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Abstract In this work, a comprehensive meaning for en-

tropy is provided on the basis of foundations of information

theory and statistical thermodynamics. For this purpose, the

close relation between missing information and entropy is

presented by emphasizing their probabilistic nature. Fur-

thermore, the physical implications of the mathematical

properties of the entropy function are exploited using the

elementary notions of differential and integral calculus.

Particularly, it is evidenced that the usual thermodynamic

inequalities found in many textbooks of physical chemistry

are direct consequences of the concavity of entropy. The

aim of this work is to show that many concepts presented in

textbooks of physical chemistry can be obtained in a simple

and mathematically clear way.

Keywords Entropy � Statistical thermodynamics �
Information theory � Concave functions

List of symbols

S Entropy

Q Heat

T Temperature

U Internal energy

V Volume

p Pressure

n Amount of substance

N Number of particles

NA Avogadro constant

t Time

w Information

ŵ Missing information

�w Missing information of an isolated system

J Number of microstates per state of the system

q Continuous probability density

X Microcanonical partition function

Q Canonical partition function

D Isothermal–isobaric partition function

kB Boltzmann constant

A Helmholtz energy

G Gibbs energy
~E Energy mean value

H Enthalpy

pr Probability of occurrence of a microstate r

D Leading principal minor

Cp Specific heat at constant pressure

Cv Specific heat at constant volume

ap Coefficient of thermal expansion

jT Isothermal compressibility coefficient

Introduction

Thermodynamics has occupied a central role in physical

chemistry as its foundations have supported the under-

standing of many physicochemical phenomena. In elec-

trochemistry, for instance, thermodynamic fundamentals

have been used to develop important phenomenological

equations, as well as theoretical models for electric double

layer [1, 2]. In surface chemistry [3], Gibbs’ thermody-

namic approach has been systematically used to study in-

terfacial phenomena, such as the adsorption of chemical

species on a particular substrate and stability of colloidal

dispersions. Moreover, in materials science [4], thermo-

dynamic concepts have been employed to construct phase
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diagrams and to foresee the material behaviors of systems

under different physicochemical conditions.

However, while the number of reports on thermody-

namic applications have extraordinarily increased in the

last decades, a well-motivated discussion about the most

elementary thermodynamic concepts has been neglected in

the current chemical literature. As a matter of fact, the few

works that provide a mathematically consistent discussion

about basic thermodynamic concepts are concentrated in

journals of the areas of mathematics, physics, and me-

chanical engineering [5–7]. The mathematical framework

used by these manuscripts is frequently uncommon to most

of the chemists, who are secluded from the most recent

conceptual advances in thermodynamics. As a conse-

quence, usually no new thermodynamic approach is taught

in undergraduate and graduate courses, and the discussion

in many textbooks of physical chemistry is restricted to the

conventional formalism of equilibrium thermodynamics.

In view of this context, many basic ideas of thermody-

namics are axiomatically introduced and sometimes in a

mathematically incoherent form. The discussion that fol-

lows in several textbooks of physical chemistry is then in

many aspects intuitive, so that the relation between math-

ematical properties and thermodynamic consequences is

overlooked. A typical example of such a situation is the

presentation of the entropy and the content of the second

law of thermodynamics for which several physical inter-

pretations and mathematical formulations can be found.

In this work, a well-motivated physical interpretation for

entropy is presented on the basis of foundations of informa-

tion theory. For this purpose, the probabilistic nature of the

microstates of a system is emphasized by using statistical

thermodynamic concepts inherent to chemistry students.

Furthermore, the mathematical properties of entropy function

are exploited by employing only elementary concepts of

differential and integral calculus. Particularly, by postulating

the existence of the entropy S as a function of internal energy

U and volume V , it is shown that thermodynamic inequalities

commonly posed in textbooks of physical chemistry can be

obtained as direct consequences of the concavity of entropy

function with respect to the variables U and V .

Despite the simple mathematical methodology em-

ployed in this manuscript, many concepts presented here

are still unknown to most chemistry students. Thus, the

content of this work could be useful in courses of advanced

thermodynamics and for those interested in a

mathematically coherent description of thermodynamics.

