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HIGHLIGHTS

• The processing methods of functional polymer composites (FPCs) are systematically summarized in “Toolbox”.

• The relationship of processing method-structure-property is discussed and the selection and combination of tools in processing among 
different FPCs are analyzed.

• A promising prospect is provided regarding the design principle for high performance FPCs for further investigation.

Abstract Functional polymer composites (FPCs) have attracted increas-
ing attention in recent decades due to their great potential in delivering a 
wide range of functionalities. These functionalities are largely determined 
by functional fillers and their network morphology in polymer matrix. 
In recent years, a large number of studies on morphology control and 
interfacial modification have been reported, where numerous preparation 
methods and exciting performance of FPCs have been reported. Despite 
the fact that these FPCs have many similarities because they are all con-
sisting of functional inorganic fillers and polymer matrices, review on 
the overall progress of FPCs is still missing, and especially the overall 
processing strategy for these composites is urgently needed. Herein, a 
“Toolbox” for the processing of FPCs is proposed to summarize and 
analyze the overall processing strategies and corresponding morphology 
evolution for FPCs. From this perspective, the morphological control 
methods already utilized for various FPCs are systematically reviewed, 
so that guidelines or even predictions on the processing strategies of vari-
ous FPCs as well as multi-functional polymer composites could be given. 
This review should be able to provide interesting insights for the field of 
FPCs and boost future intelligent design of various FPCs.
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1 Introduction

Functional polymer composites (FPCs) have gained enor-
mous attention in recent decades owing to their great 
potential in delivering a wide range of functionalities, e.g., 
electrical conductivity [1–3], strain sensing [4, 5], thermal 
conductivity [6–8], thermoelectric property [9, 10], dielec-
tric property [11, 12], electromagnetic shielding (EMI) 
[13–15] and microwave absorption [16]. These function-
alities are largely determined by physicochemical proper-
ties of functional fillers (i.e., size and shape of fillers) and 
their network morphology in polymer matrices. Therefore, 
as shown in Fig. 1, numerous research efforts have been 
devoted to the optimization of these functionalities through 
morphology control and interfacial modification, where a 
wide range of preparation methods and exciting performance 
of FPCs have been reported [17–21]. Despite the fact that 
these FPCs have many similarities because they all consist 
of functional inorganic fillers and polymer matrices, reviews 
on the progress of FPCs are limited in individual FPCs field, 
while overview on the overall progress of FPCs is stilling 
lacking, and especially the overall processing strategies for 
these composites is urgently needed.

As well known, the structure–property relationship is a 
key guidance in designing polymeric composites. Further-
more, tailoring structure of FPCs by morphology control 
and interfacial modification finally footholds on the selection 
and combination of preparation methods in practice. In this 
regard, appropriate selection and combination of prepara-
tion methods is a prerequisite to enable the optimization of 
functionalities. To date, most of researchers merely focus on 
the morphology control of filler network and modification of 
the interface between filler and polymer [22, 23], while the 
relationships between different processing methods, struc-
ture of FPCs (including filler network morphology and inter-
face between filler and polymer) and final functionalities are 
still not clear. Meanwhile, researchers tend to focus on their 
own specific field [24]. Nevertheless, finding new inspira-
tion from other mainstream or specific processing methods 
in different FPCs fields may pave a novel potential way for 
the preparation of high performance FPCs.

However, there are many processing methods for prepar-
ing FPCs, not to mention the large number of combinations 
between different methods. It is actually not easy to select the 
most suitable processing methods for wide range of FPCs. 

Therefore, efficient classification and summary strategy is 
vital to systematically study processing methods and process-
ing method–structure–property relationship. After consider-
ing above issues, the concept of “Toolbox” is proposed based 
on regarding one or several similar processing methods as 
a kind of tool for designing various FPCs. Previous work 
from our group with some specific tools for the morphol-
ogy control “Toolbox” has been reported [25]. To extend the 
tools for various FPCs and summarize the “Toolbox” more 
comprehensively, the processing and fabrication of various 
FPCs are summarized for wider range of literature. Then, 
a systematic “Toolbox” is developed, which covers recent 
progress on processing methods for better designed func-
tionalities as shown in Table 1. To better understand these 
processing methods, they are firstly categorized into various 
processing types: melt blending, in situ polymerization and 
solution blending. Furthermore, specific processing meth-
ods are divided into primary processing tools and secondary 
processing tools according to the sequence they are utilized, 
which will be listed in detail in Sect. 2. Thereinto, primary 
processing tools include hybrid filler, volume excluding 
particle, polymer blends and filler surface modification, 
while secondary processing tools have more species, such 
as foaming, thermal annealing, injection molding, magnetic 
field, coating, film casting, pre-straining and electrospinning. 
Therefore, such “Toolbox” could be used to not only study 
the relationship of processing method–structure–property, 
but also possibly create novel approaches for the preparation 
of certain FPCs by combining a number of exiting tools, or 
adapting tools from other type of FPCs. Meanwhile, newly 
emerging designed processing tools could also be incorpo-
rated into such “Toolbox” to update and enrich the system.

This review provides a comprehensive overview on the to-
date processing methods for preparing FPCs, including electri-
cally conductive polymer composites (ECPCs), strain/pressure 
sensing polymer composites (SSPCs), thermally conductive 
polymer composites (TCPCs), dielectric polymer composites 
(DEPCs), electromagnetic interference (EMI) shielding poly-
mer composites (EMISPCs), microwave absorbing polymer 
composites (MAPCs) and thermoelectric polymer composites 
(TEPCs). The basic mechanism and background for above 
FPCs can be found in Supporting Information and a number of 
decent review papers [23, 26–34], respectively. In this review, 
we start with the details and characteristics of different pro-
cessing methods and then summarize diverse selections and 
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Fig. 1  A Schematic for the preparation and morphology of ethylene-α-octene block copolymer (OBC)/multi-walled carbon nanotubes (MWC-
NTs) via melt blending and injection molding. Reprinted with permission from Ref. [17]. B Schematics of using pressure-induced flow (PIF) 
and supercritical carbon dioxide (Sc-CO2) to prepare poly(l-lactide) (PLLA)/MWCNTs foams. Reprinted with permission from Ref. [18]. C 
Schematic illustration of the epoxy/BaTiO3 (BT) composites fabrication process through solution blending BT with lignocellulose, freeze 
drying, sintering and filling with epoxy in sequence. Reprinted with permission from Ref. [19]. D Schematic of the fabrication and structure 
reduced graphene oxide/polystyrene (rGO/PS) composites by in-situ reduction following high-pressure solid phase formation. Reprinted with 
permission from Ref. [20]. E Schematic diagram for the fabrication of chemically modified graphene/polyimide (CMG/PI) nanocomposites with 
laminate structures by electrospinning–hot pressing method. Reprinted with permission from Ref. [21]
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combinations of processing methods. Furthermore, the struc-
tural features brought to the filler networks by these processing 
methods are also discussed. Additionally, the future application 
trend of such “Toolbox” is prospected. By combining with 
“artificial intelligence” computer program, such concept could 
be used to collect and summarize the overall materials data-
base, and thus, possible processing routes for given structure 
or targeted properties could be predicted. Such method could 
be used to guide the future preparation of FPCs to achieve 
outstanding performance more efficiently and effectively.

2  Toolbox

Utilizing inorganic filler and polymer could bring compos-
ites with exciting functional properties. However, converting 
the potential properties of fillers and polymers into compos-
ites is not easy. Potential filler agglomeration, filler network 
distribution in the polymer matrix, the interface between 
filler and polymer, and the morphology and structure of the 
entire composite would largely influence the final properties, 

which pose more stringent challenge to the design strategy 
and processing method. In the past decade, a large number 
of reports were focused on morphology control to improve 
the performance of various composites. This process is real-
ized by different processing methods either individually or 
collectively. On the one hand, different processing methods 
have unique processing conditions or implementation meth-
ods, and their principles, methods, influencing issues are 
different to result in different outcome. On the other hand, 
different processing methods may also lead to similar mor-
phology. For example, porous materials could be achieved 
by foaming, freeze-drying or even 3D printing. Herein, a 
concept of “Toolbox” for the processing of FPCs is proposed 
to summarize and analyze the overall processing strategies 
for a range of FPCs. As shown in Table 1, the “Toolbox” 
consists of three parts: the type of processing, primary pro-
cessing and secondary processing. These types of process-
ing are the major type of processing methods summarized 
for different literature. Then, primary processing methods 
can be considered as the materials selection and mixing 

Table 1  “Toolbox”: the type of processing and specific tools used during processing for morphology control. These tools are summarized from 
700 literature collected in various FPCs fields
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procedure before processing. Finally, secondary processing 
methods process various materials into desired shape and 
structure. All these methods have important influence on 
the final structure and properties of FPCs. The methods and 
characteristics of these processing strategies are discussed 
in the following part.

2.1  Type of Processing

2.1.1  Melt Blending

Melting blending is based on the fact that thermoplastic 
polymers become soft upon being heated up, while the 
properties of polymers are largely remained the same after 
they are cooled down. This technique requires relatively high 
processing temperature; typical amorphous polymers and 
semi-crystalline polymers can be processed above their glass 
transition temperature and melting temperature, respec-
tively. Such process can be achieved by equipment, such 
as extrusion, internal mixing, injection molding and blow 
molding, which are capable of being operated at elevated 
temperatures and generating high shear forces. Due to sim-
plicity and availability of these processes, melt blending is 
considered as the most time-saving, cost-effective and scal-
able method for the production of FPCs for a wide range 
of polymer matrixes. This approach is free of solvents and 
contaminants, which are present in solution processing and 
in situ polymerization. Nevertheless, the main advantages 
of those two processing types are that the filler dispersion 
level could be achieved at molecular scale and provides an 
advantage of low viscosity, which can facilitate mixing and 
dispersion. Therefore, compared to solution mixing and 
in situ polymerization, the filler dispersion status of FPCs 
with melt blending is often less homogeneous. During mix-
ing, a number of parameters such as temperature, rotation 
speed and mixing time must be fine-tuned to optimize the 
resulting properties [35]. During melt blending process, 
filler agglomerates generally undergo dispersion by erosion 
and rupture mechanisms simultaneously.

2.1.2  In Situ Polymerization

In the process of preparing FPCs by in situ polymerization, 
the functional fillers are uniformly dispersed in polymer 
monomers firstly, and then an initiator is added in the filler/

monomer system to initiate polymerization. The fillers often 
need to be surface modified with functional groups or poly-
mer, so that there is a strong interface interaction between 
fillers and polymer matrix in composite prepared by in situ 
polymerization. The advantage of in situ polymerization is 
that inorganic fillers have rather homogeneous dispersion 
and potentially good interfacial strength between filler and 
polymer matrix, for which polymer molecules are either 
wrapped around or covalently bonded to these fillers. Moreo-
ver, in situ polymerization enables the grafting of polymer 
chains onto the surface of fillers, allowing the resulting FPCs 
with high filler loading level and excellent miscibility with 
polymer. In situ polymerization is usually used to process 
FPCs containing thermally unstable or insoluble polymers, 
which cannot be prepared by other strategies such as solution 
or melting compounding. Depending on monomer molecu-
lar structures, the required molecular weight and molecular 
weight distribution of the polymers, anionic, radical, ring-
opening and other polymerization reactions have been used. 
Moreover, with the continuous research and the development 
of in situ polymerization technology in FPCs, many meth-
ods, such as in situ intercalation polymerization of polymer 
in clay [36], template-directed in situ polymerization [37], 
in situ oxidation polymerization in reverse microemulsion 
[38] and interfacial adsorption-soft template polymerization 
[39], are developed to obtain unique structure and high-per-
formance composites.

