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Abstract Solidification is a practically and theoretically

important issue, since it allows to design experimental

conditions for desired material properties and also to dis-

cuss basic relationships between thermodynamics, kinetics

and morphology. In this article, an overview on the crys-

tallization theory and on the main traditional techniques to

determine the crystallization rates, under constant and

variable external temperature, is provided. The differences

and similarities of isothermal and non-isothermal crystal-

lization mechanisms are highlighted in the framework of

the nucleation and growth theory, also by comparisons of

the differential scanning calorimetry (DSC) peaks. The

origin, broadness and symmetry of DSC peaks are

explained in detail by considering the need for heat

removal from the solid front and the coalescence of grains

that originated in several points of the liquid phase.

Although impingement is responsible for the general

slowdown of crystallization, it is shown that the growth

rate of a spherulite in the initial stage of coalescence

continues to increase up to a maximum even if with a rate

of change (i.e., a growth ‘‘acceleration’’) lower than that

before impingement.

Keywords Solidification � Spherulites � Crystallinity
development � Differential scanning calorimetry (DSC) �
Optical microscopy

Introduction

Solidification is a macroscopically observable phenomenon

familiar to everyone, since it is often exploited in the

everyday life. Most of the industrial processes involve

recrystallization after fusion, which allows to give the

desired shape and properties to materials by means of

appropriate temperature programs. The solidification rate is

an important parameter not only because it determines the

production speed of goods and, hence, their cost but also

because for particular uses very short times of crystalliza-

tion may be required.

It is worth noting that the crystallization rate of a sample

is expressed by the mass (or volume) of substance that

solidifies in a time unit [1, 2]. The crystallization rate

depends on the solidification conditions and, especially for

low conductivity substances as polymers, on the mass. In

fact, if the rate of the heat propagation was infinite,

nucleation for homogeneous systems with only one solid

phase would be equally probable in any point of samples,

independently of the mass [1]. Instead, the rate of heat

propagation, even high as it is, is not infinitive but depends

on thermal properties of materials and, consequently,

solidification cannot occur simultaneously in the whole

mass of a specimen unless very thin films of a high thermal

conductivity metal are used. As crystallization proceeds,

two things happen: the number of crystals increases (i.e.,

nucleation is taking place), and the size of the crystals

increases (i.e., growth is taking place) [3]. Depending on

both nucleation and growth of crystals, the rate of
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crystallization from melt is not constant (even at constant

temperature) but depends on time. An average value (the

so-called overall crystallization rate), for a definite mass

under specific temperature conditions, may be obtained by

the ratio between the final mass of solid and the whole time

needed for crystallization. Since the crystallization

dynamics within a sample depends on the distance from the

cooled walls, especially for low thermal conductivity

substances, morphology also depends on the volume and

changes from the external to the interior parts of

specimens.

Solidification needs the displacement of the atoms or

molecules of the prior liquid phase in specific positions of

crystalline lattices, through mass and heat transport. The

well-known equation:

DGsystem ¼ DHsystem � TDSsystem

valid at constant values of temperature and pressure, allows

understanding why processes occurring with an entropy

decrease (i.e., with DSsystem\0), as solidification, must be

exothermal (i.e., DHsystem\0) and are favoured at low

temperatures. Indeed, according to thermodynamics, any

system at definite temperature and pressure transforms in

the direction that entails a Gibbs free energy decrease of

the system. Therefore, assuming DSsystem\0, to have

DGsystem\0 it must be DHsystem\0 and, moreover,

DHsystem

�
�

�
�[ � TDSsystem. In a more general form, the

second law of thermodynamics establishes that every real

process entails an increase of the total entropy, including

the entropy of the environment in which the evolving

system is placed. Intuitively, we may say that the entropy

of a confined system may decrease provided that the

entropy diminution of the system is exceeded by an entropy

increase of the entire universe, i.e., provided that heat is

simultaneously transferred from the system to the sur-

rounding. At a specific pressure, the temperature Tm at

which DHsystem ¼ TmDSsystem and, therefore,

DGsystem ¼ DHsystem � TDSsystem ¼ 0, is the equilibrium

melting temperature: at T [ Tm the liquid is the stable

phase, and at T\Tm the stable phase is the solid. Practi-

cally, solidification does not occur at the melting temper-

ature but only at lower temperatures.

In conclusion, spontaneous solidification of a liquid

system may occur only by exothermal processes at tem-

peratures below the equilibrium melting point. This latter is

defined, under a specific pressure, as the temperature at

which the rate of molecular attachment to a solid equals the

rate of detachment so that the solid and the liquid phases

can coexist and the ratio between the amounts of the two

phases remains indefinitely unchanged. The equilibrium

melting temperature also corresponds to the melting tem-

perature of an ideal perfect crystal with infinite thickness,

since the presence of imperfections, impurities and surfaces

causes a decrease of the theoretical melting point [4].

Defining the difference between the melting and the crys-

tallization temperatures as ‘‘undercooling’’, the free energy

change (also referred to as ‘‘driving force for solidifica-

tion’’) for liquid–solid transformations is approximatively

proportional to the undercooling (or supersaturation) [1, 3,

5, 6]. The actual rate of thermodynamically possible

transformations is regulated, through their mechanism,

from kinetics, which is strictly interconnected with ther-

modynamics. When the solid and the liquid phases are in

equilibrium, the macroscopically measurable crystalliza-

tion rate is zero since new solid material is not produced

[3]. Reliable predictions of the crystallization rate at tem-

perature below the equilibrium melting temperature have to

be based on an appropriate model for the crystallization

mechanism. The most used and realistic model for solidi-

fication consists in the mechanism of nucleation, growth

and growth cessation because of impingement.

This model considers solidification to begin with the

formation of crystalline embryos which, because of their

high dispersion and surface energy, cannot cause a real free

energy diminution of the whole solid–liquid system, at

least until their size remains very small. Only embryos that

achieve a minimum size (the so-called critical size) are

allowed to grow irreversibly [7], whereas smaller nuclei

will re-dissolve in the melt because of their high surface

and free energy. In order to reach the critical size and

actually grow, nuclei need an extra energy (activation

energy) to overcome the kinetic barrier and, finally, to

contribute effectively to a free energy decrease of the

system [8]. The activation energy measures the enthalpy

difference between the rate-controlling group in the melt

near the crystal surface and in the activated state [8]. It is a

measure, then, of the ease of molecular rearrangement that

must take place during the growth process. This rear-

rangement is difficult to picture in detail, but may include

rotation and breaking or stretching of bonds [8]. According

to the theory, the free energy difference between the solid

and the liquid phases is positive or null at temperatures

T � Tm and becomes negative at temperature below Tm,

decreasing with increasing undercooling (i.e., decreasing

temperature). The growth rate, then, is zero at the liquidus,

increases to a maximum and then decreases as the activa-

tion energy term begins to dominate [8]. In other words, the

crystallization rate of crystals grown from a one-compo-

nent liquid typically increases and then decreases with

undercooling since at small undercooling the growth rate is

limited by the thermodynamic driving force for crystal-

lization, while at large undercooling, it is limited by

molecular diffusion in the liquid [8, 9]. The existence of

diffusion-controlled crystal growth is evident from the

proportionality of crystal growth rate and diffusivity for
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crystallization solution and from the inverse proportional-

ity between crystallization rate and viscosity for crystal-

lization from melt, observed at large enough undercooling

[9]. In conclusion, temperature changes are able to affect

solidification from melt of homogeneous system when they

cause an appreciable viscosity change of the liquid phase

[10]. In other words, crystallization rate is also controlled

by the mobility that atoms or molecules have in the liquid

state. High mobility favors both nucleation and growth,

since molecules may not only diffuse faster at the liquid–

solid interface (small temperature changes, through diffu-

sivity change of the crystallizing component, affect espe-

cially solidification from melt of heterogeneous system

with composition gradients near the crystal–melt interface,

and crystallization from solution [8], which are both

beyond the purpose of this article) but may also change

rapidly conformations thus allowing an easier nucleation

and facilitating the subsequent incorporation of molecular

segments in the lattice.

Both nucleation and growth rate have the same quali-

tative temperature dependence although the maximum in

the nucleation rate curve is generally at a larger under-

cooling than that of the growth rate curve [3].

Because of the contrasting effects of a temperature

change on the crystallization driving force and on molec-

ular mobility, relatively to both processes of nucleation and

growth, the rate of crystallization also shows a maximum

between the glass transition and the melting temperature.

To observe a maximum in the crystallization rate it is

necessary to perform isothermal crystallizations in the

whole temperature range between the glass transition and

the melting temperature. Traditional measurements of the

solidification rate are practically performed at temperatures

much closer to the melting than to the glass transition

temperature. The maximum crystallization rate is observed

at the undercooling where a balance between the con-

trasting effects of the enhanced driving force for crystal-

lization and of the mobility reduction is achieved. The

trends of the nucleation and growth rates with temperature,

confirmed by experimental observations on highly hetero-

geneous systems as magma since the nineteenth century

[8], are, however, generally not completely observable for

neat polymers since during undercooling procedures aim-

ing to reach the liquidus as metastable phase, polymers

rather transform, before the achievement of the desired low

crystallization temperature, in glasses or solids [11].

