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Abstract In this paper, a new constitutive model for

isothermal pseudoelastic shape memory alloys is presented.

The model is based upon a kinematic hardening framework

that was previously developed for ferroelastic and ferro-

electric switching behavior. The basis of the model

includes a transformation surface, an associated flow rule

for transformation strain, and kinematic hardening with the

back stresses represented by a transformation potential that

is dependent upon the transformation strain. In contrast to

many models that introduce tension/compression asym-

metry by devising transformation surfaces in terms of

invariants of the stress tensor, this model achieves this

capability by means of expressing the transformation

potential from which the back stresses are derived as a

weighted mix of two potentials that are, respectively, cal-

ibrated to measured tensile and compressive responses.

Additionally, in this model, plastic deformation is allowed

to occur at high stresses by employing a standard J2-based

yield surface with isotropic hardening. Finally, to demon-

strate the ability of the constitutive model to perform in

highly non-proportional loading states, some finite element

simulations on crack tip fields are presented.

Keywords Pseudoelasticity � Shape memory � SMA

Introduction

In relatively high-temperature regimes above the ‘‘austen-

ite finish temperature’’ Af , shape memory alloys (SMAs)

have special characteristics of pseudoelasticity, which are

caused by diffusionless transformations between two pha-

ses austenite and martensite [1]. For an SMA, at such a

temperature, the material is initially in the austenitic phase,

which has a body-centered cubic (BCC) lattice with a high

degree of symmetry. As the material is loaded above some

critical level, austenite becomes unstable and stress-in-

duced martensite starts to nucleate. The martensitic phase

has a monoclinic lattice structure with a lower degree of

symmetry and the transformation from the austenitic BCC

lattice to the martensitic one induces a macroscopic

deformation that can be described by the Bain matrix [2].

From the macroscopic point of view, the amount of strain

induced by such martensitic transformations for a SMA is a

characteristic material property that can be measured in

tests under simple loadings, e.g., uniaxial tension or com-

pression. Upon unloading, when the load decreases below

another critical level, the stress-induced martensite cannot

exist stably and begins to transform back to austenite. Once

the reverse transformation is finished, the microstructure

returns to its original state if no dislocation-driven plas-

ticity occurred during the initial loading of the material.

Thus, the remaining process of unloading is elastic and

finally the deformation would recover completely.

One important feature of SMA pseudoelastic behavior is

the significant asymmetry between tension and compres-

sion. Gall et al. [3] reported distinct tensile and compres-

sive responses of precipitated NiTi crystals, which are also

dependent on crystallographic orientation with respect to

the loading direction. Bechle and Kyriakides [4] conducted

carefully designed isothermal tensile and compressive tests
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on polycrystalline NiTi tubes, which show that the stress-

induced martensitic transformation occurs at a much higher

stress level but with only about half amount of transfor-

mation strain (the inelastic strain induced by transforma-

tion that can be recovered upon unloading) under

compression compared to those achieved under tension. In

addition, the deformation in the specimen under tension is

highly inhomogeneous, exhibiting propagating Luders-like

bands of localized transformed zones. Reedlunn et al. [5]

disclose similar experimental observations.

For the purpose of facilitating theoretical and numerical

modeling studies of the behaviors of SMA structures,

numerous studies have been published on the phe-

nomenological constitutive modeling of SMAs. (The

number of publications on SMA constitutive modeling is

too large for us to cite all studies on this topic. Hence, we

only cite those that are directly related to this paper.) Many

of the phenomenological constitutive models developed to

date are plasticity-based [6, 7]. Boyd and Lagoudas [8]

initially proposed a model for SMAs with the free energy

density being a sum of free energy densities of the two

phases weighted by the martensite volume fraction in

addition to a contribution from the mix of the two phases.