2.1.3  Solution Blending

Compounding techniques, like melt blending, can lead 
to industry-scale preparation, but it is difficult to realize 
locally homogeneous dispersion due to the filler–filler inter-
action, especially for fillers with high aspect ratio such as 
carbon nanotubes (CNTs), while in situ polymerization is 
required in relative high-viscosity systems. Thus, another 
technology, solution mixing, needs to be introduced for bet-
ter filler dispersion. The solution blending method refers 
to dispersing inorganic filler in polymer solution using a 
suitable solvent and removing the solvent finally to obtain 
FPCs. In the solution blending system, uniform filler disper-
sion in polymer solution and lower viscosity are two typical 
aspects. Nanofillers usually cannot be directly dispersed well 
in most of the solvents due to their exceptionally high spe-
cific surface area resulted strong interactions [40]. In order 
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to promote the dispersion of fillers, some additives were 
introduced in solution blending, such polydopamine and 
ionic liquid. Deng et al. reported a ionic liquid of 1-butyl-
3-(4-sulfobutyl) imidazolium trifluoromethanesulfonate 
was added into single-walled carbon nanotube/poly(3,4 
ethylenedioxythiophene):poly-(styrenesulfonate) (SWCNT/
PEDOT:PSS) system [41]. On the one hand, the introduction 
of ionic liquid promotes the dispersion of SWCNT, and on 
the other hand, ionic liquid has ion-exchange effect which 
plays a similar role of high-boiling solvent effects to provide 
primary and secondary doping of PEDOT:PSS, to enhance 
the electrical conductivity via manipulation of the order-
ing structures of conducting polymers. Here is another way 
to adjust composite morphology and structure by blending 
filler and polymer matrix in solution blending. Liang et al. 
reported a morphology design strategy by mixing SWCNTs 
and polypyrrole (PPy) nanowires, and unique sandwiched 
layer structure free-standing PPy/SWCNT composite films 
were obtained [42].

Solution blending can be used to fabricate FPCs with 
excellent dispersion, and it is also a necessary step for most 
of the secondary process processing methods proposed 
such as coating, electrospinning [43] and printing technol-
ogy [44], but the use of solvent retards their industrial scale 
production to some extent. There are a number of issues 
that could be adjusted during this processing, such as the 
type of solvent, type of shear applied during mixing, mixing 
sequence, choice of polymer as well as filler, rate of solvent 
evaporation. These issues could have important influence on 
the final structure and properties of various FPCs.

2.1.4  Others

Other types of processing mainly involve physical mix-
ing method of polymers and fillers and the preparation of 
thermoset polymers, such as epoxy resin. Physical mixing 
was widely used to fabricate FPCs with selectively distrib-
uted functional nanofillers, i.e., segregated structure. In 
segregated FPCs, fillers are primarily located at the inter-
faces of polymeric granules instead of homogeneously 
distributed. The formation of segregated filler networks 
substantially relies on polymer matrices with exclusion-
ary microstructure, where functional fillers are located in 
a constrained volume, thus enhancing the effective den-
sity of the filler network at limited loadings [45, 46]. For 

thermoset polymers, such as epoxy resins, unique epoxide 
functional groups can react with a vast of hardener or cur-
ing agents at an elevated temperature to construct mul-
tiple cross-linking networks, resulting in good adhesive, 
mechanical, chemical and temperature resistance proper-
ties [47, 48].

2.2  Primary Processing Method

2.2.1  Hybrid (or Different) Filler

The hybrid filler method refers to adding two or more 
types of fillers into polymer. On the one hand, the simple 
superposition of multiple fillers could allow the compos-
ites to have the performance of all fillers at the same time, 
thereby achieving multiple functions. For example, mixing 
nano-barium titanate and nickel hydroxide can prevent the 
agglomeration of nano-barium titanate, thereby adjusting 
the contradictory relationship between dielectric constant 
and loss in dielectric materials [49]. On the other hand, with 
the combination of different dimensional topography fillers, 
a special structure is achieved, thus obtaining a synergistic 
effect. For instance, single-walled CNTs (MWCNTs) can 
effectively serve as thermal conduction bridge between gra-
phene oxide (GO) and three-dimensional particles, reducing 
thermal resistance. As shown in Fig. 2A, MWCNTs which 
around the GO nanoplatelets can lead to the formation of 
a heat transport path. Moreover, the MWCNTs on the GO 
surfaces illustrate synergistic effect on the thermal transport 
properties due to their 3D network structures [50]. It can 
be seen that the main characteristic of hybrid (or different) 
filler is to use fillers with different dimensions, such as 0D 
and 1D linear, one-dimensional linear and 2D sheets, to 
build a more complex 3D spatial structure.

2.2.2  Volume Excluding Particle

As the name implies, volume excluding effect means that 
due to the addition of fillers, one of the fillers occupies rela-
tive large volume and thus illustrates repelling effect on the 
other components in the system. This results in the other 
filler exhibiting some special distribution, thus achieving 
special functionality. This repulsive effect usually requires 
a large size difference or shape difference for the filler. At 
present, this method is mainly used to prepare segregated 
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structure or selectively distributed network, so as to achieve 
low filler content and high performance. For example, 
using this method to construct a segregated structure can 
effectively decrease the filler content needed for achieving 
conductive networks [51, 52]. For instance, after expanded 
graphite and ultra-high molecular weight polyethylene 
(LLDPE) are mixed together by grinding and crushing, com-
pression molding process is used to construct segregated 
structure (Fig. 2B) [53]. The percolation threshold of such 
structure is reduced, and other comprehensive properties of 
the composites can also be optimized [54].

2.2.3  Polymer Blends

Polymer blends method refers to two or more polymers that 
are mixed together to achieve functionality and performance 
improvement through constructing certain phase morphol-
ogy. Common polymer blends structures include island-in-
the-sea structures, bi-continuous structures, interpenetrating 
network structures and multilayer structures [55]. It is well 
known that the phase morphology of a mixture is mainly 
influenced by two factors, namely thermodynamic factors 

and kinetic factors. Thermodynamic factors include compat-
ibility and interfacial tension between two phases. It is often 
observed that better diffusion and uniform mixing among 
different phases is achieved with better compatibility and 
greater binding force. Methods to promote compatibility 
mainly include chemical modification, addition of com-
patibilizers and formation of interpenetrating network or 
hydrogen bonding. By controlling process parameters (flow 
parameters, solvents, temperature, etc.), the phase transition 
process can be achieved. This special phase morphology 
brings large performance difference in polymer materials. 
For example, after adding CNTs to thermoplastic polyure-
thane (TPU) and olefin block copolymer (OBC) blends with 
bi-continuous structure (Fig. 2C), composites with enhanced 
strain sensitivity can be effectively obtained [56]. In addi-
tion, it is more noteworthy that structurally special blends, 
such as multilayer extrusion, multilayer injection molding 
and gradiently distributed filler, could also be obtained using 
some special processing methods and instruments. The dis-
advantage is that the controllable range of properties are 
often between two blended polymers, and the controllability 
decreases when multiple materials are used. It should also be 
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Fig. 2  A The construction of network structure with hybrid fillers containing graphene oxide/multi-walled carbon nanotube (GO/MWCNT)/
epoxy composite. Reprinted with permission from Ref. [50]. B Filler particles are localized at the boundaries between the polymer grains to 
form segregated system. Reprinted with permission from Ref. [53]. C Graphical representation of the network morphology evolution for olefin 
block copolymer/carbon black/thermoplastic polyurethane (OBC/CB/TPU)- ternary blends composites. Reprinted with permission from Ref. 
[56]. D General methods associated with filler surface modification. Reprinted with permission from Ref. [62]
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mentioned that the use of more than two types of polymers 
can sometimes generate interesting phase morphology, such 
as the core–shell structured blends reported by Yang et al. 
[57, 58]; it could be interesting for a range of applications.

2.2.4  Filler Surface Modification

Filler surface modification refers to changing the original 
inert interface on filler surface through physical or chemi-
cal approaches, thereby altering the interfacial interaction 
between filler and polymer matrix. Generally, the filler 
surface modification can reduce defects caused by origi-
nal interface, enhancing the interaction between filler and 
matrix, promoting the dispersion of fillers in polymer 
matrix, thereby preventing the performance of compos-
ites from degrading. Hence, the methods of filler surface 
modification can be divided into chemical modification and 
physical modification. Chemical surface modification is the 
most commonly method, and it is generally used to modify 
the filler surface by grafting polymer chain, block polym-
erization, encapsulation polymerization to filler (“grafting 
to”) [59]; group decoration or coating organic polymer on 
filler surface (organic surface modification) [60]; inorganic 
particles mainly use van der Waals force, hydrogen bond-
ing, chemical bonding, ionic bonding and other methods 
to strengthen the two-phase interaction (inorganic function-
alization), for which popular methods used include: depo-
sition method, outer layer modification, mechanochemical 
modification, surface chemical modification and high-energy 
surface modification [61]. Figure 2D shows three typical 
methods associated with filler surface modification [62]. The 
purpose of organic phase interface modification in chemical 
method is to increase the surface polarity and roughness, 
adjust the surface area and crystallization performance, 
eliminate weak interface layer, and introduce new functional 
groups. Related reviews with more details can be found else-
where [63, 64]. Physical surface modification is usually the 
use of physical means such as physical adsorption, physical 
surface functionalization (such as ball milling and plasma 
treatment) to modify filler surface.

2.3  Secondary Processing

The secondary processing method directly affects the final 
structure and morphology of the composite. Both structural 

design and direct shaping to the composite products can be 
achieved during this process. In order to better understand, 
secondary processing technologies are categorized according 
to the final obtained structure and morphology as homogene-
ous structure, orientation structure, porous structure, layer 
structure, and others. The homogeneous structure contains 
S2 thermal/solution annealing, S7 coating, S8 film casting, 
S15 compression molding and S16 3D printing; the orienta-
tion structure contains S4 solid-state drawing, S5 injection 
molding, S6 magnetic/electric filed, S9 pre-straining, S12 
two/three-roll milling calendaring and S16 3D printing; The 
porous structure contains S1 foaming/etching, S10 filtration, 
S11 electrospinning S13 freeze drying and S16 3D printing; 
The layer structure contains S3 Bi-component(co-extrusion), 
S14 layer by layer and S16 3D printing. S17 curing and S18 
few special processing tools are not classified here because 
of the particularity of their use. Moreover, distinguishment 
of these secondary processing methods is discussed in the 
each S tool. In this section, we summarize various recent 
progress on processing methods according to their similarity 
and give an overview of their principles, classification, usage 
methods and scenarios.