Indeed, it is generally impossible by cooling a sample from

melt with ordinary procedures and techniques to reach high

undercooling without causing prior crystallization at tem-

peratures where, notwithstanding the relatively poor driv-

ing force for crystallization, molecular mobility is high. If

samples can avoid crystallization during cooling, they

freeze into a glass state [11]. Crystallization under very

high undercooling has been recently achieved with very

sophisticated procedures and often modified instruments

that are not described here for the sake of simplicity and

also because the conclusions here drawn for measurements

performed with traditional DSC equipment are valid even

for complex and not widely available procedures. Indeed,

the object of the present study is the evolution of the shape

of the original circular spherulites during coalescence and

the relative effects on the crystallization rate, that is, ulti-

mately the description of the crystallization rate as function

of time, independently of temperature.

When solidification occurs at low undercooling, where

viscosity is relatively low and diffusion is not the rate-

limiting factor, the crystallization rate is connected to the

need for heat removal from the growth front of the new

phase [8, 12]. This is why crystallization is conducted

industrially by continuous cooling (non-isothermal crys-

tallization), whereas enquires on solidification are based on

observations at a constant temperature (isothermal crys-

tallization), which ensures accurate results. The mecha-

nisms of the so-called non-isothermal and isothermal

solidification are essentially the same, as proved by the

shape of interfaces between the grains [13]. The only dif-

ferences regarding the dynamics of the solidification

mechanism result in a time dependence of nucleation and

in a highly accelerated growth which lead to a much higher

rate during crystallization at variable temperature.

During non-isothermal conditions the crystallization

rates are appreciable only in a very narrow temperature

range, because of the fast completion of solidification

[14]. Therefore, the DSC curves describing the crystal-

lization rates of a sample crystallized under non-isother-

mal conditions should not be confused with the bell-

shaped curve obtained reporting, towards temperature, the

average crystallization rates relative to isothermal mea-

surements on a constant mass of a substance. Indeed, the

‘‘temperature range’’ involved in a non-isothermal crys-

tallization is too small (depending on the cooling rate,

only few temperature degrees or less) to effectively

change viscosity or driving force for crystallization [14],

but high enough to affect the heat transport rate because

of the enhanced temperature gradients along the specimen

[15]. In other words, as DSC crystallization peaks

obtained isothermally, also DSC exothermal peaks

obtained under continuous cooling do not represent the

variation of the crystallization rate with temperature but,

rather, with time. The additional increase of crystallization

rates during non-isothermal procedures, relatively to

isothermal processes carried out at average temperatures,

is mainly due to the increase of the heat transport rate

with increasing temperature gradients within samples.

Low temperatures favor crystallization because, as stated

by a Newton’s law, high-temperature jumps between the
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sample and the cooling device speed up the cooling of the

growth front needed for crystal growth.

In conclusion, the increased cooling rate under non-

isothermal conditions determines both an increase of the

density of spherulites (i.e., the number of spherulites for

space unit) and an accelerated growth because of the

increase of the rate of heat transport from the beginning of

crystallization. For these reasons and because of the neg-

ligible effect of the temperature change on both driving

force for crystallization and viscosity during non-isother-

mal condition, we can assume that the crystallization rate is

influenced merely by time not only during isothermal but

also during non-isothermal crystallization.

The spherulitic morphology is typical, although not

exclusive, of polymers crystallized from melt and has been

ascribed to either diffusion- or heat flow-controlled crys-

tallization rates [8]. An exhaustive description of spheru-

litic crystallization from melt is reported in several papers

and books, which also describe the submicroscopic struc-

ture, the internal shape of spherulites and their boundary

[13] also relatively to polymorphism [16]. Most recent

publications deal with crystallization of isotactic

polypropylene at high cooling rate and with applied pres-

sure for a wide range of new processing conditions [17, 18]

that would have not been allowed a few decades ago.

Under these novel conditions, it has been also possible to

determine the nucleation density from DSC curves [17, 19]

and the linear growth rates of spherulites at different

temperatures [19]. However, as said before, this paper does

not directly focuses on the widely explored temperature

dependence of the crystallization rate, but rather on the

time dependence of the crystallization rate, especially

during impingement. Indeed, no paper or book explains in

detail the slowdown of crystallization occurring at

advanced crystallization stage, i.e., soon after the start of

spherulites coalescence. Namely, it is here reported a

simple model to predict the time evolution of the spheru-

litic shape and the analytical time dependence of the

crystallization rate for different numbers of coalescing

spherulites at different positions and distances, both for

thermal and athermal solidification. As all models, the

present one is based on specific assumptions and boundary

conditions whose choice, far from being too simple or

unrealistic, have, however, been dictated by the need to

make the article easier for students. For the same reasons,

only the most readable conclusions of this work have been

widely discussed and few legible comparisons with more

recent work have been presented. For instance, the present

model does not account for high cooling conditions since

these could cause the formations of polymorphs growing

with different linear rates and, in addition, solid–solid

phase transitions during crystallization, leading to

considerable complications. Indeed, the extension of the

present work to complex boundary conditions needs more

advanced mathematical tools and would be a too weighty

task for students. On the other hand, experts in the field can

easily extend results of the proposed model even to

asymmetric boundary conditions.

It is sufficient to say here that the variation of the crys-

tallization rate found in a single experiment may be

described, at constant or slightly variable non-isothermal

conditions, as a bell-shaped function of time, which is

referred to as crystallization peak. The apparently similar

trend of the crystallization rate towards either temperature

or time has very different roots. As said above, to observe a

maximum towards temperature it is necessary to determine

the isothermal crystallization rates at several temperatures

in a temperature range from glass transition to melting (or,

under non isothermal condition, the overall crystallization

rate in dependence of the cooling rate). Actually no maxi-

mum, relatively to the variable temperature, in either the

linear and true growth (or crystallization) rate of spherulites

is observable in the ordinarily small ranges of explored

isothermal temperatures, since only significant changes in

mobility achievable at very low crystallization temperatures

(close to the glass transition) are able to revert the mono-

tonicity of the crystallization rate as a function of temper-

ature. Practically, it is usually impossible to perform

isothermal crystallization at relatively low temperatures

without causing prior liquid–solid transformation during

cooling. Sometimes, to estimate the rate of crystallization at

low temperatures polymers are rapidly quenched below the

glass transition to achieve a metastable amorphous state (the

amorphous state is a false solid thermodynamically unstable

at all temperatures, although kinetically inert) and then

heated to allow crystallization. This procedure, as the tra-

ditional crystallization from melt, does not allow estimating

the crystallization rate at temperatures next to and beyond

the maximum, since prior amorphous-solid transitions

occur. Moreover, the values of the crystallization rate

obtained using experimental procedures entailing not only

different starting states (liquid or amorphous, showing dif-

ferent thermal properties and mobility and, thus, different

kinetic barriers or crystallization mechanisms) but also

different thermal treatments (cooling or heating), are sel-

dom comparable and cannot be combined since the two

different sets of data are non-homoscedastic. Moreover,

polymers often show polymorphism and this circumstance

makes output of non-isothermal crystallization even more

difficult to explain. Although polymorphs have their own

temperature range of stability and crystallization rates, high

cooling rate procedures can favor the formation of more

than one solid phase and, furthermore, the compositional

ratio between the different phases may change with the
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cooling conditions. According to the theory, with traditional

procedures and relatively low cooling rates, it is more

reliable to observe only a decrease of the linear growth rate

with increasing the temperature. Analogously, when a

polymer is crystallized by heating from the amorphous

phase, an increase of the linear growth rate will be observed

with the temperature. A different trend provided by tradi-

tional DSC or optical measurements has to be carefully

evaluated to disclose possible source of experimental or

data processing inaccuracy [20].

The crystallization rate measured at constant temperature

shows, relatively to time, the existence of a maximum nei-

ther due to the thermodynamic, kinetic or heat removal rate

mentioned before, but mainly due to geometrical charac-

teristics of the crystal growth before impingement and to

spatial restrictions limiting the growth after impingement

[21–25]. Indeed, it will be shown that the growth rate of bi-

dimensional crystals has necessarily to increase until crys-

tals grow separately. On the other hand, growing grains

originated in more points of a melt must unavoidably

impinge and the impossibility to grow in some directions

after impingement slows down crystallization. In the next

paragraph it will be shown that at a constant temperature the

crystallization rate increases monotonically (namely lin-

early) up to impingement and, if crystals grew separate

without coalescing at all, such a rising trend would continue

for the whole crystallization. We will see hereafter that if

solidification occurs simultaneously in the whole specimen,

the crystallization peak is not symmetrically shaped rela-

tively to the maximum. The major asymmetry arises from

the fact that when the maximum is achieved, almost 90 % of

solid has already been formed and, therefore, the time to

complete the solidification is shorter (c.a. 30 %) than that

required to reach the maximum. A time for crystallization

completion shorter than the time needed to reach the max-

imum itself is not in contrast with the slowdown of crys-

tallization caused by impingement, since at the start of

impingement only a small amount of liquid phase (c.a. 20 %

of the initial amount) remains to be transformed. Moreover,

it will be shown that the first part of the crystallization curve,

under certain conditions, should be fairly interpolated by a

linear stretch. As the mechanism of isothermal and non-

isothermal crystallization rate is essentially the same, with

the only difference of a higher crystallization rate under non

isothermal conditions, the same trend is expected, even

more so, if solidification is performed non-isothermally at

decreasing temperature. The discrepancy between the the-

oretical and the experimental crystallization rate usually

found for polymers is here explained by taking into account

the non-uniform nucleation along the thickness of the

specimens because of the very low thermal conductivity of

polymers relatively to metals [1].

