Skip to main content
Log in

Valorization of Metallurgical Slag for the Treatment of Water Pollution: An Emerging Technology for Resource Conservation and Re-utilization

  • Thematic Section: Slag Valorisation
  • Published:
Journal of Sustainable Metallurgy Aims and scope Submit manuscript

Abstract

Valorization of metallurgical slag as a material for the treatment of polluted water resources has a threefold environmental impact and enhances the sustainability of both the metallurgical industry and water-treatment processes. Firstly, the amount of waste slag to be disposed of is reduced; secondly, expensive chemical reagents required for water treatment are saved; thirdly, water resources, which are unfit for human consumption or irrigation, can be accessed. This paper reviews the use of iron, steel, and copper slag in environmental applications. While this may include air and soil remediation, the focus is on water pollution control, demonstrating the effectiveness of slag for the removal of inorganic, organic, and biological contaminants. Iron and steel slags are mainly used as sorbents or as reagents for the co-precipitation of contaminants. Copper slag finds applications in advanced chemical oxidation processes with high efficiency. The corresponding methods are emerging technologies, which are developed to minimize the costs (investment, operational, and maintenance) of pollutant removal and are often focused on small-scale processes or local treatments, which are important in the sustainable development of local communities in developing economies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Berger E, Haase P, Kuemmerlen M, Leps M, Bernhard SR, Sunbdermann A (2017) Water quality variables and pollution sources shaping stream macroinvertebrate communities. Sci Total Environ 587–588:1–10. https://doi.org/10.1016/j.scitotenv.2017.02.031

    Article  CAS  Google Scholar 

  2. Lee KE, Morad N, Teng TT, Poh BT (2012) Development, characterization and the application of hybrid materials in coagulation/flocculation of wastewater: a review. Chem Eng J 203:370–386. https://doi.org/10.1016/j.cej.2012.06.109

    Article  CAS  Google Scholar 

  3. Kang J, Chen C, Sun W, Tang H, Yin Z, Liu R, Hu Y, Nguyen AN (2017) A significant improvement of scheelite recovery using recycled flotation wastewater treated by hydrometallurgical waste acid. J Clean Prod 151:419–426. https://doi.org/10.1016/j.jclepro.2017.03.073

    Article  CAS  Google Scholar 

  4. Yuan H, He Z (2015) Integrating membrane filtration into bioelectrochemical systems as next generation energy-efficient wastewater treatment technologies for water reclamation: a review. Biores Technol 195:202–209. https://doi.org/10.1016/j.biortech.2015.05.058

    Article  CAS  Google Scholar 

  5. Guo H, You F, Yu S, Li L, Zhao D (2015) Mechanisms of chemical cleaning of ion exchange membranes: a case study of plant-scale electrodialysis for oily wastewater treatment. J Membr Sci 496:310–317. https://doi.org/10.1016/j.memsci.2015.09.005

    Article  CAS  Google Scholar 

  6. Kassab G, Halalsheh M, Klapwikj A, Fayyad M, van Lier JB (2010) Sequential anaerobic-aerobic treatment for domestic wastewater—a review. Biores Technol 101(10):3299–3310. https://doi.org/10.1016/j.biortech.2009.12.039

    Article  CAS  Google Scholar 

  7. Boczkaj G, Fenandes A (2017) Wastewater treatment by means of advanced oxidation processes at basic pH conditions: a review. Chem Eng J 320:608–633. https://doi.org/10.1016/j.cej.2017.03.084

    Article  CAS  Google Scholar 

  8. Kul M, Oskay OK (2015) Separation and recovery of valuable metals from real mix electroplating wastewater by solvent extraction. Hydrometallurgy 155:153–160. https://doi.org/10.1016/j.hydromet.2015.04.021

    Article  CAS  Google Scholar 

  9. Tran HN, You S-J, Hosseini-Bandegharaei A, Chao H-P (2017) Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: a critical review. Water Res 120:88–116. https://doi.org/10.1016/j.watres.2017.04.014

    Article  CAS  Google Scholar 

  10. Lu L, Ren JZ (2016) Microbial electrolysis cells for waste biorefinery: a state of the art review. Biores Technol 215:254–264. https://doi.org/10.1016/j.biortech.2016.03.034

    Article  CAS  Google Scholar 

  11. Tito DN, Krystynik P, Kluson P (2016) Notes on process and data analysis in electrocoagulation—the importance of standardization and clarity. Chem Eng Process 104:22–28. https://doi.org/10.1016/j.cep.2016.02.011

    Article  CAS  Google Scholar 

  12. Wang K, Abdalla AA, Khaleel MA, Hilal N, Kharaisheh MK (2017) Mechanical properties of water desalination and wastewater treatment membranes. Desalination 401(2):190–205. https://doi.org/10.1016/j.desal.2016.06.032

    Article  CAS  Google Scholar 

  13. Duo W, Zhou Z, Jiang L-M, Jiang A, Huang R, Tian X, Zhang W, Chen D (2017) Sulfate removal from wastewater using ettringite precipitation: magnesium ion inhibition and process optimization. J Environ Manag 196:518–526. https://doi.org/10.1016/j.jenvman.2017.03.054