2.3.1  (S1) Foaming/Etching

Polymer foam has the advantages of light weight, good heat 
insulation, sound absorption and shock absorption, and they 
have been widely used in military and civilian industries. It is 
commonly classified into three types [65]: closed-cell foam, 
partially open-cell foam and open-cell foam. Figure 3A–C 
corresponds to the cellular structure of polymer foams. Gen-
erally, the basic step of foam forming is to have a bubble 
core, which is called nucleation, then the bubble core grow 
or expand in polymer melt, finally diffuse out. The driv-
ing force present in forming process is gas over-saturation 
caused by increasing temperature or decreasing pressure. 
The schematic diagram of the microstructural changes foam-
ing process with the growth of cells is shown in Fig. 3D. 
More details about nucleation can be found elsewhere [66]. 
Polymer-based foams can be prepared using physical or 
chemical foaming. Physical blowing agents act on polymer 
matrix as inert occupation. For instance, some low-boiling-
point agents act as physical blowing agent by dissolving and 
evaporating from polymer, such as pentane and freon [67]. 
Considering air pollution, environment-friendly physical 
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foaming agents including carbon dioxide, nitrogen, air and 
water have been used for foaming. This method starts from 
the saturation of polymer filled with uniform concentration 
gas at elevated pressures, followed by heating and reducing 
the pressure to obtain cell nucleation. Kuang et al. reported 
a pressure-induced physical foaming method by supercriti-
cal carbon dioxide (Sc-CO2) to prepare “brick and mud” 
structure L-polylactic acid (PLLA)-MWCNTs composites 
[18]. The saturated Sc-CO2 filled in PLLA-MWCNTs block 
in a high pressure at certain temperature for a restricted state, 
then cool down and release them to induce the cell nuclea-
tion and bubble growth to achieve uniform foaming. Chemi-
cal blowing agents take part in reaction in foaming process 
and giving off gas to form cell, so foam-making process is 
irreversible. Isocyanate and water are often used in PU foam-
ing, azohydrazine and other nitrogen-based materials in ther-
moplastic and elastomeric foaming, and sodium bicarbonate 
in thermoplastic foaming. For example, Covavisaruch et al. 
employed azodicarbonamide (AC) in foaming polyvinyl 

chloride (PVC)/rice hull composites and investigated the 
effect of concentration and particle sizes of AC on density 
and cell size. With increasing foaming agent content, the 
cell size became smaller [68]. For industrialization, extru-
sion foaming and injection molding foaming technology are 
used for large-scale production of polymer-based composite 
foam [65].

During the processing of FPCs, etching is generally used 
to construct voids or rough surface. It is divided into dry 
etching and wet etching. Dry etching refers to the use of laser 
or plasma, generally in order to form rough surfaces and 
then functional modification. For example, Xu et al. used 
low-pressure oxygen-plasma treatment to increase the rough-
ness of PU backbone and activate the surface of original PU 
foam backbones by introducing abundant oxygen-containing 
groups. In this work, oxygen plasma is used as an etchant 
to physical bombard the surface of object through insert, 
generate or remove functional groups [72]. Meanwhile, wet 
etching refers to the use of chemical solution to etch the 
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Fig. 3  Cellular structure of polymer foams: A closed-cell foam. Reprinted with permission from Ref. [69]. B Partially open-cell foam and C 
open-cell foam. Reprinted with permission from Refs. [18, 70]. D Schematic diagram of the microstructural changes foaming process with the 
growth of cells. The black lines represent the filler, and the arrows show the growth directions of the bubbles during foaming. Reprinted with 
permission from Ref. [71]
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interior of materials, accompanied by chemical reactions and 
the formation of pore structure. For example, Pang et al. 
grew multilayer graphene on nickel foam and formed polydi-
methylsiloxane (PDMS) coating by immersion graphene/Ni 
foam into PDMS prepolymer. Then, they employed HCl to 
etch the nickel skeleton to obtain porous structure compos-
ites, and an interconnected graphene network was obtained. 
This porous composite demonstrates good flexibility and can 
undertake bending, torsion and stretch [73].

2.3.2  (S2) Thermal/Solution Annealing

Thermal/solution annealing is an effective method for 
promoting the increase of crystallinity and morphological 
control in FPCs. Through such process, the polymer matrix 
was heated above melting temperature or glass transition 
temperature, accompanying the relaxation of their molecu-
lar chains. Through the relaxation and mobility of polymer 
molecules, the functional fillers are redistributed and the 
filler network structure is formed. In addition, residual stress 
could be eliminated. Generally speaking, the crystallinity is 
often increased after thermal annealing, which would often 
lead to changes in the mechanical properties of FPCs, such 
as the elastic modulus and yield strength.

In inorganic fillers/polymer systems, thermal/solution 
annealing could promote the formation of conductive net-
works in FPCs containing various types of conductive fill-
ers. Zhang et al. showed that conductive microfibrils are 
separated by oriented polyethene (PE) crystals [74]. The 
segmental Brownian movement of PE chains facilitates 
the disordering of microfibrils during annealing process, 
in which overlapped microfibrils created new conductive 
paths and induced dynamic percolation transition. Further-
more, thermal annealing also has important influence on the 
orientation of conductive fillers. In our previous study [1], 
morphological control of conductive network was realized 
by solid-state drawing bi-component structure tape followed 
by annealing between the melting temperatures of different 
components. During annealing, highly oriented MWCNTs 
was relaxed with much better local contacts between still 
largely oriented MWCNTs bundles. In addition, another 
thermal/solution annealing method is sintering, where sin-
tering temperature is usually quite high to allow the diffu-
sion between polymer particles [75]. The influencing issues 
during sintering could be: sintering temperature, sintering 

time, pressure, particle composition, etc. Generally, thermal/
solution annealing is often combined with other technologies 
to achieve more effective functional design, such as electric/
magnetic field, solid-state drawing, injection molding.

2.3.3  (S3) Bi‑component (Co‑extrusion)

Bi-component (co-extrusion) is an important processing 
method to prepare multicomponent FPCs. In this process, 
polymers melt and fillers with different properties are added 
to the extruder and extruded with a certain shape of die 
under extrusion. Bi-component (co-extrusion) technology 
is applicable to almost all thermoplastic and some thermo-
setting plastics such as phenolic resin. With the advantages 
of simple process, energy saving, high production efficiency, 
greatly reduced production costs and no solvent is used in 
the process. Through co-extrusion, the interface between 
polymers produces adhesion, the adhesive force between 
different polymer resin composite layers mainly depends 
on the mutual solubility and affinity of resin matrix, and 
the melting temperature difference between different resins 
should not be very large. Additives for adhesion could be 
incorporated between polymer layers during co-extrusion 
if necessary. Meanwhile, component viscosity match, rheo-
logical behaviors, temperature control, extrusion speed and 
other instrument parameter design are also the key factors 
affecting the preparation of high performance FPCs during 
co-extrusion. It should be pointed out that there is a “viscos-
ity surrounding” from low-viscosity melt to high-viscosity 
melt. If the die flow channel is long enough, the phenom-
enon of “viscosity surrounding” would lead to uneven layer 
thickness distribution in the final composites. Moreover, the 
melt with higher viscosity would be completely coated by 
the melt with lower viscosity. In addition, because of the 
different viscoelastic properties of various polymer melts, 
the interlayer interface of the melt is easily formed by co-
extrusion, producing "wavy" or "zigzag" instability.

To have more control on the multilayered structure in 
various polymer films, Guo et al. fabricated alternating mul-
tilayered polypropylene (PP) and carbon black (CB)-filled 
polypropylene (PPCB) composites through layer-multiplying 
co-extrusion system and investigated its electrical behav-
iors [76]. By controlling the co-extruding speed and the 
die setup, the number of layers and thickness of each layer 
could be controlled. These alternating multilayer composites 
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exhibit anisotropic electrical behaviors because insulating 
PP layer would hinder the establishment of conductive path-
ways. Moreover, the alternating insulating PP layers and 
conductive layers vertical to interfaces could accumulate 
electrical charges at the interface, leading to significantly 
enhanced dielectric permittivity. More details on co-extru-
sion can be found in review paper by Zhang et al. and Li 
et al. [77, 78].

2.3.4  (S4) Solid‑State Drawing/Fiber Spinning

Solid-state drawing is often carried out on materials between 
their glass transition and melting temperatures [79]. A suita-
ble drawing temperature has important influence on molecu-
lar rearrangement and crystallization. As the results of draw-
ing, modulus, strength and toughness can be improved by 
the strain-induced crystallization and orientation [80]. Apart 
from drawing temperature, draw ratio is another key factor 
on the mechanical properties of polymer composites.

Fiber spinning is a method to form fiber, including melt 
spinning, dry spinning, wet spinning, and dry-jet-wet spin-
ning, etc. [81]. Melt spinning is one of the most widely used 
processes in fiber manufacturing. During melt spinning, 
polymers are drawn over its melt temperature thanks to the 
high molecular mobility of polymer melt. There is a large 
temperature gradient between fiber and surrounding environ-
ment. The strong shear field forces the polymer to stretch 
and form into filament rapidly under ambient temperature 
difference, and inorganic filler is often highly aligned along 
the spinning direction within polymer matrix. Spinning 
temperature, spinning rate, subsequent hot-drawing process 
are important factors affecting fiber performance, surface 
quality and crystal structure of the fibers [82]. Other factors 
affecting the final functional properties are the dispersion of 
inorganic fillers in the fiber, filler content and filler network 
structure, etc.

Dry spinning is a method similar to solid-state drawing 
and melt spinning. When the precursor polymer solution 
is extruded from the needle, the external evaporating hot 
air attacks the fiber and the solvent evaporates leaving a 
filamentous fiber. In the process of wet spinning, polymer 
composites solution is extruded and passes through a liquid 
precipitation bath to form fibers. And the extruded solution 
passes through an air route before entering a precipitation 
bath in dry-jet-wet spinning. Moreover, the factors affecting 

fiber spinning in processing are: viscosity, temperature, 
extrusion rate, cooling conditions (stretch ratio, precipita-
tion conditions), etc. Overall, oriented polymer and filler 
network structures with different degree of alignment are 
often obtained during above drawing and spinning process.

2.3.5  (S5) Injection (Blow) Molding

During injection molding, polymer melt is stirred by a screw, 
injected into the mold cavity with high pressure, and then 
cooled and solidified to obtain product at certain tempera-
ture. In its routes, there are three main steps in the molding: 
filling, packing/holding and cooling [83]. Various types of 
polymers with desired flow properties and a low viscosity 
at high temperatures are suitable to produce injection mold-
ing parts, such as polystyrene (PS), polymethyl methacrylate 
(PMMA), PP, PE and acrylonitrile butadiene styrene (ABS). 
It is noteworthy that final impact on processing decision 
would not only depend on type of polymers but also tem-
perature control, pressure control, injection speed and many 
other conditions in the process [84].

