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Abstract In this article, the free vibration and the buckling (mechanical and/or thermal)
behaviour of laminated composite flat and curved panels are analysed numerically. Simulation
model has been developed using ANSYS Parametric design language code in the ANSYS
environment. The convergence behaviour of present finite element results have been checked
and comprehensiveness of themodel is revealed by comparing the results with those available
published literature. Wide variety of numerical examples is solved for different parameters
such as lamination schemes, support conditions and material properties under the thermo-
mechanical load to highlight the applicability of the present simulation model. It is finally
understood that the proposed model is capable of solving the mechanical responses (free
vibration and buckling) of orthotropic materials accurately with very less computational cost
under the combined action of loading.

Keywords Free vibration · Stability · Laminated flat and curved panels ·
Thermo-mechanical loading · Finite element analysis

Introduction

Laminated composite flat and/or curved panels are increasingly used in many engineering
applications such as aerospace, automotive, sports, biomedical, agriculture and marine and
health instrument as well as in the other field of high modern technology. The primary
benefit of composite components that can offer reduced weight and assembly simplification.
The advantages of composites associated with reducing the weight of aircraft structural
elements have been the principal motivation for military aviation development. The Boeing
787 (Dreamliner), have used around 50 % composite materials dropping its overall weight
by 12 % and added strength and lower weight allow the plane to use less fuel [1]. In order
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to meet the economic challenges present days, it is necessary to manufacture the composite
structures on the large scale to reduce the cost and easy availability of the composite structure.

It is well known that, the thin laminated structures are prone to buckle at low tempera-
ture and/or under the influence of compression load. Buckling does not mean failure of the
structure; in general it is the state of geometrical instability of the structure induced by the in-
plane thermal/mechanical/thermo-mechanical forces. Buckling is one of the main modes of
failure of the structural components when subjected to in-plane compressive stresses caused
by thermal/mechanical loads. Now a day typical composite curved and/or flat panels are used
in spaceships, aircraft and automobiles that are exposed to enormous acoustic, aerodynamic
and inertia excitation. Vibrations with large amplitude cause great tension and subsequent
reduction of life due to fatigue. As a result, the analysis of vibration and buckling of laminated
structures made of composite and/or hybrid materials become significant.

Laminated composite flat and/or curved panels are being analysed based on different
classical theories and shear deformation theories [2] such as the first order shear deformation
theory (FSDT), the higher-order shear deformation theory (HSDT) and the classical laminated
plate theory (CLPT). Thermo-mechanical buckling and vibration behaviour of laminated
composite plates using analytical and numerical methods is carried out by many researchers
in the past to fill the knowledge gap. Some of the significant contributions are discussed here
for the sake of brevity and to make the article self-standing.

