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Band Engineering and Morphology Control 
of Oxygen‑Incorporated Graphitic Carbon 
Nitride Porous Nanosheets for Highly Efficient 
Photocatalytic Hydrogen Evolution

Yunyan Wu1,2, Pan Xiong1, Jianchun Wu2,3, Zengliang Huang2, Jingwen Sun1, 
Qinqin Liu2, Xiaonong Cheng2, Juan Yang1,2 *, Junwu Zhu1 *, Yazhou Zhou2 *

HIGHLIGHTS

• The multiple thermal treatments strategy is proposed for preparing the hollow oxygen-incorporated g-C3N4 nanosheets (OCN).

• Oxygen-adsorption creates a lot of defects to the formation of hollow and monolayered structure, while oxygen-doping reduces the 
band gap significantly.

• OCN exhibits stable and high photocatalytic hydrogen evolution with increased surface area, enhanced charge transport, and reduced 
band gap.

ABSTRACT Graphitic carbon nitride (g-C3N4)-based photocatalysts 
have shown great potential in the splitting of water. However, the intrin-
sic drawbacks of g-C3N4, such as low surface area, poor diffusion, and 
charge separation efficiency, remain as the bottleneck to achieve highly 
efficient hydrogen evolution. Here, a hollow oxygen-incorporated g-C3N4 
nanosheet (OCN) with an improved surface area of 148.5 m2 g−1 is fab-
ricated by the multiple thermal treatments under the  N2/O2 atmosphere, 
wherein the C–O bonds are formed through two ways of physical adsorp-
tion and doping. The physical characterization and theoretical calculation 
indicate that the O-adsorption can promote the generation of defects, 
leading to the formation of hollow morphology, while the O-doping 
results in reduced band gap of g-C3N4. The optimized OCN shows an 
excellent photocatalytic hydrogen evolution activity of 3519.6 μmol g−1 h−1 for ~ 20 h, which is over four times higher than that of g-C3N4 
(850.1 μmol g−1 h−1) and outperforms most of the reported g-C3N4 catalysts.

KEYWORDS Graphitic carbon nitride nanosheet; Hollow morphology; Oxygen incorporating; Multiple thermal treatment; 
Photocatalytic hydrogen evolution
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1 Introduction

Due to energy and environmental issues, photocatalysis 
has attracted intensive interests, as it provides a green 
and potential route for the wide applications in environ-
mental remediation, energy production, and chemical 
synthesis [1, 2]. During the past several years, various 
inorganic semiconductors have been developed as pho-
tocatalysts for the splitting of water into hydrogen gas 
under visible light [3, 4]. Graphite-like carbon nitride 
(g-C3N4) is not only one of the superior photocatalysts, 
but also can be used to construct excellent catalysts as 
substrates owing to high chemical and thermal stabil-
ity, simple synthesis process, visible-light response, as 
well as environmentally friendly [5–7]. However, the 
quality of g-C3N4 including the thickness, surface area, 
electronic structure, etc., still needs to be significantly 
improved to meet the requirement of applications [8, 9] 
and the morphology design and heteroatom-doping are 
typical approaches [10–12].

Researches have shown that heteroatom such as nitro-
gen (N), oxygen (O), sulfur (S), phosphorus (P) dopants 
play a vital role in promoting the photocatalytic activity 
of g-C3N4 through broader light-responsive range, higher 
light utilization efficiency owing to the reduced band gap 
[13, 14]. For instance, Li et al. [15] found that P-doping 
could significantly improve the electronic conductivity of 
g-C3N4, leading to the inhibition of recovering of photo-
separated charges and holes under visible-light irradia-
tion. Liu et al. [16] proved that the S dopants could donate 
valence electrons to covalent C atoms, resulting in the nar-
row band gap and improved photo-reactivity of g-C3N4. 
Unfortunately, it has been convinced that these heteroatom 
dopants can be easily removed, leading to the poor stabil-
ity of photocatalytic performance [17, 18]. O, a typical 
abundant element, has been used to improve the photo-
catalytic performance of g-C3N4 through the modification 
of electronic structures and morphology of g-C3N4. For 
example, Rodrigues et al. prepared O–g-C3N4 monolay-
ers by the pyrolysis of melamine under the air atmosphere 
[19]. Niu et al. [20] utilized a 5 min thermal treatment 
under the well-ventilated air space to prepare porous O–g-
C3N4. Compared with bulk g-C3N4, the photocatalytic per-
formance of O–g-C3N4 was enhanced due to the change 
in band gaps and improved surface areas [21]. Therefore, 

O-modified g-C3N4 is a promising approach to further 
improve the quality of g-C3N4.

