Skip to main content
Log in

A surfactant-free route to synthesize Ba x Sr1−x TiO3 nanoparticles at room temperature, their dielectric and microwave absorption properties

室温下无表面活性剂合成钛酸锶钡(Ba x Sr1−x TiO3)纳米晶及其介电和微波吸收性能研究

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Perovskite materials, such as Ba x Sr1−x TiO3 (BST), have been continuously receiving attentions due to their unique ferroelectric, pyroelectric, dielectric, piezoelectric and electric-optic properties. Here, we report a facile route for the synthesis of BST nanocrystalline materials by fast mixing of MCl2 (M = Ba, Sr) aqueous solution and titanium isopropoxide ethanol solution at room temperature without using any surfactants or structure-directing templates. The molar ratio of Ba/Sr was controlled by adjusting the original molar ratio of BaCl2·2H2O and SrCl2·6H2O. The dielectric properties and microwave absorption capability of the BST nanocrystalline were studied. The results indicate that the BST nanocrystalline material has the best dielectric and microwave absorption properties in the case of Ba0.7Sr0.3TiO3. The present strategy is facile, low cost and high yield, which may provide a new route for the synthesis of other perovskite materials.

摘要

因其优异的铁电、焦热电、介电、压电和电-光性能, 钙钛矿材料, 尤其是钛酸锶钡(Ba x Sr1−x TiO3)受到了广泛且持续的关注. 本 文报道一种简易温和的方法, 通过快速混合氯化钡、氯化锶水溶液和异丙醇钛的乙醇溶液, 无需表面活性剂和结构指引模板, 在室温下静 置数小时即可制备钛酸锶钡(Ba x Sr1−x TiO3)纳米晶, 其中, 钡/锶的摩尔比可以通过改变氯化钡和氯化锶的初始投料比精确调控. 我们对产物 的介电性能和微波吸收性能进行了研究, 结果显示当x = 0.7时, 产物的介电性能和微波吸收性能达到最佳. 该合成方法条件温和、成本低 廉且产率很高, 也为其他钙钛矿材料的制备提供了一条可能的新途径.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chandler CD, Roger C, Hampden-Smith MJ. Chemical aspects of solution routes to perovskite-phase mixed-metal oxides from metal-organic precursors. Chem Rev, 1993, 93: 1205–1241

    Article  Google Scholar 

  2. Peña MA, Fierro JLG. Chemical structures and performance of perovskite oxides. Chem Rev, 2001, 101: 1981–2018

    Article  Google Scholar 

  3. Xing X, Deng J, Chen J, et al. Phase evolution of barium titanate from alkoxide gel-derived precursor. J Alloys Compounds, 2004, 384: 312–317

    Article  Google Scholar 

  4. Dutta PK, Asiaie R, Akbar SA, et al. Hydrothermal synthesis and dielectric properties of tetragonal BaTiO3. Chem Mater, 1994, 6: 1542–1548

    Article  Google Scholar 

  5. Hennings D, Klee M, Waser R. Advanced dielectrics: bulk ceramics and thin films. Adv Mater, 1991, 3: 334–340

    Article  Google Scholar 

  6. Choi KJ. Enhancement of ferroelectricity in strained BaTiO3 thin films. Science, 2004, 306: 1005–1009

    Article  Google Scholar 

  7. Selmi F, Komarneni S, Varadan VK, et al. Microwave sintering of Sb-doped SnO3. Mater Lett, 1990, 10: 235–238

    Article  Google Scholar 

  8. Fu C, Cai W, Chen H, et al. Voltage tunable Ba0.6Sr0.4TiO3 thin films and coplanar phase shifters. Thin Solid Films, 2008, 516: 5258–5261

    Article  Google Scholar 

  9. Liu H, Hu C, Wang ZL. Composite-hydroxide-mediated approach for the synthesis of nanostructures of complex functional-oxides. Nano Lett, 2006, 6: 1535–1540