Composites exhibit a variety of microscopic morpholo-
gies under shear and temperature fields employed by injec-
tion molding, and the orientation of fillers and polymers 
along the injection molding direction have received wide-
spread attention. The orientation structure of the sample is 
closely related to the shear field during injection molding. 
Due to the difference in shear force, the structure in the 
area close to the cavity wall (skin layer) and the center area 
(core layer) is significantly different [85]. For ECPCs, the 
composites obtained by injection molding generally have 
a larger percolation threshold compared to compression-
molded composites [86]. Meanwhile, more confinement 
on polymer composites could be achieved with decreased 
mold thickness and increased injection rate. For instance, 
Yu et al. observed such confinement could deform poly-
mer blends into multilayered structure, resulting in alter-
nating multilayer CNTs conductive networks in polyolefin 
blends through high-speed thin-wall injection molding [79]. 
Nowadays, the trend of processing technology is developing 
toward microinjection, high fill compound injection, water-
assisted injection molding, mixed use of various special 
injection molding processes, foam injection molding, mold 
technology, simulation technology and so on [87].
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Blow molding is a method that the polymer melt is placed 
in the split mold, and compressed air is introduced to make 
the mold embryo cling to the inner wall of the mold, which 
is cooled and demolded. Similar to injection molding, blow 
molding is also forced by shear. Compared with injection 
molding, blow molding products are inflated under low pres-
sure, so the residual stress of products is smaller, and the 
performance in tensile, impact, bending and environmental 
strain resistance is often better.

2.3.6  (S6) Electric/Magnetic Field

Electric and magnetic fields are effective assistant method 
to assemble functional fillers in polymer system. Under 
external electric or magnetic field, filler migrates forced by 
electric or magnetic field, which reconfigure the filler net-
work. For instance, alternative current (AC) electric field 
was used to induce nanofibrillated cellulose (NFC) align-
ment in TPU system in order to enhance the dielectric and 
mechanical properties [88]. Induced by electric field, NFC 
is easily orientated because of electric field-induced polari-
zation, which induced a torque to force NFC along the elec-
tric field direction. Consequently, the prepared anisotropic 
TPU/NFC composites exhibit increased tensile strength 
and elongation at break in the parallel direction than that 
in the vertical direction. Magnetic field was also used to 
assemble filler with the participation of magnetic compo-
nents, such as magnetic fibers or particles. Chen et al. [89] 
mixed solution of Co nanowires and polyvinylidene fluo-
ride (PVDF) by drop casting onto aluminum sheet with 
magnetic field to enforce orientation, then the Co nanow-
ires would assemble into highly ordered domains. Along 
the unidirectional desired direction, the electrical transport 
in oriented Co nanowires can be greatly promoted, and also 
the filler content required to form a percolated network 
can be possibly reduced. The results show that oriented 
nanocomposites exhibit significantly increased electrical 
conductivity than identical nanocomposites that are ran-
domly oriented. Another strategy is that when magnetic 
particles adhere to the surface of filler, the magnetic par-
ticles drive the filler to orient under magnetic field. For 
instance, magnetic  Fe3O4 nanoparticles on the surface of a 
certain type of filler could guide filler re-orientation under 
external magnetic field [90]. Overall, such method based 
on external fields often result in filler structure with some 

degree of orientation without significantly orienting poly-
mer matrix. Meanwhile, better filler local contacts are also 
often observed.

2.3.7  (S7) Coating: Spray/Roll‑to‑roll/Dip Coating/
Scraping/Spin Coating

Coating is one of the most widely used processing methods 
for fabricating functional films or layer of functional coat-
ings on various substances, such as fiber, foam, electrospun 
mat, film or any solid surface. Wide range of filler contents 
could be achieved in functional polymer composites in coat-
ing processing. According to the filler distribution in these 
films or any other substances, two different systems can be 
identified. One of them is the most adopted method: the 
functional filler is evenly distributed in the polymer sys-
tem and then coated onto a given substance. This method 
has been adopted for functionalities including electrically 
conductivity, thermoelectric, dielectric, thermal conductiv-
ity, EMI shielding and sensors. For instance, Hong et al. 
[91] fabricated high-performance thermoelectric nanocom-
posite films as organic thermoelectric generators through 
spray coating a mixture of CNTs and poly(3-hexylthiophene) 
(P3HT). Surface modifier is often introduced into the mixed 
system. For instance, Shen and coworkers [92] utilized dopa-
mine (PDA) to modify h-BN microplatelets and stirred with 
polyvinyl alcohol (PVA) aqueous solution, where the PDA 
coating increases the dispersibility of the filler and enhances 
its interaction with PVA matrix. Followed by scraping, the 
hexagonal boron nitride (h-BN)/PVA composite film was 
achieved.

The other is the multiple coating strategy, where sepa-
rate steps were used to prepare filler and polymer lay-
ers, respectively. For example, Liang et al. presented a 
PDMS/Ag nanowires composite f lexible transparent 
conductive film by spin-coating PDMS onto Ag nanow-
ire network [93]. An Ag nanowire (AgNW) network was 
fabricated firstly via spin-coating of AgNW solution onto 
a polyethylene terephthalate (PET) substrate, and then 
the obtained AgNW network was placed on HCl vapor 
under visible light for nanowelding. Finally, PDMS layer 
was spin-coated onto AgNW network to obtain PDMS/
AgNW film. This strategy not only constructs controllable 
AgNW welding network, but also evidently enhances the 
conductivity. Meanwhile, dip coating is the same interface 
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contact mode between filler and polymer. Kim et al. firstly 
dipped basalt fiber in MWCNT dispersion to prepare con-
ductive composite filler, then the MWCNT/basalt fiber was 
immersed in epoxy to obtain the final MWCNT-coated 
basalt fiber/epoxy composites [94]. Through this method, 
the electrical conductivity of such MWCNT-coated basalt 
fibers epoxy composites increases significantly from 
3.25 ×  10−9 to 1.44 ×  10−1 S  cm−1 with increasing dip-dry 
coating cycle from 0 to 10.

Overall, various coating methods have been widely used 
in industry to produce a variety of functional composites. 
These coating methods could be divided into spray coat-
ing, dip coating, comma roller coating and slot die coating. 
They are selected for applications according to the specific 
requirement and solution properties including solid content, 
viscosity, bubble generating ability during coating and sedi-
mentation of solid [95].

2.3.8  (S8) Film Casting

Film casting is a method to prepare FPCs film by casting the 
mixture solution of functional filler and polymer into sub-
strate followed by the evaporation of solvent. In this process, 
the mixture solution is spread out by surface tension to form 
a thin film. Besides, there is usually no obvious orientation 
structure that emerges in casting process. For instance, Xu 
et al. [96] prepared conductive PMMA/CFs (carbon fibers) 
composite films by casting different concentrations of CFs 
mixture solution on a rectangular glass plate to obtain com-
posite films. The CFs are overlapped and disorderly distrib-
uted with each other, and finally form conductivenetwork. 
Compared with the above coating method, film casting tends 
to produce films with larger thickness, and unlike the above 
coating methods, it is often unsuitable for substance which 
is not flat films.

2.3.9  (S9) Pre‑straining

Pre-straining is a method of pre-stretching a given object and 
then releasing the stress to produce special structures, such 
as cracks, wrinkles or bending. Through such process, func-
tional filler network can often be oriented during stretching 
and relaxed during releasing. Such process has important 
influence on the reconstruction of conductive networks and 
is often used to prepare flexible and stretchable devices, such 

as flexible conductors and strain sensors. Wang et al. [97] 
fabricated a pre-straining followed buckling approach to 
prepare a high stretchable and sensitive CNTs film/PDMS 
composite with hierarchical crack structure. The PDMS 
solution was poured onto the multilayer CNTs film to form 
CNTs film/PDMS composites and cut into small strips 
after curing. After the strips were pre-stretched to 120% 
strain, network cracks were produced in multilayer CNTs 
film, including gaps, islands and bridges connecting sepa-
rated islands (Fig. 4A). Niu and coworkers [98] stretched 
the PDMS substrate to 30% pre-straining and then spread 
a surface hydrophilic group of SWCNTs film out onto the 
pre-strained PDMS substrate directly. After releasing the 
stress, some wrinkles structure would be formed (Fig. 4B). 
Ge et al. [99] provided a stretchable electronic fabric arti-
ficial skin approach with a helical AgNWs network by pre-
straining. A 100% pre-straining elastic thread (a nylon fiber 
helically wound around inner PU fibers core surfaces) was 
coated with AgNWs solution through dip coating and then 
a helical AgNWs network (Fig. 4). Thanks to this unique 
helical structure, the AgNWs networks can still keep the 
conductive paths and high conductivity even if sustain large 
tensile strain. Besides, pre-stretching could also be used for 
conductive polymer composites [100, 101] and thermal con-
ductive polymer composites [102].

2.3.10  (S10) Pour Casting/Filtration

Pour casting/filtration is a typical combination method for 
fabricating FPCs. It is generally applicable to fillers with 
structural framework or fixed shape, such as 3D network 
structure or fillers fixed in mold. The polymer serves as pro-
tective layer and fills the gap among the fillers. For instance, 
Yu et al. [103] prepared high-performance epoxy nanocom-
posites reinforced with 3D CNT sponge for EMI shielding 
by filtrating epoxy into as-prepared porous CNT sponge with 
a vacuum-assisted method. The excellent electrical, EMI 
shielding and mechanical properties of epoxy/CNT sponge 
nanocomposites can be attributed to the more continuous 
and strong conductive network for electron transport, EMI 
shielding and load transfer. Generally, pouring casting/fil-
tration method does not damage the structure of functional 
filler, Gu [104] reported a  Fe3O4/thermally annealed gra-
phene aerogel (TAGA) EMI shielding composite by pour 
casting epoxy in  Fe3O4/TAGA aerogel. It can be observed 
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that the composite remains the same filler network structure 
before pour casting (Fig. 5).

2.3.11  (S11) Electrospinning

Since 1990s, electrospinning has attracted a great deal of 
interest due to its advantage of simple operation, strong 
designability and yielding continuous fibers with diameters 
down to the nanometer scale, having a rapidly development 
in recent years [105]. Unlike conventional fiber spinning 
techniques, electrospinning is driven by electrical force, and 
the polymer solution overcomes surface tension to form jet 
under high voltage electric field, solidifies into fibers in the 
air and finally falls onto the receiving plate. Figure 6A is a 
schematic showing electrospinning setup. This process is 
complex, and the main influencing factors include the uni-
form dispersion of filler, solution viscosity, applied voltage, 
flow rate, collecting distance, and other ambient parameters 
(temperature, humidity, etc.). And the fiber collected equip-
ment is diverse, leading to various fibrous assemblies [82].