    Article  CAS  Google Scholar 

  14. Rezania S, Ponraj M, Talaiekhozani A, Mohamad SE, Din MFM, Taib SM, Sabbagh F, Sairan FM (2015) Perspectives of phytoremediation using water hyacinth for removal of heavy metals, organic and inorganic pollutants in wastewater. J Environ Manag 163:125–133. https://doi.org/10.1016/j.jenvman.2015.08.018

    Article  CAS  Google Scholar 

  15. Moreira FC, Boaventura RAR, Brillas E, Vilar VJPV (2017) Electrochemical advanced oxidation processes: a review on their application to synthetic and real wastewasters. Appl Catal B 202(217):261. https://doi.org/10.1016/j.apcatb.2016.08.037

    Article  CAS  Google Scholar 

  16. Abou-Shady A (2017) Recycling of polluted wastewater for agriculture purpose using electrodialysis: perspective of large scale application. Chem Eng J 323:1–18. https://doi.org/10.1016/j.cej.2017.04.083

    Article  CAS  Google Scholar 

  17. Otterpohl R, Grottker M, Lang J (1997) Sustainable water and waste management in urban areas. Water Sci Technol 35(9):121–133. https://doi.org/10.1016/S0273-1223(97)00190-X

    Article  CAS  Google Scholar 

  18. Starr RC, Cherry JA (1994) In situ remediation of contaminated groundwater: the funnel and gate system. Groundwater 32(3):465–476. https://doi.org/10.1111/j.1745-6584.1994.tb00664.x

    Article  CAS  Google Scholar 

  19. Harrelkas F, Azizi A, Yaacoubi A, Benhammou A, Pons MN (2009) Treatment of textile dye effluents using coagulation-flocculation coupled with membrane processes or adsorption on powdered activated carbon. Desalination 235(1–3):330–339. https://doi.org/10.1016/j.desal.2008.02.012

    Article  CAS  Google Scholar 

  20. Crane RA, Scott TB (2012) Nanoscale zero-valent iron: future prospects for an emerging water treatment technology. J Hazard Mater 211–212:112–125. https://doi.org/10.1016/j.jhazmat.2011.11.073

    Article  CAS  Google Scholar 

  21. Lin S-H, Juang R-S (2009) Adsorption of phenol and its derivatives from water using synthetic resins and low –cost natural adsorbents: a review. J Environ Manage 90(3):1336–1349. https://doi.org/10.1016/j.jenvman.2008.09.003

    Article  CAS  Google Scholar 

  22. Wang S, Ang HM, Tadé MO (2008) Novel applications or red mud as coagulant, adsorbent and catalyst for environmentally benign processes. Chemosphere 72(11):1621–1635. https://doi.org/10.1016/j.chemosphere.2008.05.013

    Article  CAS  Google Scholar 

  23. Shen H, Forssberg E (2003) An overview of recovery of metals from slags. Waste Manag 23:933–949. https://doi.org/10.1016/S0956-053X(02)00164-2

    Article  CAS  Google Scholar 

  24. Daifullah AAM, Girgis BS, Gad HMH (2003) Utilization of agro-residues (rice husk) in small waste water treatment plans. Mater Lett 57(11):1723–1731. https://doi.org/10.1016/S0167-577X(02)01058-3

    Article  CAS  Google Scholar 

  25. Haghseresht F, Lu GQ (1998) Adsorption characteristics of phenolic compounds onto coal-reject-derived adsorbents. Energy Fuel 12(6):1100–1107. https://doi.org/10.1021/ef9801165

    Article  CAS  Google Scholar 

  26. Wang S, Boyjoo Y, Choueib A, Zhu ZH (2005) Removal of dyes from aqueous solution using fly ash and red mud. Water Res 39(1):129–138. https://doi.org/10.1016/j.watres.2004.09.011

    Article  CAS  Google Scholar 

  27. Kostura B, Kulveitova H, Lesko J (2005) Blast furnace slags as sorbents of phosphate from water solutions. Water Res 39(1):1795–1802. https://doi.org/10.1016/j.watres.2005.03.010

    Article  CAS  Google Scholar 

  28. Namasivayam C, Ranganathan K (1995) Removal of Cd(II) from wastewater by adsorption on “waste” Fe(III)Cr(III) hydroxide. Water Res 29(7):1737–1744. https://doi.org/10.1016/0043-1354(94)00320-7

    Article  CAS  Google Scholar 

  29. Hui KS, Chao CYH, Kot SC (2005) Removal of mixed heavy metal ions in wastewater by zeolite 4A and residual products from recycled coal fly ash. J Hazard Mater 127(1–3):89–101. https://doi.org/10.1016/j.jhazmat.2005.06.027

    Article  CAS  Google Scholar 

  30. Makris KC, Sarkar D, Datta R (2006) Evaluating a drinking-water waste by-product as a novel sorbent for arsenic. Chemosphere 64(5):730–741. https://doi.org/10.1016/j.chemosphere.2005.11.054