In this paper, we demonstrate a novel approach to 
prepare the hollow O-incorporated g-C3N4 nanosheets 
(OCN) using the multiple thermal treatments under the 
 N2/O2 atmosphere. After repeating thermal treatments 
for three times, the OCN monolayers with uniform pores 
(~ 25 nm) can be obtained. The surface area was increased 
to (~ 148.5 m2 g−1), which is four times higher than that of 
bulk g-C3N4 (~ 23.8 m2 g−1). The obtained OCN exhibited 
an excellent photocatalytic performance toward hydrogen 
evolution reaction including a hydrogen evolution rate of 
3519.6 μmol g−1 h−1 for ~ 20 h and quantum efficiency (QE) 
of 26.96% at 400 nm, outperforming the bulk g-C3N4 and 
most of the reported heteroatom-doping g-C3N4 [22–27]. 
The physical characterizations and theoretical calculations 
indicated that the O-adsorption contributed to form a hol-
low structure by defect creation and the O-doping played 
a crucial role in the reduction of the band gap of g-C3N4, 
leading to the improvement of photocatalytic activity.

2  Experimental Section

2.1  Synthesis of OCN

The OCN was prepared by the multiple thermal treatments. 
In detail, a certain amount of urea powder was placed in 
a porcelain crucible with a lid. The crucible containing 
urea was heated in the tube furnace at a temperature of 
550 °C for 240 min with a heating rate of 2 °C  min−1 under 
the  N2/O2 mixed gas (V/V: 4:1, 50 mL min−1). The yel-
low powder was obtained. Then, the yellow powder was 
retreated for 60 min with the same condition. The as-pre-
pared product was labeled as OCN-N (N: the thermal treat-
ment times). Finally, a series of OCN-N catalysts, namely 
OCN-1, OCN-2, OCN-3, and OCN-4, were obtained. The 
pure bulk g-C3N4 was prepared with the same procedures 
of OCN-1 but using melamine under argon atmosphere, 
which was labeled as MCN.

2.2  Material Characterizations

The crystal structure of products was characterized by X-ray 
powder diffraction (XRD) on Rigaku/MiniFlex600 powder 
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X-ray with high-intensity Cu Kα. The surface functional 
groups and chemical compositions of products were per-
formed by KBr pellet pressing method on Fourier transform 
infrared spectroscopy (FT-IR, Nicolet Avatar-330) and X-ray 
photoelectron spectroscopy (XPS) on ESCALAB250Xi. Al 
X-ray was used as the excitation source. The morphological 
structures of the product were measured by the scanning 
electron microscope (SEM, Hitachi S4800), transmission 
electron microscope (TEM, JEOL JEM-2100) operated at 
200 kV (Cs 0.5 mm, point resolution 1.9 Å) and atomic 
force microscopy (AFM, Bruker Multimode 8, Germany). 
The specific surface areas of samples were measured by  N2 
adsorption–desorption isotherms on a NOVA300e adsorp-
tion instrument at 77 K. Then, the corresponding pore-size 
distributions were calculated using Barrett–Joyner–Halenda 
(BJH) method. The optical properties of products were 
tested by UV–vis diffuse-reflectance spectroscopy (UV-
2550). Photoluminescence (PL) spectra were measured on a 
QuantaMaster™ 40 fluorescence spectrophotometer with an 
incident light of 325 nm. The VB-XPS spectrum was carried 
out to determine the valence band (VB), then the CB poten-
tials of different photocatalysts were calculated according to 
the following equations:ECB = EVB − Eg , where ECB, EVB, 
and Eg were the conduction band potential, valence band 
potential (EVB from VB-XPS), band gap (Eg from UV–vis 
DRS). Flat band potentials of different samples are obtained 
by intercepting the tangent of the Mott–Schottky curves. 
Reactive oxygen species (ROS) including  e− and  h+ from 
composites solution were identified and quantified with elec-
tron spin resonance spectroscopy (ESR, JESFA200).

