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HIGHLIGHTS

• This review summarizes the decade milestone advancement of defect-engineered g-C3N4 and emphasizes the roles of crystallinity 
and defect traps toward a more precise defective g-C3N4 “customization” in the future.

• A critical insight into the defect traps has been discussed in depth, probing the defect-induced states and photocarrier transfer kinetics 
of g-C3N4.

• The prospect and outlooking for precise defective g-C3N4 “customization” is proposed.

ABSTRACT Over the past decade, graphitic carbon nitride (g-C3N4) has emerged as a universal photocata-
lyst toward various sustainable carbo-neutral technologies. Despite solar applications discrepancy, g-C3N4 
is still confronted with a general fatal issue of insufficient supply of thermodynamically active photocarri-
ers due to its inferior solar harvesting ability and sluggish charge transfer dynamics. Fortunately, this could 
be significantly alleviated by the “all-in-one” defect engineering strategy, which enables a simultaneous 
amelioration of both textural uniqueness and intrinsic electronic band structures. To this end, we have sum-
marized an unprecedently comprehensive discussion on defect controls including the vacancy/non-metallic 
dopant creation with optimized electronic band structure and electronic density, metallic doping with ultra-
active coordinated environment (M–Nx, M–C2N2, M–O bonding), functional group grafting with optimized band structure, and promoted 
crystallinity with extended conjugation π system with weakened interlayered van der Waals interaction. Among them, the defect states 
induced by various defect types such as N vacancy, P/S/halogen dopants, and cyano group in boosting solar harvesting and accelerating 
photocarrier transfer have also been emphasized. More importantly, the shallow defect traps identified by femtosecond transient absorption 
spectra (fs-TAS) have also been highlighted. It is believed that this review would pave the way for future readers with a unique insight into 
a more precise defective g-C3N4 “customization”, motivating more profound thinking and flourishing research outputs on g-C3N4-based 
photocatalysis.
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1 Introduction

Solar-to-chemicals/electricity oriented by photocatalysts 
has been regarded as a promising supplement for existing 
energy types [1–13]. Nowadays, the emerging graphitic 
carbon nitrides (g-C3N4) have attracted numerous research 
attention [14, 15], outperforming the traditional  TiO2 mate-
rials, particularly in the research fields of solar-driven  H2 
evolution reaction (HER) [16–19],  CO2 reduction reaction 
(CRR) [20–26],  N2 reduction reaction (NRR) [27–32], pho-
tocathodic protection (PCP) [33–37], pollutant removal 
[38–41], and oxygen evolution reaction (OER) [42–45]. 
Despite the application discrepancy, they all share simi-
larities until the electrons are involved in redox reactions 
in an aqueous solution [5, 46]. Specifically, this progress 
in g-C3N4 materials can be classified into 5 steps (Fig. 1): 
(1) When the irradiation energy is larger than the bandgap 
(typically around 2.7 eV) [7, 47], the electrons and holes 
in g-C3N4 can be excited; (2) once irradiation, the elec-
trons in valance band maximal (VBM: 1.57 V vs. standard 
hydrogen electrode (SHE)) would be excited into conduc-
tive band maximal (CBM: − 1.13 V vs. SHE), leaving the 
VB occupied with holes (oxidizing ability) and CB with 
electrons (reducing ability), respectively. (3) Afterward, the 
electrons would transfer from bulk to surface and finally 
reach the active interfacial sites to participate in the redox 
reaction. It is worth mentioning that the CB position in 
g-C3N4 must be more negative than the desired reduction 
potential so that the reductive reactions (HER, CRR, NRR, 

pollutant removal, PCP) can take place. Similarly, the VB 
position should be more positive than the required oxidation 
potential to satisfy the oxidation reactions such as OER and 
·OH generation. However, the separation and transport of 
photocarriers (electrons and holes) in both bulk-phase and 
surface of g-C3N4 are not smooth as there are mainly two 
recombination pathways: (4) The excited electrons in CB 
are very active and prone to recombine with holes in VB, 
mainly releasing energy with the radiative fluorescence; (5) 
The electrons migrated from CB to surface are also suscep-
tible to be trapped by the defect-associated surface states 
and then recombine with holes, releasing energy in a non-
radiative way with heat.

2  Challenges

Since the pioneered work on the discovery of g-C3N4 for 
photocatalytic  H2 evolution by Wang et Al. [7], g-C3N4 has 
emerged as a hot metal-free photocatalyst with environ-
mental benignity that attracts numerous research attention. 
Despite the various photocatalytic applications, g-C3N4 is 
still confronted by the above-mentioned five fundamental 
steps, of which the initial photoexcitation followed by photo-
carrier transfer processes are quite complex. Specifically, we 
summarize the most intractable challenges that impede the 
large-scale applications of g-C3N4. On the charge excitation 
side, the challenge is:

Fig. 1  Schematic photoexcitation, charge transport, and solar applications for g-C3N4
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(1) Insufficient solar light absorption Photoexcitation 
acts as the primary and fundamental step for solar 
applications of g-C3N4, of which if there are more 
excited photocarriers, there would be more efficient 
photocarriers involved in the final redox reaction. So 
far, enormous efforts to create a more abundant specific 
surface area with porous nanostructures to enhance the 
multiple solar scattering, diffraction, and absorption 
have been demonstrated to be efficient in boosting the 
corresponding photocatalytic activity of g-C3N4 [48–
54]. However, the bandgap of bulk g-C3N4 is around 
2.7 eV which means the hole/electron pairs can only 
be excited under light wavelength shorter than 460 nm, 
which occupies only around 16.5% of the solar spec-
trum. The low absorption of longer visible light longer 
than 460 nm and even near-infrared light leads to a lim-
ited amount of photoexcited electrons and holes, which 
would dramatically lower the solar activity of g-C3N4.

  While on the charge transport side, the challenges are 
more complicated, which include:

(2) Sluggish photocarrier transfer kinetics For the low-
est unoccupied molecular orbital (LUMO) of pristine 
g-C3N4, no electrons appeared around the bridging N 
atoms, which indicates the electron in g-C3N4 would 
only be excited and transferred within one  C6N7 unit, 
thus hindering the electron transfer along the in-plane 
direction and increasing the photocarrier possibility 
of being recombination [55]. To this end, the intrinsic 
localized π conjugated network of g-C3N4 leads to slow 
photocarrier mobility with low electronic conductivity 
and sluggish photocarrier transfer kinetics in the hori-
zontal direction. In addition, the insufficient polymeri-
zation degree of g-C3N4 also generates edged amino 
groups which could act as charge traps, further hinder-
ing the photocarrier transfer in the vertical direction. 
Therefore, both situations can lead to a sluggish charge 
transfer process, thus fewer electrons or holes present-
ing in the interfacial surface of g-C3N4.

(3) Severe photocarrier recombination in bulk‑phase 
The excited active electrons in CB are not in ther-
modynamical equilibrium and thus prone to return to 
the ground state, releasing energy via a non-radiative 
transition. This is particularly true for bulk g-C3N4 as 
the severe electron localization has largely restrained 
the photocarrier transfer rate, leaving a longer time for 
photocarrier bleaching. Additionally, there are no addi-
tional energy levels between CBM and VBM, lacking 
the temporary photocarrier “reservoir” to buffer the 
photoexcited electrons or holes from CBM and VBM, 
respectively. Therefore, the photogenerated electrons 
and holes cannot be separated efficiently, resulting in 

insufficient photocarrier for redox reactions, which 
needs to be urgently improved.

(4) Severe photocarrier recombination in the surface As 
we know, the intensive pyrolysis of melamine or other 
precursors would lead to the  NH3 gas, and the active 
H* during the heat treatment can induce a considerable 
portion of edge amino groups, which lowers the polym-
erization degree. As g-C3N4 is a N-containing material, 
the presence of amino groups would inevitably induce a 
relatively strong interlayered van der Waals interaction, 
which is prone to become the surface traps to bleach the 
photocarriers. Furthermore, if the experimental condi-
tion contains impurities, there also might be a bigger 
possibility to induce more surface traps. The surface 
recombination would happen in a less-easy detected 
manner, releasing the recombination energy in a non-
radiative way of heat. However, this point has less been 
emphasized in comparison with the former bulk-phase 
recombination, which needs to be alleviated in the next 
studies on photocarrier transfer dynamics and g-C3N4-
based photocatalytic activities.

3  Solution: Defect Engineering

Defect engineering refers to the introduction of impurities to 
the matrix or regulation of atom periodicity of semiconduc-
tors, which has been successfully proven to be an efficient 
strategy in tailoring the electronic band structures, optical 
properties, and conductivity of photocatalysts [56–62]. 
Intriguingly, apart from the intrinsic merits changes, the 
extrinsic morphology of g-C3N4 can also be optimized in 
terms of precursor types, reaction templates, and anneal-
ing conditions (pyrolysis atmosphere, heating rate, anneal-
ing time, and pressure). As a result, the defective g-C3N4 
samples normally enable significant improvements in 
extended solar harvesting ability, efficient photocarrier 
transfer process, as well as higher surface area with more 
abundant active sites, thus leading to a comprehensive activ-
ity increase for various photocatalytic applications. To this 
end, we believe defect engineering could be regarded as an 
“all-in-one” strategy to boost the solar utilization of g-C3N4 
as it takes the most important factors, namely the electronic 
band structure and nanostructure into consideration toward 
various photocatalytic applications.

Despite great achievements have been made in boosting 
the solar activity of g-C3N4 via morphology modification 
[48–54] and hybrid construction [63–74], the electronic 



 Nano-Micro Lett.           (2024) 16:70    70  Page 4 of 66

https://doi.org/10.1007/s40820-023-01297-x© The authors

band structure and photocarriers transfer in bare g-C3N4 
should be emphasized as they are the basement for further 
performance enhancement. Fortunately, these drawbacks 
of g-C3N4 have been demonstrated to be significantly ame-
liorated via a defect engineering strategy. Defect engineer-
ing refers to the introduction of impurities to the matrix or 
regulation of atom periodicity of semiconductors, which has 
been successfully proven to be an efficient strategy in tailor-
ing the electronic band structures, optical properties, and 
conductivity of photocatalysts [56–62]. Intriguingly, apart 
from the intrinsic merits changes, the extrinsic morphol-
ogy of g-C3N4 can also be optimized in terms of precursor 
types, reaction templates, and annealing conditions (pyroly-
sis atmosphere, heating rate, annealing time, and pressure). 
As a result, the defective g-C3N4 samples normally enable 
significant improvements in extended solar harvesting abil-
ity, efficient photocarrier transfer process, as well as higher 
surface area with more abundant active sites, thus leading 
to a comprehensive activity increase for various photocata-
lytic applications. To this end, we believe defect engineering 
could be regarded as an “all-in-one” strategy to boost the 
solar utilization of g-C3N4 as it takes the most important 
factors, namely the electronic band structure and nano-
structure into consideration toward various photocatalytic 
applications.

Throughout the research history of self-modified defec-
tive g-C3N4 [7, 75–99], there exists various defect types 
including the C/N vacancies [100, 101], heteroatom dopants 
[102], metallic dopants [103], grafted functional groups 
[89] as well as crystallinity improvement [83] toward the 
solar-driven HER, CRR, NRR, OER, PCP, and pollutant 
removal applications as reflected by the surging publications 
and citations since 2012 (Fig. 2). Generally speaking, with 
these defect modification strategies, the bandgaps of g-C3N4 
can be dramatically reduced, rendering an enhanced solar 
harvesting ability even to almost 600 nm [102]. While for 
the N vacancies [101] or heteroatomic doping with higher 
electronegativity atoms such as P/S/F [102], there might be 
new energy levels (defect states) lying in the forbidden bands 
or strong electronic polarization effect, respectively. For 
instance, the O-/S/F-doped g-C3N4 would induce an electron 
redistribution and electronic polarization [104], even with 
the electrons accumulating around the bridging N sites in the 
HOMO and LOMO, leading to a faster charge transfer kinet-
ics [55]. Additionally, Gao et al. proposed an N vacant and 
S-doped g-C3N4 with shallow defect states, which enabled 

a higher photocatalytic HER rate of 4,219.9 μmol  g−1  h−1, 
which was 29.1-fold higher than unmodified g-C3N4 [91]. 
The shallow defect states could act as a temporary electron 
reservoir to accommodate the electrons from CBM, sup-
pressing the bulk-phase photocarrier recombination. The Co 
single atoms (SAs) were successfully doped into the g-C3N4 
matrix forming the Co–N bonding via a microwave method 
to promote the CO yield achieved the highest value of 
1.056 μmol  mg−1 [105]. In addition, the crystalline g-C3N4 
with cyano groups also exhibited a high photocatalytic HER 
of 64 μmol  h−1 as its enhanced charge transfer rate and opti-
mized photocarrier separation [106].

The topic of our review is unique as it focuses on the 
self-defect engineering of g-C3N4, limiting the range out of 
morphology control, heterostructures, and coupling com-
pounds [107, 108]. Firstly, we introduce the challenges 
confronted by bulk g-C3N4, mainly including insufficient 
solar light absorption (particularly the longer wavelength 
than 450 nm) and the inferior photocarrier separation 
efficiency in both bulk-phase and surface. Compared 
with other reviews on one or several defect types [62], 
this review is a more comprehensive view as it includes 
all kinds of defect controls including vacancy creation, 
non-metal/metallic doping, functional groups grafting, 
particularly crystallinity enhancement, and defect traps, 
which have been discussed as the solutions of defect engi-
neering. Importantly, theoretical guidance in understand-
ing defect roles and redox mechanism, emphasis on the 
defect states, and probing of photocarrier kinetics by the 
introduction of femtosecond transient spectrum have also 
been throughout reviewed. Last but not least, the limits 
and outlook of defective g-C3N4 have been proposed to 
bring more comprehensive insights for the ultimate goal 
of defect “customization” for future readers.

3.1  Design Principles of Defect Engineering

In general, the defect engineering on g-C3N4 should 
obey three important principles, namely the basic crea-
tion of abundant active sites, enhanced solar harvesting 
ability, and efficient transport (Fig. 3). (i) For the for-
mer abundant active sites, the synthetic strategy mainly 
focuses on the precursor modification along with the 
thermal etching at desired gas atmospheres. The scan-
ning electron microscopy (SEM), transmission electron 
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microscopy (TEM), atomic force microscopy (AFM), and 
Brunauer–Emmett–Teller (BET) techniques have been 
used to characterize the corresponding porous structures. 
(ii) For the enhanced solar harvesting requirement, the 
bandgap calculated via UV–visible diffuse reflectance 
spectra (UV/Vis DRS) should be optimized with experi-
mental feedback. Importantly, density functional theory 
(DFT) calculations are a good guidance tool to learn the 
defect merits. (iii) As for the latter efficient photocar-
rier transport, time-resolved fluorescence spectroscopy 
(TRPL), photocurrent, and electrochemical impedance 
spectroscopy (EIS) are powerful tools to evaluate the 
extent of photocarrier separation efficiency by getting the 

lifetimes, photocurrent, and trapping resistance results. It 
can also be optimized by those approaches of solar har-
vesting. To achieve the ultimate goal of defective g-C3N4 
with the best performance, more research work needs to 
be carried out in the near future, including the precise 
control of crystallinity, defect states with shallow positions 
or even optimized surface states. To achieve the defect 
customization, more advanced in situ probing technolo-
gies are also required such as the in situ diffuse reflec-
tance infrared Fourier transform spectrums (DRIFTS), and 
in situ Femtosecond transient spectrums.

Fig. 2  a Research history outline of defective g-C3N4 photocatalysts for solar applications [7, 55, 81, 87, 89, 91, 100, 101, 103, 104, 109–113]; 
Number of annual publications and citations b using “g-C3N4” as the title from 2012 to 2022 and c using “g-C3N4” plus “hydrogen evolution”, 
or “CO2 reduction”, or “nitrogen reduction”, or “oxygen evolution”, or “pollutant removal”, or “photocathodic protection” as topics in 2022.  
Adapted from ISI Web of Science, dated 8th June 2023
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3.2  Vacancies with Optimized Band Structures 
and Electronic Density

By changing the experimental conditions for g-C3N4 syn-
thesis, either C vacancies or N vacancies can be obtained, 
of which the vacancy type and position can be identified 
by the electron paramagnetic resonance (EPR) signal and 
resolved X-ray photoelectron spectroscopy (XPS) peak area 
ratios of C or N species. Generally speaking, both C and 
N vacancies could impart g-C3N4 with an optimized elec-
tronic structure, including a narrower bandgap, enhanced 
solar light absorption, and more favorable charge separa-
tion and transport, thus rendering an improvement of solar 
utilization (Fig. 4a). Based on the geometrical configuration, 
the C vacancies only occur in the three-coordinated sites 
with the edge and inner sites to be  C3N and  C3N’, respec-
tively. While for N vacancies, the vacant positions can be 
classified into two-coordinated N sites  (N2c), inner three-
coordinated N sites  (N3c’), and outer three-coordinated N 
sites  (N3c), respectively. With the growing knowledge of 
theoretical calculations, the formation of defect states and 
the reaction mechanism for vacant g-C3N4 have also been 
discussed in depth. It is worth mentioning that the C vacan-
cies preferred to induce a delocalized π bonding at the bridg-
ing  N3C sites [104], thus boosting the electrons transferring 
between different  C6N8 units. In this way, the photocarrier 

transport would be more efficient, giving rise to an over-
all photocatalytic performance enhancement. While the N 
vacancies might work in a different way additional energy 
levels  (C3

+, defect states) would be induced in the forbidden 
band [114]. These defect states could play a positive role in 
that, on one hand, the band excitation energy can be reduced 
with enhanced solar harvesting ability. On the other hand, 
these states could accommodate the migrated electrons from 
CBM, suppressing the photocarrier recombination process. 
Benefiting from the above-mentioned factors, the N vacant 
g-C3N4 generally delivers a substantially promoted photocat-
alytic activity [91]. Therefore, this section would start with 
C vacancies, then N vacancies, and finally both C vacancies 
and N vacancies in one g-C3N4 material.

3.2.1  C Vacancies with Enhanced Electronic 
Polarization

An initial work on C vacant g-C3N4 was reported by Yang’s 
group [115]. Specifically, the porous holy C vacant g-C3N4 
nanosheets (HGCN) were obtained by the thermal exfolia-
tion of bulk g-C3N4 (BGCN) under  NH3 atmosphere. Com-
pared to pristine BGCN, HGCN owned plentiful in-plane 
pores that were more accessible to aqueous solution and 
reduced van der Waals interaction, which could significantly 

Fig. 3  Design principles of defective g-C3N4 toward better photocatalytic performance
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enhance the mass transport and photocarrier separation for 
water splitting. However, the author claimed that the C 
vacancies might originate from the loss of graphitic C spe-
cies according to the increased peak-area ratio of N=C–N 
to C=C from 0.13 to 0.14 for BGCN and HGCN, respec-
tively (Fig. 4b). This explanation could be fuzzy because 
the C=C peak for both samples was not obvious, and this 
weak signal might also come from the equipment or sam-
ple contamination. Different from our expectation, HGCN 
showed an enlarged bandgap of 2.90 eV that was 0.31 eV 
higher than BGCN (Fig. 4c), which was supposed to be the 
quantum confinement effect owing to the small grain size 
and ultra-thin merits of HGCN nanosheets. Additionally, 
the authors also insisted that, owing to the C vacancies, 
the enhancement of light absorption in HGCN in the near-
infrared region could also be witnessed. Benefiting from the 
above-mentioned factors, this C vacant g-C3N4 exhibited a 
prolonged charge lifetime and enhanced HER rate, which 
was 1.7 and 20-fold higher than bulk g-C3N4.