A series of subsequent extensions of this model were

published, among which Qidwai and Lagoudas [9] intro-

duced several transformation functions expressed in terms

of the three invariants of the stress tensor in order to enable

tension/compression asymmetry and volumetric transfor-

mation strain. Auricchio and Petrini [10] developed a three-

dimensional model for stress-temperature-induced solid-

phase transformation with the transformation strain as the

internal variable, which includes a Prager–Lode-type limit

surface to induce different critical stresses under tension

and compression. Using a similar Helmholtz free energy,

Arghavani et al. [11] presented a model in which the

amount and orientation of the transformation strain evolve

separately. Both models proposed by Arghavani et al. [12]

and Panico and Brinson [13] take the stress-induced

martensite fraction and the temperature-induced martensite

fraction as separate internal variables and describe

martensite reorientation separately from austenite to

martensite transformation. In addition to these yield surface

plasticity-based approaches, the micro-plane modeling

approach has also been applied to SMAs. By modeling the

effects of transformation-induced deformation on several

planes of different orientations, the micro-plane model

proposed by Brocca et al. [14] is able to predict the three-

dimensional responses of SMAs. Karamooz Ravari et al.

[15] extended the micro-plane modeling approach to

incorporate the tension/compression asymmetry by adopt-

ing an equivalent stress based on the second and third

invariants of the deviatoric stress tensor.

In this paper, a new constitutive model for isothermal

pseudoelastic SMAs is presented. The framework of the

model inherits the one previously developed for ferroe-

lastic and ferroelectric switching behavior, see Landis

[16–18]. Rather than distinguishing between the austenite

to martensite transformation and the reorientation of

martensite, the model takes the transformation strain as the

sole internal variable. The basis of the model includes a

transformation surface, an associated flow rule for trans-

formation strain, and kinematic hardening with back stress

derived from a transformation potential that is dependent

upon the transformation strain. In contrast to most models

that introduce tension/compression asymmetry by devising

transformation surfaces in terms of invariants of the stress

tensor, this model achieves this capability by means of

expressing the transformation potential as a weighted mix

of two potentials that are, respectively, calibrated to mea-

sured tensile and compressive responses. Additionally, like

other metallic materials, plasticity also occurs in SMAs

once dislocation slip is activated, see Sehitoglu et al. [19],

Ezaz et al. [20], Hartl and Lagoudas [21]. Thus, in this

model, plastic deformation is allowed to occur at high

stresses by employing a standard J2-based yield surface

with isotropic hardening. To demonstrate of the ability of

the constitutive model to integrate highly non-proportional

loading states, finite element simulations on stationary and

steadily propagating cracks are conducted and presented.

The organization of this paper is as follows: ‘‘Constitutive

Model for Pseudoelastic Shape Memory Alloys’’ section

presents the formulation of the proposed constitutive model

for isothermal pseudoelastic behaviors of SMAs. ‘‘Results

for Boundary Value Problems’’ section demonstrates the

results of the finite element simulations on the crack tip field

for a stationary crack and that for a steadily propagating

crack, in which the constitutive model is applied. Finally,

‘‘Discussion’’ section summarizes the constitutive model

developed and the example boundary value problems on

crack tip fields that are analyzed with this model.

Constitutive Model for Pseudoelastic Shape
Memory Alloys

Framework

Let rij and sij be the stress tensor and its deviatoric com-

ponents. The strain tensor is decomposed into elastic,

transformation, and plastic strains, i.e., eij ¼ eeij þ etij þ epij.

The following Helmholtz free energy per unit volume is

introduced:

w ¼ 1

2
cijklðeij � etij � epijÞðekl � etkl � epklÞ þ wtðetijÞ; ð1Þ
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in which the first term is the elastic strain energy stored per

unit volume and the second term represents the component

of the free energy attributed to phase transformation. cijkl
are the components of the linear elastic stiffness tensor,