Theoretical and experimental background

Crystallization mechanism

Crystallization of polycrystalline materials, such as metals

and polymers, at temperatures below the melting point is

successfully described by the theory of nucleation (referred

to as primary nucleation) and growth (secondary nucle-

ation). This theory, extended first to metals [21], is based

on the evidence that solidification, as all exothermal pro-

cesses, is accompanied by heat development and, therefore,

the heat has to be removed in order to make advances in

crystallization [12, 26]. The process starting solidification,

i.e., nucleation, consists in the aggregation of a small

number of atoms or molecules due to temperature fluctu-

ations in the melt and, therefore, is generally described as a

random process in space. However, the random description

applies only when the heat flow rate does not depend on

direction, that is, when heat propagation is isotropic [2, 15].

Under this circumstance, direct observations on poly-

mers crystallizing from melt reveal the growth of circular

crystalline units, thus called spherulite (see supplementary

materials), usually made up of fibrillar crystals that origi-

nated in the center. The linear growth rate of spherulites,

defined as the rate of change of the spherulite radius with

time, is somehow connected with the illusory ‘‘movement’’

of the growth front. Actually, crystals grow by addition of

material to their frozen boundaries without any real motion

of the front. The solid phase seems to ‘‘advance’’ in the

liquid but this apparent movement is generated by the

progressive phase transformation of adjacent quiescent

liquid layers. The peculiarity of spherulites, due to their

circular shape, is the capability to extend bi-dimensionally

as a result of mono-dimensional and uniform growth of all

radial crystals within them. As two-dimensional crystals

grow more quickly than separated rod-like crystals,

admitting that no difference in the primary and secondary

nucleation mechanisms for spherulites and rods exists, a bi-

dimensional crystallization must be advanced relatively to

a mono-dimensional growth (see Fig. 1). Moreover, circles

have the lowest perimeter relatively to the area and,

therefore, spherulites show the lowest surface energy

compared with equivalent planar figures. Therefore,

spherulites have the right shape to grow as fast as possible

contemporaneously bearing the minimum surface energy.

As explained, the crystallization rate follows the incre-

ment of the mass of a solid in a time unit and depends on

both nucleation and growth. It is important to repeat that

the crystallization rate, often simply called ‘‘growth rate’’,

is different from the linear growth rate of spherulites.

Indeed, this latter gives indications on the rate of the sec-

ondary nucleation, that is, on the constant rate of the length
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advancement along each radial direction of a spherulite,

whereas the growth of a circular spherulite occurs usually

with an increasing rate. The true growth rate of spherulites

would indeed be constant only if the linear growth rate and,

consequently, the secondary nucleation rate decreased with

time. When the growth occurs not from solution but from

melt, molecules in the liquid phase surround the whole

growth front and, since diffusion is not a limiting factor

and compositional gradients do not occur, the linear growth

rate of spherulites is usually found to be constant. This is

not the case for the true growth rate of spherulites. Indeed,

as illustrated in Fig. 1, crystals arranged radially within

spherulites when growing at the external ends cause

inherently also the growth of the perimeter of spherulites,

maximizing the increment of area and, therefore, the

crystallization rate. If the same number of the paral-

lelepiped crystals forming a spherulite grew separately at

two opposite flat faces, the whole growth rate could not

increase but would remain constant as consequence of the

null curvature of the growing faces. As shown in Fig. 1,

due to geometrical characteristics of two-dimensional

growth, even if each radial crystal within spherulites

increases of the same length, the increase of the area of the

spherulite is not constant but increases with the time.

Below it will be shown that the bi-dimensional growth

of separate crystals such as spherulites (differently from

mono-dimensional growth, which may occur with

constancy of the growth rate) entails always enhancements

of the crystallization rate with time and, therefore,

decreases in the rate during both isothermal and non-

isothermal crystallization may only be caused by

coalescence.

Growth rate dependence on time

Generally, nucleation at constant temperature in thin poly-

mer films entails simultaneous appearance of all planar

spherulites, whereas a time-dependent nucleation is detec-

ted, with spherulites of different sizes, when solidification is

conducted by continuous cooling from melt (see Fig. 2;

supplementary materials). Indeed, in agreement with the

theory, the probability of nucleation is found to increase

with decreasing temperature [16]. As also shown by Varga,

coalescence of bi-dimensional spherulites generates a grain

structure where each original spherulite is finally trans-

formed in a geometric figure with linear and/or curved sides

[16]. The shape of the interface between two spherulites

may be predicted by considering the intersection of two

families of concentric circumferences, representing the

growth fronts of spherulites at different crystallization

stages [13]. The linear growth rate of spherulites (i.e., the

rate of change of the spherulite radius with time) is usually

found to be constant at constant temperature [16]; therefore,

it is the most measured and used parameter for rough

comparison of crystallization rates. The assumption that

spherulites grow circularly on their outer edges with equal

linear rate, allows to deduce that spherulites with the same

size must have been nucleated simultaneously and that they

contribute, instant by instant, equally to the mass increment

of the solid. Experimentally, the linear growth rate of

spherulites may be determined by observing, through an

optical microscope, the isothermal solidification of a molten

specimen in a hot stage and measuring the radius of

spherulites in micrographs taken at appropriate time inter-

vals. Measurements of the radius of growing spherulites

would require the exact identification of their centers;

therefore, for accuracy reasons it is preferable to halve the

length of diameters and to interpolate as many experimental

points (couples radius-time) as possible with the mean

squares method.

Even if it is found to be constant at constant temperature,

the linear growth rate of spherulites cannot be used as a

unique parameter for comparisons between different sam-

ples. Indeed, the crystallization rate of spherulites is related

to their mass increment with time and depends not only on

the growth rates, but also on the dynamics of nucleation

(often improperly referred to as nucleation rate). The crys-

tallization rate of all spherulites coincides with the crystal-

lization rate of a sample, i.e., with the whole amount of solid

produced in a time unit. Evidently, the higher the nucleation

a 

b 

Fig. 1 a Development of a parallelepiped crystal according to

constant linear and true growth rates. b Growth of a spherulite with

constant linear growth rate. The two circular coronas represent the

successive increments of the spherulite surface in two equal time

intervals. The amount of solid material added to the growth front in a

time unit (proportional to the area of the circular corona built in that

unit), i.e., the true growth rate, is not constant but increases with time

because of the size increment of the spherulite
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density and growth rate of spherulites, the higher the crys-

tallization rate of samples. According to the crystallization

theory, the actual crystallization rate of polymers cannot be

constant with time, even if nucleation is instantaneous

(which entails that all spherulites grow with the same size

and that the nucleation density remains constant for the

whole crystallization) and only growth is responsible for

crystallization progress. Indeed, as shown in Fig. 1, the

amount of solid added in a time interval to the growth front is

not constant but depends on the spherulite size (hence on the

time) since more and more material can be attached to a

spherulite boundary as crystallization progresses. Since the

a

b

Fig. 2 a Example of uniform

distribution of spherulites

originated by a time-dependent

nucleation. Spherulites grow

with two different sizes and

rates, finally showing two

opposite curved sides. Interfaces

between spherulites with

different size and growth rate

are branches of hyperbolas,

whereas interfaces between

simultaneously originated

spherulites are lines. For clarity,

only the construction of

hyperbolas between three

aligned spherulites is shown in

(b). If the distribution of

spherulites is not uniform

relatively to one of two

orthogonal directions, late

spherulites may completely be

swallowed up by early

spherulites and their final

boundary consists of the

intersection of two branches of

hyperbolas, with the

disappearance of flat sides
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area of a spherulite is proportional to the mass, the derivative

of the function describing the area of a spherulite is pro-

portional to the growth rate. Considering a spherulite with a

life time t growing separately with a linear growth rate g as a

circle with areaAðtÞ ¼ pr2 ¼ pg2t2, the rate of change of the
spherulite area, i.e., the derivative of the area of the spher-

ulite, is also function of time: dA=dt ¼ 2pg2t. Using simpler

geometrical notions, we can easily infer that the increment of

the area of a spherulite (i.e., the area of a circular corona),

divided by the time needed for that increment, gives the

average growth rate of the spherulite in the considered time

interval. This ratio changes not only with the wideness of the

time interval but also, as shown in Fig. 1, according to time,

since the area of circular coronae with the same thickness

developed around a spherulite increases with the spherulite

size. In conclusion, in case of constancy of the linear growth

rate, the actual growth rate of an isolate bi-dimensional

spherulite increases linearly with time in consequence of the

enhancement of its incremental area with the growth.