Different from the above study, Li et al. fabricated the 
tubular g-C3N4 with C vacancies presented in the edge  C3N 
site via the pyrolysis of urea and melamine mixture under an 

inert  N2 atmosphere, and the corresponding products were 
labeled as TN−x (x presents annealing temperature) [116]. 
The authors claimed that the  N2 atmosphere was critical for 
the g-C3N4 morphology and defects generation. Especially, 
g-C3N4 obtained without  N2 (T 500) displayed a tubular 
length of 20 μm and diameter of 1–2 μm and bulky nano-
plates inside. In contrast, TN 500 was observed with thin 
nanosheets inside, which further demonstrated the exfolia-
tion process induced by the  N2 atmosphere. In addition, the 
Lorentzian line for TN 500 was considerably attenuated, 
confirming the appearance of C vacancies (Fig. 4d). Accord-
ing to the DFT calculations, both samples exhibited a strong 
covalent interaction with NO due to the high electronic loca-
tion function (ELF) value of around 0.81 eV (Fig. 4e), indi-
cating the stronger electronic polarization effect due to the 
absence of C vacancies. Furthermore, the NO molecules can 
be more easily activated by TN 500 as reflected by its larger 
adsorption energy and carried total charge (Δq) of − 3.25 eV 
and 0.16 e, which are 1.79 eV and 0.13 e higher than those 
of T 500, respectively (Fig. 4f). This demonstrated that the 
NO molecules were extremely easy to be absorbed and acti-
vated over TN 500 than T 500, which would facilitate the 

Fig. 4  Defect control of  C3N vacancies. a Possible C vacant and N vacant positions in g-C3N4; b high-resolution C 1 s and N 1 s XPS spectra; 
c DRS spectra and Tauc plot [115].  Copyright 2015, Wiley–VCH. d Electron paramagnetic resonance (EPR) spectra; e ELF diagrams (left: T 
500; right: TN500); f adsorption energy and charge density difference between T 500/TN 500 and NO [116]. Copyright 2020, Elsevier
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redox kinetics of NO photo-oxidation activity. Therefore, 
TN 500 showed the highest removal rate of NO at 47.7%, 
implying the superior role of surface C vacancy in accelerat-
ing the NO removal rate.

Giving a simple simulated model of g-C3N4 with a tria-
zine unit, Wang’s group suggested that the vacant C only 
appeared in the three-coordinated sites (Fig. 5a). In short, 
the vacancies could be obtained after a facile annealing pro-
cess of bulk g-C3N4 under hot Ar flow at 520 °C for 1 h 
[100]. The Ar molecules were very active with high energy 

doing the irregular motion and thus had a bigger chance to 
hit the C atom surface than the N atom due to the smaller 
carbon molecular weight. Consequently, the C atoms were 
sputtered from the triazine framework to form the C vacant 
g-C3N4 (Cv-g-C3N4). This was in good agreement with the 
smaller peak area ratio of C–N3/C–C for Cv-g-C3N4 (1.2) 
than bulk g-C3N4 (2.7). Therefore, it was reasonable to 
see the weaker EPR signal of a Lorentzian line centered 
at about 3512 G, suggesting the decreased unpaired elec-
tron density around C vacancies (Fig. 5b). Interestingly, 

Fig. 5  Defect control of  C3N vacancies. a Possible formation mechanism of carbon vacancy; b ESR spectra of g-C3N4 and Cv-g-C3N4; c C 
vacancy could significantly inhibit the recombination of photogenerated carriers; d Calculated band structure of g-C3N4; e calculated electron 
density of g-C3N4; f Calculated electron density of Cv-g-C3N4; g Calculated band structure of g-C3N4 [100].  Copyright 2016, Elsevier. h UV–
vis DRS and optical photographs; i  CH3OH yields of g-C3N4, g-C3N4-C, g-C3N4-D, g-C3N4-T, CM/g-C3N4, and 3DM C/g-C3N4, where C, D, T, 
and CM present the precursors of cyanamide, dicyandiamide, thiourea, and a mixture of cyanuric acid and melamine; j Schematic diagram illus-
trating the band structures of g-C3N4, 3DM C/g-C3N4 and the probable photocatalytic process [117]. Copyright 2021, Elsevier
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the authors claimed that these C vacancies could induce 
unsaturated N atoms with paramagnetic centers to attract 
more electrons from CB and break the symmetry of Cv-g-
C3N4 with electron delocalization, further suppressing the 
photocarrier recombination (Fig. 5c). As for the calculated 
electronic band structures, Cv-g-C3N4 displayed a narrower 
bandgap and higher energy level density of VB than pris-
tine g-C3N4 (Fig. 5d-g), revealing its enhanced solar light 
harvesting ability and more excitable electrons due to the 
electron delocalized effect caused by C vacancies. Benefit-
ing from the above-mentioned factors, Cv-g-C3N4 changed 
the  H2O2 formation pathway from a two-step single elec-
tron indirect reduction into a one-step two-electron direct 
reduction way, delivering a 14-times higher  H2O2 forma-
tion than bulk g-C3N4. Delivering the same C vacant posi-
tion, Wang and co-workers synthesized the 3D macropore 
g-C3N4 with C vacancy (3DM C/g-C3N4) via the calcination 
of polymethylmethacrylate (PMMA) spheres with cyanuric 
acid and melamine at 500 °C for 2 h [117]. The authors 
claimed that 3DM C/g-C3N4 had abundant macropores due 
to the in situ thermal removal of PMMA spheres, arousing 
an increased BET surface area with plentiful reactive sites 
for better capture and utilization of visible light. According 
to the UV–visible diffuse reflectance spectra (DRS, Fig. 5h), 
due to the introduction of C vacancies, the 3DM C/g-C3N4 
showed a much wider solar light absorption range from 400 
to 800 nm, which was significantly stronger than its coun-
terparts of g-C3N4 and CM/g-C3N4 with the corresponding 
limited absorption edges of 460 and 435 nm, respectively. 
Furthermore, the photoluminescence (PL) spectra illustrated 
a much lower 3DM C/g-C3N4 intensity compared to those 
of CM/g-C3N4 and original g-C3N4. This implied the pres-
ence of C vacancies in 3DM C/g-C3N4 can not only enhance 
light absorption but also suppress photocarrier recombina-
tion, which finally boosted the highest  CH3OH formation 
rate up to 7.5 μmol  g−1  h−1 (Fig. 5i). Most importantly, the 
electronic band structure showed that, due to C vacancies, 
the 3DM C/g-C3N4 displayed a more negative CB position 
than bulk g-C3N4 by 0.52 eV, further indicating its stronger 
driving force toward  CO2 reduction (Fig. 5j).

3.2.2  N Vacancies with Defect States

Similar to the O vacancy-induced  Ti3+ in the  TiO2 system 
with additional defect states [118], Niu et al. claimed that 

the N vacancies in g-C3N4 could also arouse  C3+ states with 
new energy levels [114], which has also been demonstrated 
by the following work on  N2C vacant g-C3N4 [101]. In detail, 
the target defective samples were prepared by the anneal-
ing of bulk g-C3N4 (BCN) from 475 to 550 °C under an  H2 
atmosphere, labeling as CN−x (x was heating temperature). 
Their  N2C vacant position was confirmed by the decreas-
ing XPS peak area ratio of C–N=C/N–C3 at 3.82 and the 
increasing EPR signal of CN−x in comparison with those 
of BCN. It is interesting to see, with the increasing heat-
ing temperature, the color of CN−x gradually turned to 
brown, and the Urbach tail became wider with enhanced 
solar harvesting ability (Fig. 6a). This was ascribed to the 
defect states (also called midgap states), which had also 
been verified by the additional energy levels around Femi 
levels near CBM of defective g-C3N4 via DFT calculations 
results (Fig. 6b). It is worth to mention that the N vacancy 
induced defect states were deeper as the increased heating 
temperature (Fig. 6c), which was good for solar harvesting 
but detrimental for photocarrier separation. As these deep 
defect states could act as photocarrier recombination centers 
to lower the photoactivity of defective g-C3N4. As a result, 
we observed CN-550 exhibited an inferior photocatalytic  H2 
evolution rate of 55.64 μmol  h−1, which was 13.5% lower 
than CN-525. This point is of critical importance for future 
defect design.

The N vacancies have been demonstrated to be efficient in 
boosting the g-C3N4-based NO removal. For instance, Dong 
et al. synthesized the N vacant g-C3N4 via the heat treatment 
of urea (CN-U) with a considerably enhanced EPR signal 
[113]. Impressively, they employed an in situ FT-IR setup 
to monitor the active species change and reveal the redox 
mechanism. As reflected in Fig. 6d–f, the instrument was 
composed of an FT-IR spectrometer, a diffuse reflectance 
cell with IR and solar irradiation windows, a high-temper-
ature reaction chamber, a gas line, and a cooling system. 
The gas inlet and outlet enabled the chamber purification 
to obtain the clean NO and  O2 feeding gas. The diffusion 
testing mode could identify the real-time active species by 
identifying the typical functional groups of NO oxidization 
intermediates. As a result, CN-U was observed with much 
stronger NO absorption and activation performance dur-
ing the redox reaction. In a following-up work, the in situ 
DRIFTS observation and in-deep calculations were carried 
out to the inner mechanism by employing the prepared  N2C 
vacant g-C3N4 (Nv-CN) as photocatalyst [39]. Taking the 
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best Nv-CN sample for example, its in situ DRIFTS con-
firmed that the new peaks around 1350/1299   cm−1 and 
1024  cm−1 were nitro compounds (-NO2) and bidentate-
state, respectively (Fig. 6g). Other peak intensities around 
3604, 1095, and 786  cm−1 were much higher than pristine 
g-C3N4, further demonstrating the efficient absorption and 
activation of NO on the Nv-CN surface. However, its NOH 
peak intensity was much weaker, suggesting NO and  O2 
were rapidly absorbed on Nv-CN, rather than generating the 
less active terminal N–H bonds. Furthermore, once irradia-
tion, Nv-CN also showed new peaks at around 1500–1600, 

1226, and 1192  cm−1, assigning to the monodentate nitrate 
bidentate nitrate, and bidentate nitrite, respectively (Fig. 6h) 
[119]. Additionally, peaks assigned to other types of nitrates 
and peroxo species of Nv-CN were much stronger than 
those of unmodified g-C3N4, implying the boosted photo-
catalytic activity owing to the presence of  N2C vacancies. 
Based on the above DRIFTS analysis, one can conclude that 
the different reaction pathways (Fig. 6i): (1) For pristine 
g-C3N4, it showed a poorer absorption and activation ability 
of NO and  O2, delivering a primary and less-active path-
way of NH → NOH → OOH → NO

− and surface peroxo 

Fig. 6  Defect control of  N2C vacancies. a UV–vis DRS of BCN and CN-x; b calculated PDOS of BCN and N vacant g-C3N4; c schematic illus-
tration of the electronic structure of BCN and CN-x [101].  Copyright 2017, American Chemical Society. d Schematic diagram of in situ FT-IR 
reaction cell; digital photos of e a Tensor II FT-IR spectrometer and loading parts and f in situ FT-IR measurement working condition [113]. 
Copyright 2018, Elsevier. In situ DRIFTS images for g adsorption of NO/O2 and h photocatalytic reactions of Nv-CN; i proposed reaction path-
ways for adsorption and the photocatalytic oxidation of NO over pristine (left) and N-deficient (right) g-C3N4 [39]. Copyright 2019, American 
Chemical Society
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species. (2) For Nv-CN, it showed a more efficient redox 
pathway of directly generating bidentate states into –NO2, 
then to  NO3

− in the presence of ·O2
−. This promoted NO 

removal activity of Nv-CN was ascribed to its significantly 
enhanced adsorption energy toward  O2 (− 5.99 eV) and NO 
(− 5.91 eV) with spontaneously bond breaking than pristine 
g-C3N4 (0.48 and 0.29 eV) according to DFT calculations. 
Additionally, the authors also claimed the N vacancy con-
centration was critical to boost the best photocatalytic NO 
removal efficiency. Otherwise, these would become pho-
tocarrier traps, leading to severe photocarrier recombina-
tion. This meaningful work has paved researchers with new 
insight to redox mechanism along with more precise controls 
are needed for future vacancy study.

Taking the best Nv-CN sample for example, its 
in  situ DRIFTS confirmed that the new peaks around 
1350/1299   cm−1 and 1024   cm−1 were nitro compounds 
(−  NO2) and bidentate-state, respectively (Fig. 6g). Other 
peak intensities around 3604, 1095, and 786  cm−1 were much 
higher than pristine g-C3N4, further demonstrating the effi-
cient absorption and activation of NO on the Nv-CN surface. 
However, its NOH peak intensity was much weaker, sug-
gesting NO and  O2 were rapidly absorbed on Nv-CN, rather 
than generating the less active terminal N–H bonds. Fur-
thermore, once irradiation, Nv-CN also showed new peaks 
at around 1500–1600, 1226, and 1192  cm−1, assigning to the 
monodentate nitrate bidentate nitrate, and bidentate nitrite, 
respectively (Fig. 6h) [119]. Additionally, peaks assigned 
to other types of nitrates and peroxo species of Nv-CN were 
much stronger than those of unmodified g-C3N4, implying 
the boosted photocatalytic activity owing to the presence of 
 N2C vacancies. Based on the above DRIFTS analysis, one 
can conclude that the different reaction pathways (Fig. 6i): 
(1) For pristine g-C3N4, it showed a poorer absorption and 
activation ability of NO and  O2, delivering a primary and 
less-active pathway of NH → NOH → OOH → NO

− and 
surface peroxo species. (2) For Nv-CN, it showed a more 
efficient redox pathway of directly generating bidentate 
states into -NO2, then to  NO3

− in the presence of ·O2
−.

Chen’s group has compared the  N2C and  N3C vacancies 
in affecting the electronic band structures of g-C3N4 by 
DFT calculations using the simple triazine-based frame-
work as calculated models [120]. As the unstable nature of 
N vacancies, they also employed the H atoms to statured 
with these N defects in theoretical analysis and used the  H2 
atmosphere to get the N vacant g-C3N4 with amino group in 

experiment (Fig. 7a). Regarding the pure  N3C vacant g-C3N4, 
it showed larger bandgap values than the  N2C one, indicat-
ing its inferior role in enhancing the solar light harvesting 
ability (Fig. 7b). So as the H statured N-deficient g-C3N4. 
However, we observed the latter had a much lower band-
gap than the former, which was attributed to the band-like 
defect states below the CBM. This explained why the above-
mentioned CN−x had new defect states under the same  H2 
atmosphere (Figs. 7c–e and 6c). As a result, the experimen-
tal N-vacant g-C3N4 with edge H atoms prepared under  H2 
(g-C3N4  (H2)) exhibited the highest HER rate, which was 
4.8 times higher than pristine g-C3N4. Recently, Li et al. 
prepared the  N3C vacant AC-CNx through the calcination 
of melamine/azodicarbonamide (AC), where x is the mass 
of AC while the melamine mass was kept at 10 g [121]. 
Compared to pristine g-C3N4, AC-CN4 showed a reduced 
XPS intensity of –C2N and –C3N, and increased –N2C/–N3C 
peak-area ratio by 0.867 than those of bulk g-C3N4 (CN), 
further indicating the N vacancies were located at –N3C 
sites (Fig. 7f). Interestingly, during the NO removal activ-
ity, these N vacancies played a critical role in boosting the 
concentration of singlet  O2 (1O2), which was verified to be 
the active species as reflected by the TEMP spin trapping 
EPR spectra (Fig. 7g) and active species confirmation exper-
iment (Fig. 7h). According to the theoretical calculations, 
in contrast with CN, AC-CN4 exhibited an enhanced NO 
and 1O2 adsorption energy by 1.12 and 2.3 eV, respectively 
(Fig. 7i). This was ascribed to the strong electronic polariza-
tion effect, which contained electron-rich and electron-poor 
areas, giving a polar chemical interaction with other gas. 
Thus, the redox kinetics were accelerated. In addition, the 
incorporated N vacancies as the reactive sites in AC-CN4 
also quenched the adsorption of intermediates  (NO2)/final 
products  (NO2

– and  NO3
–). All these factors rendered 

AC-CN4 with a significantly improved NO removal rate of 
40.3%, which was 2.28-fold higher than CN, reflecting the 
efficient role of N vacancies (Fig. 7j).

Similarly, Tian and co-workers synthesized the  N3C vacant 
g-C3N4 via the polymerization of urea (10 g) and ammo-
nium acetate (0.1–0.5 g), of which the product was named 
g-C3N4-N3C-X (X: mass of ammonium acetate) [122]. It is 
worth mentioning that the decomposition of ammonium 
acetate would generate  CO2 and  NH3, which was critical to 
etch the  N3C lattices, leaving the g-C3N4 with gas bubbles 
during the pyrolysis process, and thus produced a porous 
nanosheets structure. In comparison with pure g-C3N4, 
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g-C3N4-N3C-X displayed a reduced peak area ratio of  N3C/
N2C from 0.42 to 0.31, further evidencing the formation of 
 N3C vacancies. Remarkably, when the ammonium acetate 
mass reached 0.3 g, the N vacant g-C3N4 achieved the high-
est  H2O2 and  N2 fix rates of 1098 and 1086 μmol  g−1  h−1, 
which was 11.1 and 15.5 times higher than pure g-C3N4. 
The authors further employed DFT calculations to reveal 
the reaction mechanism of  H2O2 and  N2 reduction, respec-
tively. As shown in Fig. 8a, we observed a much smoother 

reaction pathway of  O2 reduction on g–C3N4–N3C-0.3 with 
the highest Gibbs free energy change (ΔG) of 1.1 eV from 
*OOH to *H2O2 step, which was 0.17 eV smaller than that 
of pure g-C3N4 to form *OO specie. Regarding to the NRR 
reaction, the situation was much more complex as the reac-
tion mechanisms can be classified into the distal pathway 
and alternating pathway. In detail, for the former pathway, 
one can see the rate-determining step of pure g-C3N4 was 
between *NNH2 to *N with a ΔG of 1.01 eV, which was 

Fig. 7  Defect control of  N2C and  N3C’ vacancies. Calculated models of g-C3N4 with a  N2C statured with H atoms and b  N3C statured with H 
atoms; c PDOS of (i)  N3C and (ii) three-coordinated H substitution at  N3C site; d PDOS of (i)  N2C and (ii) two-coordinated H substitution at  N2C 
site. Color code: red (s orbital), blue (p orbital), and black (total); e Photocatalytic HER comparison of various g-C3N4 samples [120].  Copy-
right 2019, American Chemical Society. f N 1 s spectra; g TEMP (2,2,6,6-tetramethylpiperidinooxy) spin-trapping EPR spectra  for1O2 of CN 
and AC-CN4 in dark and under visible-light (λ ≥ 420 nm); h NO oxidation comparison of AC-CN4 with the addition tryptophan scavenger; i 
adsorption energy and charge density difference of CN and AC-CN4 with NO; j photocatalytic NO oxidation curves over different photocatalysts 
[121]. Copyright 2020, Elsevier
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0.42 eV higher than that of g-C3N4-N3C-0.3 for the conver-
sion from *NH2 to *NH3 (Fig. 8b–c). For the latter pathway, 
a similar result was also reflected by the 0.29 eV lower ΔG 
for g-C3N4-N3C-0.3. Additionally,  O2 preferred to be spon-
taneously absorbed onto the g-C3N4-N3C-0.3 surface, and 
 N2 exhibited a dramatically reduced absorption and active 

barrier on its surface than pure g-C3N4 due to the much 
lower or even negative ΔG up to − 1.91 eV, strongly sug-
gesting the ultra-active sites of the  N3C vacancy.