Historical perspective of entropy

The literature [8, 9] is full of different formulations for the

second law of thermodynamics, as well as different

physical interpretations for entropy. One of the most

known interpretations relates entropy to the molecular

order/disorder of a system. However, since this interpre-

tation rests on merely qualitative ideas, and no general

quantitative description of molecular order/disorder has

been conceived, a number of works have appeared, ques-

tioning the relation between entropy and molecular order/

disorder [10, 11]. As a matter of fact, since the mid-1950s

several works, e.g., [12–14] have presented a new ap-

proach, which associates entropy to the concept of missing

information, such as in the mathematical information the-

ory. Even so, there are still many chemists, physicists, and

engineers who prefer to deal with entropy as the molecular

disorder of a system.

In 1865, when Clausius [15] introduced the concept of

entropy, even Clausius himself was not very satisfied by his

definition. Based on Carnot’s work [16] about heat engines,

Clausius proposed an expression,

Qboiler

Thigh

¼ Qcoolerj j
Tlow

; ð1Þ

which allowed him to describe the heat transfers Q in a

Carnot cycle. According to Clausius, it is clear from Eq. (1)

that during a Carnot cycle, it is not the heat transfers that

are kept unchanged, but rather a quantity, called entropy,

given by the ratio of heat and temperature T . In fact, the

word entropy (from Greek, transformation) was intention-

ally used by Clausius because he believed that energy and

entropy were closely related, although the units of these

quantities are quite different.

The earliest associations of entropy with molecular dis-

order were made from Maxwell’s and Boltzmann’s works

[17, 18]. In the mid-1870s, Maxwell and Boltzmann worked

at the same time on the foundations of kinetic theory of

gases. Nevertheless, it was Boltzmann who first provided

the statistical interpretation of entropy with his famous

formula, which relates entropy to the total number of mi-

crostates of a system whose energy, volume, and number of

particles are well defined. Actually, Boltzmann proposed a

theorem, where an H-quantity always decreases and attains

its minimum value at equilibrium as a consequence of

molecular collisions and other feasible assumptions.

Boltzmann also noticed that his H-quantity behaved in a

similar way to the quantity S introduced by Clausius, but by

no means stated that the increase of entropy implies the

increase of molecular disorder of a system. In fact, this

conclusion appeared just after consolidation of the atomistic

view of matter and consequent application of Boltzmann’s

ideas in simple situations, such as the expansion of an ideal

gas and mixing of two different gases in a closed vessel. In

these examples, the increase of entropy was related to the

fact that particles spread all over the volume of the vessel,

resulting in greater molecular disorder.
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Until the mid-1940s, the relation between entropy and

molecular disorder prevailed in the literature. However,

with the divulgation of mathematical information theory

proposed by Shannon [19] in 1948 and subsequent publi-

cation of Brillouin’s book [12], and Jaynes’ manuscript

[13], the association of entropy with molecular disorder has

been changed. With new thermodynamic concepts avail-

able in the literature and the development of modern

mathematical theories, the discussion of the mathematical

foundations of thermodynamics gained prominence in the

areas of physics and mathematics in the late 1960s and

1970s. Examples of important publications in this subject

are Truesdell’s and Gile’s works [20, 21], which discuss

comprehensively the mathematical foundations of classical

thermodynamics based on the inequalities

oU

oT

�
�
�
�
V

[ 0;
op

oV

�
�
�
�
T

\0; ð2Þ

where p is the pressure. The approach used in these works

is founded on the idea that the existence of entropy func-

tion should not be a priori assumed, but rather must be

proved. There, as well as in other works [22, 23], the proof

of the concavity of entropy function and its physical im-

plications are demonstrated by considering an isolated

system, which is subdivided into two subsystems in ther-

mal equilibrium with each other.

On the other hand, if one follows Gibbs’ thought, the

existence of entropy function is ensured as a primitive

concept, and one should exploit the consequences there-

from. From this point of view, one exploits the concavity of

entropy function in relation to certain variables to obtain the

two inequalities presented in Eq. (2), as well as other im-

portant thermodynamic consequences in a mathematically

clear way.