Generally, the functional filler or its precursor is uni-
formly dispersed in the polymer solution; thus, the filler is 
embedded in matrix during electrospinning process, which 
can make the filler realize nano-scale dispersion in matrix. In 
addition, electrospinning is able to prepare fibers with vari-
ous morphologies: core–shell fibers (Fig. 6B) [106], beaded 
fibers (Fig. 6C) [107], porous fibers (Fig. 6D) [108], ribbon 
fibers (Fig. 6E) [109], and it is also possible to prepare ori-
ented fibers by controlling the speed of the receiving roller 
(Fig. 6F) [110]. Design for functional properties is often 
used in electrospinning process, and Guo et al. incorporated 
 NH2-POSS-grafted boron nitride and fluorine-containing 
polyimide into electrospinning fibers for excellent thermal 
conductivity. This method improves the interfacial compat-
ibility and reduces interfacial thermal resistance between 
thermally conductive fillers and polymer matrix. And elec-
trospinning is in favor of better contact between adjacent fill-
ers with polymer fibers, leading to improvement in thermal 
conductivity [111].

2.3.12  (S12) Two/Three‑roll Milling Calendaring

Two/three-roll milling calendaring is a processing method, 
in which by means of the strong shear force between paral-
lel rollers, at corresponding processing temperature, viscous 

materials are squeezed and extended for many times. Two/
three milling calendaring can mix functional fillers and pol-
ymer matrix effectively. When the mixture pass through the 
gap between rotating cylinders, materials could be sheared 
through adjusting cylinders rotating at different velocities 
who impart high shear stresses. Moreover, because of the 
large shear stress, functional fillers and macromolecules 
would be oriented, which makes the film anisotropic in 
physical and mechanical properties. With the advantages 
of being solvent-free, uniform shear field, being scalable, 
and easy handling of high filler loadings, two/three mill-
ing calendaring has been used in various applications. For 
instance, Nam et al. incorporated CNT into epoxy to obtain 
effective electromagnetic wave absorbing composites films 
through three-roll milling followed laminating processes 
[112]. Ravindren et al. blended poly(ethylene-co-methyl 
acrylate)/ethylene octene copolymer (EMA/EOC) and 
MWCNTs by solution mixing. After drying, the compos-
ites were homogenized by passing through two roll mill 
subsequently [113].

2.3.13  (S13) Freeze Drying

Freeze drying is a method of drying materials using the 
physical phenomenon that water sublimates gas from ice 
[114]. After gas sublimation, hole channels are left to form 
porous structure. Freeze drying is essential for the creation 
of a dried hydrophilic substance with high specific surface 
area and pore volume. It is a simple and efficient approach 
to fabricate materials with low density and high specific 
surfaces due to the 3D highly porous structures. And as a 
template free preparation method, it is desirable for scal-
able manufacturing of aerogels with controllable density 
and shape.

There are various strategies to achieve freeze drying. 
Ordinary freeze drying usually produces disorder structure 
as shown in Fig. 7A [115]. Zeng et al. reported a facile freeze-
drying method to fabricate an anisotropic porous MWCNT/
water-borne polyurethane (WPU) composites for EMI shield-
ing (Fig. 7B) [116]. The obtained MWCNT/WPU compos-
ites were anisotropic porous architectures interconnect by cell 
walls which MWCNTs interspersed into WPU matrix, form-
ing overlapping conductive network. Moreover, freeze drying 
technology is also a method to rearrange fillers. Wang et al. 
operated a unidirectional freeze drying method by immersing 
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Fig. 4  A Illustration of the fabrication process of CNTs films/polydimethylsiloxane (PDMS) strain sensors and network cracks after pre-stretch-
ing, consisting of gaps, islands, and bridges connecting separated islands. Reprinted with permission from Ref. [97]. B Schematic of preparing 
buckled SWCNT film on PDMS and buckled structure after pre-stretching. Reprinted with permission from Ref. [98]. C Schematic illustration 
of the fabrication processes of the wound around polyurethane fibers core surfaces coating by AgNW with bending structure of the sensor elec-
trode. Reprinted with permission from Ref. [99]
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a precursor tube in liquid nitrogen at a constant speed with 
glass beads filled in tube bottom. In this system, a honey-
comb-like structure with isotropic in directions perpendicular 
to the channels is formed (Fig. 7C), contributing excellent 
electrical conductivity and Young’s modulus along the direc-
tion of penetrating microchannels. It is approximately twice 
of those in the orthogonal direction in cellulose nanofiber/
CNTs/PDMS composites strain sensors [117]. Bai and cow-
orkers constructed 3D nacre-mimetic BN/epoxy composites 
conductive network by bidirectional freeze drying. They uti-
lized a low thermally conductive polydimethylsiloxane wedge 
to generate temperature gradients in both the horizontal and 
vertical directions, guiding by which ice crystals nucleate 
and grow into a long-range lamellar pattern (Fig. 7D). At the 
same time, BN nanosheets were assembled to highly organ-
ized 3D conductive network, providing prolonged phonon 
pathways. Such materials illustrate a high thermal conduc-
tivity (6.07 W  m−1  K−1) at 15 vol% BNNS loading and illus-
trate high anisotropic thermal behavior (λ||/λ⟘ as high as 12), 
excellent electrical resistivity (2 ×  1012 Ω cm), and thermal 
stability (glass transition temperature 120 °C) [118].

2.3.14  (S14) Layer by Layer Assembly

In the past few decades, layer by layer (LbL) assembly has 
received prosperous development as its simple preparation, 
controllable thickness and wide range of applications [78]. 
For the preparation of FPCs, such method is of great sig-
nificance to the layer structure design and functionalities. 
Multilayered hierarchical structure, layer interfaces, and 
morphologies of multilayered polymer composites can be 
controlled through LbL method. The original LbL assem-
bly technology was driven by electrostatic force as reported 
by Iler, where polyelectrolyte multilayers were prepared by 
alternate deposition in polyelectrolyte solution with oppo-
site charges [119]. Since then, LbL assembly method has 
aroused great research enthusiasm. With years of continu-
ous research, a series of LbL assembly technologies have 
been developed [78]: driving force by electrostatic force, 
hydrogen bonding, charge transfer interaction force, cova-
lent effect, host–guest interactions, compression pressure, 
shearing force and temperature-field driven methods have 
been proposed to prepare FPCs. In addition, the LbL assem-

bly method is also expanded by strategies of immersive 
assembly, spin assembly, spray assembly, electromagnetic 
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dried anisotropic porous MWCNT/WPU composites. Reprinted with permission from Ref. [116]. C SEM of unidirectional freeze-drying cel-
lulose nanofiber/CNTs/PDMS composites. Reprinted with permission from Ref. [117]. D Schematic of the fabrication route using a bidirectional 
freezing technique to obtain BN/epoxy composites. Reprinted with permission from Ref. [118]
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assembly, fluidic assembly, and so on. For example, Wang 
et al. [120] fabricated 3D BN nanosheet-wrapped melamine 
foams (MF@BNNS) by repeated LbL assembly using mela-
mine skeleton as substrate to realize high-efficiency thermal 
conductivity. As polyethylenimine is positively charged, the 
MF foam was immersed in polyethylenimine solution for the 
following electrostatic interactions with negatively charged 
BNNSs. Then, via the alternate deposition of BNNSs and 
polyethylenimine multiple times by LbL assembly tech-
nique, epoxy resin was vacuum-assisting infiltrated on MF@
BNNS foam to prepare epoxy-based thermal conductive 
composites. Heo et al. [121] used LbL assembly method to 
prepare three component microwave absorbing composite 
of poly(acrylic acid) (PAA)/oleic acid-ferrite blend layer 
and a poly(allylamine hydrochloride) (PAH) layer based 
on electrostatic interaction. Combined with electrochemi-
cal polymerization for a high power factor, Culebras et al. 
[122] deposited PEDOT on as-prepared MWCNT film in a 
three-electrode electrochemical cell to achieve LbL assem-
bly with a homogeneous microscopic structure. Besides, 
LbL-laminated assembly based on pressure, multilayered 
co-extrusion technology, crystallization and annealing was 
also applied in polymer melts processing [78].

2.3.15  (S15) Compression Molding/Hot pressing

During compression molding/hot pressing, FPCs are com-
pressed at certain temperature under given pressure. This 
method is simple and highly efficient, which is intensively 
used in FPCs processing. In general, molding pressing/hot 
pressing is used as a step in combination with other pro-
cessing methods [123]. Through hot pressing, the filler and 
polymer can form a closer interface, and finally the isolation 
network structure can be obtained [124]. For instance, Yang 
and coworker have recently reported three different methods 
(ball milling, freeze-drying and electrospinning) followed by 
hot pressing were applied to explore the thermal conductive 
performance based on BNNS/PVA composites films [125]. In 
addition to forming a filler/polymer tight interface with uni-
form dispersion of filler, Chen’s group reported composites by 
solution mixing and subsequent melt pressing to afford high 
performance with high degree of filler orientation [126–128]. 
Under hot pressing, the SWCNTs with 1D nanostructure were 
dramatically aligned by polycarbonate (PC) melt flowing in 
the radial direction. This study broadens the road to obtain 

judicious alignment fillers in polymer composites via hot 
pressing [129]. Overall, processing conditions such as pres-
sure, time and temperature are important influential issues on 
the structure and properties of the final FPCs, and isotropic 
composites are often fabricated through such process.

2.3.16  (S16) Printing: Inkjet/Extrusion/Screen/3D 
Printing

3D printing is a popular technology to obtain complex 3D 
structure devices without the typical waste in recent years 
[130]. Various printing techniques have been employed to 
fabricate polymer composites, such as fused deposition 
modeling (FDM), selective laser sintering (SLS), powder 
bed and inkjet head 3D printing (3DP), stereolithography 
(SLA), 3D plotting/direct-write and others new techniques 
are still in development [131]. Among them, direct-write 
and FDM technology are the most commonly ways for fab-
ricating FPCs.

Inkjet printing/extrusion printing/screen printing are direct 
ink writing method of materials, which offers a promising 
strategy for scalable production of smart devices manufac-
turing with a high degree of pattern and geometry flexibility 
[132]. Inkjet printing/extrusion printing/screen printing refers 
to the process that melt or solution ink is jetting or extruded 
through the nozzle and drops onto substrate under surface 
tension, then solvent evaporate to form complex patterns. A 
schematic of different printing methods is shown in Fig. 8A. 
In this process, a challenge step is the preparation of inks, 
which require functional inks with suitable fluidic proper-
ties, in particular surface tension and viscosity. Many stud-
ies develop FPCs from inorganic fillers, such as CNTs, gra-
phene, MXene and metal nanoparticle/nanowires or its alloy, 
and organic polymer, including epoxy, TPU, PDMS, PVA 
and polyvinylpyrrolidone (PVP), etc. [133]. For instance, 
Juntunen et al. reported an inkjet print graphene film with 
outstanding thermoelectric properties through dispersing 
graphene in isopropyl alcohol (IPA) with the aid of PVP [9]. 
In this system, PVP was used as dispersant and viscosity 
regulator to adjust the ink stability. During preparing water-
based solvent for inject printing, it is difficult to formulate 
and stabilize inks due to the low viscosity and weak interfa-
cial interaction with substrate. Besides, the coffee-ring effect 
(the phenomenon of droplet edge gathering) would appear 
during solvent evaporation. Vural and coworkers employed 
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MXene and proteins in aqueous solution for inkjet printing 
and studied its EMI shielding efficiency [134]. The binder 
molecule proteins can form sequence controlled assemblies 
with hydrogen bonding MXene crystals when high-viscosity 
solution of (dimethylsulfoxide (DMSO) and aqueous) and 
aqueous evaporates on heated substrates. Hence, the role 
of protein is to promote MXene dispersion and adhesion 
between dispersion and substrate. However, the residues of 
surfactants mixed in ink usually bring problems to the sub-
sequent treatment. Zhang et al. demonstrated two types inks 
by MXene without additive and designed for inkjet print-
ing and extrusion printing, as shown in Fig. 8B [135]. This 
additive-free MXene ink exhibits general protocols, even 
ohmic resistors can be inkjet-printed. Gonçalves et al. [136] 
reported a water-based printable piezoresistive sensors by 
PVA filled with MWCNT, and two printing technologies, 
spray printing and screen printing were used in sensor print-
ing (Fig. 8C a–c). The spray and screen printing sensors show 
a similar behavior and GF (Fig. 8C d–e) and the piezore-
sistive response for 10 loading–unloading cycles up to 2% 
strain, showing that the piezoresistive response film prepared 
by this ink has high universality.