Apart from the single C vacancies and single N vacan-
cies in the g-C3N4 matrix, researchers started to explore 
the synergistic effect of both vacancies on photocatalytic 

Fig. 8  Defect control of  N3C vacancies. a Gibbs free energy diagrams for photocatalytic  H2O2 production of g-C3N4 and g-C3N4 with  N3C 
vacancies; Gibbs free energy diagrams of the distal and alternating pathway of  N2 reduction process of b g-C3N4 and c g-C3N4 with  N3C vacan-
cies [122].  Copyright 2023, Elsevier
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performance. A typical synthesis and theoretical work were 
carried out by Ren’s group [123]. They used a very ingen-
ious  He+ ion irradiation method to avoid the impurities 
from extra chemicals. The irradiation ions with a certain 
energy  E0 would hit the atoms and gradually lose energy 
after a series of collisions with target atoms. If the hitting 
energy was larger than the displacement energy, the C/N 
atoms would be sputtered out. In this case, the input energy 
was high enough to hit both C and N atoms out, and this 
non-chemical selectivity made both vacancies exist simul-
taneously. By controlling the hitting parameters with total 
energy fluence from 0 to 86.25 ×  1013 ions  cm−2, the C/N 
vacancies gradually increased, of which the N defect con-
centration was much higher than C according to the experi-
mental XPS analysis and theoretical Stopping and Range of 
Ions in Matter (SRIM) simulations. Despite the experimental 
failure to obtain single C or single N vacant g-C3N4, their 
DFT calculations explained the influence of single vacancy 
and C/N vacancies on the electronic band structures (Fig. 9). 
Compared to the bulk g-C3N4, one can see that the C vacant 
g-C3N4 had a dramatically reduced bandgap by 0.97 eV, only 
1.48 eV, extending the optical absorption (Fig. 9a–d). For 
the V vacant g-C3N4 case, its bandgap was slightly reduced 
by 0.07 eV and formed the C–C bond into a five-ring unit 
to keep the structure stable. Interestingly, defect states 
were lying below the CBM of V vacant g-C3N4 (Fig. 9e), 

which was also consistent with the obvious tail absorption 
in the DRS result. The calculated electronic density results 
indicated the electrons preferred to localize around the N 
vacancies (Fig. 9f–h). Notably, the presence of both C and 
N vacancies enabled g-C3N4 with slight bandgap narrowing 
and more defect states localized around the vacancies. The 
authors also claimed that this was good for electron-trapping 
to enhance the photocarrier separation. In summary, the C 
vacancy was more effective in narrowing the bandgap while 
the N vacancy was more useful in creating defect states. 
Taking together, we can observe both optimized solar har-
vesting ability and photocarrier transfer. As a result, the C/N 
vacancy co-modified g-C3N4 exhibited a significant HER 
rate of 1271 μmol  g−1  h−1, which was 19 times higher than 
the bulk g-C3N4.

Therefore, based on the above review, we can come to a 
summary of this vacancy section. The C vacancies and N 
vacancies realized by annealing bulk g-C3N4 or modified 
precursors under different atmospheres or physical treat-
ments such as plasma environments are both beneficial to 
optimize the electronic band structure with enhanced solar 
light absorption and photocarrier transport. Additionally, 
recent reports on defective g-C3N4 with vacancies at dif-
ferent positions toward various solar applications are listed 
and comparable in Table 1. We believed this would help 
readers to find clues for more precise control of vacancy 
creation. Despite significant progress has been made, there 

Fig. 9  Defect control of  C3N’ and  N2C vacancies. Optimized atomic structures and DOSs diagrams of a, b pure g-C3N4; c, d C vacant g-C3N4; e, 
f N vacant g-C3N4; g, h C vacant and N vacant g-C3N4. The Fermi levels are located at 0 eV [123].  Copyright 2019, Wiley–VCH
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also remain some ambiguities that need to be resolved in 
the near future. Firstly, a single vacancy and both vacancies 
cannot be obtained with precise concentration control via 
one synthetic strategy. Their deep relationships are hard to 

distinguish, such as to which extent can the synergistic effect 
reach the optimized state. Secondly, the study on vacancy-
associated defect states (midgap states) is still in the begin-
ning, and defect control on tuning their position needs to be 

Table 1  Comparison of vacant g-C3N4 toward various solar applications

n/a indicates there is no discussion on vacancy sites in original publications

Photocatalyst Defect type Light source Solar applications Photocatalytic activity Refs.

N-deficient
g-C3N4

N2C λ > 400 nm HER 455 μmol  g−1  h−1 [114]

g-C3N4 N2C λ > 420 nm HER 5.7 μmol  g−1  h−1 [120]
RCNO N2C simulated sunlight AO7 removal 0.01  min−1  g−1 [124]
g-C3N4 N2C λ > 420 nm HER 2015.5 μmol  g−1  h−1 [125]
DCN-15A N3C λ > 420 nm H2O2 formation 96.8 μmol  g−1  h−1 [84]
20KCSCN N2C λ > 420 nm HER 652 mmol  g−1  h−1 [126]
ECNV-2.5 N2C λ > 420 nm acetone formation 467.6 ppm  min−1  g−1 [127]
gcnse-1 N2C λ > 420 nm HER 1.16 mmol  g−1  h−1 [128]
CNCN N3C λ > 420 nm HER 3591 μmol  g−1  h−1 [129]
g-C3N4 N2C λ > 420 nm HER 1194.8 mmol  g−1  h−1 [130]
ODN-CN2 N2C λ > 420 nm HER 5833.1 μmol  g−1  h−1 [131]
ZCNQ50 N2C simulated sunlight HER 4368 μmol  g−1  h−1 [132]
SA‑Cu‑CN + Nv N2C λ > 420 nm HER 605.15 μmol  g−1  h−1 [133]
NV-g-C3N4 N2C Visible light HER 3259.1 μmol  g−1  h−1 [134]
VCN N2C λ > 420 nm Pollutant removal  (NO2) 0.0183  min−1  g−1 [135]
CN-M-630 N2C λ > 420 nm HER 5304.3 μmol  g−1  h−1 [136]
Nv-CNN-3 N2C λ > 420 nm H2O2 formation 1768 μmol  g−1  h−1 [137]
PHCN3 N3C λ > 420 nm HER 3631 μmol  g−1  h−1 [138]
FNGK-10 N2C λ > 420 nm BPA

removal
0.327  min−1  g−1 [139]

C3N4-Cl4 N2C λ > 300 nm Water spitting 9640 μmol  g−1  h−1 [140]
HCN-C0.5 N (n/a) λ > 400 nm MPB removal 1.1  min−1  g−1 [141]
g-C3N4 − x/g-  C3N4 N2C Visible Light Atrazine removal 0.239  min−1  g−1 [117]
NFS/NCN-2 N (n/a) Visible Light Cr4+

removal
1.272  min−1  g−1 [142]

CN-CV C3N Visible light H2O2 formation 8143.5 μmol  g−1  h−1 [143]
g-C3N4-V C3N’ simulated sunlight NRR 84 μmol  g−1  h−1 [144]
VC-g-C3N4 C3N’ Visible light HER 450 mmol  g−1  h−1 [145]
HGCN C3N’ simulated sunlight NRR 25.54 ppm  g−1

cat  h−1 [146]
VCN C3N λ > 420 nm HER 5.12 mmol  g−1  h−1 [147]
C1.0CN C3N λ > 420 nm BPA

removal
3.37  min−1  g−1 [148]

3DM C/g-C3N4 C3N simulated sunlight HER 64.7 μmol  g−1  h−1 [149]
g-C3N4 C3N λ > 400 nm HER 10.14 μmol  g−1  h−1 [150]
VCN C3N λ > 420 nm HER 3304.5 μmol  g−1  h−1 [151]
PCN C (n/a) λ > 420 nm Phenol removal 4375 μmol  g−1  h−1 [152]
GCN C3N λ > 420 nm H2O2 formation 507.82 mmol  g−1  h−1 [153]
Ti3C2Tx/Vc-CN C3N’ λ > 400 nm CRR 20.54 μmol  g−1  h−1 [154]
CCN C (n/a) λ > 420 nm Lidocaine removal 10.1  min−1  g−1 [155]
CN-DEG C (n/a) Visible Light HER 540 μmol  g−1  h−1 [156]
HTCN C3N’ λ > 420 nm HER 1534.3 μmol  g−1  h−1 [157]



 Nano-Micro Lett.           (2024) 16:70    70  Page 16 of 66

https://doi.org/10.1007/s40820-023-01297-x© The authors

specified. Thirdly, the photocarrier transfer dynamics in the 
bulk-phase and surface are different, which urgently needs 
to be discussed in depth. Since the vacancies might exist in 
both bulk and surface, a more advanced time-resolved spec-
trum should be paid into this section to reveal the detailed 
photocarrier separation and transfer progress.

3.3  Non‑metal Dopants with Optimized Band 
Structures and Electronic Density

The metal-free merit of g-C3N4 can also be maintained 
by non-metal doping with heteroatoms such as C, P, S, O, 
B, and F [158]. Similarly, similar to C and N vacancies, 
these non-metal dopants also enable g-C3N4 with opti-
mized electronic structure, enhanced visible-light harvest-
ing, and high charge separation efficiency.

3.3.1  C Dopants with Electronic Delocalization

The C dopants, replacing the bridging N atoms in the 
g-C3N4 matrix, have been demonstrated to improve the 
bulk electronic conductivity due to the presence of delo-
calized big π bonds between the hexatomic rings and 
substituted C [104]. In a typical work, Zhao and co-
workers fabricated the C-doped g-C3N4 using melamine 
and melamine-based resin foam as precursors [159]. After 
the thermal decomposition, C atoms were in situ doped 
into the g-C3N4 framework. The enhanced conductivity 
was verified by the reduced charge transfer resistance 
(Rct) according to the EIS measurement. Additionally, 
the C-doped g-C3N4 also shows extended solar absorp-
tion from visible light to near-infrared (800 nm). As a 
result, this defective C-doped g-C3N4 exhibits an excellent 
NO photodegradation constant of 0.95  min−1. A similar 
study was also reported by Zhang and colleagues, which 
employed a hydrothermal method to obtain the C-doped 
g-C3N4 with glucose and melamine as precursors [160].

To further boost solar light absorption and suppress photo-
carrier recombination, the C-rich g-C3N4 with both N vacan-
cies and porous structure was designed [161]. Different from 
previously isolated C dopants, these C dopants existed in 
the form of C rings, which were realized by the additive of 
conjugated methyl-cyclodextrin. The g-C3N4 photocatalyst 
consisted of three layers with the pure carbon nitrides in the 

core, the carbon dopant layer in the middle, and the carbon 
layer in the outermost layer. The unique structure of gradual 
C-doped g-C3N4 endowed itself with not only enhanced elec-
tronic conductivity but also a narrower bandgap and stronger 
solar light absorption. More importantly, the C dopants and 
N vacancies induced the formation of mid-gap states, which 
could further lower the photoexcitation energy which is 
smaller than the bandgap. In addition, the mid-gap states 
can act as a temporary reservoir to accept the migrated elec-
trons from CB, and thus the recombination process of elec-
trons and holes was suppressed. Therefore, the C defective 
g-C3N4 displayed an exceptional solar-driven HER rate of 
125.1 μmol  h−1  g−1, which was over 21-fold as high as the 
pristine g-C3N4.

3.3.2  N Dopants with Defect States

Recently, N-doped g-C3N4 has been proposed via the anneal-
ing of melamine cyanurate supermolecules via the hydro-
thermal reaction of melamine and aminourea hydrochloride 
[162]. Doping at an edge three-coordinated C site, the doped 
N atoms induced defect states in the electronic band struc-
ture near CBM, thus extending the solar harvesting abil-
ity to almost 550 nm. Additionally, the N-deficient g-C3N4 
exhibited an improved TC removal rate of 93.3% within 
60 min. Despite the different N-doping sites of the inner 
three-coordinated C atom, Umare et al. explained the reason 
for enhanced photocatalytic HER activity of N-rich g-C3N4 
in depth using the DFT calculations [163]. Before this, in 
the experiment, they successfully synthesized the polymer-
ized g-C3N4 (PCN) by directly annealing melamine in air. 
Those prepared with lower N-doping levels employing ami-
noguanidine hydrochloride/urea as the precursor and higher 
N-doping levels with urea/aminoguanidine hydrochloride/
melamine as the precursor were named APCN and NPCN. 
In increasing order of PCN < APCN < NPCN, we saw a 
gradually enhanced photocatalytic HER rate of 5.81, 6.97, 
and 40.32 mmol  g−1, respectively. The authors then gave 
three calculated models to simulate g-C3N4 with different 
N-doping concentrations in terms of band structures, charge 
density distribution, as well as ΔG change (Fig. 10). Com-
pared to PCN, NPCN displayed new energy levels that were 
also called defect states/midgap states in the forbidden band, 
mainly due to the existence of new N dopants (Fig. 10a–d). 
This was also true for APCN. The authors claimed that this 
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might be more advantageous for photocarrier separation 
from these defect states and CBM. The electronic density 
pictures also revealed there were more electrons transferred 
from N dopants to H atoms, further accelerating the photo-
carrier transfer kinetics (Fig. 10e). The  H2 evolution pathway 
also confirmed a smoother H* adsorption/desorption process 
due to the slight ΔG change of − 0.18 eV, which was 0.31 
and 0.03 eV smaller than those of PCN and APCN, respec-
tively (Fig. 10f). Therefore, we can conclude that N dopant 
is also beneficial to the photocatalytic ability optimization 
of g-C3N4, which was even similar to the work-principle of 
N vacancies as above mentioning [123].

3.3.3  P Dopants with Defect States

Similar to the above-mentioned gradual C-doped g-C3N4, 
Ran and colleagues demonstrated that P atoms could also 
induce the formation of mid-gap states in g-C3N4 with an 
extended solar light absorption to 557 nm and high pho-
tocarrier separation efficiency both theoretically and 

experimentally (Fig. 11a) [110]. In addition, due to the 
more extensive thermal etching of protonated precursor, the 
porous P-doped g-C3N4 nanosheets (PCN-S) also presented 
a quantum size effect with an enlarged bandgap by 0.23 eV 
higher than the bulky P-doped g-C3N4 (PCN-B, Fig. 11b). 
Intriguingly, a greater reductive driving force and promoted 
mass-transfer process for PCN-S was achieved owing to 
the more negative CBM and the macroporous structure, 
respectively. Therefore, this PCN-S exhibited an outstand-
ing HER rate of 1596 μmol  h−1  g−1 and an apparent quan-
tum efficiency of 3.56% at 420 nm. Researchers also found 
an interesting result that the phosphorous precursors played 
an important role in the P-doping sites [158]. For instance, 
the P atoms were prone to replace the bay or corner C sites 
in the tri-s-triazine units to form the P–N bonding when 
using 1-butyl-3-methylimi-dazolium hexafluorophosphate 
 (BmimPF6) as P source [99]. The P atoms were found to 
be doped into the g-C3N4 lattices to form a P–N bond when 
using  (NH4)2HPO4 as a P precursor [164]. Despite the differ-
ent P doping sites, both situations can achieve excellent solar 

Fig. 10  Defect control of N dopants. a, c Optimized electronic structure and b, d DOS of PCN and NPCN; e three-dimensional charge density 
distribution (blue color denotes electron accumulation, whereas green color to depletion region); f calculated hydrogen adsorption energy on the 
PCN, APCN, and NPCN catalyst [163].  Copyright 2023, Elsevier
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performance due to the narrowed bandgap and accelerated 
photocarrier transfer kinetics.

In follow-up work, Fang’s group synthesized a variety of 
P-doped g-C3N4 nanoflakes (PCNNFs) by a former thermal 
condensation of phytic acid and urea (product: PCN−x, x 

is the mass ratio of phytic acid/urea), followed by a nano-
structure tailoring of phaco-fragmentation and freeze-drying 
(Fig. 11c) [102]. The porous PCNNFs exhibited fragmen-
tized nanoflakes with significantly improved BET sur-
face area of 223.2  m2  g−1, which shortened the interfacial 

Fig. 11  Defect control of P dopants. a Density of states (DOSs) of P-doped g-C3N4; b Electronic band structure of P-doped g-C3N4, CN-B, and 
CN-S [110].  Copyright 2018, Elsevier. c Illustration of the preparation process of PCNNFs; d 31P MAS NMR spectra of PCN and PCNNFs; e 
UV–vis DRS and f photocatalytic HER rates under visible-light irradiation (λ > 420 nm, inset: QE comparison at 420 and 600 nm) for CN, PCN-
x, and PCNNFs [102]. Copyright 2015, Royal Society of Chemistry
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diffusion path of active species and thus accelerated the 
transfer and separation of photocarriers. The P substituted 
site was proved to be the corner C connected to the tertiary 
amine according to the two distinctive peaks around − 0.8 
and − 12.4 ppm as shown in the 31P solid-state magic angle 
spinning nuclear magnetic resonance (MAS NMR) spectra 
(Fig. 11d). Moreover, the excellent visible-light absorption 
of PCNNFs was substantially extended to 800 nm, superior 
to those of bulk g-C3N4 and PCN−x, indicating the effi-
ciency of P-doping and advanced nanostructure (Fig. 11e). 
It is worth mentioning that the quantum efficiency at 600 nm 
of PCCNFs was about 0.24%, far more exceeding its coun-
terparts. This was also due to the narrowed sub-bandgap 
from VB to midgap states induced by the P dopants. As a 
result, irradiated with visible light, the photocatalytic HER 
rate of PCNNFs was up to 15,921 μmol  g−1  h−1, which was 
34-folder higher than that of bulk g-C3N4 (Fig. 11f). In 
another typical work, Wu et al. used urea and butyl phos-
phate as precursors to prepare P-doped g-C3N4  (PxC3N4, 
where x = 1, 2, 3 corresponds to the butyl phosphate vol-
ume of 2, 5, and 8 mL) [165]. Due to the introduction of the 
P element, the edge of  P3C3N4 nanosheets was smoother 
and more regular compared with that of bulk g-C3N4. It dis-
played the narrowest bandgap of 2.49 eV, which was dra-
matically reduced than bulk g-C3N4 (2.7 eV). Due to the 
P-doping, the solar absorption reached 470 nm, and thus an 
increased photocatalytic  UO2

2+ removal rate of 84% within 
20 min was witnessed.

3.3.4  S Dopants with Improved Redox Driving Force

Early theoretical research work in 2012 revealed that the 
S atoms prefer to replace the two-coordination N sites in 
the aromatic ring and induce an impurity energy level just 
below the CB, which is beneficial to cause a red shift of 
solar light absorption threshold and improve the electronic 
conductivity of g-C3N4 [166]. Afterward, Chen et al. pro-
posed an exceptional work on S-doped g-C3N4 employing 
the  H2S atmosphere as the S feeding source to achieve a 
homogenous S-doping at the atomic level with the pyrolyzed 
product labeled as  C3N4−xSx [167]. Its homogenous doping 
was confirmed by the almost same and stable XPS signal of 
S 2p spectra during  Ar+ sputtering from 20 to 420 s. The 
authors claimed that this was of vital importance to achiev-
ing: (i) the localized states induced by S dopants and (ii) the 

elevation of VBM through the mixing of S 3p states with N 
2p states (Fig. 12a–c). The extended VB width was believed 
to accelerate the mobility of holes, boost charge transfer 
kinetics, and thus give rise to a better photo-oxidation effi-
cacy (Fig. 12d). Furthermore, due to the unique synthetic 
strategy, the grain size of  C3N4−xSx was also dramatically 
reduced, inducing a remarkable quantum confinement effect 
(Fig. 12d). This could render it a higher driving force for 
redox reaction due to the more positive VBM and more neg-
ative CBM positions. Therefore,  C3N4−xSx showed an over-
whelming phenol removal activity under irradiation with 
λ > 400 nm. Other precursors such as thiourea [168–170] 
and urea/benzyl disulfide [171, 172] have also been reported 
to work as the S source, which was much “green” than the 
toxic and corrosive  H2S gas.

In another typical work, the S-doped g-C3N4 has demon-
strated its superior role in boosting the photocatalytic CRR 
activity by altering the rate-determining step and reducing 
the Gibbs free energy from 1.43 to 1.15 eV [55]. Detailed 
theoretical calculations have been carried out using the 
pristine g-C3N4 and S-doped g-C3N4 molecules contain-
ing four  C6N7 units as models. According to the HOMO 
and LUMO diagrams from Fig. 12e-f, one can see the elec-
trons in HOMO were distributed on N atoms only. While 
for LUMO, electrons were localized in both C atoms and N 
atoms. However, no electrons appeared around the bridg-
ing N atoms, which indicated the electron in g-C3N4 would 
only be excited and transferred within one  C6N7 unit, thus 
increasing the photocarrier possibility of being recombi-
nation (Fig. 12e). In contrast, the electrons in HOMO and 
LUMO were distributed on the undoped units and S-doped 
units, respectively (Fig. 12f). This implied the electrons in 
S-doped g-C3N4 can migrate within the surrounding  C6N7 
units and the photocarrier separation efficiency could be 
significantly enhanced. Furthermore, the accelerated ther-
modynamics was verified by the optimized CRR pathway. 
For g-C3N4, the rate-determining steps were the conversion 
of  CO2 to COOH* and HCHO to  CH3O* with ΔG values 
of 1.41 and 1.43 eV, respectively (Fig. 12g). In contrast, 
the determining step for S-doped g-C3N4 is the formation 
of COOH* only with a reduced ΔG of 1.15 eV (Fig. 12h), 
suggesting the more favorable CRR progress which was also 
in good accordance with previous reports [168].