Entropy and information theory

Suppose that a macroscopic system has pressure p, amount

of substance n, and temperature T well defined. Although

the knowledge of these parameters may be enough to de-

fine the state of the system, it tells nothing about the po-

sitions and velocities of the constituent particles of the

system. By supposing that it contains N particles, where N

is given by N ¼ NAn and NA is the Avogadro constant

ðNA ¼ 6:02214179ð30Þ � 1023 mol�1Þ, one should know

the values of 6N variables—three Cartesian components of

the position vector, and three Cartesian components of the

velocity vector for each particle—to describe fully the

microscopic configuration of the system. Thus, to charac-

terize the microstate at a given instant t, one should know

the values of a number of variables of the order of mag-

nitude of 1023, whereas to determine the macroscopic state

of the system at that time t, it may suffice to know the

values of three variables, e.g., p, T , and n.

Of course, for any macroscopic system, the determina-

tion of the values of about 1023 variables is unachievable.

Nevertheless, one may associate to each state of the system

the number of all its compatible microstates. For this

purpose, one initially considers a thermodynamic process,

whereby a state (1) is transformed into the state (2) through

a continuous sequence of states. Then, one defines the

number of microstates J per state of the system, such that J

is dimensionless. Furthermore, since every state corre-

sponds to at least one microstate, it follows that J� 1.

Accordingly, because of the great number of particles in a

macroscopic system, one should expect an enormous

number of microstates in the equilibrium state.

By recalling the foundations of information theory,1 let

w be the sufficient quantity of information to define the

microstate in which the system is located. Of course, this

microstate must be compatible with the macroscopic re-

strictions imposed on the system, e.g., temperature, pres-

sure, and mass. If more than one microstate is compatible

with such restrictions, there will be a certain quantity of

missing information (uncertainty) ŵ with respect to the

knowledge of the state. Note yet that the variables required

to specify the state of a thermodynamic system change

according to the kind of process to which the system is

submitted. For example, the macroscopic restrictions used

to define w and ŵ for a given state of an isolated system are

not the same as those used to define w and ŵ for a state of a

closed system submitted to an isothermal process and vice

versa. Similarly, different conditions apply to systems

submitted to other kinds of processes.

Once the quantities of information and missing infor-

mation have been defined, a relation between ŵ and J may

be proposed. Thus, for a macroscopic isolated system,

postulate that (i) all microstates compatible with a state of

the system are equally probable [24]; (ii) ŵ must be a non-

negative strictly increasing continuous function of J, so

that the larger the number of microstates, the greater is the

amount of missing information; (iii) if at any instant t, an

observer was capable of knowing all macroscopic proper-

ties of the system, as well as the exact position and velocity

of the constituent particles, the observer would unam-

biguously know the microstate of the system at that instant.

Therefore, ŵð1Þ ¼ 0, where J ¼ 1; and (iv) for j indepen-

dent systems, the total amount of missing information is

the sum of the missing information of j independent sys-

tems. In turn, the total number of microstates is given by

1 An accessible presentation of the foundations of information theory

may be found in the references [10, 11].
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the product of the number of microstates of j independent

systems, viz.

ŵ ¼
Xj

i¼1

ŵi; J ¼
Yj

i¼1

Ji: ð3Þ

Hence, based on the Shannon entropy formula [19], one

supposes that the expression for the missing information of

an isolated system �w must be of the form of

�w ¼ b loga Jð Þ; ð4Þ

where b ¼ bðaÞ lnðaÞ is an information measure unit de-

termined by the base a of the logarithm. For example, when

a ¼ 2, then �w and b are given in terms of the basic indis-

soluble information unit (bit). Thus, it follows that the

missing information is determined by binary choices

�w ¼ b 2ð Þ ln Jð Þ; b 2ð Þ ¼ b
ln 2ð Þ :

Remark 1 By using the change-of-base formula for

logarithms, Eq. (4) may be alternatively written as

�w ¼ b að Þ ln Jð Þ: ð5Þ

Equation (5) is similar to the Boltzmann entropy for-

mula that relates the entropy S to the number of microstates

of an isolated system,

S ¼ kB ln Jð Þ; ð6Þ

such that kB is the Boltzmann constant

ðkB ¼ 1:3806504ð24Þ � 10�23J K�1Þ. Thus, note that the

ratio of expressions (6) and (5) results in

S ¼ aw; a ¼ kB

b
ln að Þ;

where a is a proportionality constant that transforms a

given information measure unity into J K�1. Hence, one

concludes that, for an isolated system, entropy is propor-

tional to missing information.