As for FDM technique, the melt semi-liquid filaments are 
extruded layer by layer by the nozzle and then the layers are 
fused together and then solidify into final parts. For exam-
ple, Zhang et al. printed reduced graphene oxide/polylactic 
acid (RGO/PLA) by dispersing RGO in PLA following melt 
extrusion layer by layer (Fig. 8D) [137]. This printed 3D 
bulk can be used as flexible circuits and printed complex 
structure. A number of reviews on 3D printing can be found 
elsewhere [132, 138]. However, there are still some limita-
tion in 3D printing. Firstly, the surface tension and viscosity 
are the key factors in making printing inks, which heavily 
depends on the printability and stability. Second, the use of 
additives (such as surfactants) makes the inks more printable 
in most printable inks, but how to remove these additives 
is an urgent issue to be solved. General follow-up process-
ing steps such as chemical treatment or thermal annealing 
make it more complex for the device manufacturing pro-
cess. Finally, these layer-by-layer stacking approaches can 
limit the geometries of devices and fine resolution. Overall, 
overcoming these limitations potentially could result in wide 
range of applications.

2.3.17  (S17) Curing

Curing is a process employed by cross-linking the functional 
groups on the polymer to achieve toughening or hardening, 
which is essential on the path to prepare thermosetting poly-
mers and their composites [139]. In the preparation of FPCs, 
functional fillers are generally mixed with prepolymers, and 
then cross-linked polymer network is solidified and formed 
by curing agent so as to obtain a specific network fixed in 
polymer. When using the method of thermal curing, solu-
tion mixing is often used to prepare a mixed system of filler 
and polymer or accompanied by hot pressing or other post-
treatment methods. Take the most frequently used epoxy 
resin as an example, no matter it is simply mixing epoxy 
with filler and then curing or more complex strategy through 
film casting-filtration-hot pressing-thermal curing, curing 
method is often used together with other methods [94, 140].

2.3.18  (S18) Others

Besides the processing methods summarized above, there 
are some others processing methods for the preparation of 
FPCs, such as a co-coagulation method [141, 142], floc-
culation method [143], solvent post-treatment [144], filler 
sedimentation [145], vulcanization [146], roller compression 
[147], steam treatment [93] and light irradiation [148]. In 
addition, some simple means through attachment of filler 
and matrix could be used to prepare conductive SSPCs [149, 
150]. These methods are not universally applicable during 
secondary processing of FPCs, but they are still effective 
strategies to impact on the structure, morphology and final 
performance.

3  Selection and Combination of Preparation 
Tools

For practical applications, processing method is the deci-
sive factor to determine the structure and properties of FPCs 
in addition to the choice of filler and matrix. Based on the 
above-mentioned description of different processing tools, it 
is not difficult to find peculiarities of T, P and S. Thereinto, 
T-type tools represent the mixing mode of polymer matri-
ces and fillers, most of S-type tools represent the approach 
to mold the final products, and P-type tools as additionally 
optional tools were generally utilized to control morphology 
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of filler network and modify the interface between polymer 
and filler, respectively. During the preparation of FPCs, dif-
ferent tool combinations are selected based on the charac-
teristics of respective research field and the requirements 
of morphology and performance. We summarized 100 rep-
resentative literature from recent ten years for each type of 
FPCs, and the selection and combination of processing tools 
was visualized by a diagram as shown in Fig. 9. Among 

these studies, it is found that one functional polymer com-
posite was able to be fabricated by only one of process-
ing types (namely single-type of tools), combination of any 
two processing types (namely dual-type of tools, containing 
T + P, P + S, or T + S combinations) or combination of all 
three processing types (namely T + P + S combination). It is 
worth to note that non-functional polymer composites within 
the above-mentioned literature were prepared by only P-type 
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tools, attributing to their intrinsic peculiarities. Moreover, 
different selection and combination of processing tools lead 
to the corresponding special structure within FPCs, and the 
selection and combination of processing tools diverse for 
different kinds of FPCs. The detailed description and sum-
mary were presented below.

3.1  Single‑type of Tools

Single-type tools mean that only one processing type from 
the “Toolbox” is used to manufacture given FPCs. Accord-
ing to summarization, single-type tools often indicate only 
S-type tools or merely prepared by only T-type tools. There 
is one literature wherein composites for MAPCs application 
with core–shell nanostructure fabricated by in situ polymeri-
zation (T2) [151]. For only S-type tools, common strategies 
to prepare FPCs are: neat polymer film, fiber, yarn or mat 
were firstly obtained, followed by coated, printed, injected 
or deposited with filler [152, 153]; or array, fabric, sponge 
or film of filler were fabricated at first and then combined 
with polymer through impregnation, infiltration, coating and 
attachment or LbL assembly was adopted through alternat-
ing casting, coating or filtration [13, 154].

For example, Yu and coworkers obtained wavy buckled 
super-aligned CNT (SACNT) films by pre-straining PDMS 
substrate and release (S9) to fabricate stretchable conductors 
as shown in Fig. 10A a [101]. This curved structure com-
posites exhibit high stretchability and durability. For LbL 
assembly strategy, PVA/MXene multilayered films with 
excellent EMI performance were prepared through alter-
nating multilayered casting, which exhibit a maximum EMI 
shielding effectiveness (SE) of 44.4 dB and a specific EMI 
SE  (SSEt) of 9343 dB  cm2  g−1 due to the unique alternating 
multilayered structure and high electrical conductivity [13]. 
Moreover, 3D printing is another strategy to direct fabri-
cate FPCs with only S-type tools. As shown in Fig. 10B, a 
conductive ink was printed into an uncured elastomeric res-
ervoir through embedded 3D printing (S16) process [155].

In summary, single-type of tools includes only S-type 
tools that are focused on fabricating FPCs with special 
structure, e.g., multilayered structure, aligned filler network 
structure, three-dimensional interconnected filler network 
structure, and hierarchical structure.

3.2  Dual‑type of Tools

Dual type of tools evidently means that two processing types 
were selected and combined for the preparation of FPCs, 
and there are three combinations: T + P, T + S and P + S. It 
is worth noting that generally T + S combination is the major 
dual type of tools to fabricate FPCs, while T + P combination 
was less adopted; during the fabrication of TC and DE, T + P 
combination was not adopted and almost all of TC and DE 
materials were prepared by T + S combination; three types 
of dual-type tools were most utilized in the fields of CPCs, 
MA, EMI and TE. The detail of each dual-type tools will be 
discussed regarding their process tools-structure–property 
relationship as follows.

3.2.1  T + P Combination

In this part, three types of structures were fabricated with-
out S tools: homogenous structure, multilayered structure 
and core–shell nanostructure. Homogenous structure tends 
to be often achieved in the field of ECPCs, EMISPCs and 
SSPCs. For example, Han and coworkers prepared self-
healing CNT-CNF (cellulose nanofiller)/PVA electro-con-
ductive hydrogels through solution mixing (T3) of CNT and 
CNF to obtain aqueous suspension followed by adding PVA 
and borax (P3), as shown in Fig. 11A [156], which illus-
trate a maximum electrical conductivity up to 10 S  cm−1. 
Meanwhile, multilayered structure was obtained by in situ 
electrochemical polymerization (T2) of polyaniline (PANi) 
onto the surface of acid-treated SWCNT (P4) buckypaper, 
and then PANi/SWCNTs composite TE films with bilayer 
structure was obtained, achieving a maximum power factor 
of 6.5 μW  m−1  K−2 when the electrodeposited cycles at 75 
[157].

Furthermore, core–shell nanostructure could be con-
structed for MAPCs via a similar in situ polymerization of 
monomer (T2) on the surface of one filler or hybrid fillers. 
It is worth to note that hybrid fillers and in situ polymeriza-
tion of the monomer of conductive polymers, e.g., PEDOT, 
PANi, PPy, are preferred [16, 158, 159]. Such combina-
tion of processing tools brought out enhanced interfacial 
polarization which helped in improving EM absorption 
abilities. For instance, SiC whiskers-graphite nanosheet/
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PPy materials with core–shell nanostructure were prepared 
through in situ polymerization of pyrrole on the surface of 
hybrid SiC-graphite nanosheets (GNs) fillers (P1), resulting 
in that minimum reflection loss  (RLmin) value of − 64.2 dB 
[160] and 7.9 GHz bandwidth. Similar sandwich nanostruc-
ture also was obtained thorough in situ polymerization [161]. 

Generally, T + P combination mainly includes the combina-
tion of in situ polymerization (T2), solution blending (T3) 
or T2 + T3 with hybrid fillers (P1), blends (P3), filler surface 
modification (P4), P1 + P4 or P3 + P4, leading to three types 
of structures including homogenous structure, multilayered 
structure and core–shell nanostructure.
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3.2.2  T + S Combination

T + S combination is the frequently used dual-type tools in 
FPCs field, which endows these FPCs with more plentiful 
filler network structure, e.g., random filler dispersion struc-
ture, oriented filler network structure, and “brick–mortar” 
multilayered structure. Herein, T1 + S, T3 + S and T4 + S 
are discussed firstly as follows. Directly mixing polymer 
matrices and fillers to develop solid FPCs with fillers ran-
domly dispersed in polymer components is the general and 
most important strategy of T + S combination, which is 
involved in all seven fields of FPCs. Random filler dis-
persion structure is common and important structure. 
Meanwhile, the homogenous filler dispersion within the 
polymer matrix is generally the target. For example, the 
combination of solution blending (T3) and film casting 
(S8) allows the preparation of PVDF/Ta4SiTe4 composites 
with  Ta4SiTe4 whiskers homogeneously dispersed in PVDF 
matrix for thermoelectric application [162]. The PVDF/
Ta4SiTe4 composites demonstrate a maximum power factor 
value of 1060 mW  m−1  K−2 at about 220 K in the in-plane 
direction.