Ke et al. employed urea and benzyl disulfide as precursors 
to obtain the S-doped g-C3N4  (SC3N4-X, X = 1, 2, 3 pre-
senting the annealing temperature of 560, 600, and 650 °C) 
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[171]. The S dopants have been found to overcome the 
stronger planar hydrogen bond between the tri-s-triazine unit 
and NH/NH2 group, favoring the layered g-C3N4 exfoliation 

into nanosheets. Thus,  SC3N4-3 exhibited the highest BET 
surface area up to 298.2  m2  g−1, providing abundant sites 
for redox reactions. Consisting with previous studies, we 

Fig. 12  Defect control of S dopants. a Total DOSs of pristine  C3N4 and  C3N4−xSx; partial DOSs of b  C3N4 and c  C3N4−xSx; d graphic illustra-
tion of band structure change of  C3N4 by S-doping and quantum confinement effect (QCE) [167].  Copyright 2010, American Chemical Society. 
LUMOs and HOMOs of e g-C3N4 and f S-doped g-C3N4; calculated free energy diagram to the reaction paths followed by CRR on g g-C3N4 and 
h S-doped g-C3N4 [55]. Copyright 2018, American Chemical Society
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observed that the S dopants also rendered  SC3N4-3 with a 
reduced bandgap of 2.10 eV, which was 0.64 eV smaller 
than bulk g-C3N4 with an extended visible-light absorption 
from 458 to 530 nm. As a result, the photodegradation con-
stant and  UO2

2+ removal efficiency of  SC3N4-3 achieved 
0.16  min−1 and 92%, which was 1.78 and 1.58-folder better 
than those of other g-C3N4 materials. Cao and co-workers 
further synthesized the porous S-doped g-C3N4 nanosheets 
with C vacancies  (SCNNSS) by facile pyrolysis of thiourea 
[32]. The thickness of  SCNNSS was only 2.5 nm, revealing 
a significantly improved BET surface area of 75.24  m2  g−1. 
Although the presence of C vacancies broadened the band-
gap of  SCNNSS, its CB position was lifted from − 0.95 to 
− 1.04 eV, endowing it with a promoted driving force toward 
the photocatalytic NRR activity. Therefore, the nitrogen fixa-
tion rate of  SCNNSS reached 5.99 mM  h−1  gcat

−1, which was 
2.8-fold the amount of bulk g-C3N4 (2.13 mM  h−1  gcat

−1), 
confirming the critical role of S doping.

3.3.5  O Dopants with Electronic Polarization

Chen and co-workers first reported that O atoms were prone to 
substitute the two-coordinated N atoms next to  sp2-hybridized 
C atoms, forming the N–C–O and C–O bond [173]. These O 
dopants could significantly optimize the electronic band struc-
ture of g-C3N4 with a reduced bandgap of 0.21 eV in compari-
son with that of the bulk one. However, their VBM remained 
the same, indicating the VBM of the O-doped g-C3N4 pri-
marily depended on the N 2p orbitals. Owing to the electron-
egativity discrepancy between N and O, more charge density 
would be presented near O atoms. Therefore, this would cause 
additional defect-related surface energy levels below the 
CBM, accelerating the photocarrier transfer and separation in 
O-doped g-C3N4. As a result, both excellent MB (methyl blue) 
photodegradation and  H2 evolution rate were achieved for the 
defective g-C3N4. Another work presented by Zhang’s group 
reveals that O dopants can shorten the C–N/C = N bonds due 
to the more negative electronegativity of O, which shortens 
the charge diffusion pathway from bulk to surface and boosts 
the charge transfer rate [75]. Additionally, the theoretical dif-
ferential charge density diagram clearly showed the electronic 
polarization effect aroused by O atoms, similar to the “inner-
built electric field”, which gave the electron an extra transfer 
driving force. Thus, the HER rate was significantly improved.

Fu and colleagues prepared the hierarchical porous O-doped 
nanotubes (OCN-Tubes) by the successive high-temperature 
etching and curling-condensation of bulk g-C3N4 [174]. Due 
to the defect regulation, OCN-Tubes were not only doped by 
O atoms but exhibited a porous nanotube structure with an 
enhanced specific surface area of 36  m2  g−1 (Fig. 13a, b). Fur-
thermore, it also displayed an enhanced visible-light absorp-
tion as the PL peak increased from 450 to 475 nm. Also, the 
suppressed photocarrier recombination of OCN-Tubes was 
shown according to the dramatically reduced PL intensity 
(Fig. 13c). The  CH3OH yield of OCN-Tube in CRR activity 
is 0.88 μmol  g−1  h−1, far more exceeding that of bulk g-C3N4 
(0.17 μmol   g−1   h−1). Lu et al. prepared O-doped g-C3N4 
(O-CNx, x = 1, 2, 3 representing the molar ratio of ammo-
nium acetate/melamine of 5, 10, and 30) via a direct thermal 
polymerization of melamine and ammonium acetate [175]. 
In good accordance with the above-mentioned studies, the 
O-CN2 showed a dramatically reduced bandgap by 0.52 eV 
in comparison with the bulk one. This was also verified by the 
extended visible-light absorption edge in Fig. 13d, which was 
inferred to boost the photocatalytic performance. As expected, 
the as-prepared O-CN2 displayed a 10-time-higher HER of 
1062.4 μmol  g−1  h−1 than that of bulk g-C3N4 (Fig. 13e). In 
addition, good cycling stability of O-CN2 for photocatalytic 
 H2 production is also observed in Fig. 13f.

3.3.6  B Dopants with Narrowed Bandgap

Wang’s group synthesized the B-doped g-C3N4 nanotubes 
(BCNT) via thermal pyrolysis of  H3BO3 and melamine 
(Fig. 13g) [176]. The unique BCNT structure with 0.3 μm 
thickness of the tube wall further improved its BET sur-
face area from 17.8 to 27.9  m2  g−1. Compared with bulk 
CN, BCNT showed a similar VB position at around 1.53 V 
vs. NHE but a more negative CB position by 0.17 eV 
(Fig. 13h), indicating a narrowed bandgap that would 
allow more electrons to be generated under the same cir-
cumstances, and thus there were more ·O2

− radicals for 
NO removal. Due to the B-doping, the photocatalytic NO 
degradation rate of BCNT was, therefore, the best value 
of 30.4% within 30 min when irradiated by visible light, 
which was 10% larger than that of bulk g-C3N4 (20.8%, 
Fig. 13i).
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3.3.7  Halogen Dopants with Narrowed Bandgap 
and Electronic Polarization

Halogen doping (F, Cl, I, Br) has been the research hot-
spot since the first pioneering work on F-doped g-C3N4 by 
Wang’s group in 2010 [177]. They speculated the F atoms 
preferred to bind with C atoms due to the electronegativ-
ity difference, and this would lead to the partial conversion 
of C-sp2 to C-sp3 followed by a decreased in-planar order. 
Their DFT calculations demonstrated that the F dopants in 
the bay C sites extended both the HOMO and LUMO to 
higher positions. While the corner C sites made the LUMO 
to higher energy levels, the HOMO lower energy levels. The 
experimental results showed the F-doped g-C3N4 boosted the 

photocatalytic oxidization of benzene to phenol in the pres-
ence of visible light. These results indicated that F dopants 
were critical to changing the electronic band structure of 
g-C3N4 and provided the basement for further redox modi-
fication. This work was also consistent with the published 
work by Ding and co-workers, who also investigated the 
F-doped g-C3N4 had a larger bandgap of 2.81 eV than bulk 
g-C3N4 of 2.68 eV [178]. Moreover, the authors also claimed 
that the B/F co-doped g-C3N4 not only met the demand of 
non-induced recombination centers plus enhanced solar light 
absorption but satisfied the requirement of overall water 
splitting with overpotentials.

Yu et  al. found different halogen-doping posi-
tions in the g-C3N4 monolayer using the first principle 

Fig. 13  Defect control of O/B dopants. a Typical FESEM of OCN-Tube; b XPS survey spectra and c PL spectra of g-C3N4 and OCN-Tube 
[174]; Copyright 2017, Wiley–VCH. d UV–vis DRS and e HER rates of g-C3N4 and O-CNx samples; f stability test of O-CN2 under visible-
light irradiation (λ > 420 nm) [175]; Copyright 2018, Elsevier. g Schematic synthetic diagram of tubular BCNT; h band structure of CN and 
BCNT; i photocatalytic NO removal activities of CN, CNT, and BCNT under visible-light irradiation [176].  Copyright 2018, Elsevier
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investigation [109]. Specifically, they found F and Cl 
atoms preferred to be presented in the interstitial space 
due to the smallest formation energy of 1.15 and 3.52 eV, 
which was particularly dramatically lower than the N3/
C2 sites, respectively (Fig. 14a). Actually, this was not 
strictly truth which they were not impossible to dop-
ing into N2 sites owing to the slightly higher forma-
tion energy (1.53 and 3.77 eV) compared to those of the 
interstitial space. Other halogen atoms of Br and I have a 
1.6–2.6 times larger atomic radius than F and Cl, making 
them very unstable if directly displacing C and N atoms. 
Therefore, all halogen atoms were the most thermally sta-
ble in the interstitial space. Additionally, the electronic 

bandgaps were, in a rating order of 0.64, 0.95, 1.13, and 
1.14 eV for F, I, Br, Cl-doped g-C3N4, which suggested 
a promoted solar harvesting ability than bulk g-C3N4 
(Fig. 14b–e). Furthermore, with the bigger atomic number 
and higher electronegativity, the work function (Ф, calcu-
lated using the equation of Φ = E

Vac
− E

F
 (where Evac and 

EF are positions of vacuum level and Fermi level) became 
smaller from 4.15 to 3.30 eV (Fig. 14f–g), implying the 
easier for electrons to escape. As a result, these halogen 
atoms doped g-C3N4 exhibited an extended light absorp-
tion even to 1000 nm.

Recently, a deep and systematic study on the 
halogen-doped g-C3N4 has also been reported on 

Fig. 14  Defect control of halogen dopants. a Calculated F-doped g-C3N4 models in interstitial space; calculated band structures and DOSs of b 
F-C3N4; c Cl-C3N4; d Br-C3N4; e I-C3N4; work functions of f F-C3N4; g I-C3N4 [109].  Copyright 2017, Elsevier. h PL intensity; i ATZ removal 
rate comparison of various halogen atom-doped g-C3N4 [179]. Copyright 2022, Elsevier
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photocatalytic ozonation (PCO) to remove the atrazine 
(ATZ) [179]. An increasing ATZ removal order for 
CN < Br–CN < Cl–CN < I-CN < F–CN was witnessed, 
which was also basically consistent with the bandgap 
order from the above-mentioned calculations by Yu’s 
group [109]. The reasons were ascribed to (1) All halo-
gen-doped g-C3N4, particularly the F-CN, showed a nar-
rowed bandgap at around 2.61 eV, enhancing its visible-
light absorption; (2) DFT calculations revealed that the 
uneven distribution of electrons on halogen-doped g-C3N4 
benefited the gas absorption. Among them, F-CN showed 
the highest  O3 and  O2 absorption energies of − 5.53 and 
− 4.55 eV, which further boosted the redox reaction kinet-
ics; (3) the F-CN also displayed the largest water contact 
angle of 54.8°, which implied the optimized hydrophobic-
ity merit that was more favorable for  O3 absorption; (4) 
the photocarrier recombination of these doped g-C3N4 
was significantly suppressed as reflected by the reduced 
PL intensity when compared to bulk g-C3N4 (Fig. 14h). 
These four factors combined to render the halogen-doped 
g-C3N4 with an effective ATZ removal rate of up to 66.5% 
under visible light (Fig. 14i). Other works reported in 
recent years agreed well with this discovery, revealing the 
promising applications of halogen doping on g-C3N4 for 
improving photocatalytic performance [177, 180–182]. 
Table 2 summarizes recent reports on non-metal doped 
g-C3N4 toward various solar applications.

3.3.8  Co‑doping with Synergistic Effects

Single-element doping enabled the optimization of the elec-
tronic band structure and photocarrier transfer progress of 
g-C3N4. Intriguingly, the heteroatomic co-doping that could 
combine the merits of these single dopants is also efficient 
in boosting its photocatalytic activity [158, 183, 184]. For 
instance, Ma et al. prepared P and O co-doped g-C3N4 that 
exhibited enhanced RhB photocatalytic degradation effi-
ciency [185]. The B/F co-modified g-C3N4 also showed 
promoted HER performance[186]. A typical C/O-doped 
g-C3N4 synthesized from the calcination of protonated mel-
amine has also attracted extensive research attention as its 
detailed information on both experimental results and calcu-
lations including the doping sites, bond length, and changed 
charge density distribution [104]. Taking the doping position 
firstly for example, Gao et al. found O dopants might be 

more favorable than C dopants at the first doping progress 
due to the unstable C-doped g-C3N4 with positive formation 
energy from 0.75 to 2.21 eV (Fig. 15a). As for first O-doping 
and then C-doping, the values for defective g-C3N4 could 
reach the least values of − 0.97 and − 1.2 eV, indicating 
a more spontaneous doping process. After comparing the 
electron density around the defects for both bulk g-C3N4 
and C/O-doped g-C3N4, one can see more electrons were 
accumulating on the N4 sites and fewer electrons around C2 
sites, indicating an enhanced electronic polarization effect 
(Fig. 15b–d). This would act as an “inner-built electric field” 
that can accelerate electron transfer with a driving force like 
Coulombic force (Fig. 15e). In addition, the bond length 
around these O and C dopants were all shortened by 0.02 Å, 
which was more beneficial for mass diffusion and charge 
transfer (Fig. 15f). More importantly, due to the C-doping 
into the  N3C sites, a delocalization π bond was formed, which 
enabled the excited electrons transfer among the tri-s-tria-
zine units with better electronic conductivity (Fig. 15g). As a 
result, we observed a boosted photocurrent density and HER 
rate of 320 μA  cm−2 and 830.1 μmol  g−1  h−1, which were 60 
and 7 times higher than those of bulk g-C3N4.

3.3.9  Dopants and Vacancies with Synergistic Effects

Inspired by the research work combining different vacan-
cies and dopants, our group also proposed a novel defec-
tive g-C3N4 (DCN) with both N vacancies and S dopants 
via a dual-solvent-assisted synthetic strategy [91]. 
Employing the protonated melamine obtained in the pres-
ence of glycol via a solvothermal reaction as the precursor 
followed by a subsequent annealing process with molten 
sulfur at 550 °C under  N2 atmosphere, we determined 
DCN with an S-doping level of 0.5% and a moderate N 
vacancy concentration. With this defect control, DCN 
also exhibited a porous prisms nanostructure of 500 nm 
and an enhanced BET surface area of 169.10  m2   g−1, 
boosting the active sites for photocatalytic HER activity. 
Furthermore, the glycol and molten sulfur solvents were 
both critical to inducing N vacancies and S dopants and 
induced both shallow defect states and optimized surface 
states. The former could be revealed by the experimental 
defective energy levels which were 0.49 eV to the CBM of 
DCN. More importantly, in theoretical calculations, bulk 
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g-C3N4 (BCN, Fig. 16a), g-C3N4 unit with one N vacancy 
(DCN-NV, Fig. 16b), and g-C3N4 unit with one S dopant 
(DCN-S, Fig. 16c), were proposed to unveil the differ-
ent roles of N vacancy and S dopant. According to the 
ELF results (Fig. 16a–c), DCN-S showed the densest elec-
tron density toward the  C3N4 unit cell void, correspond-
ing to one of the lone pair electrons of S. This indicated 
DCN-S was more favorable to boost the electron polari-
zation effect that could enable an accelerated photocar-
rier transport. As for the DOSs, we can see both DCN-Nv 
and DCN-S displayed new defect states around the Fermi 
level (Fig.  16d–f). However, the N vacancies in DCN 
pushed these additional energy levels closer to the VBM 

in comparison with the S dopants, indicating too much 
N vacancy concentration would worsen the electron band 
structure with deep localized states to severely recombine 
the photocarriers. This was also in good line with the XPS 
result that DCN displayed a moderate peak area ratio of 
–C3N/C=N–C at around 0.287. Furthermore, this S-doped 
and N vacant g-C3N4 also reveal optimized surface states 
with the highest surface trapping resistance (Rtrapping) of 
9.56 ×  103 Ω  cm2 and the slowest decay kinetics of sur-
face carriers (0.057  s−1), which guaranteed the smooth 
surface charge transfer rather than being the recombination 
sites. As a result, it exhibited a superior  H2 evolution rate 

Fig. 15  Defect control of co-doping. a Illustration of various C(O)-doped g-C3N4 with different doping order: (a’) CN; (b’) C–CN; (c’) O-CN 
and (d’) OC-CN; b configuration of original non-doped BCN; c optimized configuration of NCN; d Bader charge change; e differential charge 
density between BCN and NCN; f bond lengths of BCN and NCN; g π orbital distribution (VBM-5) of NCN (C, N and O atoms are shown in 
grey, blue and red. Olive and cyan illustrate the increase and decrease of electron distributions) [104].  Copyright 2019, Elsevier
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of 4219.9 µmol  g−1  h−1, which was 29.1-fold higher than 
unmodified g-C3N4.

In another typical work, multiple defects-modified 
g-C3N4 catalysts with B-F or B-S co-doping combined 
with N vacancies (donated as B–F–Nv, B–S–Nv) have also 
shown great potential for the optimization of electronic 
band structure and enhancement of photocatalytic CRR 
performance [187]. As shown in Fig. 17a, there were two 
C and three N doping positions assigned to C1, C2, N1, 
N2, and N3 which could be doped or vacant for B/F/Nv. 
According to the formation energy, B and F preferred to 
be presented in the C1 site and connected with the N2 
site. However, after introducing the Nv at N3 site, the F 
atoms would transfer from N2 to B side due to its strong 
electronegativity, leaving the rest C–N becoming into sp 
hybridization (Fig. 17b). However, as for B–S–Nv, B and S 
atoms preferred to be at the C1 and N2 sites while Nv pre-
sented at new N2 site next to this unit, forming a five-ring 

unit to keep the structure stable (Fig. 17c). According to 
the DOSs diagrams, the bandgap of B/F co-doped g-C3N4 
was found to be 3.06 eV, significantly higher than 2.77 eV 
of g-C3N4. However, due to the presence of  Nv, the band-
gap of B–F–Nv material reduced to 2.67 eV, suggesting the 
N vacancy’s role in narrowing the bandgap with extended 
solar absorption (Fig. 17d). Interestingly, the S dopant was 
also significant in further reducing the bandgap of B–S–Nv 
to 1.16 eV than F dopant of B–F–Nv (Fig. 17g). Addi-
tionally, the HOMO and LUMO of B–F–Nv and B–S–Nv 
have little overlap (Fig. 17e, f, h, i), which can effectively 
facilitate the separation of photogenerated electrons and 
holes. Furthermore, new electron distribution of HOMO 
and LUMO on bridging N atoms could promote the migra-
tion of photogenerated charge carriers, thereby enhancing 
solar utilization efficiency. The photocatalytic  CO2 reduc-
tion reaction is a complex process that usually generates 

Fig. 16  Defect control of dopant and vacancy. ELF plots of a BCN; b DCN-Nv; c DCN-S; total density of states (DOS) and partial density of 
states (PDOS) of d BCN; e DCN-Nv, and f DCN-S [91].  Copyright 2023, Wiley–VCH
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multiple products. Figure 17j shows the specific reaction 
pathway of the photocatalytic  CO2 reduction reaction:

*CO2 → *COOH → *CO → *HCHO → *OCH3 → *CH3
OH → *CH3 → *CH4. Based on this, it can be concluded 

Fig. 17  Defect control of multiple defects type in g-C3N4. a Top view of pristine g-C3N4 geometries; Optimized geometries of b B–F–Nv and c 
B–S–Nv; calculated band structure of d B–F–Nv; e LOMO for B–F–Nv; f HOMO for B–F–Nv; g calculated band structure of B–S–Nv; h LOMO 
for B–S–Nv; i HOMO for B–S–Nv; j Gibbs free energy diagrams of photocatalytic  CO2 reduction; k representative geometries of the stable 
points in the specific reduction process for  CO2 on g-C3N4 [187].  Copyright 2022, Multidisciplinary Digital Publishing Institute
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that the products generated in the photocatalytic  CO2 
reduction reaction were CO, HCHO,  CH3OH, and  CH4. 
Figure 17k provides the Gibbs free energies required for 
different catalysts at different stages of the photocatalytic 
 CO2 reduction reaction. According to ΔG change, we can 
infer the main product of B–F–Nv for photocatalytic  CO2 
reduction reaction was  CH3OH due to the following uphill 
energy (0.16 eV) for the conversion of *CH3OH to ·CH3. 
On the other hand, B–S–Nv had a lower ΔG change for 
catalyzing the  CO2 reduction reaction, facilitating the 
reaction to proceed to the final step and generate  CH4. 
This would inspire future researchers to tune the defect 
types to enhance product selectivity.

