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SPECIAL ISSUE: Excitonic Solar Cells (II)

Enhancement of photovoltaic performance by
two-step dissolution processed photoactive blend in
polymer solar cells
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ABSTRACT  We reported enhanced performance of polymer
solar cells, based on poly(3-hexylthiophene):[6,6] -phenyl-
C61-butyric acid methyl ester (P3HT:PC61BM) and poly-
thieno[3,4-b]-thiophene-co-benzodithiophene:[6,6]-phenyl-
C71-butyric acid methyl ester (PTB7:PC71BM) photovoltaic
systems, by a two-step dissolution treatment of photoac-
tive blends. Optical and morphological characterization
revealed that the composition of the ordered polymer and
donor/acceptor phase structure in the photoactive layer can
be optimized using a two-step dissolution treatment. In
addition, time-resolved photoluminescence indicated that
exciton dissociation efficiency could be increased using
this method. Current density-voltage (J-V) measurements
showed that power conversion efficiencies (PCE) of the
two-step dissolution treated devices were higher than those
of one-step treated devices by 24% and 8% for P3HT:PC61BM
and PTB7:PC71BM systems, respectively. Therefore, this
two-step dissolution treatment further optimizes the perfor-
mance of polymer solar cells.

Keywords:  polymer solar cells, photoactive layer, two-step dis-
solution, power conversion efficiency

INTRODUCTION
Polymer solar cells (PSCs) have attracted wide atten-
tion owing to their valuable features, such as low-cost,
lightweight, flexible, and the possibility of widespread
manufacturing [1–4]. Recently, a series of studies showed
that power conversion efficiency (PCE) of PSCs can be
greatly improved by utilizing novel highly efficient donor

(D) and acceptor (A) materials and optimizing the inter-
face structure regulation and design of the device [5–9].
However, the state of art efficiency of PSCs is still lower
than 15%, which is far from the commercialization stan-
dard [10]. Hence, further improvement is needed to realize
the practical application of PSCs.

The morphology and structure of the photoactive
layer in PSCs have great influence on the photo-physical
process and the performance of the devices [11–14]. The
morphology of the photoactive layer can be optimized
towards better uniformity, crystallinity, and enhanced
D/A interface area by engineering the solution process
of the PSCs [15–18], which includes the selection of a
proper solvent with high solubility of the polymer [19,20],
using mixed solvent systems [21–23], and combining the
additive and solvent [24]. Besides the above methods,
approaches like solution heating [25], solution freeze-dry-
ing [26], and the poor solvent inducing method [27]
have also been used to regulate the morphology and
structure of the photoactive layer. Recently, we found
that polymers undergo self-aggregation even in the solu-
tion-phase, which strongly depends on the solvents. Such
a self-aggregated conformation of polymers can inhabit
the photo-induced charge generation process in PSCs
[28–30]. Therefore, regulating such self-aggregation by
adjusting the dissolution processes of polymers is expected
to enhance the device performance of PSCs. Hereby, we
developed a new two-step dissolution process to fabricate
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poly(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid
methyl ester (P3HT:PC61BM) and polythieno[3,4-b]-thio-
phene-co-benzodithiophene:[6,6]-phenyl-C71-butyric
acid methyl ester (PTB7:PC71BM) solar cells. This method
can effectively enhance the PCE of the devices, which
can be attributed to the improvement of the morphology.
Based on a time-resolved photoluminescence (PL) study,
we can further confirm more efficient exciton dissocia-
tion in the two-step processed P3HT compared with the
one-step processed counterparts. This two-step disso-
lution treatment further optimizes the performance of
polymer solar cells.