Different from the random filler dispersion, aligned, ori-
ented or ordered fillers network as another important filler 
network structure could be constructed via T + S combina-
tion, wherein magnetic/electric field (S6) [163, 164], hot 
drawing/melt spinning (S4) [165, 166], injection molding 

(S5) [167], electrospinning (S11) [6] or freeze drying 
(S13) [118] combined with corresponding melt blending 
(T1) or solution blending (T3), namely combination of T1 
or T3 with S4, S6, S5, S11 or S13, that have been proved 
to form aligned fillers network within polymer matrix. 
Specifically, aligned Co nanowires network within PVDF 
matrix was prepared via combination of solution blend-
ing (T3), drop casting (S7) and magnetic field (S6). This 
contributes to obviously increase electrical conductivity 
in comparison with that random filler dispersion. Such 
composites illustrate an impressive power factor value of 
523 μW  m−1  K−2 at 320 K [89]. In the field of ECPCs, 
Zhu et al. fabricated conductive PVA/GN nanocompos-
ites based on solution blending (T3), film casting (S8) 
and hot drawing (S4) successively. Due to the hot drawing 
treatment on PVA/graphene composites, aligned graphene 
conductive network was observed and a superior conduc-
tivity value of 25 S  m−1 at 6.25 wt% reduced graphene 
oxide with slightly oxygen content (SRGO) loading was 
achieved [168]. Moreover, the processing method con-
taining solution blending (T3), electrospinning (S11) and 
compression (S15) could form oriented graphite nano-
platelets (GNPs) network (Fig. 11B) within PS matrix and 
illustrate significantly enhanced EMI performance [169]. 
In contrast, GNPs/PS composites with oriented GNPs 
network demonstrate much higher total EMI SE  (SET) 
(− 33 dB) than that of GNPs/PS composites with random 
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GNPs distribution (− 16 dB) at the same GNPs content of 
35 wt%. It is worth to mention that PDMS/CFs composites 
were prepared as follows: solution blending cellulose and 

CFs, immersing in the liquid nitrogen to freeze drying to 
obtain foam, then PDMS was pour casting in CFs, succes-
sively (Fig. 11C a). During freeze in liquid nitrogen, ice 
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crystals randomly and rapidly grew from bottom and CFs 
were squeezed by ice crystals, reducing to CFs arranging 
in parallel with each other guided by ice crystals. There-
fore, CFs foam with phragmites-like communis-oriented 
microstructure is obtained as shown in Fig. 11C b–e. 
Owing to this special structure, the through-plane thermal 
conductivity of 6.04 W  m−1  K−1 is observed at 12.8 vol% 
loading of CFs [170].

In this pattern (T + S), the use of combination of T-type 
tools and a variety of S-type tools to build some special 
network structure is a preferred choice, such as solution or 
melt blending followed by freeze drying (S13) or foaming 
(S1) or LbL assembly (S14) [171–173]. For example, Zhao 
et al. utilized three-step approach including solution blend-
ing (T3), compression molding (S15) and batch foaming 
(S1) to prepare PVDF/CNT nanocomposites with wideband 
microwave absorption properties [173].

For the combination of T2 and S-type tool to fabricate 
FPCs, it was mainly adopted in TEPCs field. For example, 
PEDOT/CNT thermoelectric composites with core–shell 
nanostructure was fabricated by in situ polymerization (T2) 
and vacuum filtration (S10). The strong interfacial interac-
tion and carrier transport caused by in situ polymerization 
resulted in a rather high power factor of ~ 157 MW  m−1  K−2 
[174]. In addition, in situ polymerization of aniline onto 
the surface of various fillers, e.g., SWCNTs [174], MWC-
NTs [175] or GO [176], could lead to ordered PANi chain 
structure; this ordered PANi chain structure could facilitate 
carrier mobility and therefore enhanced electrical conduc-
tivity, Seebeck coefficient and power factor are obtained in 
comparison with pure PANi.

It can be seen from the above discussion that FPCs fabri-
cated by T + S combination are more focused on modulat-
ing filler dispersion state within polymer matrix and inter-
facial interaction between filler and polymer. Meanwhile, 
more combination of processing tools can be adopted for 
preparing FPCs with optimized structure and enhanced cor-
responding performance due to the introduction of T-type 
tools.

3.2.3  P + S Combination

P + S combination could endow FPCs with more plentiful 
structure originating from both P-type and S-type tools. 
Most of the combination of P-type tools and S-type tools 

includes four patterns: P2 + S, P1 + S, P4 + S or the other 
combination P1 + P4 + S. We will discuss examples based 
on the above summarization of literature in more detail as 
follows.

For P2 + S, porous PLA/MWCNT composites with seg-
regated conductive networks (P2) for EMI applications 
were prepared by obtaining expanded PLA (EPLA) beads 
after foaming PLA pellets, immersing in MWCNTs solu-
tion to wrap a layer of MWCNTs (S7) and then sintering 
MWCNT-wrapped EPLA to obtain PLA/MWCNTs nano-
composite foams (S2), as shown in Fig. 12A. The foams 
illustrate an inspiring EMI SE of 1010 dB  cm3  g−1, owing 
to the unique architecture of fine microporous matrix con-
taining conductive MWCNT networks, making it difficult 
for EM waves to escape [177]; For P1 + S in the fields of 
both ECPCs and EMI, interconnected spherical hollow 
conductive networks were constructed within silver plate-
lets (AgPs)/RGO foam/epoxy composites by processing 
procedure as follows: firstly mixing GO and AgPs suspen-
sion (P1) followed by freeze-drying the mixing suspension 
(S13) to form a 3D framework, then thermal annealing 
the framework (S2 tool) for the reduction of GO to obtain 
3D AgPs/RGO framework, at last pouring epoxy resin into 
this framework (S10) and curing (S17) as demonstrated 
in Fig. 12B [178]; As to P4 + S, take TEPCs field as an 
example, PEDOT:PSS/Bi2Te3 composites fabricated via 
treating  Bi2Te3 particles with HCl (P4), followed by dip 
coating (S7)  Bi2Te3 dispersion and PEDOT:PSS solution 
in sequence [179], wherein the treatment by HCl could 
remove the oxidized layers on the  Bi2Te3 particles sur-
face to achieve a more electrically conductive interface 
between PEDOT and  Bi2Te3, and therefore obtaining both 
higher electrical conductivity and Seebeck coefficient; 
for P1 + P4 + S, Kim et al. reported thermally conductive 
GO/MWCNT/epoxy composites by firstly preparing GO 
nanosheet and surface-modifying MWCNT with carboxylic 
acid functional groups (P4), then mixing GO and MWCNT 
suspension (P1 tool) and form a GO/MWCNT cake using 
vacuum-assisted filtration. It is followed by wetting the 
cake with epoxy resin (S10) and curing (S17). Within 
these GO/MWCNT/epoxy composites, MWCNTs act as 
interconnectors between GO and heat conductive bridges 
among the 3D microparticles due to their high aspect ratio, 
leading to over 140% of maximum enhancement ratio for 
thermal conductivity compared with GO/epoxy compos-
ites without MWCNTs [50]. In summary, the introduction 
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of P-type tools aimed at modulating filler network struc-
ture by hybrid fillers, polymer blends, volume excluding 
particles as well as improving interface between filler and 
polymer by filler surface modification. P-type tools are also 
considered to be materials selections before FPCs are pro-
cessed into desired shape and structure.

3.3  T + P + S Combination

T + P + S combination has more multi-variant combination 
modes of processing tools in practice and generally more 
plentiful microstructures within FPCs. They are the most 
frequently used combinations in the literature. S-type tools 
could endow the composites with desired structure, i.e., film, 
foam, aerogel, multilayered structure, or some special filler 
network structure, e.g., oriented filler structure, segregated 
filler network, 3D interconnected filler network. Compared 
with T + S combination, introducing hybrid fillers (P1), 
volume excluding particle (P2), polymer blends (P3) and 
filler surface modification (P4) could further improve the 
dispersion state of fillers within polymer matrix, strengthen 

the interfacial interaction between filler and polymer and 
modulate filler network structure. Moreover, in contrast to 
P + S combination, the issue of T + P + S concerning on the 
dispersion state and network structure of fillers in the poly-
mer matrix as well as the interface between filler and poly-
mer emerges. Here, the discussion on T + P + S combination 
was conducted based on comparison with T + S combination 
and attention was mainly paid on the P-type tools.

In this part, there are numerous kinds of combination of 
processing tools selected from “Toolbox” and the use of 
combination of processing tools among seven fields of FPCs 
is different. Comparing T + P1 + S combination [180, 181] 
with T + S combination, P1 could bring out hybrid fillers 
network structure and synergistic effect between different 
fillers, which is helpful to improve the corresponding per-
formance. For example, Voit et al. fabricated PVDF/CNTs/
CB composites by melt blending (T1) three components in 
a twin-screw microcompounder (S3) and then hot compres-
sion (S15). CNTs and CB formed string-like conductive net-
work structures composed of CNT-CB-CNT block arrange-
ment within PVDF matrix, therefore resulting in higher 
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ΔR/R0 than that of composites consisting of only CNTs 
[182]. In the field of TE, in situ synthesis method (T2), 
solution mixing (T3) and drop casting (S7) were used to 
prepare PEDOT:PSS PC/Te/Cu7Te4 (P1) composites, which 
demonstrate a maximum power factor of 112.3 μW  m−1  K−2 
at temperature of 380 K (Fig. 13A). Such performance is 
ascribed to the synergetic effect of PC/Te and PC/Cu7Te4 
nanorods as well as the double-carrier filtering effect at the 
hetero-interfaces of PC/Te and PC/Cu7Te4 [183].

Comparing T + P4 + S with T + S combination, filler 
surface modification (P4) usually can improve the disper-
sion of fillers and interfacial interaction between polymers 
and fillers [184, 185]. For instance, epoxy/GN composites 
containing non-covalent functionalized non-oxidized gra-
phene flakes were prepared by the procedures composed of 
non-covalent surface functionalizing graphene flakes (GFs) 
with pyrenebutyric acid (PBA) (P4) to obtain f-GFs, solution 
blending f-GFs with epoxy (T3) and curing (S17) in turn 
(Fig. 13B). Herein, the presence of interaction of carboxylic 
group with epoxy matrix enhances the interfacial adhesion 
and dispersion of GFs within epoxy, leading to the highest 
thermal conductivity of 1.53 W  m−1  K−1 at 10 wt% loading 
of f-GFs in epoxy compared with other fillers: CB, graphite, 
MWNT and GO [186].

Furthermore, in comparison with T + S combination, 
introducing polymer blends (P3) is an unique strategy in 
this part to construct peculiar microstructures, especially in 
the field of CPCs, where T1 + P3 + S [187, 188], T3 + P3 + S 
[113, 189, 190], or T1 + T3 + P3 + S [191] was often used to 
fabricate composites with selective distributed fillers through 
polymer blends with different morphologies. For example, 
Bizhani and coworkers reported PC/PS-co-acrylonitrile 
(SAN)/MWCNTs composites fabricated by T1 + P3 + S15 
strategy: first melt blending PC and MWCNTs and then 
melting blending PC/MWCNTs composites with SAN fol-
lowed by hot compressing (Fig. 14A) [192]. In PC/SAN/
MWCNTs composites, PS/SAN illustrates co-continuous 
morphology, and MWCNTs are preferentially localized in 
PC phase, leading to an electrical double percolation thresh-
old around 0.32 wt% of MWCNTs and a maximum EMI SE 
value of − 25 ~ − 29 dB containing only 1 wt% MWCNTs 
at a thickness of 10 mm due to the special conductive path-
way. Similar co-continuous morphologies of polymer blends 
were also constructed in other studies to modulate conduc-
tive networks [193]. Besides co-continuous morphologies, 

other morphologies of polymer blends, e.g., polymer blends 
with tri-continuous morphology [57], immiscible polymer 
blends [194] were also adopted to control the filler network.