4  Metallic doping with Active Coordinate 
Environment

Generally speaking, the metallic dopants in g-C3N4 nor-
mally induce enhanced solar light absorption, fast electron 
transfer, and high photocarrier separation efficiency [158]. 
Metal doping is usually realized by the thermal pyrolysis 
of the mixture of g-C3N4 precursors and a soluble metal 
salt. In the early stage of metallic doping, researchers 
have not specified the metal existence form of either in 
nanoclusters aggregation or atomic distribution as the 
limits of ordinary TEM and XPS technologies. This situ-
ation has changed since the employment of the special 

Table 2  Comparison of non-metal doped g-C3N4 toward various solar applications

n/a indicates there is no discussion on dopant sites in original publications

g-C3N4 Dopant Light source Solar application Photocatalytic activity Refs.

CNS S  (N2C) λ > 400 nm HER 121.6 mmol  g−1  h−1 [169]
CN-MT S  (N2C) λ > 400 nm HER 5000 mmol  g−1  h−1 [188]
Coral-2.5B-CN B  (N3C) λ > 420 nm H2O2 formation 314.55 μmol  g−1  h−1 [189]
SC3N4 S  (N2C) λ > 420 nm Pollutant removal

(UO2 2+)
1.6  min−1  g−1 [171]

SCNNSS S  (N2C) Visible light NRR 5.99 mmol  g−1  h−1 [32]
CN-Br Br  (N3C) λ > 400 nm HER 2400 μmol  g−1  h−1 [190]
MCN O  (N2C) 420–800 nm HER 1204 mmol  g−1  h−1 [75]
g-C3N4 O  (N3C) λ > 420 nm HER 1430 μmol  g−1  h−1 [191]
CN0.75 N  (C3N) λ > 400 nm TC removal 26.94  min−1  g−1 [162]
p-CN O  (N3C) λ > 420 nm HER 395.96 μmol  g−1  h−1 [192]
OPCN O  (N2C) 420–780 nm BPA

removal
0.7  min−1  g−1 [193]

O-CNC O  (N3C) λ > 420 nm H2O2 formation 2008.4 μmol  g−1  h−1 [194]
CNS-TiO2/g-C3N4 S (n/a) Visible light RhB removal 1.6  min−1  g−1 [195]
O-CN O  (N2C) λ > 420 nm HER 1062.4 μmol  g−1  h−1 [196]
PCNNFS P (n/a) λ > 420 nm HER 9546 μmol  g−1  h−1 [197]
PC3N4 P  (N2C) λ > 420 nm Pollutant removal  (UO2 2+) 1.1  min−1  g−1 [198]
OPCN O  (N3C) λ > 400 nm H2O2 formation 16.7 μmol  g−1  h−1 [199]
CN-SP P  (N3C) λ > 420 nm HER 570 μmol  g−1  h−1 [200]
B-g-C3N4 B (n/a) λ > 420 nm Pollutant removal

(UO2 2+)
0.52  min−1  g−1 [201]

BCN-0.75 B  (C3N) λ > 420 nm HER 1639.28 μmol  g−1  h−1 [202]
SOCN S  (N2C)/O(N3C) Sun light MO removal 0.29  min−1  g−1 [203]
P-Nv-C3N4 P  (N3C) simulated sunlight NRR 1686.4 μmol  g−1  h−1 [204]
P/UN-CNS P  (C3N’) λ > 420 nm HER 9653 μmol  g−1  h−1 [205]
S-g-C3N4-E S  (N3C,N2C,N3c’) λ > 420 nm HER 5548.1 μmol  g−1  h−1 [204]
BCN B  (C3N) λ > 420 nm HER 1.64 mmol  g−1  h−1 [206]
CN-T-U S (n/a) λ > 420 nm RhB removal 0.7352  min−1  g−1 [207]
4Ce/CN N/O (n/a) Visible light NO removal 1.34  min−1  g−1 [208]
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aberration-corrected transmission electron microscope 
(AC-TEM) and K-edge X-ray absorption fine structure 
(EXAFS) that can distinguish the metal morphology at 
the atomic level with very high resolution and identify 
the metal coordination environment with both interac-
tion and bonding species [209]. For the former, one can 
clearly see whether metal is in small aggregation or atomic 
well-dispersion. For the latter, researchers need to ana-
lyze the spectrums to figure out the only metal interaction 
such as metal-N peaks without any other peaks such as 
metal–metal peak, metal-oxide peak, and so on. Based on 
the above knowledge, the development of metallic-doped 
g-C3N4 toward various photocatalytic applications was 
extended as follows:

4.1  Alkali Metallic doping with M–Nx Bonding

The typical alkali metals, such as K and Na dopants, were 
found to exhibit different roles in regulating the electronic 
band structure and optical properties of g-C3N4 [210–212]. 
In a detailed theoretical study, Xiong et al. found both K 
and Na atoms can narrow the bandgap and strengthen the 
solar light absorption of g-C3N4 [210]. Additionally, K 
atoms preferred to be presented in the interlayer space 
and thus provided electrons with better vertical transfer 
pathways. In contrast, the Na atoms preferred to chemi-
cally bond with the in-planar N atoms via ion bond due 
to the easy escaping of Na 3 s electrons. Based on their 
experimental results, the K-doped g-C3N4 reflected a bet-
ter photocatalytic NO removal activity than the Na-doped 
one, suggesting the prominent role of K-doping over 
Na-doping.

Fig. 18  Defect control of alkali metallic doping. a, d, g Structural models; b, e, h calculated band structures and c, f, i PDOS spectra of g-C3N4, 
Ba-C3N4 and BaCN-C3N4 [89].  Copyright 2021, Elsevier. j Calculated UV–vis DRS; k calculated conductivity curves and l CO evolutions of 
pure g-C3N4 and various alkali metal doped g-C3N4 under full-spectrum irradiation [213]. Copyright 2020, Elsevier
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Other alkali metals, such as Ba and Rb, have also been 
verified to be efficient in boosting the solar activity of 
g-C3N4 [89, 213]. For instance, Hu et  al. employed a 
facile salt-assisted method to synthesize the Ba-doped 
g-C3N4 (BaCN-C3N4) [89]. The successful Ba-doping 
was revealed by the obvious Ba 3d signal according to the 
full-scan XPS spectrum. Compared to the original g-C3N4, 
BaCN-C3N4 displayed an extended optical absorption 
edge by 10 nm and its bandgap was slightly narrowed by 
0.05 eV, showing the improved visible-light absorption 
due to Ba dopants. The DFT calculations revealed that 
due to the insert of Ba dopants into the g-C3N4 heptazine 
ring cavity, its bandgap can be dramatically reduced from 
1.84 to 0.89 eV (Fig. 18a-f). It is worth mentioning that 
the presence of  BaCl2 during the pyrolysis process could 
induce the formation of cyano groups, which further low-
ered the BaCN-C3N4 to 0.2 eV (Fig. 18g-i). However, the 
CBM and VBM of these samples were all contributed by 
C 2p and N 2p orbits, and Ba was not involved in the con-
struction of the band edge structure (Fig. 18c, f, i). The 
authors also claimed that this narrowed bandgap of BaCN-
C3N4 might be aroused by the reduced corrugation ampli-
tude due to Ba incorporation. Combined with the elec-
tronic polarization around Ba dopants and cyano groups, 
the charge transfer dynamics can be further boosted. As 
a result, the 7%-BaCN-C3N4 achieved an excellent tetra-
cycline (TC) degradation rate and HER rate of 63.6% and 
10,316 μmol   g−1   h−1, significantly, exceeding the bulk 
g-C3N4. Another piece of systematic work proposed by 
Zhang et al. indicated that Rb atoms are the best alkali 
dopants in promoting the photocatalytic activity of g-C3N4 
[213]. It can be seen from Fig. 18j that Rb-doped g-C3N4 
exhibited the most extended solar harvesting ability with 
the lowest bandgap of 2.0 eV, which was 0.65 eV smaller 
than pristine g-C3N4, implying the substantially improved 
visible-light absorption. Moreover, the Rb-doped g-C3N4 
also reflected the best conductivity in the solar range from 
300 to 1100 nm, demonstrating the fastest charge transfer 
kinetics, which might favor the redox reaction (Fig. 18k). 
Along with its merit of the lowest electron transport bar-
rier, Rb-doped g-C3N4 displayed the highest CO yield of 
12.1 μmol  g−1 (Fig. 18l). Therefore, based on the above 
experimental results and DFT calculations, we can con-
clude that the alkali metals, particularly Rb-doped g-C3N4, 
hold great prospect for g-C3N4-based solar applications.

4.2  Transition Metallic doping with M–Nx, M‑C2N2, 
M–O Bonding

Apart from alkali metals, transition metals such as Co, 
Cu, Fe, Ce, and Bi have also been verified to promote the 
photocatalytic activity of g-C3N4 [158, 183]. For example, 
Deng et al. used nickel formate and urea as raw materials 
to prepare the Ni-doped g-C3N4 samples (NCN-X) [214]. 
For NCN-1, it presented the porous nanosheet structure with 
folded and rolling edges with a thickness of 10 nm. The 
Ni dopants were well distributed on the g-C3N4 surface as 
reflected by the energy dispersive spectroscopy (EDS). With 
the increasing Ni content, NCN-X displayed not only an 
enhanced harvesting ability of solar light but also a longer 
absorption edge with decreasing bandgaps of 2.73, 2.68, 
2.61, and 2.45 eV for CN, NCN-1, NCN-2, and NCN-3, 
respectively. Combined with the Mott–Schottky results, 
the VB potentials of NCN-2 reached the maximum value 
of 1.59 eV, which was conducive to the transfer of photo-
excited carriers and charge separation progress. Therefore, 
we can observe NCN-2 displayed the highest MO degra-
dation rate of 97.3% within 90 min and the highest HER 
rate up to 155.71 μmol  g−1  h−1 among all the g-C3N4-based 
photocatalysts.

Although significant advances have been made in the 
research fields of metallic-doped g-C3N4 toward various 
solar applications[215, 216], the precise active sites between 
metallic dopants and g-C3N4, and the existing form of metals 
were still not clear. Recently, metal single atoms (M-SAs) 
have exhibited a promising prospect with stable stability in 
electrochemical catalysis such as water splitting [217, 218], 
 CO2 reduction[219, 220], and so on [221, 222]. Since then, 
more research attention has been devoted to the M-SAs 
doped g-C3N4 systems, including identifying the metallic-
nitrogen (M–N) interaction [223], metallic-oxygen interac-
tion [224], forming the dual-atom catalysts [225] or even 
SAs@metal clusters catalysts (Fig. 19a) [226].

Taking the M–N interaction first, Co single atoms (SAs) 
were successfully doped into the g-C3N4 matrix forming the 
Co–N bonding via a microwave method in the presence of 
triethanolamine (TEA), and the resultant sample was labeled 
as  Co2+@C3N4 [227]. The XPS confirmed the presence of 
 Co2+ with an obvious peak assigning to Co  2p3/2 transi-
tion at 781 eV when the Co-doping level increased from 
0.004 to 0.345 μmol per 1 mg g-C3N4 (Fig. 19b). Interest-
ingly, the Co SAs were detected only in low-Co2+@C3N4 as 
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reflected by the Co–N interaction at 1.55 Å along with the 
absence of Co–Co at 2.7 Å according to the Fourier trans-
form magnitude Co K-edge X-ray absorption fine structure 
(EXAFS) spectrum (Fig. 19c). While the high-Co2+@C3N4 
samples showed similar peaks with  CoOx/SiO2, implying 
the Co SAs were prone to aggregate into nanoparticles at 
high precursor concentrations. Furthermore, the g-C3N4 sub-
strate was inferred to be the C-doped type rather than the 
O-doped type as reflected by the superior CRR performance 
of C-doped g-C3N4, which also coincided with the previ-
ous study [105]. Additionally, when the Co content reached 
0.128 μmol  mg−1, the CO yield achieved the highest value 
of 1.056 μmol  mg−1. However, excessive Co content resulted 
in the formation of  CoOx, endowing a lower CRR activity 
with low CO selectivity, demonstrating the superior redox 
selectivity of the single atomic  Co2+ sites (Fig. 19e).

In another typical M-SAs work, the N vacant g-C3N4 syn-
thesized at different temperatures were chosen as the metal 
deposition substrates as the N vacancies could stabilize Pt 
single atoms (PtSA) [228]. The as-prepared samples were 
named PtSA-CNX, where X was the annealing tempera-
ture. It is not surprising to see the resulting PtSA-CN620 

exhibited a uniform PtSA coverage density of 0.35 mg  m−2 
without any obvious aggregates from the HAADF-STEM 
image (Fig. 20a), which was much better than those obtained 
in a lower temperature at 400 and 560 °C. According to 
the Fourier transform  K3 weighted (EXAFS) spectrum, the 
wavelet transform (WT) maximum at 5.61 Å−1 of PtSA-
CN620, PtSA-CN560, and PtSA-CN400 revealed that the 
existence of PtSA in the form of Pt-C, Pt–N, and Pt-O 
(Fig. 20b). Furthermore, the calculated  H2 desorption ener-
gies on Pt nanoparticles (PtNP), and PtSA next to the two-
coordination N  (N2C) and C  (C2C) sites were 1.33, 1.10 and 
0.18 eV, respectively (Fig. 20c–e). The authors ascribed this 
to the high proton-reduce degree and shorted H distance 
on the  C2C sites, which was beneficial to the  H2 evolution 
kinetics. For the optical property, the solar absorption of 
this PtSA-modified g-C3N4 was enhanced as the annealing 
temperature increased. Among them, PtSA-CN620 also 
displayed the most extended absorption edge to 640 nm 
with the smallest bandgap of 2.17 eV and the fastest pho-
tocarrier transfer dynamics with the lowest average photo-
carrier time of 3.40 ns, further demonstrating the superior 

Fig. 19  Defect control of SAs-doped g-C3N4. a Research evolution of single atoms-doped g-C3N4 [223–226]; b XPS of bare  C3N4 and  Co2+@
C3N4; c Fourier transform magnitude of  k2− weighted Co K-edge EXAFS spectra; d schematic diagram of photocatalytic  CO2 reduction medi-
ated by a single  CO2+ site on  C3N4 [227].  Copyright 2018, American Chemical Society
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role of PtSA. Thus, we observed the highest HER rate of 
174.5 mmol  g−1  h−1 per PtSA for PtSA-CN-620.

Inspired by this, the C-vacancy-rich g-C3N4 obtained at 
600, 550, and 500 °C was also fabricated as the matrix for 
Pd SAs with the corresponding defective samples abbre-
viated as  CV-CN,  CV-CN-1, and  CV-CN-2, respectively 
[97]. Owing to the large specific surface area of Cv-CN at 
around 92.0  m2  g−1, a high Pd SAs coverage density can be 
achieved. A deeper discussion on the chemical interaction 
was identified to be the Pd–N bond located near 2.03 Å 

according to the XAFS spectrums (Fig. 20f). This was 
due to the stabilization effect of C vacancies with Pd SAs, 
which also agreed well with the previous report [105]. 
The DOSs were analyzed to interpret how the Pt SAs 
affect the electronic band structure of Cv-CN. Compared 
to g-C3N4, Pd-Cv-CN exhibited more negative peaks with 
the changed peak shape on the negative side but similar 
peaks on the positive side (Fig. 20g). Therefore, Pd-Cv-
CN showed lifted energy levels with a narrower bandgap. 
In addition, the impurity energy levels were ascribed to 

Fig. 20  Defect control of single atoms doping. a High-angle annular dark-field scanning transmission electron microscope (HAADF-STEM) of 
PtSA-CN620; b  k3−weighted FT spectra at k space of Pt foil and various PtSA-CN samples;  H2 desorption on PtSA at c  C2C and d  N2C sites and 
e PtNP-C3N4 [228].  Copyright 2019, Elsevier. f FT of Pd-CV-CN, Pd foil, and PdO at Pd K boundary; g DOSs diagram of g-C3N4 and Pd-Cv-
CN; h photocatalytic NO removal activities of various g-C3N4-based samples [97]. Copyright 2021, Elsevier. Reaction pathways for  CO2 reduc-
tion to i HCOOH and  CH3OH on Pd/g-C3N4 and j HCOOH,  CH3OH, and  CH4 on Pt/g-C3N4 catalyst (color code: Pd, pine green; C, gray; O, 
red; H, white) [229]. Copyright 2016, American Chemical Society
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the regulation of Pd 4d orbit, which was supposed to boost 
solar utilization. Specifically, an inhibited PL intensity was 
shown for Pd-Cv-CN in contrast with Cv-CN, suggesting 
improved photocarrier separation. As a result, Pd-Cv-CN 
showed the highest NO removal efficiency of 56.3% within 
30 min, which was 10.3% higher than the Pd nanoparti-
cles-modified one (Fig. 20h), validating the critical role of 
Pd SAs toward photocatalysis.

Gao et al. compared the possible reaction pathways of 
photocatalytic CRR on the Pd SAs- and Pt SAs-modified 
g-C3N4 via the DFT calculations [229]. For Pd SAs-g-
C3N4 (Fig.  20i): (1) The rate-determining step was the 

hydrogeneration of HCOOH* with a reaction barrier of 
1.46 eV, which was believed to happen thermodynami-
cally according to previous reports [230]. (2) Compared to 
the following high barrier (1.46 eV) for  CH3OH genera-
tion,  HCOOH+* was more likely to leave from Pd SAs-g-
C3N4 due to its dramatically reduced desorption barrier of 
0.46 eV. Therefore, the resulting final product for Pd SAs-g-
C3N4 was HCOOH. However, regarding the Pt SAs-g-C3N4 
(Fig. 20j): (1) The barrier of HCOOH* hydrogeneration was 
about 0.27 eV lower than that of Pd SAs-g-C3N4, indicating 
a more favorable reaction on Pt SAs surface. (2) The higher 
 HCOOH+* desorption energy of 1.06 eV might imply the 

Fig. 21  Defect control of single atoms dopants with other coordination types. a Ag K-edge XANES; b Fourier transform of Ag K-edge EXAFS 
spectra; c EXAFS fitting curve in R space and d Structure model of Ag–N2C2/CN (Ag green, N blue, C grey); e Free energy profiles for  H2 evo-
lution reactions over the as-prepared catalysts [111].  Copyright 2020, Wiley–VCH. f Simple framework structure of MO-PCN; g EPR spectra of 
the samples in dark and under irradiation; DOSs plots of h PCN and i Mo-PCN550 monolayers [224]. Copyright 2023, Elsevier
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following hydrogeneration pathways were more thermo-
dynamically favorable for both  CH3OH+* and then  CH4

+* 
generation. Thus, the final CRR product on Pt SAs-g-C3N4 
was suspected to be  CH4. This intriguing work suggested 
that different types of M-SAs might have different roles in 
tailoring the redox selectivity, which was critical for future 
photocatalyst design.