    Article  CAS  Google Scholar 

  31. Espejel-Ayala F, Schouwenaars R, Durán-Moreno A, Ramírez-Zamora R (2014) Use of drinking water sludge in the production process of zeolites. Res Chem Intermed 40(8):2919–2928. https://doi.org/10.1007/s11164-013-1138-8

    Article  CAS  Google Scholar 

  32. Manninga B, Goldberg S (1997) Arsenic(III) and Arsenic(V) adsorption on three California soils. Soils Sci 162(12):886–895. https://doi.org/10.1097/00010694-199712000-00004

    Article  Google Scholar 

  33. Bajpai S, Chaudhuri M (1999) Removal of arsenic from groundwater by manganese dioxide-coated sand. J Environ Eng 125(8):782–784. https://doi.org/10.1061/(ASCE)0733-9372(1999)125:8(782)

    Article  CAS  Google Scholar 

  34. Manning BA, Goldberg S (1997) Adsorption and stability of arsenic (III) at the clay mineral-water interface. Environ Sci Technol 31(7):2005–2011. https://doi.org/10.1021/es9608104

    Article  CAS  Google Scholar 

  35. Wang S, Peng Y (2010) Natural zeolites as effective adsorbents in water and wastewater treatment. Chem Eng J 156(1):11–24. https://doi.org/10.1016/j.cej.2009.10.029

    Article  CAS  Google Scholar 

  36. Driehaus W, Seith R, Jekel M (1995) Oxidation of arsenate(III) with manganese oxides in water treatment. Water Res 29(1):297–305. https://doi.org/10.1016/0043-1354(94)E0089-O

    Article  CAS  Google Scholar 

  37. Katsoyiannis IA, Zouboulis AI, Jekel M (2004) Kinetics of bacterial As(III) oxidation and subsequent As(V) removal by sorption onto biogenic manganese oxide during groundwater treatment. Ind Eng Chem Res 43(2):486–493. https://doi.org/10.1021/ie030525a

    Article  CAS  Google Scholar 

  38. Ghorai S, Pant KK (2005) Equilibrium, kinetics and breakthrough studies for adsorption of fluoride on activated alumina. Sep Purif Technol 42(3):265–271. https://doi.org/10.1016/j.seppur.2004.09.001

    Article  CAS  Google Scholar 

  39. Wasay SA, Haran MdJ, Tokunaga S (1996) Adsorption of fluoride, phosphate, and arsenate ions on lanthanum-impregnated silica gel. Water Environ Res 68(3):295–300. https://doi.org/10.2175/106143096X127730

    Article  CAS  Google Scholar 

  40. Wilkie JA, Hering JG (1996) Adsorption of arsenic onto hydrous ferric oxide: effects of adsorbate/adsorbent ratios and co-occurring solutes. Colloids Surf A 107:97–110. https://doi.org/10.1016/0927-7757(95)03368-8

    Article  CAS  Google Scholar 

  41. Ren Z, Zhang G, Chen JP (2011) Adsorptive removal of arsenic from water by an iron-zirconium binary oxide adsorbent. J Colloid Interface Sci 358(1):230–237. https://doi.org/10.1016/j.jcis.2011.01.013

    Article  CAS  Google Scholar 

  42. Raichur AM, Basu MJ (2001) Adsorption of fluoride onto mixed rare earth oxides. Sep Purif Technol 24(1–2):121–127. https://doi.org/10.1016/S1383-5866(00)00219-7

    Article  CAS  Google Scholar 

  43. Kundu S, Kavalakatt SS, Pal A, Ghosh S, Mandal M, Pal T (2004) Removal of arsenic using hardened paste of Portland cement: batch adsorption and column study. Water Res 38(17):3780–3790. https://doi.org/10.1016/j.watres.2004.06.018

    Article  CAS  Google Scholar 

  44. Carrillo A, Drever JI (1998) Adsorption of arsenic by natural aquifer material in the San Antonio- El Triunfo mining area, Baja California, Mexico. Environ Geol 35(4):251–257. https://doi.org/10.1007/s002540050311

    Article  CAS  Google Scholar 

  45. Maity S, Chakravarty S, Bhattacharjee S, Roy BC (2005) A study on arsenic adsorption on polymetallic sea nodule in aqueous medium. Water Res 39(12):2579–2590. https://doi.org/10.1016/j.watres.2005.04.054

    Article  CAS  Google Scholar 

  46. Measure Y, Loeppert RH, Kramer TA (2007) Arsenate and arsenite adsorption and desorption behavior on coprecipitated aluminum: iron hydroxides. Environ Sci Technol 41(3):837–842. https://doi.org/10.1021/es061160z

    Article  CAS  Google Scholar 

  47. Zhang Y, Yang M, Dou X-M, He H, Wang D-S (2005) Arsenate adsorption on an Fe-Ce bimetal oxide adsorbent: role of surface properties. Environ Sci Technol 39(18):7246–7253. https://doi.org/10.1021/es050775d