As shown below, under the hypothesis of constancy of

the linear growth rate of spherulites, deviations from lin-

earity of the true growth rate of the whole solid can be due

to time-dependent nucleation or impingement. Uniform

random nucleation relatively to time (which means that the

number of spherulites increases proportionally to the time)

is likely to occur under slowly changing non-isothermal

conditions and causes the transformation of the growth rate

of all spherulites, up to the onset of impingement, in a

piecewise linear function with ascending slopes. Under the

hypotheses of uniform distribution of nuclei relatively to

space and instantaneous nucleation, all spherulites will

touch one another simultaneously and, soon after, the

growth rate will decrease, with the appearance of a maxi-

mum in the crystallization rate. The resulting microstruc-

ture of a very thin specimen will consist of square tiles with

equal size. If nucleation is not instantaneous and nuclei are

distributed uniformly in space, earlier spherulites will

touch each other before later spherulites, since these latter

are smaller and their growth fronts, because of the higher

distance, need more time to coalesce (see Fig. 2a). This

circumstance will cause a shift of the maximum crystal-

lization rate at a higher crystallization time, with a broad-

ness of the crystallization peak. Non uniform random

nucleation relatively to space also entails the contempo-

raneous presence of already coalesced spherulites mean-

while still separate spherulites are growing. Since the

growth rate of spherulites within coalesced units begins to

decrease, meanwhile the growth rate of isolated spherulites

continues to increase unaffected, non uniform nucleation

results in an anticipated deceleration and thus also in a

slowdown of crystallization, with a lengthening of the

overall crystallization time.

Although non-uniform nucleation in time and space has

the same effect on the crystallization rate, these two

retarding causes may be easily distinguished by visual

inspection of relatively thick solids. If a solid shows a broad

crystallization peak and uniform surface nucleation with

linear interspherulitic interfaces [1, 4], it is likely that

nucleation has occurred non simultaneously along the

thickness even under external constant temperature because

of the limited rate of heat propagation inside the sample.

This is the usual reason for slow crystallization, since gen-

erally only very small and, hence, negligible deviations from

uniform distribution in space are observed, especially at

constant crystallization temperature, in thin polymer films.

DSC determination of the growth rate of solids

The curves of non-isothermal crystallization rates obtained

by DSC are often expressed indifferently as function of

temperature or time, with the assumption of a linear rela-

tionship between temperature and time. However, it is worth

observing that under non-isothermal conditions crystalliza-

tion is fast even if relatively low cooling rates are used and

therefore only small temperature differences between the

cooling device and the sample may arise during solidifica-

tion. Moreover, these temperature differences are too low to

generate appreciable differences in the molecular mobility

of the liquid and, consequently, in the crystallization rate.

Instead, during non-isothermal crystallization a time-de-

pendent nucleation and increasing linear growth rates (with a

further increase of the growth rate relatively to isothermal

solidification) are expected only because of the increased

rate of heat propagation. Indeed, if the external temperature

is variable during solidification, also the density and the

linear growth rate of spherulites are variable and, therefore,

the growth of the solid material is strongly accelerated.

Briefly, the high increase of the crystallization rate in non-

isothermal procedures is mainly due to the increase of the

rate of heat removal from the solid fronts because of the

higher temperature differences between the specimen and

the external temperature during solidification [15].

As already explained, the true crystallization rates of

polycrystalline samples are attainable by determining the

mass of solid formed, within the liquid medium, with time.

The direct measure of the mass of a solid would require the

preliminary separation of the two phases at several crys-

tallization time and is, therefore, considered complicate

and time wasting. More conveniently, the crystallization

rate is estimated by monitoring during crystallization at

constant temperature quantities proportional to the solid

mass, as the heat flow rate is measured by a differential

scanning calorimeter. The rate of heat evolution from a
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crystallizing specimen in a DSC cell at a definite crystal-

lization temperature is proportional to the solidification rate

and reproduced in a DSC curve towards time by a bell-

shaped curve, referred to as isothermal crystallization peak.

Indeed, if AðtÞ is the area of the solid, given by the con-

tributes of all growing spherulites at any time t, and tf is

the time at which crystallization stops, the fraction of solid

in a two-dimensional sample can be expressed by the ratio
R t

0
dA=dtð Þdt

R tf
0

dA=dtð Þdt
ð1Þ

The crystallization rate of a three-dimensional sample

results from the contribution along the thickness of each

plane of bi-dimensional spherulites, whose nucleation

occur according to a layer-by-layer crystallization [1]. If

we imagine a polycrystalline sample constituted of

equidistant and aligned spherulites simultaneously nucle-

ated in each horizontal plane of the specimen, so that after

complete impingement a tessellated structure composed of

aligned squares in each layer arises, the fraction of solid at

any time will be given by
R t

0
dA=dtð Þdt

R tf
0

dA=dtð Þdt
¼
R t

0
dA=dtð Þdt
l2

¼
R ti
0

dA=dtð Þdt þ
R t

ti
dA=dtð Þdt

l2
; ð2Þ

where l is the length of the sides of the final squares (l

coincides with the distance between the centers of two

adjacent spherulites) zero is the time of incipient crystal-

lization and ti the time at which spherulites begin to touch

one another. The first addend at the numerator of formula

(2) can be solved considering that for t\ ti a primitive of

dA=dt is AðtÞ ¼ pr2, and, therefore, the solid fraction

before the impingement is described by the function
R t

0
dA=dtð Þdt

R tf
0

dA=dtð Þdt
¼ pr2

l2
t\ ti ð3Þ

At the start of impingement ri ¼ b ¼ l=2; therefore, the

solidification has already produced much more than 50 %

of the achievable solid amount:
R ti
0

dA=dtð Þdt
R tf
0

dA=dtð Þdt
¼ p

4
¼ 0:78 ð4Þ

After the appearance of interfaces between spherulites,

the solid fraction increases accordingly to the following

formula:
R t

0
dA=dtð Þdt

R tf
0

dA=dtð Þdt
¼ p

4
þ
R t

ti
dA=dtð Þdt
l2

; ð5Þ

where the integral at the second member of (5) represents

the difference between the area of the solid at a certain

instant t[ ti and at the onset of impingement, and the ratio
R t

ti
dA=dtð Þdt=l2 must vary between 0 and 0.22. The math-

ematical expression of the area of a spherulite after coa-

lescence will be determined in paragraph 4.

Since the heat from a crystallizing specimen in a DSC

cell develops at a rate proportional to the rate of production

of the solid phase, the values of the crystalline fraction may

be experimentally obtained by replacing in formula (1) the

function area AðtÞ with the function QðtÞ expressing the

heat developing during crystallization:

R t

0
dQ=dtð Þdt

R tf
0

dQ=dtð Þdt
ð6Þ

To summarize, the heat flow rates measured by a DSC

are proportional to the solidification rates. This implies

that a DSC curve recorded during solidification should

reproduce the shape of the crystallization rate function.

Therefore, the ratio between the area of a portion of the

crystallization peak (measured at definite time from the

onset of crystallization) and the total area of the peak

may be considered coincident with the solid fraction

produced up to that time instant during solidification. The

solid fraction produced during solidification can be then

calculated as function of time. Hereafter the variation of

the growth rate of spherulites owing to coalescence is

considered to explain the experimental dependence on

time of the overall crystallization rate and to elucidate the

crystallization dynamics.

Growth rate variation after coalescence

Coalescence of only two spherulites

To determine the function describing the area of a

spherulite after coalescence with an adjacent growing

spherulite, let us place the center of a growing spherulite

in the point (0, �b) of a Cartesian reference [meaning

that the center of the spherulite has a distance b[ 0 from

the origin (0,0) of the Cartesian axes]. The area of that

spherulite may be described, up to impingement, by a

simple function of the variable r: AðrÞ ¼ pr2 with

0\ r\ b. If another spherulite nucleated simultaneously

and centered in the point (0, b) is also growing with the

same rate, the two spherulites will grow separately until

their radius r is below b; then they start to coalesce in the

origin (0, 0) of the axes, and finally, for r[ b a linear

interface (lying on the abscissa axis) will develop between

the two spherulites (see Fig. 3). Even when two spher-

ulites impinge with a progressive reduction of their

growth fronts, we can still image the whole circular
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boundaries (and, thus, also the whole area) that spher-

ulites would have if they had continued to grow circularly

without ‘‘collision’’. We can also divide, by means of the

ends of the interspherulitic interface, each circular growth

front in two arcs: a real still growing arc and a phantom

arc, without real existence, inside the coalesced spher-

ulites, as shown in Figs. 3 and 4. Focusing on one of two

coalescing spherulite shown in Fig. 3, the instantaneous

area of the spherulite will be equivalent to the area of the

larger circular segment built on the chord-interface, which

is given by (see ‘‘Appendix A’’)

Að#Þ ¼ pr2 � 1

2
r2#� 1

2
r2 sin#

� �

; ð7Þ

where # is the angle between the two spherulite radii

touching the ends of the interface, hereafter called ‘‘inter-

facial’’ angle.