2.3  Photocatalytic Activity

The photocatalytic hydrogen production reaction was meas-
ured in an online photocatalytic hydrogen production system 
(LbSolar-3AG, PerfectLight, Beijing). The photocatalysts 
(10 mg) were added into 100 mL aqueous solution contain-
ing 90 mL of water and 10 mL of triethanolamine (TEOA) 
[28–30]. Pt (acting as a co-catalyst) was then deposited 
onto catalysts by in situ photodeposition method [31]. A 
3 wt% (respect to Pt)  H2PtCl6·6H2O solution was added and 
degassed, and then irradiated by 300 W Xenon lamp (PLS-
SXE 300C (BF), PerfectLight, Beijing) with an optical fil-
ter (λ > 420 nm). Gas concentration analysis was performed 
by using an online gas chromatograph (GC D7900P, TCD 

detector). Apparent quantum efficiency (AQE) was meas-
ured under the same photocatalytic reaction conditions with 
irradiation light through a cutoff filter (400, 420, 460, or 
550 nm) [32, 33]. The AQE was calculated in the Supporting 
Information (Table S1).

2.4  Photoelectrochemical Experiments

Electrochemical impedance spectroscopy (EIS), transient 
photocurrent, and Mott–Schottky plots were tested on CHI 
660E (Chenhua Instrument, Shanghai, China) with a typi-
cal three-electrode cell. The electrode contains a working 
electrode (prepared sample), a counter electrode (platinum 
foil), and a reference electrode (Ag/AgCl). Here, 0.2 M 
sodium sulfate  (Na2SO4) aqueous solution (pH =  ~ 5.8) 
was employed as the electrolyte solution, and a 300 W Xe 
lamp equipped with a 420 nm cutoff filter was utilized as 
the visible-light source. The working electrode was pre-
pared according to the following procedure: 5 mg of the 
as-prepared photocatalyst was dispersed into a mixed solu-
tion containing ethanol (250 μL), ethylene glycol (250 μL), 
and Nafion (40 μL). The above solution (80 μL) was then 
dropped onto a precleaned fluorine tin oxide (FTO) glass 
with an exposed area of 1 cm2. The photocurrent responses 
of the photocatalysts to light switching on and off were 
measured with 1.2 V bias voltage. EIS spectra were recorded 
in the range from 0.01 to  105 Hz at an ac voltage of 10 mV. 
Mott–Schottky plots of material were then tested at 500 Hz 
frequencies by using the impedance-potential mode.

2.5  Theoretical Calculation

The spin-polarized density functional theory (DFT) cal-
culations were carried out by using the Vienna Ab-initio 
simulation package (VASP) [34]. All the calculations 
were performed to describe the electron–ion interac-
tion by using a plane-wave basis and a projector aug-
mented wave (PAW) method. The generalized-gradient 
approximations (GGA) with the standard norm conserv-
ing Perdew–Burke–Ernzerhof (PBE) and Heyd–Scuse-
ria–Ernzerhof (HSE06) exchange–correlation functionals 
were employed to obtain the exchange and correlation 
energy [35]. The energy cutoff for the plane-wave basis 
wave functions was 400  eV and the Gaussian smear-
ing width was set as 0.05 eV. The Brillouin zone was 
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sampled by a Gamma centered 3 × 3 × 1 Monkhorst 
Pack grid. All atoms were converged to 0.01 eV Å−1. 
A 3 × 3 × 1 supercell model of monolayer g-C3N4 was 
first relaxed by PBE approximations, and then the 
HSE06 calculations were employed to describe elec-
tronic structures of different g-C3N4 samples. Compared 
with conventional DFT, our calculations could obtain 
the more exact electronic structures and band gaps by 
means of HSE06 hybrid density functionals. The calcu-
lated N–C bond length is consistent with the published 
values [35, 36]. The energy balance (Eb) is defined 
as:Eb = E(O−g - C3N4) − (E(g - C3N4) + E(O) − nE(N)) , 
n = 0 (O-adsorption) or 1 (O-doping), where E(O) and 
E(N) refer to the total energy of O and N species, which is 
calculated from the isolated  O2 and  N2 molecule [21, 37].