    Article  CAS  Google Scholar 

  48. Villa MV, Sánchez-Martín MJ, Sánchez-Camazano M (1999) Hydrotalcites and organo-hydrotalcites as sorbents for removing pesticides from water. J. Environ. Sci. Health B 34(3):509–525. https://doi.org/10.1080/03601239909373211

    Article  CAS  Google Scholar 

  49. Lenoble V, Laclautre C, Deluchat V, Serpaud B, Bollinger J-C (2005) Arsenic removal by adsorption on iron(III) phosphate. J Hazard Mater 123(1–3):262–268. https://doi.org/10.1016/j.jhazmat.2005.04.005

    Article  CAS  Google Scholar 

  50. GillhamRW O’Hannesin SF (1994) Enhanced degradation of halogenated aliphatics by zero-valent iron. Groundwater 32(6):958–967. https://doi.org/10.1111/j.1745-6584.1994.tb00935.x

    Article  Google Scholar 

  51. Jang M, Shin EW, Park JK, Choi SI (2003) Mechanisms of arsenate adsorption by highly-ordered nano-structured silicate media impregnated with metal oxides. Environ Sci Technol 37(21):5062–5070. https://doi.org/10.1021/es0343712

    Article  CAS  Google Scholar 

  52. Wu J-S, Liu C-H, Chu KH, Suen S-Y (2008) Removal of cationic dye methyl violet 2B from water by cation exchange membranes. J Membr Sci 309(1–2):239–245. https://doi.org/10.1016/j.memsci.2007.10.035

    Article  CAS  Google Scholar 

  53. Bhatnagar A, Sillanpää M (2009) Applications of chitin- and chitosan-derivatives for the detoxification of water and wastewater—a short review. Adv Coll Interface Sci 152(1–2):26–38. https://doi.org/10.1016/j.cis.2009.09.003

    Article  CAS  Google Scholar 

  54. Muñoz JS, Gonzalo A, Valiente M (2002) Arsenic adsorption by Fe(III)-loaded open-celled cellulose sponge. Thermodynamic and selectivity aspects. Environ Sci Technol 36(15):3405–3411. https://doi.org/10.1021/es020017c

    Article  CAS  Google Scholar 

  55. Pokhrel D, Viraraghavan T (2006) Arsenic removal from an aqueous solution by a modified fungal biomass. Water Res 40(3):549–552. https://doi.org/10.1016/j.watres.2005.11.040

    Article  CAS  Google Scholar 

  56. El-Khaiary MI (2007) Kinetics and mechanism of adsorption of methylene blue from aqueous solution by nitric-acid treated water hyacinth. J Hazard Mater 147(1–2):28–36. https://doi.org/10.1016/j.jhazmat.2006.12.058

    Article  CAS  Google Scholar 

  57. Wasiuddin NM, Tango M, Islam MR (2002) A novel method for arsenic removal at low concentrations. Energy Sources 24:1031–1041. https://doi.org/10.1080/00908310290086914

    Article  CAS  Google Scholar 

  58. Vohla C, Kõiv M, Bavor HJ, Chazarenc F, Mander Ü (2011) Filter materials for phosphorus removal from wastewater in treatment wetlands—a review. Ecol Eng 37:70–89. https://doi.org/10.1016/j.ecoleng.2009.08.003

    Article  Google Scholar 

  59. Chazarenc F, Kacem M, Gerente C, Andres Y (2008) Active filters: a mini-review on the use of industrial by-products for upgrading phosphorus removal from treatment wetlands. In Proceedings of the 11th international conference on wetland systems for water pollution control. Indore: International Water Association

  60. Claveau-Mallet D, Lida F, Comeau Y (2015) Improving phosphorus removal of conventional septic tanks by a recirculating steel slag filter. Water Qual Res J 50(3):211–218. https://doi.org/10.2166/wqrjc.2015.045

    Article  CAS  Google Scholar 

  61. Kõiv M, Mahadeo K, Brient S, Claveau-Mallet D, Comeau Y (2016) Treatment of fish farm sludge supernatant by aerated filter beds and steel slag filters—effect of organic loading rate. Ecol Eng 94:190–199. https://doi.org/10.1016/j.ecoleng.2016.05.060

    Article  Google Scholar 

  62. Penn CJ, McGrath JM, Rounds E, Fox G, Heeren D (2012) Trapping phosphorus in runoff with a phosphorus removal structure. J Environ Qual 41:672–679. https://doi.org/10.2134/jeq2011.0045

    Article  CAS  Google Scholar 

  63. Barca C, Troesch S, Meyer D, Drissen P, Andres Y, Chazarenc F (2012) Steel slag filters to upgrade phosphorus removal in constructed wetlands: two years of field experiments. Environ Sci Technol 47:549–556. https://doi.org/10.1021/es303778t

    Article  CAS  Google Scholar 

  64. Motz H, Geiseler J (2001) Products of steel slags an opportunity to save natural resources. Waste Manag 21(3):285–293. https://doi.org/10.1016/S0956-053X(00)00102-1