Bending and the vibration behaviour of laminated composite plates are modeled by Cui
et al. [3] using the FSDT mid-plane kinematics and solved using the discrete shear gap
method. A new inverse hyperbolic shear deformation theory has been developed to analyse
the static and buckling behaviour of laminated composite and sandwich plates by Grover
et al. [4]. Hatami et al. [5] investigated the free vibration behaviour of moving laminated
composite plate using exact and semi-analytical finite strip method in the framework of the
CLPT. Huu-Tai and Seung-Eock [6] investigated the free vibration responses of laminated
composite plate using two variable based on the refined plate theories. Jameel et al. [7] pre-
sented the buckling behaviour of laminated composite plate under the combined thermal and
mechanical load. Jeng-Shian and Shyue [8] reported 3D elasticity solutions of thermal buck-
ling responses of anti-symmetric angle-ply laminates using the higher-order displacement
field. Kant and Swaminathan [9] presented analytical solutions of free vibration responses of
laminated composite and sandwich plates using the higher order refined theory. Effect of the
symmetric cross-ply laminations on the responses of laminated elastic plate is investigated
by Khdeir and Librescu [10] using the HSDT mid-plane kinematics. Thermally induced
buckling behaviour of laminated composite is analysed by Lee [11] using a layerwise theory
in conjunction with finite element method (FEM). Matsunaga [12] reported the free vibra-
tion and the stability behaviour of angle-ply laminated composite and sandwich plate under
the thermal loading and using power series expansion. Matsunaga [13] investigated the free
vibration behaviour of cross-ply multi-layered composite plate in the framework of HSDT.
Putcha andReddy [14] reported stability and vibration responses of laminated composite plate
using a mixed element based refined plate theory. Reddy and Liu [15] studied the static and
free vibration behaviour of laminated elastic composite shells based on the HSDT kinematic
model. Shukla and Nath [16] investigated the buckling and post-buckling strength of angle-
ply laminated plates analytically under the thermo-mechanical loading in the framework of
the FSDT by taking the geometrical non-linearity in von-Karman sense. Topal and Uzman
[17] reported optimum design of laminated composite plate using four node Lagrangian
finite element approach in the framework of the FSDT. Whitney and Pagano [18] investi-
gated the free vibration behaviour of laminated plate using the FSDT kinematics. Xiang et
al. [19] analysed the free vibration characteristics of laminated composite shells based on
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the FSDT in conjunction with meshless global collocation method. Free vibration behaviour
of laminated composite plates is obtained by Xiang and Kang [20] using a meshless local
collocation method based on thin plate spline radial basis function. Zhen and Wanji [21]
investigated the buckling behaviour of angle-ply composite and sandwich plates. Thermo-
mechanical buckling behaviour of laminated composite and sandwich plates are analysed
by Zhen and Wanji [22] in the framework of the global-higher order theory. Thermal post-
buckling strength of laminated cylindrical shells is investigated by Shen [23] using boundary
layer theory. Thermal buckling responses of skew fibre-reinforced composite and sandwich
plates are obtained by Kant and Babu [24] using shear deformable finite element model in
the framework of the FSDT and the HSDT mid-plane kinematics. Mantari et al. [25] stud-
ied the static and dynamic behaviour of laminated composite and sandwich flat/shell panel
based on a new higher-order shear deformation theory. Buckling and vibration behaviour of
laminated composite plate/shell structure is investigated by Nguyen-Van et al. [26] using a
smoothed quadrilateral flat shell element in the framework of the FSDT. Some of the recent
investigations are completed on mechanical system design and optimisation using simula-
tion tool, soft computing steps and available numerical methods under combined action of
loading [27–31].

It is clear from the above review that, various attempts have already been made on the free
vibration and the buckling behaviour of laminated structures under the combined thermo-
mechanical load using the numerical approach. However analysis using commercial FEM
tool of such structure are very limited in number whereas these tools have capability to
solve such problems with less computational cost without affecting the accuracy of the final
response. It is also worthy to mention that, the commercial packages are well appreciated by
many industries their ease applicability, less effort and to achieve the real life situation with-
out ignoring the complexities. Hence, the present investigation aims to analyse the thermo-
mechanical buckling and the free vibration behaviour of shear deformable laminated com-
posite flat/curved panels using thermo-elastic properties. The present finite element model is
developed using ANSYS parametric design language (APDL) code in ANSYS environment.
The critical buckling load parameter and fundamental frequencies have been obtained for dif-
ferent geometrical parameters and material properties for different support conditions using
Block-Lanczo’smethod and validated by comparing the responses to that available numerical
responses. In this analysis, the temperature distribution field is assumed to be uniform and
linear through the panel thickness. The vibration and stability responses are computed by
varying design parameters like thickness ratio (a/h), modular ratio (E1/E2), curvature ratio
(R/a), lamination scheme and support condition to highlight the effectiveness of the present
proposed simulation model.

Finite Element Modelling

For the present analysis laminated composite model has been developed using APDL code
in ANSYS. The general geometry and dimension of the laminated structure are same as in
Fig. 1. It is well known that, the mathematical model in ANSYS is following the FSDT type
mid-plane kinematics and conceded as:

u (x, y, z) = u0 (x, y) + zθx (x, y)

v (x, y, z) = v0 (x, y) + zθy (x, y)

w (x, y, z) = w0 (x, y) + zθz (x, y) (1)
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Fig. 1 Laminated composite
flat panel

where, u, v and w denote the displacements of any point along the (x, y, z) coordinates.
u0, v0 and w0 are the in-plane and transverse displacements of a point (x, y) on the mid-
plane respectively and θx , θy and θz are the rotations of normal to the mid-plane.

