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Abstract In an influential 1964 article, P. Lax studied 2 × 2 genuinely nonlinear
strictly hyperbolic PDE systems (in one spatial dimension). Using the method of
Riemann invariants, he showed that a large set of smooth initial data lead to bounded
solutions whose first spatial derivatives blow up in finite time, a phenomenon known
as wave breaking. In the present article, we study the Cauchy problem for two classes
of quasilinear wave equations in two spatial dimensions that are closely related to
the systems studied by Lax. When the data have one-dimensional symmetry, Lax’s
methods can be applied to the wave equations to show that a large set of smooth initial
data lead to wave breaking. Here we study solutions with initial data that are close, as
measured by an appropriate Sobolev norm, to data belonging to a distinguished subset
of Lax’s data: the data corresponding to simple plane waves. Our main result is that
under suitable relative smallness assumptions, the Lax-type wave breaking for simple
plane waves is stable. The key point is that we allow the data perturbations to break the

B Jared Speck
jspeck@math.mit.edu

Gustav Holzegel
g.holzegel@imperial.ac.uk

Jonathan Luk
jluk@dpmms.cam.ac.uk

Willie Wong
wongwwy@member.ams.org

1 Massachusetts Institute of Technology, Cambridge, MA, USA

2 Imperial College, London, UK

3 Cambridge University, Cambridge, UK

4 École Polytechnique Fédérale de Lausanne, Lausanne, CH, Switzerland

5 Present Address: Michigan State University, East Lansing, MI, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40818-016-0014-4&domain=pdf


10 Page 2 of 198 J. Speck et al.

symmetry. Moreover, we give a detailed, constructive description of the asymptotic
behavior of the solution all the way up to the first singularity, which is a shock driven
by the intersection of null (characteristic) hyperplanes. We also outline how to extend
our results to the compressible irrotational Euler equations. To derive our results, we
use Christodoulou’s framework for studying shock formation to treat a new solution
regime in which wave dispersion is not present.

Keywords Characteristics · Eikonal equation · Eikonal function · Genuinely
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1 Introduction

In his influential article [42], Lax showed that 2×2 genuinely nonlinear strictly hyper-
bolic PDE systems1 exhibit finite-time blowup for a large set of smooth initial data.
His approach was based on the method of Riemann invariants, which was developed
by Riemann himself in his study [54] of singularity formation in compressible fluid
mechanics in one spatial dimension. The blowup is of wave breaking type, that is, the
solution remains bounded but its first derivatives blow up. Lax’s results are by now
considered classic and have been extended in many directions (see the references in
Subsect. 1.5). In particular, an easy modification of his approach could be used to
prove finite-time blowup for solutions to various quasilinear wave equations in one
spatial dimension: under suitable assumptions on the nonlinearities, one could prove
blowup by first writing the wave equation as a first-order system in the two character-
istic derivatives of the solution and then applying Lax’s methods. In the present article,
we study the Cauchy problem for two classes of such wave equations in two spatial
dimensions, specifically equations (1.1a) and (1.3a) below. These equations admit
plane symmetric, simple wave solutions that blow up in finite time (see Subsect. 1.3

1 Such systems involve two unknowns in one time and one spatial dimension.
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for a quick proof). Lax’s methods can be used to show that such solutions and their
blowup are stable under small perturbations that preserve the one-dimensional plane
symmetry. Our main result is that, under a suitable hierarchy of smallness-largeness
assumptions, these blowup-solutions are also stable under data perturbations that break
the symmetry. To close our proof, we must derive a sharp description of the blowup
that, even for data with one-dimensional symmetry, provides more information than
does Lax’s approach. In Subsect. 1.2, we explain the set of data covered by our main
results in more detail. See Subsect. 1.1 for a summary of the results and Theorem 15.1
for the full statement.