    Article  CAS  Google Scholar 

  65. Deja J (2000) Immobilization of Cr6+, Cd2+, Zn2+ and Pb2+ in alkali-activated slag binders. Cem Concr Res 32:1971–1979. https://doi.org/10.1016/S0008-8846(02)00904-3

    Article  Google Scholar 

  66. Dimitrova SV, Mehanjiev D-R (2000) Interaction of blast-furnace slag with heavy metal ions in water solutions. Water Res 34:1957–1961. https://doi.org/10.1016/S0043-1354(99)00328-0

    Article  CAS  Google Scholar 

  67. Kang WH, Hwang I, Park JY (2006) Dechlorination of trichloroethylene by a steel converter slag amended with Fe(II). Chemosphere 62:285–293. https://doi.org/10.1016/j.chemosphere.2005.05.011

    Article  CAS  Google Scholar 

  68. Drizo A, Forget C, Chapuis RP, Comeau Y (2006) Phosphorus removal by electric arc furnace steel slag and serpentinite. Water Res 40:1547–1554. https://doi.org/10.1016/j.watres.2006.02.001

    Article  CAS  Google Scholar 

  69. Korkusuz EA, Beklioglu M, Demirer GN (2007) Use of blast furnace granulated slag as a substrate in vertical flow reed beds: field application. Biores Technol 98:2089–2101. https://doi.org/10.1016/j.biortech.2006.08.027

    Article  CAS  Google Scholar 

  70. Shilton AN, Elmetri I, Drizo A, Pratt S (2006) Phosphorus removal by an “active” slag filter-a decade of full-scale experience. Water Res 40:113–118. https://doi.org/10.1016/j.watres.2005.11.002

    Article  CAS  Google Scholar 

  71. Jha VK, Kameshima A, Nakajima A, Okada K (2004) Hazardous ions uptake behavior of thermally activated steel-making slag. J Hazard Mater B 114:139–144. https://doi.org/10.1016/j.jhazmat.2004.08.004

    Article  CAS  Google Scholar 

  72. Cha W, Kim J, Choi H (2006) Evaluation of steel slag for organic and inorganic removals in soil aquifer treatment. Water Res 40:1034–1042. https://doi.org/10.1016/j.watres.2005.12.039

    Article  CAS  Google Scholar 

  73. Oguz E (2004) Removal of phosphate from aqueous solution with blast furnace slag. J Hazard Mater B144:131–137. https://doi.org/10.1016/j.jhazmat.2004.07.010

    Article  CAS  Google Scholar 

  74. Xue Y, Hou H, Zhu S (2009) Competitive adsorption of copper (II), cadmium (II), lead (II) and zinc (II) onto basic oxygen furnace slag. J Hazard Mater 162:391–401. https://doi.org/10.1016/j.jhazmat.2008.05.072

    Article  CAS  Google Scholar 

  75. Luukkonen T, Runtti H, Niskanen M, Tolonen E-T, Sarkkinen M, Kemppainen K, Rämö J, Lassi U (2015) Simultaneous removal of Ni(II), As(III), and Sb (III) from spiked mine effluent with metakaolin and blast-furnace-slag geopolymers. J Environ Manag 166:579–588. https://doi.org/10.1016/j.jenvman.2015.11.007

    Article  CAS  Google Scholar 

  76. Oh C, Rhe S, Oh M, Park J (2012) Removal characteristics of As(III) and As(V) from acidic aqueous solution by steel making slag. J Hazard Mater 213–214:147–155. https://doi.org/10.1016/j.jhazmat.2012.01.074

    Article  CAS  Google Scholar 

  77. Kanel SR, Choi H, Kim J-Y, Vigneswaran S, Shim GW (2006) Removal of arsenic(III) from groundwater using low-cost industrial by-products—blast furnace slag. Water Qual Res J Can 41(2):130–139

    Article  CAS  Google Scholar 

  78. Ahh JS, Chon C-M, Moon H-S, Kim K-W (2003) Arsenic removal using steel manufacturing byproducts as permeable reactive materials in mine tailing containment systems. Water Res 37:2478–2488. https://doi.org/10.1016/S0043-1354(02)00637-1

    Article  CAS  Google Scholar 

  79. Jovanovic BM, Vukasinic-Pesic VL, Veljovic DN, Rajakovic L (2011) Arsenic removal from water low-cost adsorbents- a comparative study. J Serb Chem Soc 76(10):1437–1452. https://doi.org/10.2298/JSC101029122J

    Article  CAS  Google Scholar 

  80. Kanel SR, Choi H (2017) Removal of arsenic from groundwater by industrial byproducts and its comparison with zero-valent iron. J Hazard Toxic Radioact Waste. https://doi.org/10.1061/%28ASCE%29HZ.2153-5515.0000349

    Article  Google Scholar 

  81. Claveau-Mallet D, Wallace S, Comeau Y (2013) Removal of phosphorus, fluoride, and metals from a gypsum mining leachate using steel slag filters. Water Res 47:1512–1520. https://doi.org/10.1016/j.watres.2012.11.048