The following strain displacements are used to obtain the strains for any kth lamina as
follows:

{ε} = {
εx εy εz γzx γzy γxy

} = {
ux vy wz uz + wx vz + wy uy + vx

}T (2)

where, ux = ∂u/∂x, vy = ∂v/∂y, andwz = ∂w/∂z are the differential form of displacement
terms with respect to the corresponding axis.

The generalized stress tensor of any kth lamina via thermo-elastic constitutive relation is
expressed as:

{σ }k = {
σx σy σz τyz τxz τxy

}T = [
Q̄

]k {
εk − αk	T

}
(3)

where, {σ }k is the stress tensor,
[
Q̄

]k
transfer reduced stiffness matrix and αk is the linear

thermal expansion of the material. In addition to that, the 	T is the temperature increment
and it set to at zero for the free vibration analysis. The individual coefficients of transformed
reduced stiffness matrix of any orthotropic material can be seen in [32].

Total strain energy of laminated flat/curved structure can be obtained due to the stresses
and their strains i.e., using Eqs. (2) and (3) and the final form of the energy expression
conceded as:

U = 1

2

∫

v

{ε}T [
Q̄

] {ε} dV (4)

The global displacement field of any point within the material continuum as in Eq. (1) can be
expressed in terms of mid-plane displacements and corresponding thickness coordinate as:

{
δ
} = {u v w}T = [ f ] {δ} (5)

where, [ f ] is the function of thickness coordinate.
The kinetic energy of the vibrated laminated panel can be expressed as:

T = 1

2

∫

v

[ρ]
{
δ̇
}T {

δ̇
}
dV (6)
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Fig. 2 A typical SHELL 281 element

where,ρ is the density,
{
δ̇
}
and

{
δ
}
are the velocity and the displacement vectors, respectively.

The external work done due to the temperature load will be obtained using the steps in
[33]:

W	T = 1

2

∫
[ε] {N	T } dV (7)

where, [εG ] is the geometric strain vector and {N	T } = {
N	T x N	T y N	T xy

}T is the
thermal load vector.

FEMhas been proved to be a robust numerical technique [33] for the analysis of the layered
structure with or without considering the environmental effect. In this analysis, an eight
noded shell element (SHELL 281) is used from the ANSYS library [34] for the discretisation
purpose. The element geometry can be seen in the Fig. 2 and it is capable of analysing thin to
moderately thick shell/plate structures. This element has six degrees of freedom at each node
called the translations and the rotations in the x, y, and z axes. This element also includes the
effect of transverse shear deformations to achieve the generality. The nodal displacements can
be presented in the following form by considering the nodal shape functions and conceded as:

u0 =
8∑

i=1

Niu
0
i , v

0 =
8∑

i=1

Niv
0
i , w

0 =
8∑

i=1

Niw
0
i ,

θx =
8∑

i=1

Niθxi , θy =
8∑

i=1

Niθyi , θz =
8∑

i=1

Niθzi (8)

Now, the Eq. (8) can be rewritten in a generalised form for any i th node and expressed
as:

{
δ∗
i

} =
{
u0i v0i w0

i θ0xi θ0yi θ0zi

}
(9)

{
δ∗
i

} = [Ni ] {δi } (10)

where, [Ni ] nodal shape function of an eight noded element and the values can be seen in
[33].

Substituting the value of nodal displacement in Eqs. (2), (4), (6) and (7) and it can be
rewritten as:
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{ε} = [Bi ] {δi } (11)

T = 1

2

∫

A

[ρ] [N ]Ti [N ]i
{
δ̇i

}
dV (12)

U = 1

2

∫
[Bi]

T {δi }T [D] [Bi] {δi } d A − {F}	T i − {F}mi (13)

{W } = 1

2

∫
[εG ]

T [DG ] [εG ] d A (14)

where, [Bi ] , {F}	T , {F}m and [εG ] are the strain displacement relationmatrix, thermal force
vector, mechanical force vector and the geometric strain vectors, respectively.