Remark 2 In statistical thermodynamics, Boltzmann en-

tropy formula is also given in terms of the microcanonical

partition function X N;V;Eð Þ,

S ¼ kB ln Xð Þ; ð7Þ

where the partition function X expresses the number of

microstates available to the isolated system in a given

energy.

Moreover, there are other entropy-like functions that

maintain a proportionality relation with their corresponding

missing information quantities. For instance, for a system

represented by a canonical ensemble, the corresponding

missing information is proportional to �A=T , where A is

the Helmholtz energy. Likewise, for a system represented

by an isothermal–isobaric ensemble, the associated missing

information is proportional to �G=T , where G is the Gibbs

energy. Thus, in analogy to expression (7), one writes the

formulas

�A

T
¼ kB ln Qð Þ and; �G

T
¼ kB ln Dð Þ; ð8Þ

where QðN;V ; TÞ denotes the canonical partition function,

and DðN; T ; pÞ stands for the isothermal–isobaric partition

function [25, 26].2

The case of non-uniform probability distribution

Consider a macroscopic isolated system presenting J

microstates. As previously stated, the quantity S is related to

the number of microstates of the system by the expression

S ¼ kB ln Jð Þ:

Because the microstates J of this system have equal

probability of occurrence p ¼ 1=J, Eq. (6) becomes

S ¼ �kB ln
1

J

� �

¼ �kBJ
1

J
ln

1

J

� �� �

¼ �kBJ p ln pð Þ½ �

¼ �kB

XJ

r¼1

p ln pð Þ: ð9Þ

Actually, Eq. (9) is a particular case of the general equation

S ¼ �kB

XJ

r¼1

pr ln prð Þ; ð10Þ

where Eq. (10) is subject to the normalization condition
PJ

r¼1 pr ¼ 1. This equation is useful to evaluate the en-

tropy of systems modeled by canonical and isothermal–

isobaric ensembles [25, 26].

One can also propose an expression analogous to

Eq. (10), where S is given in terms of a continuous

probability density function qðrÞ on an interval ½0; J�.
Hence, one has

S ¼ �kB

Z J

0

q rð Þ ln q rð Þð Þdr; ð11Þ

where Eq. (11) is subject to the condition
R J

0
qðrÞdr ¼ 1.

As a matter of fact, whenever the restriction of microstates

with equal probability of occurrence is imposed, Eq. (11)

reduces to Eq. (6).

2 The reader interested in the deduction of expressions presented in

Eq. (8) should consult pages 37–45 of reference [25], and pages

12–18 of reference [26].
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Mathematical properties of the entropy function

Consider a closed system represented by a canonical

ensemble, such as that described in [24]. Admit also that

each state of this system only has two possible microstates,

so that p1 þ p2 ¼ 1. Then, by focusing on a particular state

of this system, it follows from Eq. (10) that

S ¼ �kB p1 ln p1ð Þ þ 1� p1ð Þ ln 1� p1ð Þ½ �; ð12Þ

whose graph representation is provided in Fig. 1.

According to Fig. 1, (i) S has only one global maximum

at p1 ¼ 1=2, that is, when both microstates have equal

probabilities of occurrence, (ii) S attains its minimum

value, when one knows precisely which microstate is as-

sociated with a given state of the system, and (iii) the

function Sðp1Þ is concave. Mathematically, this implies that

(a) The first derivative of Sðp1Þ always decreases as p1

increases;

(b) The second derivative of Sðp1Þ is always negative;

(c) The local maximum is always a global maximum;

(d) The Hessian matrix of S is negative definite [27].

This property is of particular interest since the

expressions shown in Eq. (2) and many other

thermodynamic inequalities are directly deduced

from the Hessian matrix of SðU;VÞ. In the next

section, a simple example of the exploitation of this

property will be presented.