which is possibly dependent on the transformation strain,

i.e., cijkl ¼ cijklðetmnÞ.
The isothermal form of the second law of thermody-

namics requires that the dissipation rate for any possible

process must be non-negative, i.e.,

_D ¼ rij _eij � _w� 0: ð2Þ

Together with the following definitions,

�rij ¼
1

2

ospqrs

oetij
rpqrrs ð3aÞ

rij ¼
ow
oeij

¼ cijkl ekl � etkl � epkl
� �

; ð3bÞ

rBij ¼
owt

oetij
ð3cÞ

r̂ij ¼ rij � rBij þ �rij ð3dÞ

the second law expressed in (2) may be re-organized as

_D ¼ r̂ij _e
t
ij þ rij _e

p
ij � 0: ð4Þ

Note that the sijkl are the components of the elastic com-

pliance tensor, which is the inverse of the elastic stiffness

tensor, i.e., sijkl ¼ ðcijklÞ�1:

It is assumed that elastic deformation is enclosed by

both a transformation surface Utðr̂ij; etijÞ ¼ 0 and a yield

surface Upðrij; �epÞ ¼ 0, and transformation (plastic yield-

ing) may occur if r̂ij (rij) lies on the transformation (yield)

surface. The variable �ep is the accumulated plastic strain

defined as,

�ep ¼
Z t

0

2

3
_epij _e

p
ij

� �1=2

dt: ð5Þ

Stress states outside either the transformation or the

yield surface are forbidden. It is assumed that both trans-

formation and plastic straining abide by the maximum

dissipation postulate, and hence both surfaces must be

convex and the transformation and plastic strain increments

follow associative flow rules,

_etij ¼ kt
oUt

or̂ij
; ð6Þ

_epij ¼ kp
oUp

orij
: ð7Þ

Equations (6) and (7) indicate that the transformation

strain increment and plastic strain increment are normal to

corresponding surfaces. Additionally, kt and kp are non-

negative multipliers that are determined from consistency

conditions. Note that along with the maximum dissipation

postulate which implies convexity of the surface and nor-

mality for the flow rules, (4) is then satisfied as long as

Utðr̂ij ¼ 0; etijÞ� 0 and Upðrij ¼ 0; �epÞ� 0. The loading

and unloading conditions can also be recast as the Kuhn–

Tucker conditions,

kt � 0; Ut � 0; ktUt ¼ 0

kp � 0; Up � 0; kpUp ¼ 0:
ð8Þ

Note that for this specific variant of the theoretical

framework, we have not accounted for the possibility of

transformation-induced plasticity. The physics of trans-

formation-induced plasticity can be included within this

framework in a manner similar to that proposed by

Lagoudas and Entchev [22], wherein a contribution of the

plastic strain increment is linked to the transformation

strain increment. The details of such modifications are

beyond the scope of this work, and as such, the present

model is most applicable to materials where transforma-

tion-induced plasticity is negligible (e.g., as in [4, 23, 24]).

To derive the continuum tangent behavior for this

model, we define,

Uijkl ¼
1

2

o2spqrs

oetijoe
t
kl

rpqrrs; ð9Þ

Hijkl ¼
o2wt

oetijoe
t
kl

; ð10Þ

~eij ¼
oUt

or̂ij
þ oUt

or̂kl

osmnij

oetkl
rmn; ð11Þ

in which case the consistency conditions, _Ut ¼ 0 and
_Up ¼ 0, lead to the following equations:

Att Atp

Apt App

� �
kt

kp

� 	
¼ bt

bp

� 	
; ð12Þ

where

Att ¼ ~eijcijkl~ekl þ
oUt

or̂ij
ðHijkl � UijklÞ

oUt

or̂kl
� oUt

oetij

oUt

oetij
; ð13Þ

Atp ¼ Apt ¼ ~eijcijkl
oUp

orkl
; ð14Þ

App ¼ oUp

orij
cijkl

oUp

orkl
� oUp

o�ep

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3

oUp

orij

oUp

orij

s

; ð15Þ

bt ¼ ~eijcijkl _ekl; and ð16Þ

bp ¼ oUp

orij
cijkl _ekl: ð17Þ
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The multipliers kt and kp are solved from (12), given the

variables at the current state and the strain increment _eij.
Note that if both Ut\0 and Up\0 then both kt ¼ 0 and

kp ¼ 0 and exhibit elastic behavior. If Ut ¼ 0 and Up\0

then kp ¼ 0 and kt is solved from (12) using kp = 0. The

solution for the multipliers is then used in (6) and (7),

which are in turn applied within the rate form of (3b) to

obtain the continuum stress increment versus strain incre-

ment behavior. The solution to Eq. (12) can be written in

the following form,

kt ¼ Ltmn _emn
kp ¼ Lpmn _emn:

ð18Þ

Then the incremental stress–strain relationships are,

_rij ¼ cijkl � cijmn
oUt

or̂mn
Ltkl � cijmn

oUp

ormn
L
p
kl

� �
_ekl: ð19Þ

The terms within the parentheses are the components of

the continuum tangent modulus.

Model Fitting to a Material

The material properties that need to be specified for the

constitutive model include the dependence of the elastic

properties on the transformation strain, the transformation

surface Ut, the yield surface Up, and the back stress

potential wt. For the sake of simplicity, we assume that the

elastic properties are independent of the transformation

strain and represented by a constant Young’s modulus E

and Poisson’s ratio m. As a result, �rij and Uijkl vanish. The

following J2-type transformation surface Ut and yield

surface Up are adopted,

Ut ¼ 3

2
ŝijŝij � r20 ð20Þ

Up ¼ 3

2
sijsij � r2y ; ð21Þ

where r0 and ry represent the sizes of the two surfaces. In

contrast to using separate forward and backward transfor-

mation surfaces as is done in many other approaches, in

this theory, the evolution of the transformation strain is

based upon a kinematic hardening description using a

single transformation surface. For this approach, the width

of the hysteresis loop for uniaxial loading is simply the

diameter of the transformation surface, hence the radius of

the transformation surface r0 in Eq. (20) must be half of

the size of the pseudoelastic hysteresis and can in general

depend upon the transformation strain state within this

theory. However, here r0 is assumed to be a constant based

on the experimental observations measured in Jiang et al.

[23]. The yield strength ry is explicitly specified as a

function of the cumulative plastic strain �ep;

ryð�epÞ ¼ r0y 1þ 2

p
h
p
1 tan

�1ðbp�epÞ
� 	

: ð22Þ

This phenomenological form for the yield strength is

chosen to fit the experimental observations obtained in

Jiang et al. [23]. Other forms for the yield strength can of

course be used.

Recall that the back stress is related to the transforma-

tion strain through a potential wt, as shown in Eq. (3c). The

tension/compression asymmetry in the stress–strain

behavior and differences between the tensile and com-

pressive saturation strains are both captured with the

appropriate design of this potential function. Thus, we

propose the following representation of this potential,

wt ¼ nwt
cð�eÞ þ ð1� nÞwt

tð�eÞ; ð23Þ

where wt
c and wt

t are potentials that are calibrated to the

measured uniaxial compression and tension stress–trans-

formation strain responses, �e is a strain-like variable that

governs the strain asymmetry, and the weighting between

the two potentials in the mixture is specified by n. The
following definition of �e is adopted,

�e ¼ Je2f ðJrÞ; Jr ¼ Je3=J
e
2; ð24Þ

with

f ¼ cosfarccos½1� aðJ3r þ 1Þ�=3g; ð25Þ

where the following definitions of the deviatoric strain

invariants are used,

Je2 ¼ ð2etijetij=3Þ
1=2; Je3 ¼ ð4etijetjketki=3Þ

1=3;

and etij ¼ etij � etkkdij=3:
ð26Þ

The function f, originally proposed by Sedlak et al. [25],

scales the uniaxial compressive transformation strain to its

tensile counterpart. In several prior works, the introduction

of tension/compression asymmetry is accomplished via the

construction of the shape of the transformation surface e.g.,

[9, 10, 15, 26–29]. In contrast, this approach implements a

spherically shaped transformation surface with anisotropic

kinematic hardening that accounts for the differing

behaviors in tension and compression as the transformation

strain evolves.