    Article  CAS  Google Scholar 

  82. Yu J, Liang W, Wang L, Li F, Zou Y, Wang H (2015) Phosphate removal from domestic wastewater using thermally modified steel slag. J Environ Sci 31:81–88. https://doi.org/10.1016/j.jes.2014.12.007

    Article  CAS  Google Scholar 

  83. Xue Y, Hou H, Zhu S (2009) Characteristics and mechanisms of phosphate adsorption onto basic oxygen furnace slag. J Hazard Mater 162:973–980. https://doi.org/10.1016/j.jhazmat.2008.05.131

    Article  CAS  Google Scholar 

  84. Mercado-Borrayo BM, Schouwenaars R, González-Chávez JL, Ramirez-Zamora RM (2013) Multi-analytical assessment of iron and steel slag characteristics to estimate the removal of metalloids from contaminated water. J Environ Sci Health A 48:887–895. https://doi.org/10.1080/10934529.2013.761492

    Article  CAS  Google Scholar 

  85. Genc A, Oguz A (2010) Sorption of acid dyes from aqueous solution by using non-ground ash and slag. Desalination 264:78–83. https://doi.org/10.1016/j.desal.2010.07.007

    Article  CAS  Google Scholar 

  86. Xue Y, Hou H, Zhu S (2009) Adsorption removal of reactive dyes from aqueous solution by modified basic oxygen furnace slag: isotherm and kinetic study. Chem Eng J 147:272–279. https://doi.org/10.1016/j.cej.2008.07.017

    Article  CAS  Google Scholar 

  87. Jain AK, Gupta VK, Bhatnagar A (2003) Utilization of industrial waste products as adsorbents for the removal of dyes. J Hazard Mater 101(1):31–42. https://doi.org/10.1016/S0304-3894(03)00146-8

    Article  CAS  Google Scholar 

  88. Nasuha N, Ismai S, Hameed BH (2016) Activated electric arc furnace slag as an efficient and reusable heterogeneous Fenton-like catalyst for the degradation of Reactive Black 5. J Taiwan Inst Chem Eng 67:235–243. https://doi.org/10.1016/j.jtice.2016.07.023

    Article  CAS  Google Scholar 

  89. Zhang YJ, Liu LC, Ni LL, Wang BL (2013) A facile and low-cost synthesis of granulated blast furnace slag-based cementitious material coupled with a Fe2O3 catalyst for treatment of dye wastewater. Appl Catal B 138–139:9–16. https://doi.org/10.1016/j.apcatb.2013.02.025

    Article  CAS  Google Scholar 

  90. Tsai TT, Kao CM, Hong A (2009) Treatment of tetrachloroethylene-contaminated groundwater by surfactant-enhanced persulfate/BOF slag oxidation—a laboratory feasibility study. J Hazard Mater 171:571–576. https://doi.org/10.1016/j.jhazmat.2009.06.036

    Article  CAS  Google Scholar 

  91. Herreros O, Quiroz R, Manzano E, Bou C, Viñals J (1998) Copper extraction from reverberatory and furnace slags by chlorine leaching. Hydrometallurgy 49:87–101. https://doi.org/10.1016/S0304-386X(98)00010-3

    Article  CAS  Google Scholar 

  92. Turner BD, Binning P, Stipp SLP (2005) Fluoride removal by calcite: evidence for fluorite precipitation and surface adsorption. Environ Sci Technol 24:9561–9568. https://doi.org/10.1021/es0505090

    Article  CAS  Google Scholar 

  93. Han C, Jiao Y, Wu Q, Yang W, Yang H, Xue X (2016) Kinetics and mechanism of hexavalent chromium removal by basic oxygen furnace slag. J Environ Sci 46:63–71. https://doi.org/10.1016/j.jes.2015.09.024

    Article  Google Scholar 

  94. Cundy AB, Hopkinson L, Whitby RLD (2008) Use of iron-based technologies in contaminated land and groundwater remediation: a review. Sci Total Environ 400:42–51. https://doi.org/10.1016/j.scitotenv.2008.07.002

    Article  CAS  Google Scholar 

  95. Tuutijärvi T, Lu J, Sillanpää M, Chen G (2009) As(V) adsorption on maghemite nanoparticles. J Hazard Mater 166:1415–1420. https://doi.org/10.1016/j.jhazmat.2008.12.069

    Article  CAS  Google Scholar 

  96. Chandra V, Park J, Chun Y, Lee JW, Hwang I-C, Kim KS (2010) Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal. ACS Nano 4(7):3979–3986. https://doi.org/10.1021/nn1008897

    Article  CAS  Google Scholar 

  97. de la García-Soto FMM, Camacho ME (2009) Boron removal by means of adsorption processes with magnesium oxide- Modelization and mechanism. Desalination 249:626–634. https://doi.org/10.1016/j.desal.2008.11.016

    Article  CAS  Google Scholar 

  98. Fendorf S, Eick M, Grossl P, Sparks D (1997) Arsenate and chromate retention mechanisms on goethite. 1. Surface structure. Environ Sci Technol 31(2):315–320. https://doi.org/10.1021/es950653t