Since r2 ¼ b2 þ x2 and # ¼ 2arcosinx=r for r� b, it

results: cos arcsin x=rð Þ ¼ 1� x=rð Þ2
� �1=2

¼ b=r. Consid-

ering also that the sin 2a ¼ 2 sin a cos a, with the appro-

priate substitutions (7) becomes:

AðxÞ¼p b2þx2
� �

� b2þx2
� �

arcsin
x
ffiffiffiffiffiffiffiffiffiffiffiffiffi

b2þx2
p

þ1

2
b2þx2
� �

2sin arcsin
x
ffiffiffiffiffiffiffiffiffiffiffiffiffi

b2þx2
p

� �

cos arcsin
x
ffiffiffiffiffiffiffiffiffiffiffiffiffi

b2þx2
p

� �� �

¼p b2þx2
� �

� b2þx2
� �

arcsin
x
ffiffiffiffiffiffiffiffiffiffiffiffiffi

b2þx2
p

þ b2þx2
� � x

ffiffiffiffiffiffiffiffiffiffiffiffiffi

b2þx2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x2

b2þx2

r !

¼ b2þx2
� �

p�arcsin
x
ffiffiffiffiffiffiffiffiffiffiffiffiffi

b2þx2
p þ bx

b2þx2

� �

The function area can be hence expressed as function

of x:

AðxÞ ¼ b2 þ x2
� �

p� arcsin
x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 þ x2
p þ bx

b2 þ x2

� �

ð8Þ

or as function of x and r:

Aðx; rðxÞÞ ¼ r2 p� arcsin
x

r
þ bx

r2

� �

ð9Þ

Since the function arcsine has values in the interval

�p=2; p=2½ � and the function cosine has values in the

interval �1; 1½ �, the function Aðx; rðxÞÞ is expected to be

-b 

Fig. 3 Shape, at a general crystallization time, of one of two

coalescing spherulites. It is supposed that the two growing spherulites

maintain equal sizes during the whole crystallization. During

coalescence the interface ‘‘advances’’ along the abscissa axis,

hindering the growth of the spherulite in the two top quadrants of

the Cartesian system. Each spherulite transforms into the greatest

circular segment (non-hatched area) defined by the chord-interface

with length 2
ffiffiffiffiffiffi
�c

p
. The surface lost by each spherulite at any time

(hatched area) corresponds to the smallest circular segment defined

by the interface

Fig. 4 Growth fronts of a spherulite coalescing with an adjacent

spherulite (the second spherulite is not shown for the safe of clarity) at

two different times. At any time, the length of the front still growing

(solid line) is higher than that of the phantom arc (dotted line), whose

growth is prevented by the interface. This entails that during

coalescence the growth rate of both spherulites increases up to the

end of crystallization, obviously at a rate lower than before

impingement. Indeed, the length of the phantom arc of each spherulite

increases with time, but remains shorter than the length of the still

growing front, which, in turn, is reduced relatively to a whole

circumference
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always positive and to increase with x (and, thus, with r)

for x[ 0. It is worth observing that the negative quantity

c ¼ �x2, instead, decreases with increasing x and r.

During impingement, two opposite effects on the

spherulite growth may be considered: the enhancement of

the growth rate due to the size increment of each spher-

ulite, and the decrease in the growth rate because of the

loss of a portion of growth front with coalescence. Since

pr2 increases more than the phantom area

(r2 arcsin x
r
� bx) with increasing r, at any time the

remaining area Aðx; rðxÞÞ of each coalescing spherulite is

larger than the lost area and, moreover, the difference

between two successive areas of a coalescing spherulite is

larger than the corresponding difference between two

successive phantom areas. This means that the growth

rate reduction due to the interface formation is less than

the growth rate enhancement due to the increase of the

spherulite boundary with r, and, therefore, the growth rate

of two spherulites will continue to increase after coales-

cence, even if the rate of increase is slower. The slower

increase of the growth rate of a coalescing spherulite as a

consequence of the growth of the phantom area with time

is shown in Fig. 4. Briefly, the increase of the growth rate

of a coalescing spherulite prevails on the rate of the

decay, since the lost growth front is shorter than the

length gained because of the size progress and, therefore,

the spherulite growth rate will continue to increase. It is

intuitive that the phantom area of a spherulite with vari-

able radius r cannot exceed the area pr2



2 of half

spherulite, which represents the area approached by each

coalescing spherulite at infinite crystallization time. In

other words, being always #\p even for high crystal-

lization time, the radial directions where growth can

progress overcome those where growth is hindered and,

therefore, during coalescence there is still a net increase

of the growth rate of the two spherulites, although the

increase is less pronounced than that occurring before

coalescence. This means that a hypothetical sample con-

sisting of only one or two growing spherulites will show a

crystallization rate increasing with time for the whole

phase transformation duration. For a mathematical

demonstration of the formulas used in this paragraph refer

to ‘‘Appendix B’’.

Coalescence of more than two spherulites

If more than two spherulites begin to coalesce, a growing

interface is generated between each couple of adjacent

spherulites. Simple considerations allow to deduce that the

growth rate of spherulites will not start to decrease at the

onset of impingement, but only at a little more advanced

crystallization time, when the phantom growth directions

interrupted from interfaces prevail on the still real growth

directions. Mathematically, it can be stated that if coales-

cence occurs the graph of the growth rate of a spherulite

towards time is usually no more a line but transforms into a

curve. The maximum point of the curve is achieved when

‘‘acceleration’’ reduces to zero and is very close to the

onset of coalescence.

Let us consider a sample constituted of only three

aligned spherulites, assumed to be nucleated simultane-

ously. During impingement, the middle spherulite con-

tributes to the growth rate enhancement less than the two

ending spherulites (see Fig. 5). When the # angle is p=2,
the length of each interfaces reaches the value 2b and the

radius attains the value 2
ffiffiffi

b
p

. At this point, the contribute to

the growth rate of the middle spherulite is half of that of

each ending spherulite. Under these conditions, a square

with side 2b may be inscribed within each spherulite and

the growth rate of the central spherulite reaches its final

constant value. The crystallization time corresponding to

growth rate increases of the middle spherulite is
ffiffiffi

2
p

b



g,

whereas the average linear growth rate of the interfaces

along one x direction is given by

b
ffiffiffi

2
p

b



g� ti
� � ¼ b

ffiffiffi

2
p

b



g� b=g
� � ¼ g

ffiffiffi

2
p

� 1
ffi 2:41g;

where ti is the time needed for coalescence to start.

The growth rate of three aligned spherulites results from

the contribution of each spherulite. When # overcomes

Fig. 5 Sketch of the

instantaneous shape of three

coalesced spherulites, taken

when the growth rate of the

central spherulite is still

growing
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p=2, the growth rate of the middle spherulite remains

constant and this spherulite cannot cause any increase of

the growth rate of the sample.

However, since the growth rate of the two ending

spherulites continues to increase (even if more slowly than

before impingement) up to the end of crystallization, also

the growth rate of the whole specimen will continue to

increase.

Assuming that the nucleation in a polycrystalline sample

occurs instantaneously with uniform random events in

space and that all adjacent spherulites are centered at a

unique distance l ¼ 2b, after crystallization completion the

spherulites will become regular squares with side l. As

illustrated in Figs. 6 and 7, the growth rate of a spherulite

surrounded by other four equidistant spherulites will be

maximum when each of the four # angles achieves the

value p=4, that is, when the interfaces and the radii reach

the length of 2b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2�
ffiffiffi

2
pp . ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2þ
ffiffiffi

2
pp

and 2b
. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2þ
ffiffiffi

2
pp

,

respectively. These values can be obtained by means of the

well-known relationship between the side length L and the

apothem b of an octagon and the radius of the circumcircle

(L ¼ r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2�
ffiffiffi

2
pp

, b ¼ r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2þ
ffiffiffi

2
pp

=2). Indeed, from the

relationship between the apothem of an octagon and the

radius of the circumcircle, for # ¼ p=4 it follows that

rmax ¼ rp=4 ¼ 2b
. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2þ
ffiffiffi