EXPERIMENTAL SECTION

Preparation of solution
P3HT, PTB7, PC61BM and PC71BM were purchased from
Lumtec. Fig. 1 shows their chemical structures. In order to
prepare the P3HT:PC61BM mixed solution, P3HT:PC61BM
(1:1, wt., 20 mg mL−1) was first dissolved in the initial
solvent chloroform (CF) and stirred for 12 h at room
temperature (25°C). The mixed solution was then exposed
to the air until the CF solvent completely volatilize. After-
wards, the dried P3HT:PC61BM mixture was redissolved
in the second solvent o-dichlorobenzene (o-DCB) as the
precursor solution for fabrication of the photoactive layer.
The mixed solution of PTB7:PC71BM was prepared using
a similar method with different concentration in initial
CF solution (PTB7 10 mg mL−1, PC71BM 15 mg mL−1) and
a different second solvent (chlorobenzene:1,8-diiodooc-
tane=97%:3%, by volume).

Fabrication and characterization of polymer solar cells
The structure of the PSCs consists of indium tin oxide
(ITO) glass, zinc oxide (ZnO), photoactive layer, molyb-
denum oxide (MoO3), and an Ag electrode. The ITO
glass substrate (1.5×1.5 cm2) was cleaned using ultrason-
ication in detergent and was successively washed with

deionized water, acetone, ethanol, and isopropyl alco-
hol. After that, a 60 μL ZnO precursor solution (zinc
acetate:2-methoxyethanol:ethanolamine = 10 g : 10 mL:
0.28 mL) was spin-coated (3000 rpm, 30 s) on the ITO
glass, followed by annealing for 60 min on the heating
plate (200°C). A blend of the photoactive mixed solution
was then spin-coated on the ZnO film in an argon-purged
glovebox (oxygen concentration < 0.1 ppm). The spin
coating parameters of P3HT:PC61BM were 1000 rpm for 20
s. The following solvent vapor annealing (SVA) was per-
formed under o-DCB atmosphere for 12 h. Alternatively,
the parameters of PTB7:PC71BM were 850 rpm for 50 s.
Finally, a 5 nm MoO3 layer and 50 nm Ag electrode were
successively evaporated on the top of the blend.

The current density-voltage (J-V) measurement of the
PSCs was carried out by a Keithley 2400 source meter. A
xenon light source was used to give an irradiance of 100
mW cm−2 (equivalent to AM 1.5) at the surface of the PSCs.
The external quantum efficiency (EQE) was measured in
the air at room temperature by a solar cell spectral response
measurement system (SOFN Instruments Co. Ltd.). The
surface morphology of the photoactive layer was character-
ized by an atomic force microscope in tapping mode (AFM,
Dimension Edge). The absorption spectrum of the pho-
toactive layer was measured using a UV-visible spectropho-
tometer with a wavelength range of 300–700 nm (Hitachi
U-3900).

Time resolved photoluminescence (TRPL) characterization
A Ti:sapphire laser (Spectra-Physics, Tsunami) at 800 nm
and a repetition rate of 81 MHz with a pulse duration of
100 fs was used as an excitation source. Frequency-doubled
light (400 nm, generated by Photop Technologies, Tripler
TP-2000B) was used for excitation. PL was collected
by using two 1 in. quartz plano-convex lenses (50 mm
focal length) focused on the input slit of a spectrograph
(Chromex). The output of the spectra was sent to the
streak camera (Hamamatsu C6860) with  a  slit width of 20

Figure 1    Chemical structures of P3HT, PC61BM, PTB7 and PC71BM.
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μm. After background correction of the measured PL im-
ages, shading and spectral sensitivity correction of the flu-
orescence spectra was performed using a calibrated refer-
ence light source (Ocean Optics, LS-1-CAL). All samples
were kept in N2 atmosphere and measured at room tem-
perature. Efforts were taken to keep the alignment of the
experimental set-ups the same for all the samples.

RESULTS AND DISCUSSION
P3HT has been regarded as a classic hole transporting ma-
terial with good solubility and self-organizing capability. In
addition, bulk heterojunction (BHJ) P3HT:PC61BM solar
cells have good reproducibility of photovoltaic device per-
formance. Hence, we use a P3HT:PC61BM system to ex-
plore the effect of the two-step dissolution process on the
performance of the device. Table 1 lists the preparation pa-
rameters of four solution processes for comparison in this
study.

