 spheres under static condition. Chem Lett, 2000, 29: 1414–1415

    Article  Google Scholar 

  25. Duan Y, Fu N, Fang Y, et al. Synthesis and formation mechanism of mesoporous TiO2 microspheres for scattering layer in dye-sensitized solar cells. Electrochim Acta, 2013, 113: 109–116

    Article  Google Scholar 

  26. Wang Y, Tang X, Yin L, et al. Sonochemical synthesis of mesoporous titanium oxide with wormhole-like framework structures. Adv Mater, 2000, 12: 1183–1186

    Article  Google Scholar 

  27. Zhang L, Yu JC. A sonochemical approach to hierarchical porous titania spheres with enhanced photocatalytic activity. Chem Commun, 2003, 9: 2078

    Article  Google Scholar 

  28. Wang HE, Jin J, Cai Y, et al. Facile and fast synthesis of porous TiO2 spheres for use in lithium ion batteries. J Colloid Interface Sci, 2014, 417: 144–151

    Article  Google Scholar 

  29. Widoniak J, Eiden-Assmann S, Maret G. Synthesis and characterisation of porous and non-porous monodisperse TiO2 and ZrO2 particles. Colloids Surfaces A-Physicochem Eng Aspects, 2005, 270–271: 329–334

    Google Scholar 

  30. Tsung CK, Fan J, Zheng N, et al. A general route to diverse mesoporousmetal oxide submicrospheres with highly crystalline frameworks. Angew Chem Int Ed, 2008, 47: 8682–8686

    Article  Google Scholar 

  31. Das SK, Darmakolla S, Bhattacharyya AJ. High lithium storage in micrometre sized mesoporous spherical self-assembly of anatase titania nanospheres and carbon. J Mater Chem, 2010, 20: 1600

    Article  Google Scholar 

  32. Tong H, Enomoto N, InadaM, et al. Synthesis ofmesoporous TiO2 spheres and aggregates by sol-gel method for dye-sensitized solar cells. Mater Lett, 2015, 141: 259–262

    Article  Google Scholar 

  33. Liu H, Li W, Shen D, et al. Graphitic carbon conformal coating of mesoporous TiO2 hollow spheres for high-performance lithium ion battery anodes. J Am Chem Soc, 2015, 137: 13161–13166

    Article  Google Scholar 

  34. Liu H, Ma H, Joo J, et al. Contribution of multiple reflections to light utilization efficiency of submicron hollow TiO2 photocatalyst. Sci China Mater, 2016, 59: 1017–1026

    Article  Google Scholar 

  35. Jin J, Huang SZ, Liu J, et al. Phases hybriding and hierarchical structuring of mesoporous TiO2 nanowire bundles for high-rate and high-capacity lithium batteries. Adv Sci, 2015, 2: 1500070

    Article  Google Scholar 

  36. Lin C, Fan X, Xin Y, et al. Monodispersed mesoporous Li4Ti5O12 submicrospheres as anodematerials for lithium-ion batteries: morphology and electrochemical performances. Nanoscale, 2014, 6: 6651–6660

    Article  Google Scholar 

  37. Shin JY, Samuelis D, Maier J. Sustained lithium-storage performance of hierarchical, nanoporous anatase TiO2 at high rates: emphasis on interfacial storage phenomena. Adv Funct Mater, 2011, 21: 3464–3472

    Article  Google Scholar 

  38. Ali Z, Cha SN, Sohn JI, et al. Design and evaluation of novel Zn doped mesoporous TiO2 based anode material for advanced lithium ion batteries. J Mater Chem, 2012, 22: 17625–17629

    Article  Google Scholar 

  39. Hao R, Jiang B, Li M, et al. Fabrication of mixed-crystalline-phase spindle-like TiO2 for enhanced photocatalytic hydrogen production. Sci China Mater, 2015, 58: 363–369

    Article  Google Scholar 

  40. Liu Y, Lan K, Li S, et al. Constructing three-dimensional mesoporous bouquet-posy-like TiO2 superstructures with radially oriented mesochannels and single-crystal walls. J Am Chem Soc, 2017, 139: 517–526

    Article  Google Scholar 

  41. Han T, Chen Y, Tian G, et al. Hydrogenated TiO2/SrTiO3 porous microspheres with tunable band structure for solar-light photocatalytic H2 and O2 evolution. Sci China Mater, 2016, 59: 1003–1016

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National High Technology Research and Development Program of China (2013AA050901), the National Basic Research Program of China (2015CB251100), the Thousand Youth Talents Program, theNationalNatural Science Foundation of China (51602173, 51371015 and 11674023), and China Postdoctoral Science Foundation (2016M591186). We thank Prof. Jiaping Wang, Fei Zhao, and Yufeng Luo for their help with the N2 adsorption/desorption measurements.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhongqiang Shan  (单忠强) or Kai Liu  (刘锴).

Additional information

Kunlei Zhu obtained his PhD degree at Tianjin University in 2015, and is now a postdoctoral research fellow at Tsinghua University. His research interests are focused on the syntheses ofmesoporousmaterials and 2D materials for energy storage.

Zhongqiang Shan was born in 1957. He is a full professor at Tianjin University. His current research interests are focused on the energy storgae devices including Li-ion battries, Li-S batteries and supercapacitors.

Kai Liu obtained his PhD degree at Tsinghua University in 2008. He joined Tsinghua University as an associtate professor in 2015 after a period of postdoctoral research at Lawrence-Berkeley National Lab. His current research focuses on the mechanical and electrical properties of low-dimensinal materials and their applications.

Electronic supplementary material

40843_2016_9002_MOESM1_ESM.pdf

Fast synthesis of uniform mesoporous titania submicrospheres with high tap densities for high-volumetric performance Li-ion batteries

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, K., Sun, Y., Wang, R. et al. Fast synthesis of uniform mesoporous titania submicrospheres with high tap densities for high-volumetric performance Li-ion batteries. Sci. China Mater. 60, 304–314 (2017). https://doi.org/10.1007/s40843-016-9002-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-016-9002-y

Keywords

Navigation