    Article  Google Scholar 

  10. Mao Y, Banerjee S, Wong SS. Large-scale synthesis of single-crystalline perovskite nanostructures. J Am Chem Soc, 2003, 125: 15718–15719

    Article  Google Scholar 

  11. Dong W, Li B, Li Y, et al. General approach to well-defined perovskite MTiO3 (M = Ba, Sr, Ca, and Mg) nanostructures. J Phys Chem C, 2011, 115: 3918–3925

    Article  Google Scholar 

  12. Wang X, Zhuang J, Peng Q, et al. A general strategy for nanocrystal synthesis. Nature, 2005, 437: 121–124

    Article  Google Scholar 

  13. Joshi UA, Lee JS. Template-free hydrothermal synthesis of single-crystalline barium titanate and strontium titanate nanowires. Small, 2005, 1: 1172–1176

    Article  Google Scholar 

  14. Niederberger M, Garnweitner G, Pinna N, et al. Nonaqueous and halide-free route to crystalline BaTiO3, SrTiO3, and (Ba,Sr)TiO3 nanoparticles via a mechanism involving C-C bond formation. J Am Chem Soc, 2004, 126: 9120–9126

    Article  Google Scholar 

  15. Dong L, Shi H, Cheng K, et al. Shape-controlled growth of SrTiO3 polyhedral submicro/nanocrystals. Nano Res, 2014, 7: 1311–1318

    Article  Google Scholar 

  16. Kalyani V, Vasile BS, Ianculescu A, et al. Hydrothermal synthesis of SrTiO3 mesocrystals: single crystal to mesocrystal transformation induced by topochemical reactions. Cryst Growth Des, 2012, 12: 4450–4456

    Article  Google Scholar 

  17. Leoni M, Viviani M, Nanni P, et al. Low-temperature aqueous synthesis (LTAS) of ceramic powders with perovskite structure. J Mater Sci Lett, 1996, 15: 1302–1304

    Article  Google Scholar 

  18. Urban JJ, Yun WS, Gu Q, et al. Synthesis of single-crystalline perovskite nanorods composed of barium titanate and strontium titanate. J Am Chem Soc, 2002, 124: 1186–1187

    Article  Google Scholar 

  19. Brutchey RL, Morse DE. Template-free, low-temperature synthesis of crystalline barium titanate nanoparticles under bio-inspired conditions. Angew Chem Int Ed, 2006, 45: 6564–6566

    Article  Google Scholar 

  20. Nuraje N, Su K, Haboosheh A, et al. Room temperature synthesis of ferroelectric barium titanate nanoparticles using peptide nanorings as templates. Adv Mater, 2006, 18: 807–811

    Article  Google Scholar 

  21. Nyutu EK, Chen CH, Dutta PK, et al. Effect of microwave frequency on hydrothermal synthesis of nanocrystalline tetragonal barium titanate. J Phys Chem C, 2008, 112: 9659–9667

    Article  Google Scholar 

  22. Moreira ML, Mambrini GP, Volanti DP, et al. Hydrothermal microwave: a new route to obtain photoluminescent crystalline Ba-TiO3 nanoparticles. Chem Mater, 2008, 20: 5381–5387

    Article  Google Scholar 

  23. Ma Y, Vileno E, Suib SL, et al. Synthesis of tetragonal BaTiO3 by microwave heating and conventional heating. Chem Mater, 1997, 9: 3023–3031

    Article  Google Scholar 

  24. Souza AE, Santos GTA, Barra BC, et al. Photoluminescence of Sr-TiO3: influence of particle size and morphology. Cryst Growth Des, 2012, 12: 5671–5679

    Article  Google Scholar 

  25. Bansal V, Poddar P, Ahmad A, et al. Room-temperature biosynthesis of ferroelectric barium titanate nanoparticles. J Am Chem Soc, 2006, 128: 11958–11963