Remark 3 A function f ðxÞ is concave on an interval ½a; b�,
if for any two x1 and x2 in ½a; b�, the value of the concave

function f ðxÞ at the point ðx1 þ x2Þ=2 is always larger than

or equal to ½f ðx1Þ þ f ðx2Þ�=2,

f x1ð Þ þ f x2ð Þ
2

� f
x1 þ x2

2

� �

:

Examples of concave functions are f ðxÞ ¼ logðxÞ,
f ðxÞ ¼ �x logðxÞ, f ðxÞ ¼ �x2 and f ðxÞ ¼

ffiffiffi
x
p

[28].

Clearly, the above example does not correspond to the

physical reality of an ordinary macroscopic system. How-

ever, one can extend the foregoing conclusions without loss

of generality for usual macroscopic closed systems, whose

states are related to an enormous number of microstates J

with different probabilities pr. Accordingly, for a system

with a finite number of microstates, S attains its maximum

value3 only when all microstates are equally probable, that

is, the maximum value of S is given by Eq. (6). To see this,

consider the generalization of the inequality presented in

Remark 3 for the case of n points in ½a; b�,
f x1ð Þ þ f x2ð Þ þ � � � þ f xnð Þ

n
� f

x1 þ x2 þ � � � þ xn

n

� �

:

By applying the above inequality to Eq. (10), one has

�kB

XJ

r¼1

pr ln prð Þ

J
� � kB

XJ

r¼1

pr

J
ln

XJ

r¼1

pr

J

0

B
B
B
B
@

1

C
C
C
C
A

: ð13Þ

Then, by multiplying Eq. (13) by J and recalling that
PJ

r¼1 pr ¼ 1, one obtains

�kB

XJ

r¼1

pr ln prð Þ� � kB ln
1

J

� �

; ð14Þ

or yet

�kB

XJ

r¼1

pr ln prð Þ� kB ln Jð Þ;

where the equality holds if and only if pr ¼ p ¼ 1=J. This

is an important result as it shows that a canonical ensemble

becomes a microcanonical one. For closed systems with a

number of constituent particles of the order of magnitude

of 1023, the probability of the system to have an energy

very different from the energy mean value ~E is nearly null.

In this case, the only microstates that contribute sig-

nificantly to the sum
PJ

r¼1 pr lnðprÞ are those with energy

mean value ~E [26]. Indeed, such microstates J are those

which present a probability of occurrence pr equal to

p ¼ 1=J, that is, they are exactly the same microstates of a

microcanonical ensemble. Under such circumstances, the

macroscopic properties of a canonical ensemble, e.g., en-

tropy S are identical to those of a microcanonical ensemble,

Fig. 1 The ratio S=kB versus p1, with p1 ¼ 1� p2

3 By using the method of Lagrange multipliers, it is possible to

demonstrate that S attains its maximum value only when all

microstates have equal probability of occurrence. This demonstration

may be found on pages 331–333 of reference [10].

ChemTexts (2015) 1:9 Page 5 of 8 9

123



and one says the canonical ensemble degenerated into a

microcanonical one [24, 25].

Hitherto, the concavity of entropy function with respect

to the probability of occurrence of a particular microstate r

of a closed system has been discussed. Nevertheless, for

thermodynamic purposes, it would be interesting to con-

sider the concavity of entropy function S in relation to

certain macroscopic variables. Thus, postulate that S is a

concave function of both internal energy U and volume V .

The motivation of this postulate rests on the results that

will be discussed in the next section.

Thermodynamic consequences of the concavity

of entropy function

By following Gibbs’ approach, the entropy function is a pri-

mitive concept and thermodynamic properties of a macro-

scopic system with a fixed amount of substance are

determined by the relations that exist between its volume V ,

pressure p, temperature T , internal energy U, and entropy S.