Apart from the widely investigated M–N interaction 
between SAs and the g-C3N4 matrix [231], researchers have 
found that M–N2C2 coordination for Ag SAs was more 
favorable to boosting the photocatalytic HER activity [111]. 
Specifically, the Ag–N2C2-modified g-C3N4 (Ag–N2C2/CN) 
was prepared via a novel annealing process with the self-
assembled melamine cyanurate and Ag-containing salt. As 
reflected by the Ag K-edge XANES (Fig. 21a), the absorp-
tion line of Ag–N2C2/CN lied between Ag foil and  Ag2O, 
indicating the oxidation state of Ag was between 0 to + 1 
due to the strong interaction between Ag and tri-s-triazine 
units. According to the  k3-weighted EXAFS result, there 
were only two main peaks at 1.55 and 2.41 Å, correspond-
ing to the first coordination shell of Ag–N and the second 
coordination shell of Ag-C, respectively (Fig. 21b). Further 
EXAFS fitting result evidenced the coordination numbers 
of Ag–N and Ag-C were 2.3 and 1.8, demonstrating the 
Ag SAs generation to be coordinated with  N2C2 interaction 
(Fig. 21c–d). This interaction significantly contributed to 
the electronic polarization effect around the Ag–N2C2 sites 
which was stronger than Ag–N and Ag nanocluster sites, 
indicating its superior role in accelerating the photocarrier 
transfer and separation. The Gibbs free energy required for 
each step in the reaction process of  H2O → HO-H →  H* →  H2 
was also calculated. It was found that Ag–N2C2/CN had the 
lowest energy requirement for each step in the photocata-
lytic water splitting process (Fig. 21e), thus leading to an 
enhanced photocatalytic performance of 1.8 mmol  g−1  h−1, 
much higher than Ag–N/CN.

Very recently, Yu et al. discovered that the single-atom 
metal–oxygen bonding was favorable for the photocatalytic 
OER activity, which paved a promising resolution to future 
efficient water splitting [224]. The single atom metal–oxy-
gen doped polymerized g-C3N4 (MO-PCN−x, where M can 
be Mo and W, X was annealing temperature) was mainly 
obtained by the annealing of protonated melon absorbed 
 MOx

n− ions powder, and its possible calculated structure is 
also given in Fig. 21f. According to the EPR result, we can 
see that, in comparison with PCN, the MO-PCN exhibited 

enhanced signals both in dark and under irradiation, indi-
cating the increased delocalized electronic density and 
enhanced photoexcitation process, respectively (Fig. 21g). 
The authors claimed it was the higher Mo–O content than 
W–O in PCN that induced the stronger EPR signal of Mo-
PCN550 than that of W-PCN600. Furthermore, the calcu-
lated bandgap of Mo-PCN550 was much smaller than that of 
PCN (2.3 eV), measuring only 0.54 eV (Fig. 21h-i), indicat-
ing the promoted solar harvesting ability of Mo-PCN550, 
which was also consistent with experimental results. Ben-
efiting from the reduced bandgap and promoted photocar-
rier transfer and separation of M–O bonding, W-PCN600 
exhibited the highest overall water splitting rates of  H2/O2 
production rate of 76.9/3.4 μmol  h−1  m−2, significantly sur-
passing PCN600.

As for the bimetallic single-atom doping, Choi’s group 
successfully synthesized the single-atom catalyst with dual-
atom-sites featuring neighboring Sn(II) and Cu(I) centers 
embedded in  C3N4 framework (DAS-Snx-Cu100−x/C3N4) 
by annealing of mixture of urea and Sn– and Cu-acetylace-
tonate (x was the mass ratio of Sn-acetylacetonate in the 
mixture of Sn– and Cu-acetylacetonate) [103]. Through the 
STEM and XANES characterization, the best DAS-Sn75-
Cu25/C3N4 sample has demonstrated its dual-atom-sites with 
the coordination environment of M–Nx bonding without the 
presence of any M–O or M-M bonding. Importantly, they 
also employed the in situ transmission FTIR spectroscopy 
for monitoring the photocatalytic CRR processes, which was 
similar to that of Fig. 6d-f. Specifically, the reaction cell was 
sealed with  CaF2 windows and a spacer, and located in the 
FT-IR instrument with a mercury cadmium telluride (MCT) 
as detector (Fig. 22a). The transparent window with a thin 
layer of g-C3N4 samples and a solution of 10 vol% TEA 
in  CO2-saturated 0.1 m  KHCO3 well mimicked the CRR 
process. Interestingly, the in situ FT-IR results indicated 
the C = O stretching mode at around 1712  cm−1 assigned to 
*HCOOH was found for both DAS-Snx-Cu100−x/C3N4 and 
SA-Sn/C3N4, not for SA-Sn/C3N4 (Fig. 22b-d). Additionally, 
the most significant peak at 1637  cm−1 assigned to the C = O 
stretch of *HCHO intermediate was only found for DAS-
Snx-Cu100−x/C3N4, indicating its main product of HCHO, not 
HCOOH. Furthermore, the NMR test demonstrated the car-
bon source of HCHO originated from outer  CO2 rather than 
g-C3N4, implying the stability of DAS-Snx-Cu100−x/C3N4. 
Using the triethylamine (TEA) as a proton donor, DAS-Snx-
Cu100−x/C3N4 first combined with  CO2 and electron to form 
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*OCHO, then the *HCOOH leaving  H2O to form *CHO, 
and finally with proton to become HCHO with the highest 
produced rate of 259.1 µmol  g−1 and a selectivity of 61% 
after 24 h irradiation, far more exceeding its counterparts of 
single-atom based photocatalysts.

In another typical bimetallic single-atom work, Ning and 
colleagues proposed a Co and Mn SAs co-doped g-C3N4 
 (Mn1Co1/CN) via the atom confinement and supramolecu-
lar self-assembly strategy [232]. To determine the forming 
existence of Co and Mn elements, researchers studied the 
Mn K-edge XANES spectra and  k3-weighted Fourier-trans-
form Mn K-edge EXAFS spectra of the samples. As shown 
in Fig. 23a, the  Mn1Co1/CN peaks located between Mn foil 
and  Mn2O3, suggesting the valance state of the Mn species 
lied between 0 and + 3. Figure 23b clearly shows  Mn1Co1/

CN had only one main peak located at 1.63 Å without the 
Mn–Mn bonding, indicating the Mn–N coordination and Mn 
existed in the form of SAs rather than nanoparticles. This 
was also true for Co SAs as there was only one Co–N inter-
action signal located at around 1.73 Å (Fig. 23c). Due to the 
synergistic effect of Mn and Co SAs, the CO produced rate 
of  Mn1Co1/CN reached 47 μmol  g−1  h−1 (Fig. 23d). To iden-
tify the roles of single atoms in photocatalytic CRR activ-
ity, the  O2 evolution and CO production tests were further 
performed. It was observed that Mn SAs were beneficial to 
 O2 generation (Fig. 23e) leading to the final oxidization of 
 H2O2 while Co SAs for CO formation (Fig. 23f). According 
to the DFT calculations, it was evident that  CO2 molecules 
were more easily adsorbed near Co atoms in  Co1/CN as 
reflected by the bigger bond bending angle and longer bond 

Fig. 22  Defect control of bimetallic single atoms doped g-C3N4. a Schematic illustration of setup for in situ photochemical transmission infra-
red absorption spectroscopy; b in  situ FTIR spectra of SA-Sn/C3N4, SA-Cu/C3N4, and DAS-Sn75–Cu25/C3N4 photocatalytic systems at 5 and 
30 min in  CO2-saturated 0.1 m  KHCO3 and 10 vol% TEA in  D2O solution. Each spectrum at 0 min was used as a baseline; deconvoluted spectra 
in the range of 1500–1800  cm−1 of c SA-Cu/C3N4 and d DAS-Sn75–Cu25/C3N4 at 30 min; e proposed mechanism of  CO2 conversion to HCHO 
over DAS-Sn75–Cu25/C3N4 photocatalyst [103].  Copyright 2022, Wiley–VCH
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length in comparison with that of  Mn1/CN (Fig. 23g-h). This 
verified that Co SAs were the  CO2 absorption and activa-
tion sites. For the  H2O oxidization reaction, this was the 
opposite that Mn SAs were the active sites. According to the 
in situ DRIFTS measurement, multiple intermediate prod-
ucts such as  CO2

−,  HCOO−, and  HCO3
− were generated, 

making it easy to form byproducts such as HCOOH and 
 HCO3H (Fig. 23i). The combined effect of Co and Mn 
greatly reduced the production of these byproducts and 
improved the CRR selectivity. To confirm that the gener-
ated CO coming from the reduction of  CO2 rather than other 
carbon-containing reactants, the researchers used an isotope 
of C, 13C, to label the C atom (Fig. 23j). The mass spectrom-
etry signal of the obtained product has an m/z value of 29, 

Fig. 23  Defect control of bimetallic single atoms doped g-C3N4. a Mn K-edge XANES spectra of the Mn foil,  Mn2O3, MnO and  Mn1Co1/CN; 
b  k3-weighted Fourier-transform Mn K-edge EXAFS spectra of the samples; c  k3-weighted Fourier transform Co K-edge EXAFS spectra of the 
samples; Photocatalytic activities of samples with d double single-atom active sites, e single-atom oxidation sites and f single-atom reduction 
site in  CO2 reduction; Structure of h  Co1/CNCO2 and  Mn1/CNCO2; i in situ DRIFTS result of  Mn1Co1/CN for  CO2 reduction; j Mass spectra of 
13CO driven for  Mn1Co1/CN during light irradiation under 13CO2 atmosphere [232].  Copyright 2022, Wiley–VCH



Nano-Micro Lett.           (2024) 16:70  Page 37 of 66    70 

1 3

corresponding to 13CO, thus proving that CO was derived 
from  CO2 feeding gas. The synergistic effect of Mn and Co 
SAs indicated the advantage of bimetallic single atoms dop-
ing over single-atom doping for photocatalytic CRR perfor-
mance. In addition, we summarize recent advances in the 
metallic doped g-C3N4 for various solar activities in Table 3.

5  Grafted Functional Groups with Optimized 
Band Structure

Grafting the organic functional groups onto the g-C3N4 
has also been verified as one of the most promising defect 
controls for tuning its physicochemical properties with opti-
mized band structure, enhanced solar absorption as well as 
fast photocarrier transport [257]. Previously reported func-
tional groups included the -C≡N (cyano group), O = C–NH2 
(urea-like group), -COOH, -C = O, -OH (O-containing 

Table 3  Recent studies on the metallic-doped g-C3N4 for photocatalytic performance

Photocatalyst Element type Light source Solar application Photocatalytic activity Refs.

Na-CNTs Na λ > 400 nm RhB removal 2.47  min−1  g−1 [233]
Na-CNTS Na λ > 400 nm RhB removal 2.34  min−1  g−1 [233]
Cu–TiO2/g-C3N4 Cu UV–visible light MB removal 0.22  min−1  g−1 [234]
K-CN K λ > 400 nm HER 1337.2 μmol  g−1  h−1 [95]
CN/K/OH/Fe Fe/K λ > 420 nm TC

removal
0.547  min−1  g−1 [235]

NvrCN Mg λ > 420 nm No scavenger removal 0.61  min−1  g−1 [236]
Cu–C–CN Cu λ > 410 nm MB

removal
0.882  min−1  g−1 [237]

Fe-g-C3N4 Fe λ > 420 nm RhB removal 5.11  min−1  g−1 [238]
Cu-CNK-OH Cu/K λ > 410 nm RhB

removal
9.11  min−1  g−1 [239]

Cu- g-C3N4 Cu λ > 420 nm HER 3.02 mmol  g−1  h−1 [240]
NiSCN Ni/S λ > 420 nm HER 2021.3 μmol  g−1  h−1 [241]
g-C3N4/Au/CdS Au/CdS λ > 420 nm HER 1060 μmol  g−1  h−1 [242]
NZCC-30 Ni Visible light HER 336.08 μmol  g−1  h−1 [14]
K/O@ CN K/O Visible light HER 33.38 μmol  g−1  h−1 [243]
B-ECN P Sunlight TC

removal
0.087  min−1  g−1 [244]

MCNCo5 Co λ > 400 nm TC removal 15.96  min−1  g−1 [245]
CdS/CN-30 CdS λ > 400 nm HER 2120 μmol  g−1  h−1 [246]
Ni4%/O0.2tCN Ni/O λ > 420 nm H2O2 formation 2460 μmol  g−1  h−1 [247]
GO/FeGCN Fe Visible light RhB removal 0.3  min−1  g−1 [248]
Mo/Nv-TCN Mo λ > 420 nm TC

removal
0.98  min−1  g−1 [249]

PACN P/O Simulated sunlight HER 6437.65 μmol  g−1  h−1 [210]
CN-K K λ > 420 nm NO

removal
0.078  min−1  g−1 [212]

K-CN K Visible light RhB removal 0.22  min−1  g−1 [250]
[WO4]2−-CN [WO4]2− λ > 420 nm RhB removal 0.22  min−1  g−1 [251]
Zn/C3N4 Zn λ > 420 nm HER 297.5 μmol  g−1  h−1 [252]
Fe (0.5%)/P-CN Fe Visible light Pollutant removal (RhB) 0.0245  min−1  g−1 [253]
Cu/mpg-  C3N4 Cu λ > 400 nm MO

removal
0.39  min−1  g−1 [254]

22% KI K λ > 420 nm Phenol removal 7.2  min−1  g−1 [255]
Mo-CN Mo Simulated sunlight CRR 106.44 μmol  g−1  h−1 [256]
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groups), and various aromatic rings, of which -C≡N is the 
most widely investigated one (Table 4).

5.1  Cyano Groups (‑C≡N) with Defect States

For example, Zhang and co-workers first proposed a uni-
versal alkali hydroxide-assisted preparation of defective 
g-C3N4 with abundant -C≡N groups and N vacancies using 
urea as a precursor [258]. With the increasing content of 

alkali hydroxide, the resulting g-C3N4 showed a progres-
sively narrowed bandgap to 2.36 eV with promoted visible-
light absorption to 525 nm. A similar phenomenon was also 
observed for other g-C3N4 precursors such as melamine, 
thiourea, and urea. The DFT calculations also confirmed 
the narrowed bandgap induced by -C≡N modification, while 
the coexistence of -C≡N and N vacancies would further lead 
to additional defect energy levels. Besides, a high photocar-
rier separation efficiency was also achieved by the -C≡N-
modified g-C3N4, rending it with enhanced photocatalytic 
HER rate up to 6.9 mmol  g−1  h−1.

Subsequently, the -C≡N grafted g-C3N4 nanoribbon 
(mCNN) was developed via the annealing of dicyandiamide 

Fig. 24  Defect control of cyano groups grafting. a SEM and TEM (inset) images of mCNN; b FT-IR spectra and c 1H NMR spectra of photo-
catalytic reaction mediums with 15N2 as feed gas for different reaction times and standard (14NH4)2SO4 and (15NH4)2SO4 samples; d  K+-assisted 
–C/N regeneration process. Blue: N, grey: C, white: H, purple:  K+ [89].  Copyright 2019, Wiley–VCH. e Optical images of bulk g-C3N4, oxi-
dized g-C3N4 samples (g-C3N4−x, x is the oxidized time), and g-C3N4-r (reducing g-C3N4-60 with  NH2NH2·H2O); f Schematic diagram of pos-
sible depletion layer and the band-bending effects near the edge of g-C3N4-30; g TEM image of g-C3N4-30 after Pt deposition; h HOMO of 
 melem+, melem-OH+, and melem-COOH+; i Mulliken charge distribution of different carbon atoms in  melem+ (black), melem-OH+ (red), and 
melem-COOH+ (orange) [87]. Copyright 2019, Elsevier
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and KOH followed by an ultrasonication treatment for 
photocatalytic NRR (Fig. 24a) [89]. The -C≡N bonding in 
mCNN was confirmed by the typical absorption peak around 
2150  cm−1 according to the FT-IR spectra (Fig. 24b) and 
XANES spectra of N K-edge with the broad peak at around 
406.3 eV, assigning to the electron transition from N 1 s 
to C–N σ*orbital. Compared to pristine g-C3N4, mCNN 
showed an extended solar light absorption with apparent 
shoulder peaks at around 450 nm as evidenced by UV–vis 
DRS. Moreover, the absorption tail of mCNN was ascribed 
to the -C≡N induced subgap states, which extended its solar 
light absorption range to 700 nm, implying the significantly 
boosted solar utilization. As a result, the mCNN exhibited 
a promoted  NH3 yield than pure g-C3N4 under both  N2 and 
Ar atmosphere. A deeper mechanism investigation of the 
NRR pathway was further explored using an isotope labeling 
method identified with the 1H NMR technique and theoreti-
cal calculations. As depicted in Fig. 24c, both 14NH4

+ and 
15NH4

+ were detected during the mCNN-based NRR activ-
ity, reflecting the 14N atoms in g-C3N4 were involved in the 
redox reaction. It’s worth mentioning that, with the increas-
ing reaction time, the ratio of the collective integral area of 
15NH4

+ after 4 and 8 h was 1.65, indicating the continuous 
generation of 15NH4

+ originating from outer 15N2 feeding 
gas. However, for 14NH4

+, the ratio reduced to 1.07, suggest-
ing the replaced N from mCNN was exhausted after a certain 
time. Considering the active sites of N defects in other sys-
tems [113], the authors proposed a possible NRR reaction 
mechanism that the -C≡N groups that acted as the part of 
 C2N4 rings to gradually evaluated into  NH3 with continued 
regeneration from the outer 15N source. Further DFT calcu-
lations on  NH3 generation of mCNN confirmed the doped 
 K+ was also critical for the stabilization of unsaturated C 
atoms to form  C2N4 rings and the fixation of  N2 (Fig. 24d).

5.2  O‑containing Groups with Optimized Electron 
Flow

The O-containing functional groups, such as the -COOH, 
-C = O, and -OH, have also endowed g-C3N4 with 
enhanced solar utilization [259–261]. Wang and col-
leagues prepared the edge functional g-C3N4 with -COOH 
and -C = O groups via an acid oxidization method which 
was similar to Hummers’ method for graphene exfoliation 
[87, 262]. With an increasing oxidization etching time, 

the color of g-C3N4 turned from yellow to blue, which 
indicated more O-bearing group species and enlarged 
bandgaps (Fig. 24e) [87]. Namely, a short time within 
30 min rendered g-C3N4 with -COOH and -C = O groups, 
which were beneficial to build an optimized electron flow 
of which a thicker charge depletion layer and band bend-
ing were presented when compared to the pristine g-C3N4 
and reduced g-C3N4-30 sample (Fig. 24f, g). The HOMO 
diagrams of melem, melem-OH, and melem-COOH imply 
that the electrons were prone to accumulate in the O atoms 
with less electron density probability around the neigh-
boring C atoms (Fig. 24h). Consistently, the amount of 
positive charge on the edge of C atoms from O-contain-
ing groups-modified g-C3N4 was much higher than those 
away from the edge or those from pristine g-C3N4, further 
demonstrating the electrons tend to aggregate on the edge 
of g-C3N4-30 nanosheet (Fig. 24i). The authors believed 
this could accelerate the charge separation and narrow the 
bandgap, facilitating the generation of  H2O2 for bacteria 
removal. In contrast, a long oxidization time of 60 min 
would induce the -OH groups, which was suspected of 
hindering the in-planar charge transfer and lowering the 
photocatalytic activity. However, the -OH has been dem-
onstrated to be in good favor of other solar applications 
according to a previous report [263], which might suggest 
the complex situation of -OH-modified g-C3N4 due to the 
different synthetic methods or different functional groups 
combination.