    Article  CAS  Google Scholar 

  99. Grossl P, Eick M, Sparks D, Goldberg S, Aiinsworth CC (1997) Arsenate and chromate retention mechanisms on goethite. 2. Kinetic evaluation using a pressure-jump relaxation technique. Environ Sci Technol 31(2):321–326. https://doi.org/10.1021/es950654l

    Article  CAS  Google Scholar 

  100. Dimitrova SV (1996) Metal sorption on blast-furnace slag. Water Res 30:228–232. https://doi.org/10.1016/0043-1354(95)00104-S

    Article  CAS  Google Scholar 

  101. Dimitrova SV, Mehamjiev DR (1999) Interaction of blast-furnace slag with heavy metal ions in water solutions. Water Res 34(6):1957–1961. https://doi.org/10.1016/S0043-1354(99)00328-0

    Article  Google Scholar 

  102. Zhou YF, Haynes RJ (2010) Sorption of heavy metals by inorganic and organic components of solid wastes: significance to use of wastes as low-cost adsorbents and immobilizing agents. Crit Rev Environ Sci Technol 40:909–977. https://doi.org/10.1080/10643380802586857

    Article  CAS  Google Scholar 

  103. Zhang F-S, Itoh H (2005) Iron oxide-loaded slag for arsenic removal from aqueous system. Chemosphere 60:319–325. https://doi.org/10.1016/j.chemosphere.2004.02.027

    Article  CAS  Google Scholar 

  104. Islam M, Patel R (2011) Thermal activation of basic oxygen furnace slag and evaluation of its fluoride removal efficiency. Chem Eng J 169:68–77. https://doi.org/10.1016/j.cej.2011.02.054

    Article  CAS  Google Scholar 

  105. Srivastava SK, Gupta VK, Mohan D (1997) Removal of lead and chromium by activated slag—a blast-furnace waste. J Environ Eng 123(5):461–468. https://doi.org/10.1061/(ASCE)0733-9372(1997)123:5(461)

    Article  CAS  Google Scholar 

  106. Xiong J, He Z, Mahood Q, Liu D, Yang X, Islam E (2008) Phosphate removal from solution using steel slag through magnetic separation. J Hazard Mater 152:211–215. https://doi.org/10.1016/j.jhazmat.2007.06.103

    Article  CAS  Google Scholar 

  107. Mishra PC, Patel RK (2009) Removal of lead and zinc ions from water by low-cost adsorbents. J Hazard Mater 168:319–325. https://doi.org/10.1016/j.jhazmat.2009.02.026

    Article  CAS  Google Scholar 

  108. Mercado-Borrayo BM, Schouwenaars R, Litter MI, Montoya-Bautista CV, Ramírez-Zamora RM (2014) Chapter 5. Metallurgical slag as an efficient and economical adsorbent of arsenic. Water Reclamation and Sustainability. Elsevier

  109. Mercado-Borrayo BM, Schouwenaars R, Litter MI, Ramirez-Zamora RM (2014) Adsorption of boron by metallurgical slag and iron nanoparticles. Adsorpt Sci Technol 32(2–3):117–123. https://doi.org/10.1260/0263-6174.32.2-3.117

    Article  CAS  Google Scholar 

  110. Nohynek GJ, Fautz R, Benech-Kieffer F, Toutain H (2004) Toxicity and human health risk of hair dyes. Food Chem Toxicol 42(4):517–543. https://doi.org/10.1016/j.fct.2003.11.003

    Article  CAS  Google Scholar 

  111. Ramakrishna KR, Viraraghavan T (1997) Use of slag for dye removal. Waste Manag 17(8):483–488. https://doi.org/10.1016/S0956-053X(97)10058-7

    Article  CAS  Google Scholar 

  112. Gupta VK, Srivastava SK, Mohan D (1997) Equilibrium uptake, sorption dynamics, process optimization and column operations for the removal and recovery of malachite green from wastewater using activated carbon and activated slag. Ind Eng Chem Res 36:2207–2218. https://doi.org/10.1021/ie960442c

    Article  CAS  Google Scholar 

  113. Gao H, Song Z, Zhang W, Yang X, Wang X, Wang D (2017) Synthesis of highly effective absorbents with waste quenching blast furnace slag to remove methyl orange from aqueous solution. J Environ Sci 53:68–77. https://doi.org/10.1016/j.jes.2016.05.014

    Article  Google Scholar 

  114. Andreozzi R, Caprio V, Insola A, Marotta R (1999) Advanced oxidattion processes (AOP) from water purification and recovery. Catal Today 53(1):51–59. https://doi.org/10.1016/S0920-5861(99)00102-9

    Article  CAS  Google Scholar 

  115. Pignatello J, Oliveros E, MacKay A (2007) Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry. Crit Rev Environ Sci Technol 36(1):1–84. https://doi.org/10.1080/10643380500326564

    Article  CAS  Google Scholar 

  116. Neyens E, Baeyens J (2003) A review of classic Fenton’s peroxidation as an advanced oxidation technique. J Hazard Mater B98:33–50. https://doi.org/10.1016/S0304-3894(02)00282-0