Steady-state absorption spectra of the photoactive layer
The optical absorption properties of P3HT:PC61BM blend
films are shown in Fig. 2. The absorption of PC61BM is
assigned in the ultraviolet region, while the P3HT mainly
absorbs light within the visible region. For Device 1, the
absorption band of P3HT ranges from 350 to 650 nm
with a maximum absorption peak at 480 nm. In addition,
a weak shoulder peak occurs at 600 nm; this shoulder
peak can be attributed to the 0'-0 vibration transition
originating from the ordered phase of P3HT [12,31]. After
the P3HT:PC61BM was treated by the two-step dissolu-
tion process (Device 3), the absorption spectrum was
red-shifted with a more pronounced shoulder peak at 600
nm compared with the one-step treated device (Device 1).
This indicates that more P3HT ordered phase is formed in
the photoactive layer via the two-step dissolution process.
We also noticed that after the post-treatment by SVA, the
600 nm peak of the two-step process increases compared
with that of the one-step process. This suggests that the
two-step dissolution process can modulate the phase struc-
ture of P3HT.

Morphological Characterization
The morphologies of the blend films in four P3HT:PC61BM
devices were investigated via AFM. As can be seen in Fig.
3, the dissolution process and post-treatment can affect
the morphology of the photoactive layer. In Device 1,
the surface morphology of the photoactive layer is rather
smooth with a root-mean-square (RMS) roughness of
0.70 nm, suggesting relatively poor D/A phase separa-
tion [32]. When treated with the two-step dissolution
process, the surface morphology of the photoactive layer
becomes rougher (RMS=0.99 nm, Device 3), suggesting
the improvement of P3HT ordered aggregation [33]. Af-
ter the SVA post-treatment, significant changes in the
morphology of the photoactive layers are observed. The
AFM image of the photoactive layer in Device 2 exhibits
a significantly fluctuating morphology and coarse phase
structure, with RMS=4.42 nm. This trend is inconsistent
with previous literature [34]. On the other hand, the RMS
of the photoactive layer of Device 4 is further increased
to 6.02 nm. This indicates that the morphology of the
photoactive layer can be optimized both via the two-step
dissolution process and SVA post-treatment.

Photovoltaic behaviors of P3HT:PC61BM devices
Fig. 4a shows the J-V characteristics of four P3HT:PC61BM
devices, with their respective parameters summarized in
Table 2. The detailed performance of devices can be found
in Supplementary information (Fig. S1). As shown in
Fig. 4, strong influence of photoactive layer morphology
on device performance (short circuit current density (Jsc),
open circuit voltage (Voc), fill factor (FF) and PCE) can
be observed. After the two-step dissolution process, the
Jsc of Device 3 is obviously improved from 5.16 mA cm−2

to 6.10 mA cm−2 compared with that of Device 1. In
SVA-treated devices, enhancement of Jsc by the two-step
dissolution process is also observed (10.71 mA cm−2 in
Device 4 compared with 10.03 mA cm−2 in Device 2). Such
enhancement in Jsc can be attributed to the ordered P3HT
phase and the increased interface area according to the
optical absorption  and  morphology   characterization   of

Table 1 Preparation methods of photoactive layer for P3HT:PC61BM photovoltaic devices

Samples Solvent 1 Treatment Solvent 2 Spin-coating Post-treatment

Device 1 － － o-DCB 1000 rpm, 20 s Fast dry

Device 2 － － o-DCB 1000 rpm, 20 s SVAb)

Device 3 CF SVa) o-DCB 1000 rpm, 20 s Fast dry

Device 4 CF SVa) o-DCB 1000 rpm, 20 s SVAb)

a) Solvent volatilization;  b) solvent vapor annealing. 
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Figure 2    Normalized absorption spectra of P3HT:PC61BM photoactive
layers with varies preparation conditions depicted in Table 1.

photoactive layers (see Figs 2 and 3). In addition, we can
observe a slight decrease of Voc by 2 to 14 mV for devices
treated with the dissolution process, as seen in Table 2. The
Voc of the device was determined by the highest occupied

molecular orbital (HOMO) energy level of the donor and
the lowest unoccupied molecular orbital (LUMO) energy
level of the acceptor [35]. According to Tsio’s study [36],
the HOMO energy level of P3HT can be greatly modified
by its morphology and structure. Therefore, we can con-
clude the slight decrease of Voc is induced by a slight eleva-
tion of the HOMO level in the P3HT ordered phase by the
two-step solution process. Moreover, slight improvement
of the FF is noticed for the two-step treated Devices 2 and
4. Consequently, the highest PCE among all four devices,
3.93% is obtained in Device 4.