    Article  Google Scholar 

  26. Lencka MM, Riman RE. Thermodynamic modeling of hydrothermal synthesis of ceramic powders. Chem Mater, 1993, 5: 61–70

    Article  Google Scholar 

  27. Lencka MM, Riman RE. Synthesis of lead titanate: thermodynamic modeling and experimental verification. J Am Ceramic Soc, 1993, 76: 2649–2659

    Article  Google Scholar 

  28. Lencka MM, Riman RE. Thermodynamics of the hydrothermal synthesis of calcium titanate with reference to other alkaline-earth titanates. Chem Mater, 1995, 7: 18–25

    Article  Google Scholar 

  29. Lencka MM, Nielsen E, Anderko A, et al. Hydrothermal synthesis of carbonate-free strontium zirconate: thermodynamic modeling and experimental verification. Chem Mater, 1997, 9: 1116–1125

    Article  Google Scholar 

  30. Beier CW, Cuevas MA, Brutchey RL. Room-temperature synthetic pathways to barium titanate nanocrystals. Small, 2008, 4: 2102–2106

    Article  Google Scholar 

  31. Wu QS, Liu JW, Chen SF, et al. Surfactant-free synthesis of SrTiO3 hierarchical structures in ethanol/water mixed solvent at room temperature. CrystEngComm, 2015, 17: 6895–6900

    Article  Google Scholar 

  32. Lee J, Kim L, Kim J, et al. Dielectric properties of BaTiO3/SrTiO3 oxide superlattice. In: Fundamental Physics of Ferroelectrics. American Institute of Physics Conference Proceeding Washington DC, 2002, 626: 178–187

    Article  Google Scholar 

  33. Su K, Nuraje N, Yang NL. Open-bench method for the preparation of BaTiO3, SrTiO3, and BaxSr1-x TiO3 nanocrystals at 80°C. Langmuir, 2007, 23: 11369–11372

    Article  Google Scholar 

  34. Tanaka H, Tabata H, Ota K, et al. Molecular-dynamics prediction of structural anomalies in ferroelectric and dielectric BaTiO3-Sr-TiO3-CaTiO3 solid solutions. Phys Rev B, 1996, 53: 14112–14116

    Article  Google Scholar 

  35. Davis L, Rubin LG. Some dielectric properties of barium-strontium titanate ceramics at 3000 megacycles. J Appl Phys, 1953, 24: 1194–1197

    Article  Google Scholar 

  36. Kisaka S, Ikegami S, Sasaki H. Dielectric properties of mixed crystals of barium-strontium titanate. J Phys Soc Jpn, 1959, 14: 1680–1685

    Article  Google Scholar 

  37. Nedelcu L, Toacsan MI, Banciu MG, et al. Dielectric properties of paraelectric Ba1–x SrxTiO3 ceramics. Ferroelectrics, 2009, 391: 33–41

    Article  Google Scholar 

  38. Demirors AF, Imhof A. BaTiO3, SrTiO3, CaTiO3, and BaxSr1-x TiO3 particles: a general approach for monodisperse colloidal perovskites. Chem Mater, 2009, 21: 3002–3007

    Article  Google Scholar 

  39. Yang J, Zhang J, Liang C, et al. Ultrathin BaTiO3 nanowires with high aspect ratio: a simple one-step hydrothermal synthesis and their strong microwave absorption. ACS Appl Mater Interf, 2013, 5: 7146–7151

    Article  Google Scholar 

  40. Sun H, Che R, You X, et al. Cross-stacking aligned carbon-nanotube films to tunemicrowave absorption frequencies and increase absorption intensities. Adv Mater, 2014, 26: 8120–8125

    Article  Google Scholar 

  41. Pramanik NC, Anisha N, Abraham PA, et al. Preparation of BaxSr1-x TiO3 (x=0–1) nanoparticles by wet-chemical decomposition of Ti-complex and study their dielectric properties. J Alloy Comp, 2009, 476: 524–528