    Article  CAS  Google Scholar 

  117. Mirzaei A, Chen Z, Haghighat F, Yerushalmi L (2017) Removal of pharmaceutical from water by homo/heterogonous Fenton-type-processes—a review. Chemosphere 174:665–688. https://doi.org/10.1016/S0304-3894(02)00282-0

    Article  CAS  Google Scholar 

  118. Hartmann M, Kullmann S, Keller H (2010) Wastewater treatment with heterogeneous Fenton-type catalyst based on porous materials. J Mater Chem 20:9002–9017. https://doi.org/10.1039/C0J00577K

    Article  CAS  Google Scholar 

  119. Yaping Z, Jiangyong H (2008) Photo-Fenton degradation of 17β-estradion in presence of α-FeOOHR and H2O2. Appl Catal B 78:250–258. https://doi.org/10.1016/j.apcatb.2007.09.026

    Article  CAS  Google Scholar 

  120. Shi J, Kuwahara Y, An T, Yamashita H (2017) The fabrication of TiO2 supported on slag-made calcium silicate as low-cost photocatalyst with high adsorption ability for the degradation of dye pollutants in water. Catal Today 281:21–28. https://doi.org/10.1016/j.cattod.2016.03.039

    Article  CAS  Google Scholar 

  121. Chiou C-S, Chang C-F, Chang C-T, Shie J-L, Chen Y-H (2006) Mineralization of Reactive Black 5 in aqueous solution by basic oxygen furnace slag in the presence of hydrogen peroxide. Chemosphere 62:788–795. https://doi.org/10.1016/j.chemosphere.2005.04.072

    Article  CAS  Google Scholar 

  122. Tsai TT, Kao CM, Wang JY (2011) Remediation of TCE-contaminated groundwater using acid/BOF slag enhanced chemical oxidation. Chemosphere 83:687–692. https://doi.org/10.1016/j.chemosphere.2011.02.023

    Article  CAS  Google Scholar 

  123. Lee J-M, Kim J-H, Chang Y-Y, Chang Y-S (2009) Steel dust catalysis for Fenton-like oxidation of polychlorinated dibenzo-p-dioxins. J Hazard Mater 163:222–230. https://doi.org/10.1016/j.jhazmat.2008.06.081

    Article  CAS  Google Scholar 

  124. Chiou C-S (2007) Application of steel waste with UV/H2O2 to mineralize 2-naphthalenesulfonate in aqueous solution. Sep Purif Technol 55:110–116. https://doi.org/10.1016/j.seppur.2006.11.006

    Article  CAS  Google Scholar 

  125. Gorai B, Jama RK, Premchad (2003) Characteristics and utilization of copper slag—a review. Resour Conserv Recycl 39:299–313. https://doi.org/10.1016/S0921-3449(02)00171-4

    Article  Google Scholar 

  126. Kiyak B, Özer A, Altundogan HS, Erdem M, Tümen K (1999) Cr(VI) reduction in aqueous solutions by using copper smelter slag. Waste Manag 19:333–338. https://doi.org/10.1016/S0956-053X(99)00141-5

    Article  CAS  Google Scholar 

  127. Arzate-Salgado S-Y, Morales-Pérez A-A, Solís-López M, Ramírez-Zamora R-M (2016) Evaluation of metallurgical slag as a Fenton-type photocatalyst for the degradation of an emerging pollutant: diclofenac. Catal Today 266:126–135. https://doi.org/10.1016/j.cattod.2015.09.026

    Article  CAS  Google Scholar 

  128. Huanosta-Gutiérrez T, Dantas RF, Ramírez-Zamora RM, Esplugas S (2012) Evaluation of copper slag to catalyze advanced oxidation processes for the removal of phenol in water. J Hazard Mater 213–214:325–330. https://doi.org/10.1016/j.jhazmat.2012.02.004

    Article  CAS  Google Scholar 

  129. Solís-López M, Duran-Moreno A, Rigas F, Morales AA, Navarrete M, Ramírez-Zamora RM (2014) Chapter 9. Assessment of copper slag as a sustainable Fenton-type photocatalyst for water disinfection. Water Reclamation and Sustainability. Elsevier

  130. Schouwenaars R, Montoya-Bautista CV, Isaacs-Páez ED, Solís-López M, Ramírez-Zamora RM (2017) Removal of arsenic III and V from laboratory solutions and contaminated groundwater by metallurgical slag through anion-induced precipitation. Environ Sci Pollut Res https://doi.org/10.1007/s11356-017-0120-1

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the “Dirección general de asuntos del personal académico” (DGAPA) under Grant No. IV100616.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Schouwenaars.

Additional information

The contributing editor for this article was A. Malfliet.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mercado-Borrayo, B.M., González-Chávez, J.L., Ramírez-Zamora, R.M. et al. Valorization of Metallurgical Slag for the Treatment of Water Pollution: An Emerging Technology for Resource Conservation and Re-utilization. J. Sustain. Metall. 4, 50–67 (2018). https://doi.org/10.1007/s40831-018-0158-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40831-018-0158-4

Keywords

Navigation