The final form of the governing equation can be obtained by using Hamilton’s principle
as follows:

t∫

0

Ldt = 0 (15)

where, L = T − (U + W ).
Now, the Eq. (15) will be modified by using the Eqs. (11)–(14) and conceded to the

following form:

[M]
{
δ̈
} + [K] {δ} = {F}	T − {F}m (16)

where, [M] and [K] are the global mass and stiffness matrix.
The governing equation for free vibrated panel is obtained by dropping the force terms

from the Eq. (16) and turned to the eigenvalue type of equation as follows:

[M]
{
δ̈
} + [K] {δ} = 0 (17)

In the similar fashion, the governing equation of buckling for the laminated panel can also
be obtained by dropping the inertia force term from Eq. (16) and conceded as:

[K] {δ} = {F}	T − {F}m (18)

Now, to obtain the eigenvalue type of buckling equation obtained by dropping the force
vectors from Eq. (18) and considering their effect in terms of geometrical matrix as:

{[K] + λcr [KG ]} {δ} = 0 (19)

where, [KG ] is the geometric stiffness matrix and λcr is the critical thermal/mechanical load
at which the structure buckles. The evaluation steps of geometric stiffness matrix [KG ] can
be seen in [33].

Results and Discussions

The free vibration and buckling behaviour of laminated composite curved/flat panel are com-
puted using the simulation model developed in ANSYS through APDL code. The validity
and comprehensive behaviour of the present finite element model have been checked by com-
paring the responses of to that available published results. The effects of different parameters
such as the modular ratios, the thickness ratios, the curvature ratios, support conditions and
number of layers on the natural frequencies and critical buckling loads of the laminated
composite panel is highlighted through solving numerous examples. In this study, all the
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Fig. 3 A full square flat panel
with meshes of m × m

layers are assumed to have the uniform thickness, the thermal expansion coefficients and
elastic constants are assumed to be independent of temperature. In addition to this, a uniform
temperature has been considered for throughout the analysis through the thickness of the
laminated panel. The mesh configuration for any general finite element analysis through its
can be seen in Fig. 3.

The following lamina properties are used for the vibration and the buckling analysis:

M1: E1/E2 = open; G12 = G13 = 0.6E2; G23 = 0.5E2; υ12 = 0.25; ρ = 1
M2: E1/E2 = open; G12 = G13 = 0.6E2; G23 = 0.5E2;υ12 = υ13 = 0.21; υ23 = 0.49
M3: E1/E2 = open; G12 = G13 = 0.65E2; G23 = 0.639E2;υ12 = υ13 = 0.21;

υ23 = 0.33; α12 = −0.21α0, α23 = 16.0α0 and α0 = 1 × 10−6/◦C
M4: E1/E2 = open; G12 = G13 = 0.5E2; G23 = 0.3356E2; υ12 = υ13 = 0.3;

υ23 = 0.49;α12 = 0.015α0, α23 = α13 = 16.0α0 and α0 = 1 × 10−6/◦C
The following sets of boundary conditions are used for the present analysis.

(a) Simply supported condition (S):

v0, w0, θx , θz = 0 at x = 0, a

u0, w0, θy, θz = 0 at y = 0, b

(b) Clamped condition (C):

u0, v0, w0, θx , θy, θz = 0 at x = 0, a and y = 0, b

The following forms of non-dimensional parameters are used in the whole analysis If not
stated otherwise.

Frequency: ω̄ = (ωa2/h)
(√

ρ/E2
)

Critical buckling load: N̄xx = λa2/E2h3

Critical buckling temperature: 	T ∗
cr = 	Tcr × α0 × 1000

Convergence and Comparison Study

In this section, the convergence behaviour of the present finite element simulation model
have been checked and compared with those available published results. For the validation
purpose, all problems have been solved by setting the geometrical and material properties
same as to the references.

123



482 Int. J. Appl. Comput. Math (2015) 1:475–490

Table 1 Convergence and comparison behaviour of non-dimensional fundamental frequency parameter of
square simply supported laminated composite flat panel (E1/E2 = 40)