3  Results and Discussion

The OCN material was prepared by the multiple thermal 
treatments, and the critical concept for synthesis is illus-
trated in Fig. 1. Under the first thermal treatment by urea 
in the  N2/O2 atmosphere, O atoms adsorbed and combined 
with g-C3N4 (Fig. 1a, b). When the OCN-1 was retreated 
under the  N2/O2 atmosphere, O atoms were easy to be doped 
into the skeleton (Fig. 1c, d). Using the multiple thermal 
treatments, a series of oxygen-incorporated sheets OCN-2 
and OCN-3 can be obtained and tuned. However, excessive 
treatments may lead to the fragmentation of OCN-4 mate-
rial. In order to further confirm the exact position of O atom 
in OCN, the DFT calculations were employed. The five pos-
sible action sites  (N1,  C2,  N3,  C4,  N5) were proposed based 
on the locations of oxygen atoms (Fig. S1). The HSE06 
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calculated results showed that the O structure with  C2 site 
has a lowest adsorbing energy (-2.17 eV), while the structure 
with  N3 site has a lowest doping energy (− 1.63 eV). Thus, 
it is likely that both O-adsorption and O-doping in g-C3N4 
skeleton were existed to construct the C–O bond in OCN 
during the multiple thermal treatments (Fig. 1f). Different 
from O-doping, O-adsorption can make g-C3N4 distorted.

The morphologies of a series of OCN were then analyzed 
by TEM and AFM. The TEM (Fig. 2a) and AFM (Fig. 2d) 
images displayed the typical sheet-like OCN-1 sheet was 
measured as 2.28 nm based on the corresponding height 
profiles of AFM results, indicating the OCN-1 contained 

6–7 layers according to the theoretical interlayer distance of 
g-C3N4 (~ 0.35 nm) [36–39]. After the second thermal treat-
ment, the size and thickness of g-C3N4 sheet (OCN-2) were 
decreased to ~ 1 μm and ~ 0.91 nm, respectively (Fig. 2b, e), 
indicating that repeating thermal treatment was helpful to 
obtain thinner g-C3N4 nanosheets. Further repeating ther-
mal treatment, nearly monolayered OCN-3 nanosheet with 
500 nm size and 0.45 nm thickness was obtained (Fig. 2c, 
f). Moreover, the pores with a uniform size of 25 nm were 
found on the OCN-3 nanosheets. However, the OCN-4 that 
was prepared by four-time thermal treatment showed a sig-
nificantly decreased size (~ 160 nm), an increased thickness 
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(~ 2.49 nm) and disappeared pores compared with those 
of OCN-3 (Fig. S2). As four-time thermal treatments, the 
obtained g-C3N4 with smaller size tended to aggregate 
to form the thicker g-C3N4 sheets due to the high surface 
energy [40]. Thus, the g-C3N4 sheets were torn into smaller 
fragments with the defects by the multiple thermal treat-
ments and the three-time thermal treatment was the opti-
mized condition for the synthesis of OCN with hollow and 
monolayered structures. Convinced by DFT results, the 
introduction of O can generate defects by distorting, then 
form g-C3N4 sheets with pores.

As shown in XRD patterns (Fig. 2g), two peaks at 13.0° 
and 27.3° could be detected, which were attributed to the 
in-plane repeating unites and interlayer-structure stacking 
of (100) and (002) of g-C3N4, respectively [41, 42]. There 
were no obvious changes among these OCNs, implying that 
the multiple thermal treatments did not affect the g-C3N4 
phase composition. More importantly, these peaks tended to 
slightly shift toward a smaller angle, which proved again that 
the multiple thermal treatments were useful for expanding 
the interlayer space to obtain the exfoliated g-C3N4 sheets 
with few layers [43]. In the FT-IR spectra of products (Fig. 
S3a), the sharp band at ~ 810 cm−1 was the characteristic 
breathing mode of s-triazine ring. The bands from ~ 1800 
to 900 cm−1 were the typical stretching vibration modes 
of C = N. The broad band between ~ 3000 and 3600 cm−1 
was attributed to C–N heterocycles. The FT-IR results were 
highly consistent with g-C3N4 reported in the literature 
[44]. Importantly, the C–O vibration band could be clearly 
found at 1090 cm−1 and its intensity was increasing with the 
repeating thermal treatment, suggesting that O-containing 
group was successfully formed in the product. Furthermore, 
no N–O band (980 cm−1) was found, indicating that the N 
atoms of g-C3N4 nanosheets were not bonded with O atoms 
during the thermal treatment which can be evidenced by 
the oxygen atom site  (C2,  N3) from DFT computational 
structure. XPS survey spectra (Fig. S3b) showed that all 
products were composited by C, N, and O elements. The 
high-resolution C 1 s spectra exhibited one prominent peak 
in each product at 287.8 eV (Fig. S3c), which was identi-
fied as  sp2-bonded C of N = C–(N)2. The high-resolution N 
1 s spectra displayed three peaks at ca. 398.4, 399.9, and 
400.9 eV corresponding to C = N–C, N(C)3, and C–N–H 
groups (Fig. S3d). The XPS results proved again that the 
typical g-C3N4 structure could be maintained during the 
multiple thermal treatments [37]. The C–O bond, adsorbed 