The weight function n, chosen to be a function of the

ratio of the deviatoric strain invariants Jr, facilitates the

generalization of the uniaxial tensile and compressive

responses to arbitrary strain states. Jr ¼ 1 represents the

uniaxial extension and Jr ¼ �1 represents the uniaxial

contraction. Thus, nðJrÞ with
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nð�1Þ ¼ 1 and nð1Þ ¼ 0; ð27Þ

interpolates between the tensile and compressive respon-

ses. In addition, to ensure continuity of the hardening

moduli, the derivatives of nðJrÞ must satisfy

nI0 ¼ nII0 ¼ nIV0 ¼ nV0 ¼ 0, where nn0 represents the nth

derivative of n with respect to Jr at Jr ¼ 0. Similarly, the

derivatives of f ðJrÞ must also satisfy the same conditions,

see [17].

According to (3c) and (23), the back stress becomes,

rBij ¼ n
dwt

c

d�e
o�e
oetij

þ ð1� nÞ dw
t
t

d�e
o�e
oetij

þ n0ðJrÞðwt
c � wt

tÞ
oJr

oetij
:

ð28Þ

Mathematical derivations indicate that under uniaxial

stress states, Eq. (28) becomes

rB11c ¼
dwt

c

d�e
o�e
oet11

and rB11t ¼
dwt

t

d�e
o�e
oet11

ð29Þ

for compression and tension, respectively. If the plastic

yield limit has not been reached, the equation of the

transformation surface during loading implies

r11cj j � f ð�1Þ dw
t
c

d�e
¼ r0 and r11t � f ð1Þ dw

t
t

d�e
¼ r0 ð30Þ

where again r0 is the size of the transformation surface.

Equation (30) clearly demonstrates the capability of this

constitutive model to produce arbitrarily different back

stress–transformation strain relations under compression

and tension.

The function n extends the calibrated model to general

strain states and ultimately should be calibrated to

experimental results. The following expression has been

adopted for the calculations presented here which satis-

fies condition (14) and the requirements on its derivatives

at Jr ¼ 0;

nðJrÞ ¼
f ðJrÞ � f ð1Þ
f ð�1Þ � f ð1Þ : ð31Þ

Parameters of the Model

The two back stress potentials in (11) are assigned the

following forms,

wt
cð�eÞ ¼

h0c

2
�e2 þ ðh1c � h0cÞ

�e2

2
� 1

bc
�e� 1

bc
ð1� e�bc�eÞ

� 	� �

þ ðh2c � h1cÞ
0

ðec � e1Þ2ðn5=2� n6=2þ n7=7Þ
ðec � e1Þ2=7þ ðec � e1Þð�e� ecÞ þ ð�e� ecÞ2=2

0� �e� e1
e1� �e� ec
ec � �e

8
><

>:

ð32Þ

and

wt
tð�eÞ ¼

h0t

2
�e2 þ ðh1t � h0tÞ

�e2

2
� 1

bt
�e� 1

bt
ð1� e�bt�eÞ

� 	� �

þ ðh2t � h1tÞ
0

ðec � e1Þ2ðn5=2� n6=2þ n7=7Þ
ðec � e1Þ2=7þ ðec � e1Þð�e� ecÞ þ ð�e� ecÞ2=2

0� �e� e1
e1 � �e� ec
ec � �e

8
><

>:

ð33Þ

where n ¼ ð�e� e1Þ=ðec � e1Þ.
The parameters in (22), (32), and (33) are listed in

Table 1. Together with a ¼ 0:99225 in (25), the choice of

wt
c ¼ wt

t, as shown by the parameters listed in Table 1,

produces the asymmetric tensile and compressive respon-

ses demonstrated in Fig. 1 (with plasticity prevented by

enforcing epij ¼ 0) and Fig. 2 (if plastic yielding is allowed

to occur). This choice of wt
c ¼ wt

t does in fact capture the

experimentally observed tension/compression asymmetry

reported in Jiang et al. [23, 24]. Note that for this material,

the transformation in compression occurs at a higher stress

level than the transformation in tension. This material

model can also capture the opposite case. For example, if

within the function f in Eq. (25) the term J3r ! �J3r , then

the tensile and compressive stress–strain behaviors in

Fig. 1 would be interchanged.