This may be done by the well-known thermodynamic relation,

dS ¼ 1

T
dU þ p

T
dV ¼ 1

T

oU

oV

�
�
�
�
T

þ p

T

� �

dV þ 1

T

oU

oT

�
�
�
�
V

dT ;

ð15Þ

where U is a function UðV; TÞ and

oS

oU

�
�
�
�
V

¼ 1

T
;

oS

oV

�
�
�
�
U

¼ p

T
; ð16Þ

or yet,

oS

oV

�
�
�
�
T

¼ 1

T

oU

oV

�
�
�
�
T

þ p

T
;

oS

oT

�
�
�
�
V

¼ 1

T

oU

oT

�
�
�
�
V

: ð17Þ

Here, it is opportune to emphasize the convenience of

setting SðU;VÞ. Gibbs, in his works [29] about geometrical

representation of the thermodynamic properties of hetero-

geneous substances, chose to work with the variables vol-

ume V , internal energy U, and entropy S. On the other

hand, J. Thomson, brother of Lord Kelvin, preferred to

work with the variables volume V , pressure p, and tem-

perature T . However, while the set proposed by J. Thomson

is completely determined by a proper differentiation of the

set ðV;U; SÞ, the latter cannot be determined from the

former. This occurs because while SðU;VÞ is a funda-

mental equation, pðV ; TÞ is an equation of state.

By regarding the dependence of S in terms of ðU;VÞ,
one uses the Taylor’s formula with remainder [27] to

represent SðU;VÞ as a polynomial at any point ðUo;VoÞ of

the thermodynamic phase space,

S U;Vð Þ ¼ S Uo;Voð Þ þ U � Uoð Þ oS

oU
Uo;Voð Þ

þ V � Voð Þ oS

oV
Uo;Voð Þ

þ 1

2
U � Uoð Þ2 o2S

oU2
Uo;Voð Þ

þ U � Uoð Þ V � Voð Þ o2S

oUoV
Uo;Voð Þ

þ 1

2
V � Voð Þ2 o2S

oV2
Uo;Voð Þ þ R 2ð Þ; ð18Þ

where Rð2Þ is the remainder of the Taylor’s series. The

second-order derivatives of the above polynomial are the

elements of the Hessian matrix of SðU;VÞ. Thus, from the

property (d) of concave functions, the Hessian matrix of

SðU;VÞ,

o2S

oU2

o2S

oUoV

o2S

oVoU

o2S

oV2

2

6
6
6
6
4

3

7
7
7
7
5

; ð19Þ

must be negative definite. From matrix (19), one exploits

the thermodynamic consequences of the concavity of en-

tropy function in relation to U and V . For this purpose, one

needs to consider the definiteness of this matrix,

D1 ¼
o2S

oU2
\0; D2 ¼

o2S

oU2

o2S

oUoV

o2S

oVoU

o2S

oV2

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

[ 0; ð20Þ

where D1 and D2 stand for the leading principal minors of

first and second orders, respectively, and the signs of the

leading principal minors are determined according to the

rule ð�1Þk, with k being the order of the leading principal

minor.

Initially, one looks at D1. As
oS

oU

�
�
�
�
V

¼ 1

T
, this results in

o2S

oU2

�
�
�
�
V

¼ � 1

T2

oU

oT

�
�
�
�

�1

V

, and, therefore,

oU

oT

�
�
�
�
V

[ 0; ð21Þ

where expression (21) is a known thermodynamic

inequality (see Eq. (2)1). At this point, it is worthwhile

to observe that the concavity of SðU;VÞ implies that

the partial derivative shown in expression (21) is

invertible.

The thermodynamic consequences of D2 follow from
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o2S