For some evolution equations in more than one spatial dimension that enjoy special
algebraic structure, short proofs of blowup by contradiction are known; see Subsect. 1.5
for some examples. In contrast, the typical wave equation that we study does not have
any obvious features which suggest a short path to proving blowup. In particular, the
equations do not generally derive from a Lagrangian, admit coercive conserved quan-
tities, or have signed nonlinearities. They do, however, enjoy a key property: they have
special null structures (which are distinct from the well-known null condition of S.
Klainerman). These null structures manifest in several ways, including the absence of
certain terms in the equations (as we explain in more detail in the discussion surround-
ing equation (1.10)) as well as the preservation of certain good product structures under
suitable commutations and differentiations of the equations (as we explain in Subsub-
sect. 1.5.4). The null structures are not visible relative to the standard coordinates.
Thus, to expose them, we construct a dynamic “geometric coordinate system” and a
corresponding vectorfield frame2 that are adapted to the characteristics corresponding
to the nonlinear flow; see Subsect. 1.2 for an overview. We are then able to exploit the
null structures to give a detailed, constructive description of the singularity, which is a
shock3 in the regime under study. A key feature of the proof is that the solution remains
regular relative to the geometric coordinates at the low derivative levels. The blowup
occurs in the partial derivatives of the solution relative to the standard rectangular
coordinates and is tied to the degeneration of the change of variables map between
geometric and rectangular coordinates; see Subsect. 1.2 for an extended overview of
these issues.

Our approach to proving shock formation is based on an extension of the remark-
able framework of Christodoulou, who proved [15] detailed shock formation results
for solutions to the relativistic Euler equations in irrotational regions of R1+3 (that is,
regions with vanishing vorticity) in a very different solution regime: the small-data
dispersive regime. In that regime, relative to a geometric coordinate system analogous

2 Our frame (1.7) is closely related to a null frame, which is the reason that we use the phrase “special null
structures.” To obtain what is usually called a null frame, we could replace the vectorfield X̆ in (1.7) with
the null vectorfield μL + 2X̆ . All of our results could be derived by using the null frame in place of (1.7).
3 By a “shock” in a solution to equation (1.1a), we mean that the singularity is of wave-breaking type; that
is, the solution remains bounded but one of its first rectangular coordinate partial derivatives blows up. By
a “shock” in a solution to equation (1.3a), we mean that the solution and its first rectangular coordinate
partial derivatives remain bounded but one of its second rectangular coordinate partial derivatives blows
up. Note that in both cases, the metric g remains bounded but one of its first rectangular coordinate partial
derivatives blows up.
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to the one mentioned in the previous paragraph, the solution enjoys time decay4 at
the low derivative levels corresponding to the dispersive nature of waves (see Sub-
subsect. 1.5.4 for more details). The decay plays an important role in controlling
various error terms and showing that they do not interfere with the shock formation
mechanisms. In contrast, in the regime under study here, the solutions do not decay.
This basic feature is tied to the fact that in one spatial dimension, wave equations are
essentially transport equations.5 For this reason, we must develop a new approach to
controlling error terms and to showing that the solution exists long enough for the
shock to form; see Subsubsect. 1.5.4 for an overview of some of the new ideas. As we
explain below in more detail, a key ingredient in our analysis is the propagation of a
two-size-parameter ε̊− δ̊ hierarchy all the way up to the shock. Here and throughout,
δ̊ > 0 is a not necessarily small parameter that corresponds to the size of derivatives
in a direction that is transversal to the characteristics and ε̊ ≥ 0 is a small parameter
that corresponds to the size of derivatives in directions tangent to the characteristics.
The fact that we are able to propagate the hierarchy is deeply tied to the special null
structures mentioned in the previous paragraph.

We can describe the solutions that we study as “nearly simple outgoing plane
symmetric solutions.” By a “plane symmetric solution,” we mean one that depends
only on a time coordinate t ∈ R and a single rectangular spatial coordinate x1 ∈ R.