Again, note that the radius of the transformation surface

is taken to be half of the stress hysteresis, and is therefore

smaller than the apparent transformation stress in either

tension or compression. The agreement of the model to

experimentally observed stress–strain behaviors is then

obtained from the transformation potential. In a fashion

akin to the determination of experimentally measured

‘‘apparent’’ transformation surfaces, simulations of the

modeled apparent transformation surfaces can also be

obtained. Figure 3 illustrates the transformation surfaces

produced by the constitutive model for several values of

the transformation work, DWt ¼
R
rijdetij, in the biaxial

stress ðr11 � r22Þ space. Each point on any of these sur-

faces is obtained from a proportional load path in stress

space, and the stress state at the associated level of trans-

formation work is recorded. The transformation surfaces

from the model have a shape that is similar to those

Table 1 The parameter values for the material model calibration

used to fit the experimental measurements in [23]

Parameter (unit) Value Parameter (unit) Value

E (GPa) 68.3 h2c,h2t (GPa) 603.3

m 0.30 e1 (%) 3.1

r0 (MPa) 120.7 ec (%) 3.3

bc,bt 2500 r0y (GPa) 1.24

h0c,h0t(GPa) 1508 h
p
1 0.446

h1c,h1t (GPa) 2.772 bp 1650
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reported in experimental studies (see Lexcellent et al. [26])

and micromechanical simulations, Aleong et al. [30].

Results for Boundary Value Problems

This constitutive model has been applied within the com-

mercial finite element code ABAQUS� as a UMAT in order

to analyze the recoverable buckling ofNiTi tubes, Jiang et al.

[23, 24]. These works have demonstrated that this model’s

ability to describe the asymmetries in the tensile and com-

pressive strains, the tensile and compressive stresses, plas-

ticity at high stresses, and the integration of highly non-

proportional stress states are all necessary for capturing the

complex structural response of buckling tubes. In this paper,

we illustrate some of these behaviors of the model for cap-

turing the fields near stationary and steadily growing crack

tips. For this purpose, the same backward Euler integration

routine that is required for the ABAQUS UMAT was ported

to the finite element codes used to analyze semi-infinite

stationary and steadily growing cracks. These results are

described in detail in the following subsections.

Stationary Cracks

In this sub-section, a stationary, semi-infinite crack in a

pseudoelastic material is analyzed in a manner similar to

Baxevanis et al. [31]. This problem is characterized by a

region of transformation around the crack tip, which may

also encapsulate a region of plasticity within it. Outside the

austenite to martensite transformation region, the material

is linear elastic and far from the transformation zone the

elastic stress field is described by the mode I K-field. The

far-field stresses for the K-field with polar coordinates

centered on the crack tip are given as,

rxx
ryy
rxy

8
><

>:

9
>=

>;
¼ KIffiffiffiffiffiffiffiffi

2pr
p cos

h
2

1� sin
h
2
sin

3h
2

1þ sin
h
2
sin

3h
2

sin
h
2
cos

3h
2

8
>>>><

>>>>:

9
>>>>=

>>>>;

: ð34Þ

Instead of constructing a finite element model of a large

domain to approximate the semi-infinite crack geometry, a

Dirichlet to Neumannmap, Carka et al. [32], is applied to the

outer boundary of a small circular domain that simply must

surround the austenite to martensite transformation zone.