No. of layers (0◦/90◦)2 (0◦/90◦)3 (0◦/90◦)5
Mesh size a/h

10 50 10 50 10 50

Present (6 × 6) 14.4224 17.1606 15.2499 18.0541 15.674 18.4961

Present (7 × 7) 14.4212 17.1591 15.2493 18.0525 15.6734 18.4942

Present (8 × 8) 14.4205 17.1581 15.2487 18.0516 15.6728 18.4936

Present (9 × 9) 14.4205 17.1578 15.248 18.0513 15.6728 18.493

Present (10 × 10) 14.4199 17.1578 15.248 18.051 15.6728 18.493

FSDT [18] 14.9214 17.1899 15.501 18.0673 15.779 18.4995

TSDT [2] 14.8463 17.1849 15.4632 18.0644 15.77 18.4984

RPT [6] 14.8463 17.1849 15.4632 18.0644 15.77 18.4984

Validation and Convergence of Free Vibration

In this example, the free vibration responses of square simply supported laminated composite
flat panel is computed for two thickness ratios (a/h = 10 and 50) and three anti-symmetric
cross-ply laminations [(0◦/90◦)2, (0◦/90◦)3 and (0◦/90◦)5] by using M1 material proper-
ties with E1/E2 = 40 as in the reference. The results are compared with those available
published article and presented in Table 1. It is worthy to mention that, the reference results
are computed using three different established theories (third-order shear deformation theory,
TSDT, refined plate theory, RPT and the FSDT) whereas the present results are computed
using the proposed simulation model. The comparison study clearly indicates that the present
model shows very good agreement with those established theories without hampering the
accuracy of the result. However, it is also interesting to note that the differences between
the results are below 1 and 3.5 % for the thin and thick panels respectively. It is also under-
stood that the present model is capable to analysing the free vibration behaviour of any
layered structure with sufficient accuracy and less computational cost. Based on the con-
vergence study, a (10 × 10) mesh is used to obtain the free vibration responses for further
analysis.

Validation and Convergence of Mechanical Buckling

Now the present model has been extended to validate themechanical buckling load parameter
of square simply supported cross-ply (0◦/90◦/0◦) laminated composite flat panel for two
differentmodular ratio (E1/E2 = 2 and 20) usingM2 typematerial properties and a/h = 10.
The non-dimensional buckling load computed using the present model and the reference
values are presented in Table 2. In addition to that the convergence behaviour of the present
simulation model also presented in the table for different mesh division. The results clearly
indicate that, the present model is showing good convergence rate and the differences are
within the expected line. It is also important to mention that the differences between the
results are well below i.e., within 3.5 % with the HSDT model. The mechanical buckling
responses of laminated composite panel is computed using a (14 × 14) mesh further based
on the convergence.
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Table 2 Convergence and
comparison behaviour of the
non-dimensional buckling load
parameter of square laminated
simply supported composite flat
panel (0◦/90◦/0◦) (a/h = 10)

Mesh density E1/E2 = 2 E1/E2 = 20

10 × 10 3.3432 7.9723

11 × 11 3.0414 7.2474

12 × 12 2.7895 6.6434

13 × 13 2.5761 6.1324

14 × 14 2.393 5.6944

HSDT [22] 2.364 5.516

Table 3 Convergence and
comparison study of
non-dimensional buckling
temperature for square simply
supported laminated composite
flat panel (±45◦)3(a/h = 10)

Mesh density E1/E2 = 1 E1/E2 = 2 E1/E2 = 3

16 × 16 1.6678 2.4695 3.2414

17 × 17 1.6678 2.4696 3.2416

18 × 18 1.668 2.4697 3.2417

19 × 19 1.668 2.4698 3.2418

20 × 20 1.668 2.4698 3.2419

HSDPT [14] 1.6685 2.4721 3.249

FSDPT [14] 1.6685 2.4723 3.25

Validation and Convergence of Thermal Buckling

In the continuation the above two cases, one more example has been solved using the present
simulation model for thermal buckling behaviour. In this example, the convergence and com-
parison behaviour of simply supported square anti-symmetric angle-ply [±45◦]3 laminated
composite flat panel is analysed for three different modular ratios (E1/E2 = 1, 2, 3) with
M3 material properties and the responses are tabulated in Table 3 by setting a/h = 10.
The results clearly indicate that the present model not only converging well but also showing
excellent agreement with the available published literature. However, the reference results are
solved using both higher-order shear deformation plate theory (HSDPT) and the first-order
shear deformation plate theory (FSDPT) the differences are so small that it can be neglected.
Based on the convergence, a (20 × 20) mesh is used to compute the responses further for the
thermal buckling responses throughout the analysis.