2
pp

. Substituting this expression

in that of the side L of the inscribed octagon, it is observed

that L ¼ 2b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2�
ffiffiffi

2
pp . ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2þ
ffiffiffi

2
pp

. Therefore, the crystal-

lization time corresponding to the maximum growth rate of

the middle spherulite is

tmax ¼ rmax=g ¼ 2b

�

g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2þ
ffiffiffi

2
pq� �

;

whereas in the time interval

Fig. 6 Growth of a spherulite surrounded by four equidistant

spherulites. The contribute to the solid fraction of each spherulite at

any time is given by 4r2



l2, where r is the radius at that time. When

the radius of spherulites reach the length corresponding to # ¼ p=4,
the acceleration becomes zero and the solid fraction shows an

inflection point

Fig. 7 Schematic growth of a spherulite surrounded by four

equidistant spherulites (not drawn), under the hypothesis of instan-

taneous nucleation. After the onset of coalescence, the growth rate

still increases for a short time, reaching the maximum when the

curved spherulite boundaries overlap the circle (red radii) circum-

scribing the octagon with apothem b. The growth rate of the almost

octagonal-shaped spherulite begins to decrease; meanwhile the #
angles change from 45� to 90�. Simultaneously, the growth acceler-

ation becomes negative and the spherulite converts finally into a

square

tmax � ti ¼ 2b

�

g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2þ
ffiffiffi

2
pq� �� �

� b

�

g ¼ b=gð Þ 2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2þ
ffiffiffi

2
pq� �� �

� 1

� �

¼ b=gð Þ 2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2þ
ffiffiffi

2
pq� �� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2þ
ffiffiffi

2
pq

¼0:082b=g ffi 0:082ti

13 Page 12 of 21 ChemTexts (2015) 1:13

123



the average linear growth rate of the interfaces along one of

the growth directions results:

b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2�
ffiffiffi

2
pq � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2þ
ffiffiffi

2
pq� ��

tmax � tið Þ

¼ g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2�
ffiffiffi

2
pq� ��

0:082

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2þ
ffiffiffi

2
pq� �

ffi 5:0 g

In general, the growth rate of a spherulite will begin

to decrease when the sum of the interfacial angles with

neighbor spherulites reaches the value p, that is, when

the lost area is higher than the actual area gained during

coalescence. To observe a decrease of the crystallization

rate of the whole sample, it is necessary, however, that

the size of coalesced groups of spherulites be rather

high, since as long as coalescence involves only a

restricted number of spherulites it can lead to further

increase of the overall growth rate even if the number of

isolated groups of spherulites is high. Indeed, the true

growth rate of polycrystalline films depends not only on

the number of spherulites and on time dependence of

nucleation but also on the exact distribution of the dis-

tances between crystalline nuclei, since this latter affects

the start of impingement of each couple of adjacent

spherulites.

It is worth noting that, although the subject of the

present work is new relatively to the analytical descrip-

tion of the spherulite growth rate during coalescence, it

shares with earlier articles and theories assumptions and

results on the morphology of originated microstructures

and spherulitic interfaces [16]. Moreover, also quantita-

tive results are consistent with previous observations. For

instance, Fig. 8e of the present article and Fig. 7 of ref-

erence 16 show that when more than 50 % of the solid

phase has already been produced, there are still growing

crystallites which can contribute to further increases in

the crystallization rate.

Theoretical determination of the growth rate
function of coalescing spherulites

As the area of a spherulite coalescing with four equidistant

spherulites (see also ‘‘Appendix B’’) is given by

AðxÞ ¼ b2 þ x2
� �

p� 4 arcsin
x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 þ x2
p � bx

b2 þ x2ð Þ

� �� �

¼ b2 þ x2
� �

p� 4 arcsin
x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 þ x2
p þ 4

bx

b2 þ x2ð Þ

� �

¼ r2 p� 4 arcsin
x

r
þ 4

bx

r2

� �

; ð10Þ

where the first, second and third derivatives of the function

area are

d2AðxÞ
dx2

¼ 2p�8arcsin
x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2þ x2
p

�8x
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x2

b2þx2

q

0

B
@

1

C
A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2þ x2
p

� 2x2

2
ffiffiffiffiffiffiffiffiffi
b2þx2

p

b2þ x2

 !

¼ 2p�8arcsin
x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2þ x2
p �8x

b

b2þ x2

¼ 2p�8arcsin
x

r
�8bx

r2
ð12Þ

d3AðxÞ
dx3

¼�8
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x2

b2þx2

q

0

B
@

1

C
A

ffiffiffiffiffiffiffiffiffiffiffiffiffi

b2þx2
p

� 2x2

2
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2
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þ8
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b2þx2
p þ4

bx
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� �
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� �
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The second derivative (12) is zero (and, therefore,

the crystallization rate expressed by the first

derivative (11) is maximum) when the interfacial

angle is # ¼ p=4. To obtain the zero points of the

second derivative (12), let us to write the product

r2
d2AðxÞ
dx2

as

r2
d2AðxÞ
dx2

¼ 2pr2 � 8r2 arcsin
x

r
� 8bx

¼ 2 pr2 � 4r2 arcsin
x

r
� 4bx

� �

¼ 2 pr2 � 4 r2 arcsin
x

r
� bx

� �

� 8bx
� �

¼ 2 AðxÞ � 8bxð Þ

Fig. 8 a–d Optical micrographs of isotactic polypropylene taken

during isothermal crystallization (130 �C) at different times. It is

shown that, even during coalescence, a spherulite can continue to

grow along radial directions far from the developing interfaces. If

spherulites are almost uniformly distributed in space so that their

distances are not too different (as idealized in Fig. 7), it is evident

that, irrespective of the nucleation dynamics, the contact amongst

spherulites starts when most of the sample is already solid: the

hindered growth directions overcome the still growing directions only

in the latest stage and crystallization slows down shortly just before

the end. e This micrograph shows that, even if the amount of liquid

amongst spherulites is very limited, a few spherulites may be still able

to grow in most of the directions with an increasing growth rate
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It follows that

d2AðxÞ
dx2

¼ 2 AðxÞ � 8bxð Þ
r2

It is easy to verify that the equation
d2AðxÞ
dx2

¼
2 AðxÞ�8bxð Þ

r2
¼ 0 is verified when AðxÞ ¼ 8bxþ const ¼

16 bx
2
þ const, that is, when the difference between the

area of an hypothetical central spherulite growing isolate

and the actual area of the coalesced ‘‘spherulite’’ is

equivalent to the difference between the actual area of the

coalesced ‘‘spherulite’’ and the area 8bx of the regular

octagon with apothem b and side L ¼ 2x ¼ b=1:207, with

x[ 0. This condition is verified for # ¼ p=4, when both

the differences equals four times the area of the smaller

circular segment built on a chord of length L of the

central spherulite (see Fig. 7).

Moreover, since the second derivative (12) of the

monotonically crescent function area (10) has a zero point,

the function AðxÞ must have an inflection point for

# ¼ p=4. The function (10), determined by the analysis of

DSC crystallization peaks explained in paragraph 3, is

indeed almost universally found to have a typical ‘‘sig-

moidal’’ shape (the adjective sigmoidal is here used to

indicate a monotonically crescent function with an inflec-

tion point).

The sign of the third derivative (13) can give informa-

tion about the crystallization rate (11). Equaling (13) to

zero and multiplying per �r=8 results in 2b
r
� sin #

r
¼ 0,

which may be re-written as

2 cos
#

2
� 2

sin #
2
cos #

2

r
¼ 2 cos

#

2
� 2

sin #
2

r
cos

#

2

¼ 2 cos
#

2
� 2

x

r2
cos

#

2
¼ 0

To be verified, this equation requires that x ¼ r2, a condi-

tion that cannot be satisfied, whatever the value of # be. For

# ¼ p=4, it is 2b ¼ 2r
p=4

cos p=8ð Þ and, therefore, 2b=rp=4

¼ 2 cos p=8ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2þ
ffiffiffi

2
pp

ffi 1:85. Moreover, sinðp=4Þ

=rp=4 ¼
ffiffi
2

p

2

ffiffiffiffiffiffiffiffiffi
2þ
ffiffi
2

pp
2b

ffi 0:65=b; hence 2b=rp=4 [
sin p=4ð Þ




rp=4. Analogously, it must also result 2b=rp=2 [
sin p=2ð Þ




rp=2, since 2b=rp=2 ¼ 2 cosðp=4Þ ¼ 2=
ffiffiffi

2
p

ffi 1:41

and sinðp=2Þ



rp=2 ¼ 1ffiffi
2

p
b
ffi 0:71=b. This entails that the third

derivative (13) is always negative and, consequently, the first

derivative is a convex curve with a maximum in correspon-

dence of # ¼ p=4 (where the second derivative is null).

Therefore, the crystallization rate increases from # ¼ 0 to

# ¼ p=4 and then begins to decrease. Finally, when #� p=2
the area cannot increase further and the crystallization rate

becomes zero because the liquid phase is finished.

Observing Fig. 7, it can be deduced that for # ¼ p=4
the area that the central ‘‘spherulite’’ has more than a

regular octagon with apothem b is exactly half of the area

that a separate spherulite would have more than the same

octagon, i.e., Ap=4 � Ao ¼ 1
.