5.3  Aromatic Ring Groups with Enhanced Redox 
Driving Force

Other aromatic rings, taking triazole groups for instance, 
have also been investigated according to Wang and co-
workers’ work [264]. Annealing the freeze-drying mixture of 
urea and 3-amino-1,2,4-triazole (3-AT), authors successfully 
obtained the porous cyanamide-triazole-heptazine polymer 
(CTHPx, x is the mass ratio of urea to 3-AT) with both tria-
zole groups and -C≡N groups. Controlled samples were pris-
tine g-C3N4 (CN), triazole groups-modified CN (THP), and 
cyanamide groups-modified CN (CHP). The corresponding 
triazole groups and -C≡N groups of  CTHP30 were identified 
by the FT-IR spectrums with the typical peaks at around 
3400, 2175, and 739  cm−1 assigning to –NH2, -C≡N, and 
N–N, respectively (Fig. 25a). More detailed peak affiliation 
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was analyzed from 13C cross-polarization magic angle spin-
ning (CPMAS) solid-state NMR spectra (Fig. 25b). Accord-
ing to the UV–vis DRS, we can observe the enhanced solar 
absorption of these triazole groups- or/and -C≡N-modified 
g-C3N4, of which THP without cyano groups displayed the 
best visible-light absorption, followed by  CTHP30 (Fig. 25c). 
However, the CB position of THP was only slightly above 
the theoretical  H2 evolution potential, which suggested 
an inferior driving force that was not beneficial for HER 
(Fig. 25d). In contrast, the  CTHP30 exhibited a reasonably 
narrowed bandgap of 2.65 eV with sufficient driving force 
for HER reaction, indicating the necessity of multi-func-
tional group modification on g-C3N4. Therefore, it showed 
the highest photocatalytic HER rate of 12,723 mmol  h−1  g−1, 
which was 7.34-fold higher than CN. Similar phenomena 
were also observed on the quinoline ring and naphthalene 
ring-modified g-C3N4 with a five-fold higher HER rate than 
unmodified g-C3N4 (Fig. 25e) [265].

Very recently, it is worth mentioning that, similar to 
g-C3N4, the covalent organic frameworks (COFs) consisting 
of organic elements (such as C, N, O, H) via covalent π bond-
ing to form a conjunction structure have boosted extensive 
research interest in the field of photocatalysis [266]. Amine-
based COFs, as one of the most important COFs, have suf-
fered from less chemical stability in harsh conditions and 

insufficient π conjugation system with inherent polarization 
[267]. Fortunately, similar to the boost photocatalytic activ-
ity induced by grafted function groups in g-C3N4 matrix, the 
poor photocatalytic performance can also be well improved 
by the substitution of linkages by introducing the azole link-
ages [268]. Furthermore, the grafted β-ketoenamine to imine 
moieties in the linkages was also efficient in generating a 
non-quenched excited state and a more favorable HOMO 
level, thus leading to an enhanced photocatalytic HER rate 
[269]. It is the most exciting study that Wang’s group has 
demonstrated that the triazine-containing COFs framework 
could significantly boost the  H2O2 photosynthesis rate up 
to 2111 μM  h−1 due to the high-speed photocarrier transfer 
pathway of dual donor–acceptor structure [270], which pro-
vided us a new thinking of the combination of g-C3N4 with 
functional COFs linkages groups.

6  Crystallinity with Extended Conjugation 
System

As the concrete manifestation of broader and weakened 
(002) and (001) planes, the crystallinity of most defect-
engineered g-C3N4 would reduce due to the disrupted peri-
odicity induced by the internal vacancies or the external 
impurities during the intensive thermal annealing/etching 

Fig. 25  Defect control of aromatic ring groups grafting. a FT-IR of CN and  CTHP30; b solid-state 13C MAS NMR spectra, c UV–vis DRS with 
Tauc plots (inset), d electronic band structure of the pristine CN, CHP, THP, and  CTHP30 [264].  Copyright 2020, Wiley–VCH. e Schematic dia-
gram of the possible photocatalytic reaction mechanism on quinoline ring and naphthalene ring-modified g-C3N4 under visible-light irradiation 
photocatalytic HER rates [265]. Copyright 2023, Royal Society of Chemistry
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process [104, 117, 271]. Accompanying with enhanced sur-
face area, unique nanostructure, and defect formation, their 
overall solar activity is generally enhanced [171]. Being on 
the opposite side of defect engineering toward g-C3N4, a 
higher crystallinity normally indicates a more regular atomic 
arrangement with extended and fully condensed conjuga-
tion structure, which stabilizes the π-electron system for fast 
charge mobility and improves the solar utilization due to 
the reduced bandgap and less photocarrier traps induced by 
defects. Therefore, it would be fancy if paying great attention 
to see if there is a balance between crystallinity and defect. 
To this end, this section will begin with the ideal crystalline 
types of g-C3N4 including the poly-heptazine imides (PHI) 
type and poly-triazine imides (PTI) type, followed by giv-
ing typical samples of the combination of defect creation 
in high crystalline g-C3N4 toward enhanced photocatalytic 
activity [83, 88, 106, 272, 273]. The details were extended 
as follows:

6.1  Poly‑heptazine Imides (PHI) with Weakened 
Interlayered van der Waals Interaction

The PHI-typed g-C3N4 (PHI-CN) is the most widely inves-
tigated model for the current research study, which is an 

infinite repeat of the tri-s-triazine unit (Fig. 26a). While PTI-
typed g-C3N4 (PTI-CN) is composed of triazine unit con-
nected with N atoms in the bridging site (Fig. 26b). Gener-
ally speaking, PHI-CN is normally synthesized via a simple 
ion-thermal strategy using bulk g-C3N4 and MCl (M = Li, 
Na, K) as precursors [83]. Compared to PTI-typed g-C3N4 
(PTI-CN), most PHI-typed g-C3N4 (PHI-CN) materials have 
demonstrated a significant improvement in solar activity. In 
a pioneered work, Lin and co-workers found that the PHI-
CN had a smaller calculated bandgap than PTI-CN (1.17 vs. 
3.23 eV), indicating its superior visible-light response ability 
due to the extended conjugated π system (Fig. 26c–d) [273]. 
Additionally, the intercalated  Li+ and  Cl− in PTI-CN have 
little influence on narrowing the band compositions. Regard-
ing XRD patterns, the PHI-CN assigned to g-CN-1 exhibited 
much higher crystallinity with sharper (002) and (001) peaks 
moving in the opposite direction when compared to its bulk 
counterparts (bulk g-CN, mpg-CN, and g-CN-2, Fig. 26e). 
This was supposed to be the enhanced polymerization degree 
with fewer hydrogen bonds and strong chemical interaction 
between interlayers. While the PTI-CN assigned to PTI/
Li+Cl− showed a distinct XRD pattern, which was also con-
sistent with the previous report [81, 88, 274–276]. Due to 
the structure and crystallinity difference, g-CN-1 displayed 

Fig. 26  Defect control of crystallinity improvement (PHI type). Ideal crystalline g-C3N4 in a PHI-type and b PTI-type; DOSs of c PHI-CN and 
d PTI-CN; e XRD patterns and f photocatalytic HER performance of various g-C3N4 samples with different crystallinity [273].  Copyright 2016, 
American Chemical Society. g HRTEM images of PHI-CN nanosheet and h its corresponding FFT patterns; i crystalline structure; j thickness 
[83]. Copyright 2017, Wiley–VCH
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the highest photocatalytic HER rate of 770 μmol  h−1, far 
more exceeding PTI/Li+Cl−, which indicated the advantage 
of PHI units over PTI motifs (Fig. 26f). A subsequent study 
was performed to unravel the relationship between HER 
performance and PHI nanostructure, which employed the 
ultra-thin PHI-CN nanosheets as the target material [83]. Its 
few-layered merit was reflected by the obvious (002) lattice 
fringes according to the HRTEM image and a layer thick-
ness at around 0.98 nm (Fig. 26g–j). Compared to the bulk 
PHI-CN, PHI-CN nanosheets exhibited a 2.5-time higher 
HER rate under visible-light irradiation, further confirming 
that nanostructure engineering is also important for solar 
applications.

Similar research has also been carried out by employ-
ing the ion-thermal strategy to prepare the high crystal-
line g-C3N4 [277]. As shown in Fig. 27a, various precur-
sors including cyanamide, dicyandiamide, melamine, and 

thiourea were annealed in the presence of eutectic NaCl/KCl 
salts, and the corresponding g-C3N4 samples were donated 
as CND, CNC, CNM, and CNT, respectively. According to 
the HRTEM, one can see the obvious lattice stripes assigned 
to the (202) crystal plane of CNT, indicating its good crystal-
linity (Fig. 27b). Besides, compared to the bulk g-C3N4, their 
XRD patterns revealed a new peak at around 8.0°, ascribing 
to a large interplanar packing distance of 1.104 nm due to 
the molten salt condition during the pyrolysis [278]. Interest-
ingly, the (002) peaks were witnessed with a positive shift, 
which evidenced the reduced interlayered distance. This was 
due to the induced high crystallinity that substantially sup-
pressed the edge amino groups, weakening the interlayered 
van der Waals force and lowering the defect density, and 
thus the photocarrier separation efficiency would be boosted. 
This was in good accordance with the reduced EPR sig-
nal intensity of CND, CNC, CNM, and CNT at g = 0.002, 

Fig. 27  Defect control of crystallinity improvement (PHI type). a Schematic diagram of preparing crystalline g-C3N4 using different precursors 
for in situ reduction of  H2O2 and wastewater purification; b HRTEM image and c ESR spectrum of CNT; d electronic band structures of BCN, 
CNC, CND, CNM, and CNT [277].  Copyright 2023, American Chemical Society. e Schematic diagram of open tube dual-zone furnace for 
preparing crystalline g-C3N4 films; f XRD patterns of crystalline g-C3N4 films with annealing temperatures [279]. Copyright 2022, American 
Chemical Society
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attributing to dangling bonds or nitrogen defects (Fig. 27c). 
After the analysis of Mott–Schottky plots and DRS results, 
the authors gave their detailed electronic band structures 
as displayed in Fig. 27d. In contrast to the low crystalline 
bulk g-C3N4, all these crystalline g-C3N4 exhibited a nar-
rowed bandgap by 0.22–0.51 eV, indicating an enhanced 
visible-light responsive ability. Accordingly, CNT had the 
most negative CB value of − 1.43 V, which was a sign for the 
best candidate for the generation of ·O2

− radical. However, 
its driving force for  H2O2 generation was the lowest as its 
most lifted VBM at around 0.82 V. Fortunately, CNT dis-
played the maximum  H2O2 production of 2.48 mmol  g−1  h−1 
with an apparent quantum efficiency of 22% (λ = 400 nm) 
among all samples, further suggesting the superior role of 
high crystallinity over the corresponding oxidization ability.

Different from the ion-thermal-assisted polymerization of 
PHT-CN, Chubenko et al. adopted a chemical vapor deposi-
tion (CVD) method to prepare the crystallized g-C3N4 thin 
film up to 1.2 μm on the glass and silicon substrate [279]. 
As shown in Fig. 27e, the CVD furnace was divided into 
the former lower-temperature zone below 350 °C and later 
high-temperature zone in the range of 500–650 °C. The 
later zone was heated to the target temperature with the sub-
strates inside followed by the continued heating of a low-
temperature zone containing melamine powder to provide 
the precursor atmosphere at 350 °C in dry Ar gas. Moreover, 
the crystallinity of g-C3N4 reached the highest level when 
the target heating temperature was 600 °C even using the 
tiny amount sample on the glass substrate as reflected by 
the strong (002) diffraction peak and obvious (004) peak 
signal as shown in Fig. 27f. Exhibiting the best crystallin-
ity, g-C3N4 synthesized under 600 °C also owns a moderate 
bandgap of 2.87 eV, which was 0.16 eV smaller than that 
obtained under 550 °C, still showing potential for future 
photocatalytic activity.

It is worth mentioning that the crystalline g-C3N4 
obtained via the ion thermal reaction using the metal salts 
as the solvent cannot avoid all surface defects, particularly 
the insertion of K atoms accompanying edge cyano groups. 
Although some research works aimed to achieve the anti-
defect engineering goal, this is almost not possible to realize 
this. In most cases, they were enhanced crystalline g-C3N4 
with tiny defects. Therefore, it provided us with an oppor-
tunity to optimize the photocatalytic activity of g-C3N4 by 
balancing the crystallinity and defect types. The following 

section focuses on the combination of crystallinity and 
defects toward enhanced photocatalytic activity.

In continuing work, a strategy combining high crystal-
linity and N defects was proposed to boost the photocata-
lytic HER of PHI-CN [106]. Herein, the resulting defective 
sample (D-CCN) with cyano group and the unpolymerized 
amino group was obtained after annealing the mixture of 
high crystalline g-C3N4 (CCN) and  NaBH4 in  N2 (Fig. 28a). 
Although the impurities have been imported into the 
D-CCN, they still preserved high crystallinity as evidenced 
by the clear lattice fringes of 1.09 nm assigned to the d spac-
ing of in-plane (001) layers (Fig. 28b). Intriguingly, the high 
crystallinity of D-CCN could reduce the unblocked channels 
across the 2D conjugated π in-planes, which enabled smooth 
in-plane charge transport and easier excitation dissociation. 
While the decreased (002) spacing further shortened the 
lateral distance, it enhanced the charge transfer along the 
vertical direction. Additionally, the defects induced by the 
mid gaps could extend the visible-light absorption to 610 nm 
and promote the charge separation efficiency (Fig. 28c). The 
authors claimed that the defect-modified D-CCN might be 
composed of two parts: (1) main framework with PHI-CN 
exhibiting an intrinsic bandgap of 2.63 eV and (2) partial 
matrix of functional groups grafted defective g-C3N4 with 
a midgap of 1.87 eV. Due to the energy difference between 
these gaps, the electron flow could be expected as shown in 
Fig. 28d, giving rise to the significantly promoted photocar-
rier separation efficiency. Therefore, we observed a substan-
tial improvement of photocatalytic HER performance for 
D-CCN to 64 μmol  h−1, which was 8 and 40 times higher 
than those of CCN and bulk g-C3N4 with low crystallinity, 
respectively.

Liang et al. contributed outstanding research on com-
bining the crystalline g-C3N4 with W-doping in the cell 
void sites of PHI units via a solvothermal reaction employ-
ing the crystalline g-C3N4 (CCN) and W(CO)6 as start-
ing materials [280]. As we know, bulk g-C3N4 (BCN) 
obtained from the traditional pyrolysis method suffered 
from an overloading of edge amino groups, which dra-
matically destroyed its crystallinity, worsening the pho-
tocarrier transfer pathway along the in-plane direction. In 
contrast, CCN was observed with fewer surface defects 
such as K atoms in the void and few cyano groups on the 
edge, which was demonstrated to narrow its bandgap and 
boost the photocarrier transfer process. According to the 
SEM and HRTEM mapping result, the W elements were 
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distributed evenly without obvious nanoclusters aggrega-
tions. Along with the large W atomic radius, the W-dop-
ing position should be similar sites with that of K atoms 
in the void position. It was clear that the crystallinity of 
W-doped crystalline g-C3N4 (CCN-W) did not change with 
a d-spacing of 0.98 nm assigned to the interlayered (100) 
planes, which was similar to that of CCN. Interestingly, an 
obvious XRD diffraction peak at around 8° was witnessed 
for both CCN and W-CCN, which were supposed to be the 
(100) planes due to the K-doping (Fig. 29a). Also, there 
was a slight (002) peak shifting from 28.2° to 27.9° of 
CCN over CCN-W, suggesting a larger interlayered dis-
tance of CCN-W owing to the bigger W atomic radius. 
Remarkably, the EPR signal of CCN-W was weaker and 
stronger than that of BCN and CCN, respectively. This 
indicated that  W6+-doping was beneficial to balance the N 

vacancy concentration and crystallinity. When it comes to 
the photocatalytic CRR activity, the dominant species were 
 CO2−,  HCO3

−, and m-CO3
2− before irradiation for CCN-W 

as reflected by the in situ DRIFTS spectra (Fig. 29b). The 
in situ FT-IR spectroscopy measurement recorded within 
2 h of photocatalytic CRR activity further revealed the 
formation of bicarbonate b-HCO3

2−,  HCOO− and –OCH3 
groups with their peaks located at 1100/1200/1420, 
1370/1514/1578, and 1450  cm−1, respectively. As a result, 
CCN-W delivered the highest CO,  CH4, and  C2H4 yields of 
5.75, 4.45, and 1.17 μmol  g−1  h−1, respectively (Fig. 29c). 
Notably, the introduction of active W-N6 sites into CCN-W 
not only enhanced and activated the adsorption capacity 
for  CO2 and CO with a moderate affinity ability but also 
enriched photoelectrons, which was critically beneficial 
for the high collision possibility and low CRR barrier, 
thus leading to the main production of hydrocarbons with 

Fig. 28  Defect control of crystallinity improvement (PHI type) with functional groups. a Illustration of fabrication strategy combining crystal-
linity and defect control; b HRTEM image of D-CCN; c DRS spectra of CCN and D-CCN, bandgap of D-CCN determined by Tauc plots (inset); 
d schematic illustration of the speculative band structure in D-CCN [106].  Copyright 2019, Wiley–VCH
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a high selectivity of 83%. In contrast, CCN displayed a 
lower CRR yield in comparison with the W-doped sample 
with a high selectivity of CO, further demonstrating the 
superior role of W-N6 in boosting the photocatalytic activ-
ity of crystalline g-C3N4 (Fig. 29d). Thus, these pieces of 
work provide us with a new pathway balancing both crys-
tallinity and defect creation, which is of vital importance 
for the future design of g-C3N4-based photocatalysts for 
solar applications.

6.2  Poly‑triazine Imides (PTI) with Active {1010} 
Facets

Lotsch’s group first proposed the ion thermal method to 
obtain PTI-based carbon nitrides, which employed the 
eutectic mixture of LiCl and KCl as solvent [272]. The syn-
thetic route concluded two steps: (1) Pre-heating of dicy-
andiamide and molten salt under an inert Ar atmosphere at 
400–500 °C; (2) Annealing above mixture under vacuum 
for a long time up to 48 h, the brownish PTI/Li+Cl− was 
obtained. Based on the XRD, TEM, and solid-state NMR 
spectroscopy analysis, PTI/Li+Cl− was found to exhibit 
a high crystallinity with ABA stacking and separated by 

Fig. 29  Defect control of crystallinity improvement (PHI type) with metallic doping. a XRD patterns of BCN, CCN, and CCN-W; b In situ 
DRIFTS of photocatalytic CRR intermediates in the absence (0–1 h) and presence (1–2 h) of LED illumination for CCN-W; c photocatalytic 
CRR products of various g-C3N4 samples under full spectral irradiation; d diagrammatic of multifunctional role of W-N6 active centers for pho-
tocatalytic CRR over CCN-W [280].  Copyright 2022, Elsevier
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the weak van der Waals forces. Additionally, the  Li+ and 
 Cl− were located in the channels along the Z-axis direction 
(Fig. 30a). Further investigation on the exfoliated ultra-thin 
PTI nanosheets showed that the hexagonal shape and tria-
zine unit were kept as reflected by the HRTEM images in 
Fig. 30b–c [81]. Interestingly, the resultant PTI nanosheets 
enabled the  H2 evolution under solar irradiation (Fig. 30d). 
However, its cycling HER activity in the TEOA solution 
suffered from severe performance decay, indicating instabil-
ity in the basic environment. While changing to a methanol 

additive, the HER performance showed reasonable sta-
bility within 130 h, suggesting the promising potential in 
photocatalysis.