 H2O, and adsorbed  O2 could be found in high-resolution O 
1 s (Fig. 2h) XPS spectra of OCN products [45]. After the 
multiple thermal treatments, the O content was increased 
from 0.84 at% for OCN-1 to 2.07 at% for OCN-4 (Table S2). 
According to the proportions of different kinds of O bonds 
in Table S3, more C–O bonds might be formed in the OCN 
nanosheet with the increasing thermal treatments. In addi-
tion, the change in O content was also reflected from the 
color of the products that were changed from yellow to light 
khaki with the increase in O content (Fig. S4). Overall, the 
current data can prove that it is a promising strategy by using 
a multiple thermal treatment method for the preparation of 
OCN with controllable O content.

The porous structure was studied by  N2 adsorption/des-
orption measurement. As shown in Fig. S5, all the products 
displayed similar isotherm curves with a typical IV hyster-
esis loop. The corresponding pore-size distributions were 
calculated using the Barrett–Joyner–Halenda (BJH) method 
(Fig. S6), which showed that the products contained a broad 
pore-size distribution from mesopores to macropores. The 
OCN-3 exhibited the highest surface area of 148.50 m2 g−1 
in Fig. 2i, compared with that of OCN-1 (97.88 m2 g−1), 
OCN-2 (102.84 m2 g−1), OCN-4 (111.92 m2 g−1). Compared 
with pure bulk g-C3N4 (MCN, 23.84 m2 g−1) in Fig. S7, 
a highly porous structure of OCN-3 monolayer structure 
with one atomic thickness (0.45 nm) could be beneficial to 
increase the surface area with abundant active sites for pho-
tocatalytic reaction [37, 45, 46].

The photocatalytic hydrogen evolution activities of dif-
ferent samples were investigated. After 5 h full arc light 
irradiation (Fig. 3a), the total amount of produced  H2 for 
OCN-1, OCN-2, OCN-3, and OCN-4 materials was 309.5, 
410.2, 703.5, and 568.5 μmol, respectively. The photo-
catalytic hydrogen evolution activity of OCN catalysts 
was enhanced with increasing thermal treatment times 
up to three times. It decreased when the further thermal-
treatment process was performed (OCN-4) due to the mor-
phology damages and nanosheet aggregates. Among all 
catalysts, OCN-3 exhibited the best activity toward hydro-
gen evolution including the highest hydrogen produced 
rate of 14,069.8 μmol g−1 h−1 (Fig. 3b), which was much 
higher than that of OCN-1 (6189.6 μmol g−1 h−1), OCN-2 
(8203.3 μmol g−1 h−1), OCN-4 (11,372.3 μmol g−1 h−1), 
and MCN (3520.6 μmol g−1 h−1). Even under the visi-
ble-light irradiation (λ ≥ 420 nm, Fig. 3c), the hydrogen 
evolution activity of the OCN-3 sample was also most 
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active, and the total amount of produced  H2 could reach 
180 μmol for 5 h. The calculated hydrogen evolution rate 
for OCN-3 was up to 3519.6 μmol g−1 h−1 under the vis-
ible light, which was about 2.60, 1.53, 1.30, and 4.14 times 
higher than that of OCN-1 (1351.6 μmol g−1 h−1), OCN-2 
(2291.3 μmol g−1 h−1), OCN-4 (2703.3 μmol g−1 h−1), and 
MCN (850.1 μmol g−1 h−1) (Fig. 3d).