Moreover, as shown in Fig. 9C, T + P4 + S was preferred 
in the field of TCPCs and DEPCs in comparison with other 
fields. This indicates that filler surface modification was 
more frequently used to prepare TCPCs and DEPCs. For 
TCPCs, filler surface modification involved diverse meth-
ods, such as grafting [195], group decoration [196], inor-
ganic functionalization [197] and organic surface modifica-
tion [92]. In DEPCs field, filler surface modification was 
mainly applied to form core–shell structure with filler as 
core and polymer as shell to homogeneously disperse fillers 
within polymer and strengthen the interfacial interaction. 
For TCPCs, homogeneous dispersion of fillers and enhanced 
interfacial interaction between filler and polymer lead to 
reduced thermal resistance and phonon scattering and thus 
improve thermal conductivity, while for DEPCs, homoge-
neous distribution of filler leads to reduced concentration 
of electric field in the polymer matrix; thus, breakdown 
strength can be enhanced. Meanwhile, good dispersion of 
filler and enhanced interfacial interaction between filler and 
polymer result in high dielectric constant and low dielectric 
loss [198].

P2 is a special primary processing tool to obtain segre-
gated network structure that almost only emerges in T + P + S 
combination. For example, in the field of SSPCs, stretchable 
strain sensors with robust segregated network structure were 
prepared by Sang et al. based on TPU and carbon nano-
structures (CNS) via grinding mixing TPU power and CNS 
(T3), followed by directly compression molding (S15) after 
drying (Fig. 14B a–d). In such composites, TPU phase acts 
as polymer matrix as well as volume excluding particle (P2) 
and CNS trapped at the interfaces of TPU powers, forming 
interconnected conductive networks throughout the compos-
ites, as demonstrated in Fig. 14B e–g. These strain sensors 
demonstrate a high gauge factor of 6861 at strain ε = 660% 
with 0. 7 wt% filler and a few orders of magnitude higher 
electrical conductivity, much higher elongation at break than 
that of TPU/CNS composites at the same filler content fab-
ricated by melt mixing [199]. Besides, the combinations of 
T2 + P2 + S or T3 + P2 + S could also be applied to construct 
segregated network structure [200].

In contrast to other combination of T + P + S contain-
ing two kinds of T-type tools, T + P1 + P4 + S was more 
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preferred for fabricating DEPCs and MAPCs. For T + P + S 
combination containing P1 + P4, a strategy containing fab-
ricating core–shell hybrid fillers and then blending with 
polymer was a vital processing method to obtain compos-
ites with excellent dielectric performance [201], wherein 
most of the core–shell hybrid fillers had insulting shells, 
e.g.,  Al2O3 shells, ZnO shells, GO shells [202, 203], and 
these insulting shells could suppress formation of conduc-
tive pathways and carrier migration and therefore reduce 
the leakage current as well as dielectric loss. For example, 
PVDF/core–shell  CaCu3Ti4O12@Al2O3 (CCTO@Al2O3) 

nanofibers composites was fabricated via the following pro-
cedure: (i) core–shell CCTO@Al2O3 nanofibers (P1, P4) 
were fabricated via coaxial electrospinning and then high-
temperature calcination; (ii) CCTO@Al2O3 nanofibers were 
surface modified with PDA (T4); (iii) PVDF/CCTO@Al2O3 
nanofibers composites were prepared by solution blending 
modified nanofibers with PVDF (T3), film casting (S8) and 
thermal annealing (S2) [204]. The insulating layer of  Al2O3 
could reduce the charge accumulation and thus decrease 
the leakage current density and dielectric loss. In addi-
tion,  Al2O3 layer also acts as buffer layer and reduces the 
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dielectric constant difference between PVDF and CCTO, 
resulting in a higher electric breakdown strength in com-
parison with that of PVDF/CCTO composites at the same 
filler content. Apart from the insulating layer, surface deco-
ration of Ag [205],  Fe3O4 [206] was also used to fabricate 
core–shell hybrid fillers.

Moreover, there are still many studies wherein similar pro-
cessing methods or others containing T + P1 + P4 + S com-
bination were used to fabricate other types of FPCs [207, 
208]. Additionally, hybrid fillers (P1) or filler surface modi-
fication (P4) was introduced to combine with T + P3 for the 
preparation of FPCs [209, 210]. The combination of polymer 
blends (P3) and volume excluding particle (P2) is another 
effective strategy to fabricate FPCs with segregated filler 
network [211]. For instance, our group added low-tempera-
ture expandable graphite (LTEG) into a commercial impact 
modifier (Elvaloy4170) and then coated onto poly(butylene 
terephthalate) (PBT) particles to fabricate PBT/Elvaloy4170/ 
LTEG thermally conductive composites by combining two-
step internal mixing (T1) at preset temperature and hot com-
pression (S15) (Fig. 14C). In such composites, a continu-
ous segregated filler network is constructed by continuous 
Elvaloy4170-LTEG phase and segregated PBT particles 
phase (equivalent to volume excluding particles (P2, P3). 
These composites exhibit a maximum thermal conductivity 
up to 17.8 W  m−1  K−1, which was significantly prior to that 
of composites made by directly melt mixing three compo-
nents at the same filler content. Meanwhile, significant effect 
of PBT particles size, namely segregated phase size, on the 
thermal conductivity of PBT/Elvaloy4170/LTEG was also 
reported [212]. Besides, some more complicated combina-
tions, such as T + P1 + P2 + P4 + S or T + P1 + P3 + P4 + S, 
were also applied to prepare ECPCs, EMISPCs or MAPCs. 
In the field of ECPCs, solution blending (T3), hybrid fillers 
(P1), blends (P3), filler surface modification (P4), freeze 
drying (S13) and hot pressing (S15) were applied for prepar-
ing styrene-butadiene rubber (SBR)/PVP/RGO/CNT com-
posites, wherein PVP acts as dispersing agent to improve the 
dispersibility of RGO and CNTs hybrid fillers. Due to the 
sandwich structure of RGO-CNTs hybrid fillers, restacking 
of RGO and agglomeration of CNTs were prevented, and 
thus, a high electrical conductivity was obtained compared 
with SBR/PVP/CNT at the same filler content [213]. This 
T + P + S combination with three kinds of P-type tools was 
merely adopted to fabricate FPCs, which is attributed the 
tedious processing procedure and relative high cost.

In conclusion, there are numerous selections of process-
ing tool for fabricating FPCs. However, the selection and 
combination of processing tools varies obviously among 
seven fields of FPCs as discussed above. On the one hand, 
the combination of processing tools for seven types of FPCs 
depends on different mechanisms underlying the struc-
ture–property relationship in each field; on the other hand, 
owing to similarities, e.g., containing polymer matrix and 
filler, involving filler network and interfacial interaction, dif-
ferent fields of FPCs could learn from each other.

4  Summary and Future Prospects

FPCs are composed of fillers and polymer matrices, while 
the various functionalities and properties of different com-
posites can vary greatly. In the past decade, a variety of 
FPCs have been synthesized and explosive progress has 
been achieved for different functionalities, including elec-
trical conductivity, strain sensing ability, thermal conductiv-
ity, dielectric properties, electromagnetic shielding (EMI), 
microwave absorption and thermoelectric property. These 
functional properties are largely determined by filler, poly-
mer, network morphology and interfacial interaction. All 
of these could be considered as important components of 
processing method when choosing processing strategy for 
certain type of FPCs. In this review, the processing strategies 
for FPCs are summarized into a “Toolbox” to cover recent 
progress as well as guide further research. The relationship 
of processing method–structure–property is discussed and 
the selection and combination of tools in processing from 
700 studies among different FPCs are also analyzed.

In the “Toolbox” system, the mechanism in the field of 
FPCs is the cornerstones for the preparation of FPCs. Under 
its operation, we have a more directional choice of process-
ing methods and meet the design requirements of FPCs 
better. The “Toolbox” consists processing type, primary 
processing tools and secondary processing tools for better 
understanding of the processing methods. The processing 
methods in the “Toolbox” are tools available to prepare 
FPCs, just like hammer or screwdriver in the engineering 
toolbox. The establishment of such “Toolbox” not only cat-
egorizes and summarizes the progress of current processing 
methods, but also is expected to guide the design of FPCs in 
the future. Based on the information given by the “Toolbox,” 
the processing methods from different fields can learn from 
each other. Preparation methods commonly used in a specific 
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field may bring fresh ideas for the preparation of FPCs in 
another field. Furthermore, new methods could be created by 
combining tools from “Toolbox” with different sequence as 
well as quantity. The combination of tools is not randomly 
done, it is understood that these tools are combined together 
with certain suitability due to various issues.

The future application trend of such “Toolbox” is pros-
pected in this review. It is speculated that prediction on the 
processing tools applicable for certain FPCs could be made 
by computer software once “big data” on processing–struc-
ture–properties relationships of various FPCs is collected and 
summarized. By combining with “artificial intelligence” (AI) 
computer program, the concept of “Toolbox” program could 
be used to collect and summarize the overall materials data-
base, and then, possible processing routes for given structure 
or targeted properties could be predicted and designed. It is 
thought that various pieces of information on certain study 

should be collected for the database: (i) the filler network struc-
ture realized by various processing method; (ii) the degree of 
improvement in certain functionality due to the utilization of 
different processing method; (iii) the type of polymers and fill-
ers used for respective processing methods; (iv) the processing 
condition often used for certain type of processing methods. 
As shown in Fig. 15, structure purpose is used as an example to 
demonstrate the application for morphological control “Tool-
box” in combination with artificial intelligence.

The design of materials with anisotropic conductivity is 
used as an example, where vertical conductivity is preferred. 
Firstly, we click to enter the intelligent front-end interface, 
select the design FPCs for the structure purpose, next upload 
the structure of our target, and then enter the next interface 
to put forward some special requirements such as size, filler 
and polymer matrix. After calculation, the optimal solutions 
of option-I, option-II and option-III would be exported for 
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our choice. All this is based on the comprehensive database 
of the Toolbox. Besides, based on the system of database 
collection, “Toolbox” could also be used for performance 
evaluation. In short, the establishment of the “Toolbox” 
database has three benefits: (i) It is the cooperation of an 
open sharing platform; (ii) it is to efficiently implement the 
research and development of new functional materials by 
means of self-learning ability of artificial intelligence; and 
(iii) it can greatly shorten the research and development 
cycle of FPCs. Therefore, such method could be used to 
guide the future application of FPCs to achieve outstanding 
performance more efficiently and effectively.
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