2 pr2p=4 � Ao

� �

, that is,

Ap=4¼ 1=2 pr2p=4

� �

þ Ao=2. Since the area of an octagon

can be expressed as function of the radius of the cir-

cumcircle: Ao ¼ 4 sin p=4ð Þr2p=4 ¼ 2
ffiffiffi

2
p

r2p=4, it follows that,

for # ¼ p=4, the area of a coalescing spherulite is

Ap=4¼ 1=2 pr2p=4

� �

þ
ffiffiffi

2
p

r2p=4. Since Ap=4

.

pr2p=4

¼ 1=2 þ
ffiffiffi

2
p 


p ¼ 0:95, for # ¼ p=4 the area of a coa-

lescing spherulite is almost 95 % of the area of a hypo-

thetical still separate spherulite, whereas at the end of

crystallization (i.e., for # ¼ p=2), the area of a spherulite

is 64 % of the area of a still separately growing spherulite

(this value can be obtained by the ratio 2=p between the

area of a square and the area of the circumcircle). Briefly,

we can say that the crystallization rate increases with a

constant acceleration up to the start of coalescence ti; then

the acceleration starts to decrease with a simultaneous

reduction of the crystallization rate of coalesced spher-

ulites relatively to the crystallization rate that isolated

spherulites with the same radius would have, although for

0\#\p=4 the crystallization rate will continue to

increase. For # ¼ p=4, the crystallization rate of a coa-

lescing spherulite reaches its maximum value and the

acceleration becomes zero. After, the crystallization rate

decreases meanwhile the acceleration becomes negative.

Since it has been assumed that the linear growth rate of

spherulites is constant, indicating with tmax the time cor-

responding to the maximum of the crystallization rate, it

comes out that

tf � tmax ¼
rf � rmax

g
¼

ffiffiffi

2
p

b� 2b

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2þ
ffiffiffi

2
pq� ��

g

¼ 1:41b� 1:08bð Þ=g ¼ 0:33b=g ¼ 0:33ti

This means that the time tf � tmax needed to complete

crystallization, meanwhile growth rates are decreasing, is

even shorter than the time needed to achieve the maximum

growth rate. Indeed, crystallization peaks may result asym-

metric, with a frontal part even prominent relatively to the

final part. This apparent paradox of high crystallization time

at high crystallization rates and shorter time at low growth

rates is due to the fact that spherulites growmostlywhen they

are separate, whereas only a small fraction of liquid has to be

still transformed in solid during impingement.

At the end of crystallization, the radius reaches half of

the length of square’s diagonal
ffiffiffi

2
p

l=2ð Þ and x ¼ b ¼ l=2;

therefore, formula (10) gives
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A tf
� �

� A tið Þ ¼ p
4
l2 � 2l2 arcsin

1
ffiffiffi

2
p þ l2 ¼ 1� p

4

� �

l2

¼ 0:22l2

Therefore, only 22 % c.a. of the whole area of the

system remains to be crystallized in the time interval

tf � ti. Assuming a constant linear growth rate of spher-

ulites for the whole crystallization, the time tf � ti needed

to complete crystallization from the start of impingement

can be calculated from the following proportion:

tf � ti
� �

: ti ¼ rf � ri
� �

: ri, with rf ¼
ffiffiffi

2
p

b and ri ¼ b.

This leads to the result: tf � ti ¼
ffiffiffi

2
p

� 1
� �

ti ¼ 0:41ti.

Therefore, the crystallization time after impingement is

almost 41 % of the time before impingement. As already

shown in paragraph 4.2, after coalescence the growth rate

continues to increase for the short time tmax � ti ¼ 0:082ti
(meanwhile almost 9 % of the solid is being formed since,

as shown in the next paragraph, the solid fraction changes

from 78 to 87 % in the interval tmax � ti), before decreas-

ing. Totally, the time elapsed from the onset of crystal-

lization up to the maximum growth rate is 1:082ti, whereas

the time from the maximum growth rate to the end of

crystallization is almost 0:33ti. Since the time remaining

for crystallization is shorter (almost 1/3) than the elapsed

time by onset of crystallization up to the maximum, the

peak describing the solidification process should appear

asymmetric.

Shape and symmetry of the crystallization rate
curves

Let us consider a polycrystalline sample constituted of

equidistant spherulites nucleated simultaneously, so that

after complete impingement a tessellated structure com-

posed of all aligned squares arises; the fraction of solid for

# ¼ p=4 is given by the formula

AO þ AC � AO

2

� ��

AQ;

where AC ¼ pr2p=4 is the area of the circumcircle, AO ¼
2
ffiffiffi

2
p

r2p=4 is the area of the inscribed octagon and AQ ¼
l2 ¼ 4b2 the area of the final square with side l (see also

Fig. 7). With the appropriate substitutions and considering

that b ¼ rp=4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2þ
ffiffiffi

2
pp� �.

2, it comes out that for # ¼ p=4

the solid fraction is pþ 2
ffiffiffi

2
p� �


4þ 2
ffiffiffi

2
p� �

¼ 0:87.

Therefore, meanwhile the solid fraction increases up to

0.87 in the time tmax ¼ 2b
.

g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2þ
ffiffiffi

2
pp� �

, the growth rate

increases up to the maximum and then starts to decrease.

As shown in paragraph 5, the further time needed to

complete solidification, measured from the time

corresponding to the maximum growth rate, is

tf � tmax ¼ 0:33ti. As the typical sigmoid curve describing

the solid fraction versus time in case of instantaneous

nucleation is not symmetric with respect to the inflection

point, the growth rate curve is usually not symmetric rel-

atively to the maximum. Irregularities in the shape of DSC

crystallization peaks of relatively small masses of high

thermal conductivity samples are, therefore, no exception,

since solidification can be considered instantaneous in the

whole volume because of the high rate of heat conduction.

As stated in paragraph 3, the area of each original spher-

ulite at the end of the crystallization will be l2, whereas the

area at the onset of impingement, when # ¼ 0, is l2p



4.

This means that at the start of impingement, corresponding

to the time ti ¼ l= 2gð Þ ¼ b=g ¼ tf ri



rf ¼ tf

 ffiffiffi

2
p

ffi 0:71tf ,

the fraction of solid material is p=4 ffi 0:78. Therefore, at

the starting time of impingement crystallization is already

completed for 78 % and progresses towards the end in a

time tf � ti ffi 0:29tf with a brief further increase of the rate

(the time tmax � ti ffi 0:082ti needed to reach the maximum

growth rate and a solid fraction of 87 % is indeed very

short) followed by a final continuous decrease. However,

samples with a very low thermal conductivity as polymers,

unless in the form of very thin films, cannot reach imme-

diate equilibrium with cooling or heating devices. There-

fore, in a transitory regime before the onset of

crystallization, a polymer film will host a temperature

gradient along the thickness, which, according to the

crystallization theory, will in turn generate a time-depen-

dent nucleation. Non instantaneous nucleation in the whole

volume of the sample, together to small irregularity of

tessellation, retards full crystallization and causes the

appearance of symmetric crystallization peak. For instance,

in Fig. 9 the crystallization peak of indium (In) and that of

a polymer are shown for a comparison.

The above conclusion may be extended to the crystal-

lization rate of samples with any spatial distribution of

spherulites.

For instance, a spherulite nucleated in the center of a

circumference on which other three equidistant spherulites

have been simultaneously nucleated (see Fig. 10), will

show a decrease of the growth rate when the # angles

reaches the value # ¼ p=3, and the growth rate will fall to

zero when # ¼ 2p=3. If we focus only on the growth of the

central spherulite, finally transformed in an equilateral

triangle with height 3d=2 and side
ffiffiffi

3
p

d, we will observe

that the time elapsed from nucleation to onset of coales-

cence is equal to the remaining time of crystallization of

that spherulite. The central spherulite will achieve the

maximum growth rate when the length of the radius is

rmax ¼ d



2 cos p=6ð Þð Þ ¼ d

 ffiffiffi

3
p

ffi 0:58d and the crystal-

lization time tmax ¼ rmax




g ¼ 0:58tf , being tf the usual
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Fig. 9 a DSC crystallization

peaks obtained by cooling c.a.

40 mg of In from melt at a scan

rate of -5 �C/min. The peak in

the top curve reproduces exactly

the crystallization rate predicted

for simultaneous and uniform

nucleation: a linear fast increase

followed by an abrupt in the

heat flow. The crystallization

peak of In shown in the bottom

DSC curve has been obtained in

the presence of an inert low

conductivity layer of a high

melting point polymer. In such a

case, the crystallization peak of

In becomes broader and shorter

since the heat removal from the

growth front of In grains is

delayed by the underlying solid

and crystallization of In is

consequently retarded.

b Crystallization peak of

polyoxymethylene (POM)

obtained by continuous cooling

at -5 �C/min. While

crystallization of 40 mg of In is

completed in c.a. 1 min,

complete crystallization of c.a.

17 mg of POM takes more than

7 min. Because of the very slow

heat removal from internal

regions of polymers, nucleation

is not instantaneous along the

thickness and growth is also

slow. Indeed, polymer

crystallization results slower

than crystallization of metals.