oU2

�
�
�
�
V

o2S

oV2

�
�
�
�
U

� o2S

oVoU

o2S

oUoV

� �

[ 0: ð22Þ

Accordingly, from expression (16)2 one determines

o2S

oV2

�
�
�
�
U

¼ 1

T

op

oV

�
�
�
�
U

� p

T2

oT

oV

�
�
�
�
U

: ð23Þ

But, if one considers p as a function of V and T , there remains

op

oV

�
�
�
�
U

¼ op

oV

�
�
�
�
T

þ op

oT

�
�
�
�
V

oT

oV

�
�
�
�
U

; ð24Þ

whence

o2S

oV2

�
�
�
�
U

¼ 1

T

op

oV

�
�
�
�
T

þ 1

T

op

oT

�
�
�
�
V

oT

oV

�
�
�
�
U

� p

T2

oT

oV

�
�
�
�
U

: ð25Þ

This expression can be further simplified by considering

op

oT

�
�
�
�
V

¼ 1

T

oU

oV

�
�
�
�
T

þ p

T
, which comes from Eq. (17)1 and

oS

oV

�
�
�
�
T

¼ op

oT

�
�
�
�
V

. This last expression is one of Maxwell’s

relations that can be obtained from the differential

dA ¼ �pdV � SdT . Thus, one has that

o2S

oV2

�
�
�
�
U

¼ 1

T

op

oV

�
�
�
�
T

þ 1

T2

oT

oV

�
�
�
�
U

oU

oV

�
�
�
�
T

; ð26Þ

which may be rewritten as

o2S

oV2

�
�
�
�
U

¼ 1

T

op

oV

�
�
�
�
T

� 1

T2

oT

oU

�
�
�
�
V

oU

oV

�
�
�
�
T

� �2

; ð27Þ

where
oT

oV

�
�
�
�
U

¼ � oT

oU

�
�
�
�
V

oU

oV

�
�
�
�
T

was used. Therefore,

inequality (22) reduces to

o2S

oU2

�
�
�
�
V

1

T

op

oV

�
�
�
�
T

� 1

T2

oT

oU

�
�
�
�
V

oU

oV

�
�
�
�
T

� �2
" #

� o2S

oVoU

o2S

oUoV

� �

[0;

ð28Þ

where the expression within the brackets must be negative

in view of inequality (20)1. To ensure this, one recalls

inequality (21). Then, it follows that

op

oV

�
�
�
�
T

\0; ð29Þ

which is another important thermodynamic inequality [see

Eq. (2)2].

Moreover, further thermodynamic inequalities can be

obtained from expressions (21) and (29). With inequality

(29), and
oA

oV

�
�
�
�
T

¼ �p, one obtains

o2A

oV2

�
�
�
�
T

[ 0: ð30Þ

In turn, by using inequality (21), Eq. (17)2, and
oA

oT

�
�
�
�
V

¼ �S,

one has

o2A

oT2

�
�
�
�
V

\0: ð31Þ

Similarly, one can deduce

o2G

op2

�
�
�
�
T

\0; and
o2G

oT2

�
�
�
�
p

\0; ð32Þ

which also are thermodynamic constraints. Such inequal-

ities imply that the Helmholtz energy A is a concave

function of T , but a convex function of V , as well as the

Gibbs energy G is a concave function of both T and p.

Another thermodynamic constraint of particular impor-

tance restricts the values of the specific heat at constant

pressure Cp ¼
oH

oT

�
�
�
�
p

and the specific heat at constant vol-

ume Cv ¼
oU

oT

�
�
�
�
V

, where H is the enthalpy. From Eq. (15),

one deduces

Cp � Cv ¼ �T
op

oV

�
�
�
�
T

oV

oT

�
�
�
�

2

p

; ð33Þ

which, with the help of expression (29), leads to

Cp [ Cv: ð34Þ

Furthermore, by using the definitions of the coefficients of

thermal expansion ap ¼
1

V

oV

oT

�
�
�
�
p

and isothermal compress-

ibility jT ¼ �
1

V

oV

op

�
�
�
�
T

, one writes the relation between Cp

and Cv as

Cp ¼ Cv þ
a2

p

jT

TV : ð35Þ

Thus, from expressions (21) and (29), it follows immedi-

ately that

a2
p\

1

TV
CpjT : ð36Þ

Conclusion

In the late twentieth century, several attempts were made to

give a clearer and well-motivated definition for the entropy

and the second law of thermodynamics. In this work, it was

discussed how mathematical properties of the entropy

function led to important conclusions in thermodynamics.

For this purpose, Gibbs’ approach was used, so that the

existence of an entropy function dependent of the internal
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energy and volume was taken for granted. Indeed, it was

shown that entropy is closely related to missing informa-

tion. Then, it was presented in a straightforward way that

the concavity of entropy implies

oU

oT

�
�
�
�
V

[ 0;
op

oV

�
�
�
�
T

\0; Cp [ Cv;

as well as other usual thermodynamic inequalities found in

textbooks of physical chemistry.
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