This technique allows for a highly concentratedmesh around

Fig. 2 Uniaxial tensile and compressive responses with both pseu-

doelastic transformation and plasticity for a material described by the

parameter values listed in Table 1

Fig. 3 Transformation surfaces for different values of the transfor-

mation work in biaxial stress space

Fig. 1 Uniaxial tensile and compressive responses with pseudoelastic

transformation only. Table 1 lists the fitted parameter values to

experimental measurements for material model calibration by Jiang

et al. [23, 24]
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the crack tip such that all of the numerical effort can be

expended in and around the non-linear transformation zone.

For the presentation of the results, the size of the

transformation zone can be approximated by the formula,

Rt ¼
1

3p
KI

rt

� �2

; ð35Þ

where rt ¼ 0:2Eec is the approximate transformation stress

in tension taken from Fig. 1. Figure 4 shows several

contours of equivalent transformation strain Je2 normalized

by ec in the vicinity of a crack tip where the material has

pseudoelastic transformation for the cases where there is

and is not plastic deformation. The presence of plastic

deformation has a nearly imperceptible effect on the

transformation strain contours. Although these transfor-

mation strain contours are not perturbed significantly by

the presence of plasticity, the effects of plasticity on the

Fig. 4 Solutions around a semi-infinite crack in a pseudoelastic

material loaded: a Contours of equivalent transformation strain in the

vicinity of a crack tip when the material has pseudoelastic transfor-

mation but no plastic deformation. b Contours of equivalent

transformation strain and the plastic zone in the vicinity of a crack

tip when the material has both pseudoelastic transformation and

plastic deformation

Fig. 5 The J-integral calculated along circular paths at different radii

around the crack tip for the material with only pseudoelastic

transformation, and with both transformation and plasticity

Fig. 6 Contours of equivalent transformation strain around the tip of

a steadily propagating mode I crack (the material has no plastic

deformation). The dashed line with indicated points is the path that a

given material point at y=Rt ¼ 0:16 will experience as the crack

passes through the material. The stress and remanent strain histories

for this material point are shown in Figs. 7 and 8
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J-integral near the crack tip are more apparent. The J-

integral is given as,

J ¼
Z

C
Wn1 � rjinjui;1
� �

dC; ð36Þ

whereW ¼
R
rijdeij is the stress work density. Equation (36)

is computed using a domain integral technique, Li et al. [33].

For thesematerials, proportional loading is not guaranteed, and

hence the J-integral is not path-independent. However, the

domain integral techniqueyields the averaged value of J across

the domain annulus and provides an accurate approximation of

J at the center of the annulus, Carka and Landis [34, 35].

Figure 5 plots the J-integral calculated along circular paths

at different radii around the crack tip for the material model

with only pseudoelastic transformation, and with both trans-

formation and plasticity. These behaviors of the J-integral

mimic those seen in ferroelastic materials, Carka and Landis

[35], and in elastic–plastic materials, Carka and Landis [34].

Without plasticity, there is an elevation of the J-integral near

the crack tip that we postulate is due to the strain saturation

behavior that is observed in both ferroelastic and pseudoelastic

materials. In contrast, when plastic deformation is included in

the model, the J-integral drops off within the plastic zone to

approximately 86 % of its far-field value, which has also been

observed in simple elastic–plastic materials.

Steadily Propagating Cracks

In contrast to material points near stationary cracks which

experience nearly proportional load paths as the applied K-

field is increased, material points around propagating

cracks are subjected to highly non-proportional load paths.

Fig. 7 The histories of stress components versus equivalent transformation strain of the points on the horizontal path marked as the dashed line

in Fig. 6

Shap. Mem. Superelasticity (2016) 2:360–370 367

123



As for the stationary crack calculations, these calculations

are for a semi-infinite crack propagating through a pseu-

doelastic material subjected to a far-field applied KI . Here,

the steady-state crack growth formulation pioneered by

Dean and Hutchinson [36] is implemented. Additionally,

the J-integral of (36) becomes the I-integral for steady

state, Hutchinson [37]. For steady state, the I-integral is

always path-independent and for ferroelastic and ferro-

electric materials can be used to determine the ratio of the

crack tip energy release rate to the far-field applied energy

release rate. This procedure has been used by Landis [18]