To study nearly plane symmetric solutions, we consider wave equations on space-
times with topology R×�, where t ∈ R corresponds to time, (x1, x2) ∈ � := R×T

corresponds to space, and the torus T := [0, 1) (with the endpoints identified and
equipped with the usual smooth orientation and with a corresponding local rectan-
gular coordinate function x2) corresponds to the direction that is suppressed in plane
symmetry. We have made the assumption � = R × T mainly for technical conve-
nience; we expect that suitable wave equations on other manifolds could be treated
using techniques similar to the ones we use in the present article. By a “simple outgo-
ing plane symmetric solution”, we mean a special class of plane symmetric solution
with only the outgoing (moving to the right) component. Recalling the ε̊− δ̊ hierarchy
that we discussed earlier, in the limit ε̊ → 0, the solutions that we study reduce to
simple outgoing plane symmetric solutions.6

The first class of problems that we study is the Cauchy problem for covariant wave
equations:7

�g(
)
 = 0, (1.1a)

(
|�0 , ∂t
|�0) = (
̊, 
̊0), (1.1b)

4 As in our work here, the blowup in the small-data dispersive regime occurs in the rectangular coordinate
partial derivatives of the solution.
5 This is also true for many hyperbolic systems in one spatial dimension.
6 Note that in the analysis of this paper, the solution completely vanishes when ε̊ = 0. However, this
additional restriction is not necessary (see Remark 1.9).
7 Relative to arbitrary coordinates, (1.1a) is equivalent to ∂α

(√
detg(g−1)αβ∂β


)
= 0.
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where �g(
) denotes the covariant wave operator of the Lorentzian metric g(
) and
(
̊, 
̊0) ∈ H19

e (�0)× H18
e (�0) (see Remarks 1.1 and 1.2 just below) are data with

support contained in the compact subset [0, 1] ×T of the initial Cauchy hypersurface
�0 := {t = 0} � R × T. Here and throughout,8 �g(
)
 := (g−1)αβ(
)DαDβ
,
where9 D is the Levi-Civita connection of g(
). We assume that relative to the rec-
tangular coordinates {xα}α=0,1,2 (which we explain in more detail in Subsect. 2.2), we
have gαβ(
) = mαβ+O(
), where mαβ = diag(−1, 1, 1) is the standard Minkowski
metric and O(
) is an error term, smooth in 
 and � |
| in magnitude when |
|
is small. Above and throughout, ∂0, ∂1, and ∂2 denote the corresponding rectangular
coordinate partial derivatives, x0 is alternate notation for the time coordinate t , and
similarly10 ∂t := ∂0. We make further mild assumptions on the nonlinearities ensuring
that relative to rectangular coordinates, the nonlinear terms are effectively quadratic
and fail to satisfy Klainerman’s null condition [40]; see Subsect. 2.2 for the details.

Remark 1.1 (Our analysis refers to more than one kind of Sobolev space). Above
and throughout, H N

e (�0) denotes the standard N th order Sobolev space with the

corresponding norm ‖ f ‖H N
e (�0)

:=
{∑

| 	I |≤N

∫
�0
(∂ 	I f )2 d2x

}1/2
, where ∂ 	I is a multi-

indexed differential operator denoting repeated differentiation with respect to the
rectangular spatial coordinate partial derivative vectorfields and d2x is the area form
of the standard Euclidean metric e on �0, which has the form e := diag(1, 1) relative
to the rectangular coordinates. It is important to distinguish these L2-type norms from
the more geometric ones that we introduce in Subsect. 7.1; the two kinds of norms
drastically differ near the shock.

Remark 1.2 (On the number of derivatives). Although our analysis is not opti-
mal regarding the number of derivatives, we believe that any implementation of our
approach requires significantly more derivatives than does a typical proof of existence
of solutions to a quasilinear wave equation based on energy methods. It is not clear
to us whether this is a limitation of our approach or rather a more fundamental aspect
of shock-forming solutions. Our derivative count is driven by our energy estimate
hierarchy, which is based on a descent scheme in which the high-order energy esti-
mates are very degenerate, with slight improvements in the degeneracy at each level
in the descent. For our proof to work, we must obtain at least several orders of non-
degenerate energy estimates, which requires many derivatives. See Subsubsect. 1.4.2
for more details.