As shown in Table 2, the Jsc of the devices is most sen-
sitive to the dissolution process and SVA post-treatment.
In order to analyze the mechanism of increasing photocur-
rent, we measured the EQE of P3HT:PC61BM devices with
different fabrication processes, as shown in Fig. 4b. Sub-
stantial increases of the EQE within the entire absorption
region can be observed for both the two-step dissolution
process and SVA post-treatment of the photoactive layers.
The maximum EQE values of Device 1, Device 2, Device 3,

Figure 3   Three dimensional (3D) AFM images of P3HT:PC61BM photoactive layers with different preparation conditions depicted in Table 1.
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Table 2 Averaged photovoltaic properties of P3HT:PC61BM BHJ devices based on different fabrication processes

Samples Jsc (mA cm−2) Voc (mV) FF (%) PCE (%)

Device 1 5.16±0.19 647±2 54.5±0.1 1.82±0.06

Device 2 10.03±0.23 598±4 61.3±0.4 3.67±0.08

Device 3 6.10±0.21 633±0 58.6±0.5 2.26±0.09

Device 4 10.71±0.25 596±1 61.6±0.4 3.93±0.10

Figure 4    (a) Averaged J-V curves of the P3HT:PC61BM devices based on varied dissolution process and SVA post-treatment under the illumination of
AM 1.5 G (100 mW cm−2); (b) EQE spectra of the corresponding devices.

and Device 4 are 25%, 52%, 32%, and 56%, respectively,
which indicates that charge generation of the devices can
be optimized by both approaches.

Time-resolved photoluminescence of P3HT:PC61BM
photoactive layer
To examine the effect of processing methods on exciton
dissociation process of P3HT:PC61BM films, we measured
TRPL kinetics of P3HT:PC61BM blend films with various
process methods. As shown in Fig. 5, the PL decays
similarly with and without SVA for the photoactive layers
treated by the single dissolution process, suggesting that
SVA has little influence on exciton dissociation processes
for single dissolution processed samples. For the two-step
processed samples, the PL decays a bit slower after SVA.
The slower decay can be attributed to a phase separa-
tion after SVA, which can induce a larger P3HT size and
extend exciton diffusion time [12]. For P3HT/PC61BM
systems, a suitable phase separation is helpful for improv-
ing carrier transport and reducing carrier recombination
[12,13,37]. More interestingly, we found that the PL ki-
netics of two-step processed samples decay faster than
those of single dissolution processed samples after SVA,
which indicates that the exciton dissociation efficiency is
increased by using two-step process method.

Figure 5    TRPL kinetics of the P3HT:PC61BM films based on different
fabrication processes. The excitation and probe wavelengths are 400 and
710 nm, respectively.

Photovoltaic behaviors of PTB7:PC71BM devices
To further verify the enhancement of device efficiency by
two-step dissolution processing in PSCs, we also conducted
analogues experiments using a PTB7:PC71BM photovoltaic
system. Herein, two BHJ PTB7:PC71BM solar cells were
fabricated using the single dissolution process (Device 5
and the two-step dissolution process (Device 6). The re-
sulting J-V characteristics and photovoltaic parameters are
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Figure 6    (a) Averaged J-V curves of the PTB7:PC71BM devices based on varied dissolution process under the illumination of AM 1.5 G (100 mW
cm−2); (b) EQE spectra of the corresponding devices.