for ferroelastic materials, Wang and Landis [38, 39] for

ferroelectric materials, and Baxevanis et al. [40, 41] for

pseudoelastic materials. For the material properties listed

in Table 1 with plastic deformation turned off, the com-

puted ratio of the far-field steady-state energy release rate

to the crack tip energy release is,

Gss

Gtip

¼ 2:34; ð37Þ

which means that if the material abides by a mode I propa-

gation criterion such that the crack grows when the crack tip

energy release rate achieves a critical values, then the results

in Fig. 5 along with (37) imply that this material will exhibit

R-curve behavior with the plateau of the R-curve approxi-

mate 2.3 times higher than the growth initiation value.

Fig. 8 The histories of transformation strain components versus equivalent transformation strain of the points on the horizontal path marked as

the dashed line in Fig. 6
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Figure 6 illustrates several contours of equivalent trans-

formation strain h
p
1 normalized by ry=ðEecÞ in the vicinity

around the tip of the steadily propagating crack. Note that the

outermost contour is 30–40 % larger than the analogous

contour for the stationary crack, but that the inner contours

representing the more intense deformation are similarly

sized. Also notice that there is no wake of deformed material

behind the active transformation zone, in contrast to the case

for ferroelastic, ferroelectric, and elastic–plastic materials.

This is a manifestation of the pseudoelastic behavior,

wherein the transformation strain returns to zero along with

the stress. We also note that the present constitutive model

allows this to occur for highly non-proportional loading

paths as is illustrated in Figs. 7 and 8.

Figures 7 and 8 show the histories of stress and trans-

formation strain components versus the equivalent trans-

formation strain of the material point that traverses the

horizontal path marked as a dashed line in Fig. 7. Any

point on this line ahead of the crack will undergo the his-

tories in the order of a-b-c-d as the crack propagates along

the x-axis. From the spatial perspective, these subfig-

ures also present the distribution of stresses vs. equivalent

transformation strain along the horizontal path.

Note that the stress and transformation strain history

experienced by this material point is highly non-propor-

tional. This means that the material point undergoes both

an initial transformation from austenite to martensite as the

point enters the transformation zone, but then also expe-

riences a reorientation of the martensite as the point pro-

gresses through the transformation zone.

Discussion

A new constitutive model for isothermal pseudoelastic

behavior was presented. The framework of the theory follows

the one that was previously developed for ferroelastic and

ferroelectric switching behavior. The basis is a flow-theory,

plasticity-like description with a transformation surface,

associated flow rule, and kinematic hardening with back

stresses derived from a transformation potential. In order to

allow for plastic deformations at high stresses, a standard J2-

basedyield surfacewith isotropic hardening is also included. In

contrast to many prior theories on pseudoelastic behavior, this

theory does not identify the martensite volume fraction as one

of the internal variables. Instead, a single transformation sur-

face is used to capture both the effects of initial transformation

from austenite to martensite and the reorientation of existing

martensite. However, we note that the partitioning of these

processes is not explicitly made within this phenomenological

framework. Consequently, the ultimate test of the theory is on

how well it is able to reproduce experimental observations.

This paper does not provide for such comparisons to experi-

ments, but our prior work on modeling the buckling and

recovery of NiTi tubes, Jiang et al. [23, 24], has demonstrated

that the application of this model to that problem yields good

agreement between calculations and observations when ten-

sion–compression asymmetry in stress and strain, and plas-

ticity are incorporated within the calculations. Furthermore,

the stress histories in the buckled tube, like the steady-state

crack growth problem, are highly non-proportional going from

compression in the axial direction prior to buckling to tension

in the hoopdirection after the formation of buckle lobes. In this

work, we demonstrate the capabilities of the theory for some

additional problems for the fields around crack tips. The sta-

tionary cracks solutions illustrate the effects that plasticity can

have in regions where stresses and strains are high, and the

steady crack growth calculations demonstrate the ability of the

model to simulate highly non-proportional loading states.
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