For convenience, instead of studying the solution in the entire spacetime R×�, we
study only the non-trivial future portion of the solution that is completely determined
by the portion of the data lying to the right of the straight line {x1 = 1 − U0} ∩ �0,
where

8 See Subsect. 2.1 regarding our conventions for indices, and in particular for the different roles played by
Greek and Latin indices.
9 Throughout we use Einstein’s summation convention.
10 Note that ∂t is not the same as the geometric coordinate partial derivative ∂

∂t appearing in equation
(2.22) and elsewhere throughout the article.
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Fig. 1 The spacetime region under study

0 < U0 ≤ 1 (1.2)

is a parameter, fixed until Theorem 15.1 (our main theorem), and the data are non-
trivial in the region {1 − U0 ≤ x1 ≤ 1} ∩ �0 := �

U0
0 of thickness U0. See Figure 1

for a picture of the setup, where the curved null hyperplane portion P t
U0

and the flat
null hyperplane portion P t

0 in the picture are described in detail in Subsect. 1.2.
The second class of problems that we study is the Cauchy problem for non-covariant

wave equations:

(g−1)αβ(∂	)∂α∂β	 = 0, (1.3a)

(	|�0 , ∂t	|�0) = (	̊, 	̊0), (1.3b)

where g(∂	) is a Lorentzian metric with gαβ(∂	) = mαβ +O(∂	). We assume that
the data (1.3b) are compactly supported as before, but we also assume one extra degree
of differentiability: (	̊, 	̊0) ∈ H20

e (�0) × H19
e (�0). As we outline in Appendix A,

the second class can essentially be treated in the same way as the first class and thus
for the remainder of the article, we analyze only the first class in detail.

Remark 1.3 (Special null structure). As we explain in Appendix A, equation (1.3a)
always exhibits the special null structures mentioned earlier; see Lemmas A.1 and
A.3. However, if the null structures are “too good,” then shocks may no longer form;
see Footnote 14.

1.1 Summary of the Main Results

We now summarize our results. See Theorem 15.1 for the precise statement. We also
provide some extended remarks and preliminary comparisons to previous work; see
Subsect. 1.5 for a more detailed discussion of some related work.
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Rough statement of the main results. Under mild assumptions on the nonlin-
earities described in Subsect. 2.2, there exists an open set11 (without symmetry
assumptions) of compactly supported data (
̊, 
̊0) ∈ H19

e (�0)× H18
e (�0) for

equation (1.1a) whose corresponding solutions blow up in finite time due to the
formation of a shock. The set contains both large and small data, but each pair
(
̊, 
̊0) belonging to the set is close to the data corresponding to a plane sym-
metric simple wave solution;12 see Subsects. 7.3 and 7.7 for a precise description
of our size assumptions on the data. Finally, we provide a sharp description of the
singularity and the blowup-mechanism. Similar results hold for equation (1.3a)
for an open set of data contained in H20

e (�0)× H19
e (�0).

Remark 1.4 (Extending the results to higher spatial dimensions). Our results can
be generalized to higher spatial dimensions (specifically, to the case of � := R ×
T

n for n ≥ 1) by making mostly straightforward modifications. The only notable
difference in higher dimensions is that one must complement the energy estimates
with elliptic estimates in order to control some terms that completely vanish in two
spatial dimensions; see Remark 1.11.

Remark 1.5 (Maximal development). We follow the solution only to the constant-
time hypersurface of first blowup. However, with modest additional effort, our results
could be extended to give a detailed description of a portion of the maximal devel-
opment13 of the data corresponding to times up to approximately twice the time of
first blowup (see the discussion below (1.9)), including the shape of the boundary
and the behavior of the solution along it. More precisely, the estimates that we prove
are sufficient for invoking arguments along the lines of those given in [15, Ch. 15],
in which Christodoulou provided a description of the maximal development (with-
out any restriction on time) in the context of small-data solutions to the equations of
irrotational relativistic fluid mechanics in Minkowski spacetime.