To further obtain the reaction proceeds of OCN-3 through 
light absorption, we explored the relationship between 
the QE of hydrogen evolution and wavelength of incident 
light. It can be seen that the QE decreased with increasing 
wavelengths which matched well with the height variation 
of absorption peaks in the optical spectra. Therefore, the 
OCN-3 catalyst had a peak external QE of 26.96% at 400 nm 
and 4.28% at 420 nm (Fig. 3e), which outperformed in the 
g-C3N4-based catalysts reported in the literature (Table S4), 
including NiMo/g-C3N4, PDA@g-C3N4, Ni(OH)2/CdS/g-
C3N4 [9, 13, 29, 39, 46]. The stability of the OCN-3 was 
tested by cyclic photocatalytic  H2 evolution experiments. 
After five cycles, OCN-3 still exhibited the high photo-
catalytic activity toward hydrogen evolution reaction and 
only 10.4% activity was lost after 20 h (Fig. 3f). Structural 
information of OCN-3 after reaction was also assessed via 
SEM (Fig. S8) and XRD (Fig. S9) technique. Preserved 

morphology and similar diffraction patterns before and after 
cyclic test demonstrate the chemical and photophysical sta-
bility of catalysts.

In order to explore the function of introducing oxy-
gen atom toward the photophysical property of OCN, 
Mott–Schottky plots spectra, PL spectra were first tested. 
The Mott–Schottky plot was utilized to determine flat band 
potentials of material. All samples exhibit similar lin-
ear plots, corresponding to the character of typical n-type 
semiconductor in Fig. 4a [47–49]. More importantly, the 
derived flat potentials of OCN-3 are more negative than that 
of OCN-1, OCN-2, promising the enhanced reduction abil-
ity of photogenerated electrons. In Fig. 4b, all the samples 
exhibited a strong PL peak at ~ 445 nm, in which OCN-3 has 
the lowest intensity, indicated the electron/hole separation 
and electron transport were more efficient through OCN-3 
compared with other catalysts [50]. As shown in Fig. 4c, 
the OCN-3 exhibited a higher photocurrent value of 0.35 
μA  cm−2 than that of OCN-1 (0.14 μA cm−2) and OCN-2 
(0.26 μA cm−2), demonstrating the improvement in photo-
current response of open circuit voltage with the increasing 
repeat times of thermal treatment. The higher photocurrent 
revealed that OCN-3 has a better visible-light response 
and more efficient photoexcited charge separation, which 
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was proven again by PL results. Correspondingly, the EIS 
Nyquist impedance spectra (Fig. 4d) showed that OCN-3 
has the smallest electron-transfer resistance. The photoex-
cited radicals such as electrons and holes from photocata-
lysts were investigated by the ESR spin-trap technique with 
TEMPO in Fig. 4e, f. TEMPO with  e− or  h+ can produce an 
ESR silent molecule and lead to the decrease in the intensity 
of TEMPO signals [51]. Hence, OCN-3 with weak signals 
has a large number of  e− and  h+ than those of OCN-1 and 
OCN-2. In addition, radicals’ signal can be found in OCN-3 
solution under visible-light irradiation (Fig. S10), decreasing 
with longer irradiated time. Therefore, the efficient separa-
tion of  e−/h+, the high resistance of recombination of  e−/h+, 
the excellent light harvest make OCN-3 active in photocata-
lytic hydrogen evolution reaction.

In order to explore the function of introducing oxygen 
atom, HSE calculation was firstly used to obtain the the-
oretical density of states (DOS). According to the results 
of DOS, the band gap of pure g-C3N4 was about 2.58 eV 
in Fig. 5a which is consistent with reported results [52]. 
After calculating projected DOS in Fig. S11, the O-adsorp-
tion structure only caused a weak effect on band structure 
from pure g-C3N4 2.58 eV to 2.55 eV (Fig. 5b). The band 
gap of O-doping g-C3N4 decreased from 2.58 to 2.16 eV 
(Fig. 5c). Such a smaller band gap is befitting for a photo-
catalyst. Thus, the OCN was more active than pure g-C3N4 