The slowdown of polymer

crystallization is even more

evident during the final stage of

impingement
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time needed for the whole crystallization. At the start of

impingement, the solid fraction is already 60 %, as the

ratio between the areas of the inscribed circle and the tri-

angle is pri2

3
ffiffi
3

p
ri2

¼ p
3
ffiffi
3

p ¼ 0:60. Therefore, even when the time

ti needed to touch neighbors equals the remaining crys-

tallization time tf � ti, the time corresponding to the

maximum growth rate of a spherulite is higher than the

half-time of crystallization (this latter is defined as the time

needed to have 50 % of the final solid mass). However, in

an ideal solid where each spherulite is surrounded by three

equidistant spherulites, the crystallization peak results

more symmetrical than in other discussed cases and the

time needed for the impingement of all adjacent spherulites

(not coinciding with the maximum point) can be approxi-

matively obtained from the DSC curve as half of the

overall crystallization time since ti ¼ d



2g ¼ tf



2, i.e.,

tf � ti ¼ d=2g ¼ ti.

Conclusions

In this article an overview on the solidification mechanism

and its consequence on the shape of the DSC crystallization

peak, both at constant and decreasing temperature, have

been provided. It has been highlighted that the true crys-

tallization rate of a material is usually not constant with

time, even if crystallization is performed at constant

temperature and crystallites develop with a constant linear

growth rate. At constant external temperature, the rate of

heat removal from the growth front is also constant and the

crystallization rate increases up to a maximum, finally

decreasing because of coalescence of spherulites. Contin-

uous cooling instead causes a variable temperature differ-

ence between the DSC platform and the growth front that,

in turn, accelerates the rate of heat removal and, hence, the

crystallization rate. Moreover, it has been shown that the

shape of the crystallization rate function is reproduced

experimentally by the DSC crystallization peak and that a

theoretical prediction of such a shape can also be made by

means of simple mathematical tools. The crystallization

rate reduction observed during a single solidification

experiment of a polycrystalline material, performed at

constant or slightly variable temperature, is only ascribable

to impingement. To appreciate the influence of other fac-

tors such as molecular mobility and undercooling on the

crystallization rate it is necessary to perform several

experiments under very different temperatures or cooling

conditions.

Appendix A: Area of a coalescing spherulite

The function which describes the area of a spherulite

during coalescence with an adjacent spherulite may be

obtained by starting from the equation of a circumference

with radius r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 � c
p

(assuming b[ 0 and c\ 0) and

center, of coordinates (0, -b), distant from the x axis of a

length b ¼ l=2:

x2 þ y2 þ 2byþ c ¼ 0 ð14Þ

being l the distance between the centers of the two coa-

lescing spherulites.

When the value of b is prefixed (in real crystallization, it

generally depends on the temperature), with varying c the

Eq. (14) represents all the circumferences of the plane xy

centered in (0, -b). The circumferences with radius r[ b,

considered in the real field, have the coefficient c ¼ b2 � r2

negative and intersect the x axis in the two points

�
ffiffiffiffiffiffi
�c

p
; 0ð Þ and

ffiffiffiffiffiffi
�c

p
; 0ð Þ. Moreover, for each circumfer-

ence the length of the chord laying on the x axis is given by

2
ffiffiffiffiffiffi
�c

p
¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 � b2
p

.

Rewriting (14)

y2 þ 2by ¼ �x2 � c

Adding b2 to both the members

y2 þ 2byþ b2 ¼ �x2 � cþ b2

and considering the first member as the square of a

binomial

d/2

r=d

Fig. 10 Triangular shape of a spherulite after coalescence with three

surrounding spherulites. The distance between the centers of adjacent

spherulites is d
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yþ bð Þ2¼ �x2 � cþ b2

finally results in

y ¼ �x2 þ b2 � c
� �1=2�b

Therefore, the area between the x axis and a circum-

ference with r[ b and c\ 0 will be given by the definite

integral:

Z ffiffiffiffiffi
�c

p

�
ffiffiffiffiffi
�c

p �x2 þ b2 � c
� �1=2�b
� �h i

dx

To solve the above integral, it is sufficient to observe

that b2 � c ¼ r2 and to rewrite �x2 þ b2 � cð Þ1=2 as

r2 � x2ð Þ1=2. The indefinite integral
Z

r2 � x2
� �1=2�b
� �

dx ¼
Z

r2 � x2
� �1=2

dx� bx ð15Þ

has primitive functions of types FðxÞ þ Const, and FðxÞ
can be obtained integrating by substitution or by part.

Indeed, solving (15) with one of the two mentioned

techniques

F xð Þ ¼
Z

r2 � x2
� �1=2�b
� �

dx

¼ þ 1

2
r2 arcsin

x

r
þ 1

2
x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 � x2
p� �

� bx

and substituting
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 � x2
p

to b:

F xð Þ ¼ þ 1

2
r2 arcsin

x

r
þ 1

2
x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 � x2
p� �

� x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 � x2
p� �

¼ þ 1

2
r2 arcsin

x

r
� 1

2
x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 � x2
p� �

Defining h ð0\h\pÞ as the central angle as the central

angle relative to the circular segment that, by varying r,

identifies the portion of area lost by each spherulite because

of coalescence (hatched area in Fig. 3); this latter can be

obtained as function of h:

Expressing the area of the circular segment as function

of # and of �c ¼ r2 � b2, it results also in

Fð
ffiffiffiffiffiffi
�c

p
Þ � Fð�

ffiffiffiffiffiffi
�c

p
Þ ¼ þ 1

2
r2#� b

ffiffiffiffiffiffi
�c

p

Such formulas represent the area of the smaller circular

segment sectionized by the x axis on each circumference

with center (0, -b) and radius r[b. Hence, the area of a

spherulite coalescing with and adjacent spherulite is given by

the area of the corresponding larger circular segment (see

Fig. 3), i.e., by the difference between the area of the whole

circle and the area of the smaller circular segment:

A ¼ pr2 � 1

2
r2#� b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 � b2
p� �

¼ p b2 � c
� �

� 1

2
ra� b

ffiffiffiffiffiffi
�c

p� �

;

where a ¼ r# is the length of the arc with central angle #.

The function A assumes the first value pr2 = pb2 when

r ¼ b and c = 0, i.e., when the impingement starts. The

function A increases with increasing x ¼ �c, but with a

rate lower than the function pr2.

Appendix B: Growth rate of two coalescing
spherulites

Assuming b constant and relatively to the case of coa-

lescence of only two original spherulites, the crystal-

lization rate during impingement is proportional to the

FðxÞj j
ffiffiffiffiffi
�c

p

�
ffiffiffiffiffi
�c

p ¼ þ 1

2
r2 arcsin

ffiffiffiffiffiffi
�c

p

r
� 1

2

ffiffiffiffiffiffi
�c

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 �
ffiffiffiffiffiffi
�c

p� �2
q� �

� 1

2
r2 arcsin �

ffiffiffiffiffiffi
�c

p

r

� �

þ 1

2
�

ffiffiffiffiffiffi
�c

p� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 � �
ffiffiffiffiffiffi
�c

p� �2
q� �

þ 1

2
r2 arcsin

ffiffiffiffiffiffi
�c

p

r
� 1

2

ffiffiffiffiffiffi
�c

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 �
ffiffiffiffiffiffi
�c

p� �2
q� �

þ 1

2
r2 arcsin
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derivative of the solid area with respect to x, which is

given by

Information on the trend of ‘‘the rate of the change of

the solid area’’, i.e., of the crystallization rate, may be

obtained from the sign of second derivative of AðxÞ:
d2AðxÞ
dx2

¼ 2 p� arcsin
x

r

� �

þ 2x � 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x2

b2þx2

q

0

B
@

1

C
A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 þ x2
p

� 2x2

2
ffiffiffiffiffiffiffiffiffi
b2þx2

p

b2 þ x2

 !

¼ 2 p� arcsin
x

r

� �

� 2
bx

r2

The above derivatives are both always positive which

means that not only the function area AðxÞ but also the

function growth rate dA=dt continues to increase during

the coalescence. The only difference from the case of

separate growth consists in the progressively smaller

enhancement of the growth rate during impingement,

indicated by the monotonic decrease of the second

derivative of the function area. Paraphrasing the well-

known laws of kinematics, but reminding that actually no

physical motion occurs, we can say that until a spherulite

grows isolate its area increases with constant acceleration

(d2A=dt2 ¼ 2pg2), that is, with a rate (dA=dt ¼ 2pg2t)
increasing linearly with time, whereas after coalescence

the growth of two spherulites increases with a descending

(but still positive) acceleration. Indeed, after coalescence

the graphic of the growth rate towards time is not more a

line but a rising convex curve. It is worth observing that

if it was possible to have only two spherulites in a sample

with infinite size, the growth rate would increase ad

infinitum, whereas in a real sample the growth of two

spherulites ends suddenly soon after the whole liquid has

been transformed into solid.
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19. Menyhárd A, Bredács M, Simon G, Zsuzsanna Horváth Z (2015)
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