Based on the each convergence and the comparison studies on the free vibration and
the thermo-mechanical buckling of laminated composite panel structure, the present simu-
lation model is further extended to analyse the effectiveness through solving wide variety of
numerical examples for different parameters in the following section.

Parametric Study of Free Vibration

In this section, the fundamental frequency responses of laminated composite flat panel are
analysed for two different support conditions (CCCC and CSCS). The non-dimensional
fundamental frequency responses are computed using the APDL code and presented in
Figs. 4 and 5, respectively. The responses are examined for five different thickness ratios
(a/h = 5, 10, 15, 20, and 50), five modular ratios (E1/E2 = 10, 20, 30, 40 and 50)
and number of layups [(0◦/90◦)2, (0◦/90◦)3, (0◦/90◦)5] by setting the composite prop-
erties as M1. It is clear from the figures that the non-dimensional fundamental frequency
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Fig. 4 Non-dimensional fundamental frequency of laminated composite flat panel for all edges clamped
(CCCC) condition
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Fig. 5 Non-dimensional fundamental frequency of laminated composite flat panel for two edges clamped
and two edges simply supported (CSCS) condition

increases with increasing of all the parameters i.e., the thickness ratio, the modular ratio
and the number of layers. It is because of the fact that as the thickness ratio increases
the panel becomes thin and the non-dimensional frequency goes up. Similarly, the struc-
tural stiffness of the layered structure directly depend upon on the number of layers and
modular ratio and the responses are following the expected line for each of the parame-
ters.
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Table 4 Non-dimensional fundamental frequency responses of laminated composite cylindrical and spherical
panel (R/a = 10)

Panel geometry Lamination
scheme

Support
condition

a/h

10 20 100

Cylindrical (0◦/90◦)5 SSSS 12.1919 14.1736 16.4682

CCCC 18.1402 26.7965 44.2726

(±45◦)5 SSSS 11.7847 15.4164 25.2584

CCCC 15.2449 21.9824 36.2364

5 10 100

Spherical (0◦/90◦)S SSSS 9.7848 13.09353 21.3163

CCCC 12.5833 20.9003 54.1315

(±45◦)S SSSS 10.1916 14.3539 40.2174

CCCC 12.4064 19.6010 50.3867

To show the generality of the present developed model, it is extended to analyse for two
more geometries say, cylindrical and spherical laminated shell panels of the square base. The
responses are computed for different thickness ratios, lamination schemes (cross-ply and
angle-ply) and support conditions (SSSS and CCCC) using the M1 type material properties
by setting E1/E2 = 25.The non-dimensional fundamental frequency responses are presented
Table 4. It is clear from the results that, the fundamental frequency responses are higher for
clamped support as compared to simply supported case. It is also interesting to note that the
cylindrical panel is showing higher non-dimensional frequencies for lower thickness ratios
i.e., a/h = 10 and 20 and the responses are revert for a/h = 100. In addition, it is also
observed that the lamination scheme affect the frequency behaviour of the layered structures
considerably.

Parametric Study of Mechanical Buckling

It is well known that the buckling load greatly depend on two major parameters such as
the support condition and the type of loading. In this section, two different examples of
mechanical buckling are analysed under the influence of biaxial and uniaxial compres-
sive load and presented in Fig. 6a, b, respectively. The buckling responses are computed
for square cross-ply laminated composite flat panel (0◦/90◦/0◦/90◦/0◦) for six thickness
ratios (a/h = 5, 10, 15, 20, 50 and 100) and five modular ratios (E1/E2 = 1, 2, 3, 4
and 5) using the M2 composite properties with CCSS support. It is clear from the Fig. 6
that, the non-dimensional buckling load parameter is showing decreasing type of behaviour
as the thickness ratio increases whereas a reverse trend is observed for the orthotropicity
ratios.