Table 3 Averaged photovoltaic properties of the PTB7:PC71BM BHJ devices based on different fabrication processes

Samples Jsc (mA cm−2) Voc (mV) FF (%) PCE (%)

Device 5 15.59±0.10 708±1 59.4±0.7 6.55±0.03

Device 6 16.85±0.07 725±1 57.8±0.2 7.06±0.05

shown in Fig. 6a and Table 3, respectively. The Jsc, Voc, FF,
and PCE of Device 5 are 15.59 mA cm−2, 708 mV, 59.4%,
and 6.55%, respectively, while for Device 6, the Jsc and Voc

are raised to 16.85 mA cm−2 and 725 mV, with a resulting
PCE of 7.06%. We note that the Voc value of the PSC with
two-step dissolution processed device was increased from
707 to 725 mV, which is opposite to that of P3HT:PC61BM
devices. Generally speaking, Voc in OPVs is determined by
the quasi-Fermi level between donors and acceptors which
is greatly dominated by the interfacial recombination
process. Since we have observed the change of morphol-
ogy of blend films with and without two-step dissolution
process, we speculate the change of Voc may relate to the
morphology change which modify the interfacial geometry
between donors and acceptors, which has been reported
in many references [35,36,38,39]. In addition, as shown
in Fig. 6b, the EQE measurement demonstrates that the
charge generation of Device 6 is improved compared with
that of Device 5, especially within the range of 350–550
nm, corresponding to the absorption of PC71BM [40].

Dissolution and film-forming processes of polymer:fullerene
Based on the above discussions, we propose a model to
explain the effect of two-step dissolution on the active layer
formation process, as shown in Fig. 7. Before dissolution,
the polymer and fullerene are separated. After single dis-
solution, the polymer and fullerene are evenly distributed
in the solvent. Only some polymers, however, are unfolded

and kinked polymer chains remain in solution, which has
been observed in PBDTTT systems [28,29]. The unfolded
polymer configuration will remain in polymer:fullerene
films after solvent volatilization. Moreover, it has been
found that the ratio of kinked conformation depends
on the solvents [28,29]. When the polymer:fullerene
film is redissolved in another solvent, the configuration
of original kinked polymers can be further extended to
the unfolded mode by solvent-induced regulation. The
unfolded polymer configuration can then be maximally
preserved after the two-step dissolution. As a consequence,
the unfolded structure can be easily formulated by the
post-processing steps to achieve ordered P3HT structures,
which can improve the performance of PSCs.

CONCLUSION
In conclusion, we investigated the effect of the dissolution
process of polymer:fullerene on the morphology of thep-
hotoactive layer and device performance. The results re-
veal that the morphology of the photoactive layer and de-
vice performance can be optimized via the two-step disso-
lution process. According to the J-V measurements, the Jsc

is the most sensitive device parameter which is related to
the structure of the photoactive layer and exciton dissocia-
tion efficiency. In addition, we propose a model to explain
the film-forming processes of photoactive blends based on
this dissolution process method, and the core idea of the
model is that the polymer  conformation can  be  regulated
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Figure 7    The formation process of polymer:fullerene BHJ photoactive layer via re-dissolution treatment.

by the two-step dissolution process. Thus, we consider the
two-step dissolution process to have important reference
value for the fabrication of PSCs.
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提高聚合物太阳电池性能的新方法: 两步溶解法制备电池活性层
胡荣1†, 程江1†, 倪海涛1, 朱江1, 柳红东1, 张伟2*, 刘玉荣1, 李璐1, 郭朝中1*, 郑凯波2,3*

摘要   本文以P3HT:PC61BM和PTB7:PC71BM两种有机光伏体系为研究对象, 探讨了光伏材料的“两步”溶解处理对聚合物太阳电池性能的影
响. P3HT:PC61BM光活性层的光学与形貌表征揭示了P3HT的有序相结构和给/受体相分离结构可以被“两步”溶解处理进一步优化; 瞬态荧
光数据表明, P3HT:PC61BM光活性材料经“两步”溶解处理后, 激子的分离能力得到增强. 经“两步”溶解处理后的器件性能较“一步”溶解处
理的器件性能提高了24%. 此外,同样的处理方式应用于PTB7:PC71BM体系,可使器件的光伏性能提高8%. 因此,光活性材料的“两步”溶解处
理是一种简单、有效的提高聚合物光伏性能的优化方法.
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