    Article  Google Scholar 

  42. Chen X, Wang G, Duan Y, et al. Microwave absorption properties of barium titanate/epoxide resin composites. J Phys D-Appl Phys, 2007, 40: 1827–1830

    Article  Google Scholar 

  43. Liu Y, Feng Y, Wu X, et al. Microwave absorption properties of La doped barium titanate in X-band. J Alloy Comp, 2009, 472: 441–445

    Article  Google Scholar 

  44. Li J, Hietala S, Tian X. BaTiO3 supercages: unusual oriented nanoparticle aggregation and continuous ordering transition in morphology. ACS Nano, 2015, 9: 496–502

    Article  Google Scholar 

  45. Singh P, Babbar VK, Razdan A, et al. Complex permittivity, permeability, and X-band microwave absorption of CaCoTi ferrite composites. J Appl Phys, 2000, 87: 4362–4366

    Article  Google Scholar 

  46. Che RC, Peng LM, Duan XF, et al. Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Adv Mater, 2004, 16: 401–405

    Article  Google Scholar 

  47. Meng XM, Zhang XJ, Lu C, et al. Enhanced absorbing properties of three-phase composites based on a thermoplastic-ceramic matrix (BaTiO3+ PVDF) and carbon black nanoparticles. J Mater Chem A, 2014, 2: 18725–18730

    Article  Google Scholar 

  48. Zhang XJ, Wang GS, Wei YZ, et al. Polymer-composite with high dielectric constant and enhanced absorption properties based on graphene-CuS nanocomposites and polyvinylidene fluoride. J Mater Chem A, 2013, 1: 12115–12122

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian-Wei Liu  (刘建伟) or Shu-Hong Yu  (俞书宏).

Additional information

Qing-Song Wu received his PhD degree in materials physics and chemistry under the supervision of Prof. Shu-Hong Yu from the University of Science and Technology of China (USTC) in 2009. He is interested in the synthesis and application of perovskite nanomaterials.

Jian-Wei Liu received his BSc degree in chemical engineering and technology fromHefeiUniversity of Technology in 2007, and his PhD degree in nano-chemistry under the supervision of Prof. Shu-Hong Yu from the USTC. He is interested in the synthesis and self-assembly of one dimensional nanomaterials as well as nano-device fabrication based on well aligned nanowires.

Shu-Hong Yu received his BSc atHefeiUniversity of Technology and his PhD degree (inorganic chemistry) fromthe USTC. He was a postdoctoral fellow with M. Yoshimura (Tokyo Institute of Technology) and a Humboldt Fellow with M. Antonietti and H. Cölfen (MPI of Colloids and Interfaces, Germany). In 2002, he was appointed the Cheung Kong Professor at USTC. Currently, he leads the Division of Nanomaterials & Chemistry at the Hefei National Laboratory for Physical Sciences at Microscale, USTC. His current research interests include bio-inspired synthesis and self-assembly of new nanostructured materials and nanocomposites, and their related properties. He serves as an editorial advisory board member of journals Accounts of Chemical Research, Chemistry of Materials, Chemical Science, Materials Horizons, Nano Research, ChemNanoMat, CrystEngComm, Part. Part. Syst. Charact. and Current Nanoscience. His recent awards include Chem. Soc. Rev. Emerging Investigator Award (2010) and Roy-Somiya Medal of the International Solvothermal and Hydrothermal Association (ISHA) (2010).

Electronic supplementary material

40843_2016_5072_MOESM1_ESM.pdf

A surfactant-free route to synthesize Ba x Sr1−x TiO3 nanoparticles at room temperature, their dielectric and microwave absorption properties

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, QS., Liu, JW., Wang, GS. et al. A surfactant-free route to synthesize Ba x Sr1−x TiO3 nanoparticles at room temperature, their dielectric and microwave absorption properties. Sci. China Mater. 59, 609–617 (2016). https://doi.org/10.1007/s40843-016-5072-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-016-5072-5

Keywords

Navigation