Further, two more examples are solved for two different geometries i.e., the cylindrical
and the spherical laminated composite shell panel under uniaxial loading with simply support
(SSSS) condition. The buckling responses are obtained for three thickness ratios (a/h = 2,
20, and 100), four curvature ratios (R/a = 5, 10, 15, and 20) and two lamination schemes
[(0◦/90◦/0◦) and (0◦/90◦/0◦/90◦/0◦)] with the same material properties as in the earlier
example. The non-dimensional buckling load parameters of cylindrical and spherical shell
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Fig. 6 Non-dimensional critical buckling load responses of laminated composite flat panel
(0◦/90◦/0◦/90◦/0◦) with CCSS support. a Biaxial loading. b Uniaxial loading
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Fig. 7 Non-dimensional critical buckling load responses of laminated composite panel (λcr = NX /E2h).
a Cylindrical; b spherical

panels are presented in Fig. 7a, b, respectively. It is clear from figures that the buckling load
parameters are decreasing with an increase in the curvature ratios and the thickness ratios
and this is because the subsequent reduction in panel stiffness.

Parametric Study of Thermal Buckling

The thermal buckling strength of anti-symmetric angle-ply laminated composite flat panel
is computed for five thickness ratios (a/h = 5, 10, 15, 20, 50 and 100), five modular ratios
(E1/E2 = 1, 2, 3, 4 and 5), two stacking sequences

[
(±15◦)3 and (±45◦)3

]
and two support

conditions (CCCC and CSCS). The responses are computed using the composite properties
as M3 and presented in Figs. 8a, b and 9a, b for CCCC and CSCS supports, respectively. It
is clear from all the four figures presented in Figs. 8 and 9, the non-dimensional buckling
temperature increase and decrease, even though, both the modular ratios and the thickness
ratios increase. This can also be noted that the non-dimensional buckling temperature of the
flat angle panel ply panel increases as the ply angle increases for each case are analysed in
this present example.
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Fig. 8 Non-dimensional critical buckling temperature of clamped laminated composite flat panel. a (±15◦)3;
b (±45◦)3
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Fig. 9 Non-dimensional critical buckling temperature of laminated composite flat panel with CSCS support.
a (±15◦)3; b (±45◦)3
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Fig. 10 Non-dimensional critical buckling temperature of laminated composite panel for CCCC condition.
a Cylindrical; b spherical
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Further, two more problems on thermal buckling behaviour of clamped composite panel
have been analysed for two different geometries i.e., the cylindrical and the spherical shell
panel. The responses are computed for five curvature ratios (R/a = 10, 20, 30, 40 and 50),
two thickness ratios (a/h = 100 and 120) and two lamination scheme ([±45◦] and [±45◦]2)
using M3 and M4 type material properties and presented in Fig. 10a, b, respectively. It is
observed from the figures that, the non-dimensional buckling temperatures decrease when
both the curvature ratios and the thickness ratios increase. This is because of the fact that as
the thickness ratio increases the structure becomes thin and the structure follows the expected
line. It is also noted that the non-dimensional buckling temperature is showing increasing
trend as the number of layers increases, it is because the stiffness increases as the number of
layers increases.

Conclusions

In this article, a finite element model of laminated composite flat/curved panel is developed
in ANSYS simulation package using APDL code to analyse the free vibration and buckling
behaviour of the layered structures numerically. The comprehensive behaviour of the devel-
oped simulation model has been checked and it clearly indicates that the present simulation
model not only capable to solve the mechanical responses easily but also reduced the com-
putational cost considerably. The comparison study also indicated the excellent accuracy for
all the different classes of problem analysed using the present simulation model with those
available published literature. The present free vibration and the thermo-mechanical buckling
behaviour of laminated composite flat/curved panels has been analysed for different para-
meters such as the thickness ratios, the lamination schemes, the modular ratios and support
condition. Based on the computation of variety numerical example the following conclusions
are drawn:

• In the free vibration analysis, the non-dimensional fundamental frequencies increase
as the thickness ratios, the modular ratios and the number of plies increases. The non-
dimensional fundamental frequencies are showing higher for clamped support.

• The of critical buckling load parameters of laminated composite flat/curved panel under
the mechanical load decreases as the thickness ratios increase. However, the load para-
meter increases as the modular ratios and the number of plies increases.

• In the thermal buckling case, the critical buckling temperature parameter decreases as the
thickness ratios increase and it increases as the modular ratios and the number of plies
increases. The clamped panel is showing higher thermal buckling strength as compared
to other support.

• It is also observed that, the spherical panels are showing higher buckling (thermal and
mechanical) strength in comparison to cylindrical and flat panel. But the cylindrical
panels are showing higher fundamental frequencies in comparison to spherical and flat
panel except for thin laminates.
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