for splitting water under light irradiation. Beside theoreti-
cal calculation, to convince the change in band structure 
experimentally, UV–vis DRS, VB-XPS were then studied. 
The UV–vis DRS result exhibited a remarkable red shift and 
intensity increase in absorption peak of OCN with the mul-
tiple thermal treatments (Fig. 5d), indicated the increasing 
harvest of visible light [53]. The band gaps of OCNs were 
calculated according to the Kubelka–Munk transformation, 
which was 2.78, 2.76, and 2.70 eV for OCN-1, OCN-2, and 
OCN-3, respectively. According to the VB-XPS results, the 
maximum of the valence band (VB) was located at 2.03, 
1.90, and 1.74 eV for OCN-1, OCN-2, and OCN-3, respec-
tively (Fig. 5e). Thus, the conduction band (CB) was deter-
mined to be − 0.97, − 1.04, and − 1.13 V (vs. Ag/AgCl, 
pH = 7) for OCN-1, OCN-2, OCN-3, respectively, which 
were converted to − 0.75, − 0.86, and − 0.96 V versus nor-
mal hydrogen electrode (vs. NHE), respectively [49]. The 
energy band structure can be simulated in Fig. 5f. Indeed, 
the CB potential of OCN-3 was smaller than that of other 
samples and was more negative compared with the  H+/H2 
reduction potential (NHE). Thus, the up-shift of conduction 
band energy can be resulted in a stronger reducing activity 
of OCN-3, leading to a significant improvement in hydro-
gen evolution performance. According to the above results, 
we considered that O-doping could lead g-C3N4 to a sig-
nificant change in band gap. This function could be ignored 
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for O-adsorption. However, the O-adsorption still played an 
important role in the generation of defects that were contrib-
uted to the formation of hollow morphology.

A possible photocatalytic hydrogen production mecha-
nism was proposed, as shown in Fig. 5g. The  e− and  h+ 
pairs were generated when the OCN was irradiated by 
the visible light. Then,  e− in CB transferred to Pt for 
releasing  H2 by reducing  H2O, while the generated  h+ in 
VB reacted with TEOA to inhibit the recombination of 
 e−/h+. Since the above steps were intimately associated 
with the intrinsic characteristics of photocatalyst, such 
as electronic, surface, and textural structures, an inte-
grated engineering of the above properties would enable 
a synergetic tuning and optimization to further improve 

the photocatalytic performance. In our work, we modi-
fied the morphology and electronic structure of g-C3N4 
by introducing O using the multiple thermal treatments. 
On the one hand, the O-adsorption can create more defects 
in g-C3N4 nanosheets, leading to the formation of a hol-
low structure that was contributed to the improved sur-
face area. On the other hand, the O-doping can reduce the 
band gap of g-C3N4. The separation of  e−/h+ was promoted 
through g-C3N4, while the recombination of the generated 
 e−/h+ was inhibited due to the fast transport of electrons 
over g-C3N4. In doing so, the OCN showed an excellent 
photocatalytic performance and it holds a promising appli-
cation such as photocatalysts for hydrogen evolution and 
substrates for the synthesis of catalysts composites.
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4  Conclusion

In summary, we demonstrated a novel approach to syn-
thesize OCN with structure regulation and morphology 
control by using the multiple thermal treatments under 
the  N2/O2 atmosphere. The physical characterizations and 
theorized calculations proved that the multiple thermal 
treatments played a crucial role in morphology control 
and structure regulation by introducing O atoms. There 
were two kinds of O-incorporated structures. One was 
O-adsorption that could create a lot of defects to the for-
mation of hollow and monolayered structure. Another 
was O-doping which can reduce the band gap signifi-
cantly. Owing to this variation in structure, the optimized 
OCN-3 showed an excellent visible-light photocatalytic 
activity toward hydrogen production. The hydrogen 
evolution activity of OCN-3 was 3519.6 μmol g−1 h−1 
for ~ 20 h, which is over four times higher than that of 
pure bulk g-C3N4 (850.1 μmol g−1 h−1). Besides, OCN-3 
exhibited a stable photocatalytic activity due to oxygen 
functions which only 10.4% activity was lost after 20 h. 
This work not only demonstrated a powerful strategy to 
synthesize porous and ultrathin g-C3N4 nanosheet with 
highly efficient photocatalytic  H2 evolution by the func-
tion of oxygen, but also paves a new avenue to optimize 
the electronic, surface, and textural structure for excellent 
photocatalysts.
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