Further identification of the reactive planes of PTI/
Li+Cl− during the photocatalytic HER has been performed 
by fabricating PTI/Li+Cl− single crystals via a modified 
above-mentioned synthetic method with a higher rating 
rate of 6 °C  min−1 and a shorter post-annealing time of 
12 h [276]. The corresponding PTI/Li+Cl− sample showed 
a regular hexagonal structure with prismatic {1010} 

Fig. 30  Defect control of crystallinity improvement (PTI type). a Parallel projection of PTI/Li+Cl− structure [272]; Copyright 2011, Wiley–
VCH. b TEM image of exfoliated ultrathin PTI/Li+Cl− nanosheets; c HRTEM image of PTI/Li+Cl− nanosheets viewed along (001) direction; d 
photocatalytic HER activity of PTI/Li+Cl− [81]; Copyright 2014, American Chemical Society. e Left, schematic illustration of the PTI/Li+Cl− 
single crystal with the basal plane terminated by two {0001} planes and the side faces terminated by six equivalent {1010} facets. Right, the 
crystal structure of PTI/Li+Cl−; f HAADF-STEM image of a PTI crystal aligned close to the {0001} direction with Pt nanoparticles on prismatic 
{1010} facets; g computational PTI/Li+Cl− model; h projected band structure (Г-point, spin up) of  Pt8@PTI/Li+Cl−; i transition dipole moments 
between VBs and CBs and j charge density of  Pt8@PTI/Li+Cl− with band numbers of 1,510 (CB of C, N) and 1,500 (VB of Pt) [276].  Copy-
right 2020, Springer Nature
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planes and basal {0001} planes as shown in Fig. 30e. 
According to previous reports, the poor solar water split-
ting performance of PTI-based g-C3N4 can be enhanced 
by the photo-deposition of suitable co-catalysts such as 
Pt and Co clusters. The HAADF-STEM image of PTI/
Li+Cl− displayed that the Pt clusters were deposited on 
the prismatic {1010} facets with negligible distribu-
tion on {0001} planes (Fig. 30f). In addition, contrast 
samples PTI−x with different  S{1010}/S{0001} ratios were 
also obtained, where x is the annealing temperature. The 
higher  S{1010}/S{0001}, the better overall water splitting 
performance is. Correspondingly, PTI-550, with the high-
est ratio, exhibited the best HER and OER rates of 189 
and 91 μmol  h−1, respectively. These results demonstrated 
the prismatic {1010} planes were the active facets, which 

was also confirmed by the transition dipole moments 
between the CB and VB using the  Pt8 cluster absorbed on 
the {1010} planes of PTI/Li+Cl− as a calculated model 
(Fig. 30g–j). The photogenerated electrons were demon-
strated to migrate from the  Pt8 energy levels (band no. 
1475–1505) to CB of g-C3N4 (above band no. 1510) on 
the active {1010} facets. Besides, recent advancements 
of crystalline g-C3N4 in both PHI and PTI types are sum-
marized in Table 4.

6.3  Recent Discussion on Defect Traps with fs‑TAS

Based on the above discussion, defect engineering has dem-
onstrated an indispensable contribution to improving the 
solar utilization of g-C3N4 toward various solar applications. 

Table 4  Recent advancement of defective g-C3N4 with functional groups and highly crystalline g-C3N4 for different solar applications

Photocatalyst Light source Solar application Photocatalytic activity Refs.

PTI/Li+Cl− λ > 300 nm HER 1890 μmol  g−1  h−1 [276]
CGCN λ > 100 nm HER 600 μmol  g−1  h−1 [281]
p-gCN-NS λ > 400 nm RhB removal 0.97  min−1  g−1 [282]
CNCN λ > 420 nm HER 3591 μmol  g−1  h−1 [129]
NPZ0.5 λ > 420 nm HER 1360 μmol  g−1  h−1 [283]
C-Ti2NBs/g-C3N4/Fe3O4 Visible light MO removal 0.16  min−1  g−1 [284]
CCNNSS λ > 420 nm HER 1060 μmol  g−1  h−1 [83]
g-CN-1 λ > 420 nm HER 15,400 μmol  g−1  h−1 [273]
BaCN-C3N4 λ > 420 nm HER 7382 μmol  g−1  h−1 [89]
COC30 Visible light HER 1336.8 μmol  g−1  h−1 [285]
PYM100-CN λ > 420 nm HER 5.418 μmol  g−1  h−1 [286]
O–g-C3N4 simulated sunlight HER 7285 μmol  g−1  h−1 [175]
K/S@CN Visible light CRR 16.27 μmol  g−1  h−1 [287]
CNS-500 λ > 420 nm H2O2 formation 4980 μmol  g−1  h−1 [288]
PCN-G λ > 400 nm HER 5.5 mmol  g−1  h−1 [289]
CCN-W 420–780 nm CRR 11.91 μmol  g−1  h−1 [280]
DCN350 λ > 420 nm HER 1541.6 μmol  g−1  h−1 [290]
CNT λ > 400 nm H2O2 formation 2.48 mmol  g−1  h−1 [277]
OPCN λ > 400 nm H2O2 formation 1002.4 mmol  g−1  h−1 [199]
g-CN-I λ > 420 nm HER 5880 μmol  g−1  h−1 [291]
GOD-OCN-3d λ > 420 nm Cr4+

removal
0.78  min−1  g−1 [58]

g-C3N4-0.01 λ > 420 nm HER 0.44 mmol  g−1  h−1 [258]
DCN-200 λ > 420 nm HER 4020 μmol  g−1  h−1 [292]
CN680 λ > 440 nm HER 310 μmol  g−1  h−1 [293]
CNHP30 λ > 420 nm HER 12,723 μmol  g−1  h−1 [264]
g-C3N4-30 λ > 400 nm Photocatalytic disinfection 30.7  min−1  g−1 [87]
20OTh5/g-C3N4 Visible light HER 3.63 mmol  g−1  h−1 [294]
DMC30 λ > 420 nm HER 306.52 μmol  g−1  h−1 [295]
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With discreet regulations, mono/multiple types of defects 
(vacancies, dopants, and functional groups) can induce 
additional impurity energy levels, such as midgap states and 
subgap states in g-C3N4 [102, 110, 171]. Most cases empha-
size the critical role of these defect states: (1) lowering the 
photocarrier excitation energy with extended visible-light 
absorption; (2) acting the temporary electron reservoir to 
accept the migrated electrons from CB, further inhibiting the 
photocarrier recombination rate. However, the side effects 
of these defect states in g-C3N4 have drawn less research 
attention compared to those in other semiconductor-based 
systems, which mainly include: (1) deeper defect energy 
levels with insufficient redox driving force to restrain the 
formation of desired products; (2) trapped energy levels or 
detrimental surface states acting as photocarrier recombina-
tion centers that reduce the amount of thermodynamically 
satisfied electrons.

Despite few studies on g-C3N4 deep into this concern, 
there are tremendous research experiences in other photo-
catalyst systems to be referred to [296–307]. For example, 
the dangling bonds aroused during the defect manipulation 
might cause deteriorated surface states which would further 
lower the solar activity. The surface states have also been 
well studied in the application of photoelectrochemical water 
splitting. For instance, Benjamin and co-workers proposed 
an electrochemical EIS method to interpret the effect of sur-
face states in the charge transfer process [305]. These sur-
face states were optimized with the accumulation of holes 
at the α-Fe2O3/electrolyte interface, which is beneficial for 
water oxidation. Furthermore, theoretical calculations veri-
fied the N-doping level is vital for the position of defect 
states in  La2Ti2O7 [304]. Specifically, one N atom replac-
ing the O atoms would lead to deep localized states, which 
was not good for photocatalytic activity. Two N atoms and 
one O vacancy induced a continuum energy band just below 
the CB of  La2Ti2O7, which enabled a fast charge transfer 
rate and enhanced solar utilization. This finding allows us 
to develop advanced defect control with optimized defect 
states. Recently, several studies on identify the shallow 
defect states to explore the deep photocarrier transfer kinet-
ics have emerged using the femtosecond transient absorption 
spectrometer (fs-TASM) [112, 144, 308]Typically, the time 
and space-resolved fs-TASM is composed of a femtosecond 
Ti/Sapphire regenerative amplifier laser system to generate 
a pulse of tens femtosecond and a data acquisition tran-
sient absorption spectrometer. After the amplifier and BBO 

crystals, the laser with a certain wavelength can be obtained 
as the pump, and the probe pulse can also generate a white-
light continuum spectrum. The pump and probe beams are 
focused onto the sample to get the temporal and spatial over-
lap (Fig. 31a) [309]. Very recently, Gao et al. fabricated the 
B and P co-doped g-C3N4 (BPCN) and found the electrons 
can be transferred along the pathway of P → N → C → B 
according to the DFT calculations (Fig. 31b) [112]. Moreo-
ver, the smallest ΔG change of 0.16 eV further indicated 
BPCN was more favorable in the absorption and desorp-
tion processes of active H*, and thus HER performance 
(Fig. 31c). The femtosecond transient absorption spectra 
(fs-TAS) were employed to reveal the deep charge transfer 
dynamics. Specifically, for pristine BCN, only a negative 
signal was observed in the range of 420–800 nm, mainly 
due to the stimulated emission (SE, Fig. 31d–e). However, 
for BPCN, both negative signal and positive signals were 
seen in the range of 420–640 and 640–800 nm, respec-
tively (Fig.  31g–h). The strongest positive absorption 
band of BPCN was ascribed to the excited states absorp-
tion (ESA) induced by the photogenerated electrons, indi-
cating the fast charge excitation and separation processes. 
The authors continue to perform the kinetic decay curves to 
identify the lifetime species after excitation. According to 
the decay curves at 540 nm in Fig. 31f, the corresponding 
shortest fast-trapping component τ1 of 2.16 ps for BPCN 
indicated the shallowest defect states compared to those of 
CN, B-doped g-C3N4 (BCN) and P-doped g-C3N4 (PCN). 
As for the 750 nm decay curves, CN didn’t exist due to its 
ignorable positive signal. Interestingly, the authors observed 
a shortest τ1 of 0.3 ps and longest τ2 of 31 ps for BPCN 
(Fig. 31i), indicating its shallowest defect traps and longest 
charge separation lifetime due to the synergistic effect of 
the electron-rich P and electron-deficient B. Along with the 
optimized electronic band structure with smallest bandgap 
of 2.46 eV and electron transfer pathway, BPCN exhibited 
a superior photocatalytic HER rate of 4579 μmol  h−1  g−1.

Zhu’s group proposed more direct evidence probing the 
charge dynamics in the trap states for N vacant g-C3N4 via 
the midinfrared femtosecond transient absorption spec-
troscopy (MIR fs-TAS) [144]. Two control samples, bulk 
CN-550 obtained at 550  °C with deep trap states and 
mesoporous N vacant g-C3N4 obtained at 630  °C with 
shallow trap states, were employed in this case (Fig. 32a). 
According to MIR fs-TAS, both samples showed the pres-
ence of trapped electrons as their relatively strong absorption 
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bands from 4500 to 5100 nm (Fig. 32b-c). Their MIR decay 
kinetics curves reflected that CN-M-630 had much shorter 
lifetimes of τ1 and τ2 than CN-550, suggesting the relaxation 
of electrons from CB to more shallow trap states (Fig. 32d). 
A similar phenomenon was observed under visible light 
fs TA decay curves. In addition, the CN-M-630 displayed 
a prolonged longer lifetime τ3, indicating a slow decay of 
the recombination process in the presence of hole-trapping 
solvent (methanol, Me-OH). To further reveal the charge 
transfer dynamics, the time-resolved PL spectrum was per-
formed, where τ1 (short lifetime) and τ2 (long lifetime) are 
assigned to the radiative and non-radiative decay of pho-
tocarriers from CB/defect states to VB, respectively. The 

CN-M-630 showed both shorter τ1 (1.33 vs. 2.59 ns) and 
τ2 (8.70 vs. 14.17 ns) with a decreased contribution of τ1 
(51.0–49.4%), which demonstrated its lower quantity of 
quick recombined photocarrier and enhanced charge sepa-
ration and transfer. Based on the above fs-TAS analysis, one 
can infer the shallow trap states in CN-M-630 enabled not 
only a fast charge separation and transfer process but also a 
suppressed photocarrier recombination, which is good for 
photocatalytic activity. While the deep trap states in CN-550 
revealed a sluggish photocarrier transport and severe charge 
recombination process (Fig. 32e). Inspired by this work, our 
group realized a precise defect control on g-C3N4 with shal-
low defect states toward enhanced HER performance [91]. 

Fig. 31  Defect control of defect states. a Schematic representation of a fs-TASM setup [309].  Copyright 2012, Elsevier. b Charge density dif-
ference maps of the as-obtained sample (yellow and cyan regions represented the electron accumulation and depletion; values at the atoms were 
the Bader charge); c free energy profiles of hydrogen absorption over the CN, PCN, BCN and BPCN for HER; time-dependent contour plots 
of fs-TAS (pump laser: 400 nm): d CN, g BPCN; TAS of e CN, h BPCN; Kinetics decay profiles of f CN and BPCN at 540 nm and i BCN and 
BPCN at 750 nm [112]. Copyright 2024, Elsevier
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Specifically, the S dopants and N vacancies were simulta-
neously introduced into hollow g-C3N4 prisms via a dual-
solvent-assisted synthetic strategy. By adding the ethylene 
glycol solvent into precursor formation and molten sulfur 
solvent into the pyrolysis process, the defective g-C3N4 
exhibited a moderate concentration of N vacancy and a high 
S-doping level. This has been demonstrated to be effective to 
induce shallow defect states, which enabled both a promoted 
solar harvesting ability and a moderate electron-trapping 
ability to avoid photocarrier recombination (Fig. 32f). As 
a result, the resultant defective g-C3N4 displayed a supe-
rior HER rate of 4219.9 μmol  g−1  h−1, which was 29.1-fold 
higher than unmodified g-C3N4.

It is very exciting to learn that the fs-TAS is a powerful 
tool to reveal the photocarrier transfer kinetics so that we 
can glimpse an insight into the real defect behavior. It has 

been discussed above that the crystalline PHI-CN is a good 
photocatalyst HER catalyst owing to its weaker interlayered 
distance and ordered atomic arrangement [106]. Recently, 
excellent work on detecting the electron’s lifetime in defect 
states has been contributed by Ye et al. by analyzing the fs-
TAS spectrums of crystalline g-C3N4 obtained in the pres-
ence of KCl/LiCl mixture (CNKLi) and pristine g-C3N4 
(CN) [308]. To simulate the real photocatalytic environ-
ment, the photocatalyst was deposited with 2 wt% Pt in 10% 
TEOA solution. As shown in Fig. 33a–d, CNKLi exhibited 
a negligible simulated emission, indicating the fast charge 
carrier separation process. In addition, the signal at around 
640 nm of CNKLi (Fig. 33d) was significantly stronger than 
CN (Fig. 33c), further suggesting the efficient absorption 
of photogenerated charge carriers. The authors continue to 
perform the kinetic decay and fitting curves at 640 nm to 

Fig. 32  Defect control of defect states. a Schematic illustration for the fabrication of CN-550 and CN-M-630; MIR fs-TAS for b CN-550 and 
c CN-M-630; d MIR fs-TA decay kinetics; e scheme of the photocatalytic mechanism of CN-M-630 (STS: shallow trap states; DTS: deep trap 
states) [144].  Copyright 2022, Elsevier. f Electron-trapping ability of defect states with different positions [91]. Copyright 2023, Wiley–VCH
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identify the lifetime species after excitation. According to 
the decay curves in Fig. 33e–f, the corresponding short-lived 
and long-lived spectral component (τ1–τ4) can be obtained 
(Fig. 33g). The sluggish photocarrier transfer and severe 
recombination progress of CN was evidenced by the high 
21.7% ratio of short-lived τ1 of 11.8 ps, whereas for CNKLi 
the τ1 value dramatically reduced to 1.6 ps of 59.5%, indicat-
ing an ultra-fast charge generation and transfer process due 
to the high PHI crystallinity. Different from the long-lived 
τ2 of 15.5 ns indicating severe photocarrier recombination of 
CN due to the deep-localized states, CNKLi exhibited short 
τ2 and τ3 in the ps scale, suggesting the formation of shallow 
defect states. In this case, the crystalline g-C3N4 with shal-
low defect states delivered the accelerated charge transfer 
kinetics via the advanced experimental fs-TA characteriza-
tion, of which the photocatalytic activity would be boosted 
(Fig. 33h). The above works provide us with new insight into 

the charge transfer dynamics in defective trap states by more 
convincing data rather than the qualitative results.

7  Conclusions and Outlook

Over the past 10 years, enormous attribution has been 
devoted to the defect-engineered g-C3N4 to boost its solar 
utilization on light harvesting and charge transfer kinetics 
by optimizing the electronic structure, electronic conduc-
tivity, and electronic polarization. We highlight the regu-
lation strategies of vacancy creation, impurities doping by 
hetero-atoms and metallic atoms, defect modification of 
grafted functional groups, and crystallinity control. Despite 
great advancements being made, there is still space for 
future breakthroughs in the research direction of defect-
engineered g-C3N4 in the following aspects (Fig. 34):

Fig. 33  Defect control of defect states. a, b Pseudocolor fs-TAS of 2 wt% Pt-deposited CN and CNKLi in 10 vol % TEOA aqueous solution 
under the pump excitation of 350 nm; c, d fs-TAS at different delay times of 2 wt% Pt-deposited CN and CNKLi in 10 vol% TEOA aqueous 
solution; e, f Corresponding kinetic decay and fitting curves at 640 nm of 2 wt% Pt-deposited CN and CNKLi in 10 vol% TEOA aqueous solu-
tion; g Schematic illustration of the proposed charge carrier dynamics of CN and CNKLi (Ex stands for excitation; Em stands for emission; DT 
stands for deep-trapped states, whereas ST is representative of shallowly trapped states); h schematic illustration of ultra-fast charge transfer in 
crystalline CNKLi than pristine one [308].  Copyright 2022, American Chemical Society
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(1) Further regulation on defect-associated energy levels 
to maximize the solar utilization, referring to shallow 
defect states and non-deterioration on surface states, 
preventing the traps from being the recombination 
centers. More importantly, the photocarrier transfer 
dynamics in defect states are meaningful to the deep 
understanding of defect creation, which needed to be 
characterized by more advanced optical techniques 
(fs-femtosecond transient absorption spectroscopy) or 
electrochemical method (EIS analysis).

(2) Discreet manipulation of defect concentration to main-
tain the crystallinity of g-C3N4 at a reasonable level. 
As is known, there is a trade-off between defect engi-
neering and crystallinity. The high crystallinity of 
PHI-based g-C3N4 enables a better in-plane and inter-
layer charge transfer due to the reduced hanging bonds 
induced by the defects. Thus, the balance between 
defects and crystallinity of g-C3N4 should be paid more 
attention.

(3) Defect stability should be given more emphasis in 
future g-C3N4-based studies. Due to the long-term solar 
irradiation, the more inert bulk g-C3N4 itself would 
inevitably suffer from photocatalytic activity degrada-
tion. The vacancies, dopants, functional groups, and 
single/dual atoms might go through a more complex 
structure change, which needs to be detected via more 
advanced real-time technologies.

(4) A precise understanding of each defect type in multi-
ple-defect-modified g-C3N4 needs to be specified. The 
coupling of different defect types in g-C3N4 is com-
mon and the benefits for performance improvement are 

obvious. However, it is difficult to use the control vari-
ables strategy to fabricate the target defective g-C3N4 
with a single defect or random mixing of defect types, 
making it hard to figure out which type/types are the 
most important. Building a precise calculated model as 
close to its experiment result to simulate the reaction 
process and catch a glimpse of real defect mechanism is 
a fantastic but challenging work, which deserves more 
research attention.

To this end, for a better future defect “customization” 
on g-C3N4, researchers need to fabricate the target g-C3N4 
via a precise control on both defect type and concentration 
in the experiment along with the guidance of theoretical 
calculations. More importantly, the desired “customiza-
tion” goal must obey basic principles: (i) tunable elec-
tronic band structure with designed CBM and VBM for 
a required photocatalytic activity, giving sufficient redox 
driving force; (ii) shallow defect states and optimized sur-
face states to avoid the severe photocarrier recombination 
in both bulk phase and surface, maximizing the benefits 
of defects; (iii) optimized crystallinity with appropriate 
interlayered interaction and good balance with defects to 
guarantee the fast photocarrier transfer pathway, acceler-
ating the redox kinetics; (iv) robust stability to maintain 
a high activity producing fuels, removing pollutants, and 
showing great potential for large-scale use.

In summary, we review the background and research his-
tory with significant progress, challenges, and correspond-
ing solutions of defect-engineered g-C3N4 toward enhanced 

Fig. 34  a Review summary; b defect design for future g-C3N4-based photocatalysis
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solar utilization on various applications. In addition, recent 
inspiring work on tracing the charge dynamics of trapping 
states is also emphasized. Furthermore, future design strat-
egies for more effective defective g-C3N4 have also been 
proposed. We believe with synergetic efforts on defect con-
trols and advanced characterization techniques, more break-
throughs in highly efficient g-C3N4-based photocatalysts in 
various solar applications can be achieved.
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