Remark 1.6 (The role of U0). We have introduced the parameter U0 because one
would need to vary it in order to extract the information concerning the maximal
development mentioned in Remark 1.5.

Remark 1.7 (Extending the results to the irrotational Euler equations). Our work
can easily be extended to yield a class of stable shock-forming solutions to the irro-
tational Euler equations (special relativistic or non-relativistic) under almost any14

11 See Remark 7.6 on pg. 86 for a proof sketch of the existence of data to which our results apply.
12 By this, we mean solutions that are independent of x2 and that are constant along a family of null
hyperplanes.
13 Roughly, the maximal development is the largest possible solution that is uniquely determined by the
data; see, for example, [56,64] for further discussion.
14 There is precisely one exceptional equation of state for the irrotational relativistic Euler equations
to which our results do not apply. The exceptional equation of state corresponds to the Lagrangian

L = 1−
√

1 + (m−1)αβ∂α	∂β	, where m is the Minkowski metric. It is exceptional because it is the only
Lagrangian for relativistic fluid mechanics such that Klainerman’s null condition is satisfied for perturbations
near the constant states with non-zero density. A similar statement holds for the non-relativistic Euler equa-
tions; see [13, Subsect. 2.2] for more information. We note that in [45], Lindblad showed that in one or more
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physical equation of state. Extending the sharp shock formation results to solutions
to the compressible Euler equations in regions with non-zero vorticity remains an
outstanding open problem. The irrotational Euler equations essentially fall under the
scope of equation (1.3a), but a few minor changes are needed; we outline them in
Appendix B. The main difference is that for the wave equations of fluid mechanics,
we do not attempt to treat data that have a fluid-vacuum boundary, along which the
hyperbolicity of the equations degenerates. Instead, we prove shock formation for
perturbations (verifying certain size assumptions) of the constant states with non-zero
density. In terms of a fluid potential 	, the constant solutions correspond to global
solutions of the form 	 = kt with k > 0 a constant. In Subsect. B.2, we show that
there exist data for the irrotational relativistic Euler equations verifying the appropriate
size assumptions needed to close the proof.

Remark 1.8 (Additional nonlinearities that we could allow). With modest addi-
tional effort, our results could also be extended to allow for g = g(	, ∂	) in equation
(1.3a) where g is at least linear in 	. That is, we could allow for quasilinear terms
such as 	 · ∂2	. Moreover, we could also allow for the presence of semilinear terms
verifying the strong null condition (see [60] for the definition) on RHS (1.1a) or (1.3a).
In the regime close to a plane symmetric simple wave, these terms would make only a
negligible contribution to the dynamics and in particular, they would not interfere with
the shock formation processes. In contrast, we cannot allow for arbitrary quadratic,
cubic, or even higher-order semilinear terms, which might highly distort the dynamics
in regions where the solution’s derivatives becomes large.

Remark 1.9 (Possibly allowing 
 itself to be larger). For convenience, we assume
in our proof that 
 (undifferentiated) is initially small (see Subsects. 7.3 and 7.7),
and we show that the smallness is propagated all the way up to the shock. However,
we expect that with effort, one could relax this assumption by introducing a new
parameter corresponding to the L∞ norm of 
 itself, which would not have to be
“very small.” One would of course still have to assume that the metric g(
) is initially
Lorentzian, which for some nonlinearities would restrict the allowable size of the new
parameter. One would also have to make the other size assumptions on the data stated in
Subsects. 7.3 and 7.7 and, in order to ensure that a shock forms, that the nonlinearities
cause the factor GL L(
) on RHS (2.62) to be non-vanishing. Moreover, one would
have to more carefully track the size of 
 throughout the evolution, especially the
influence of the new size parameter on the evolution of other quantities. This would
introduce new technical complications into the proof, which we prefer to avoid.

Previous work [1,2,15,60] in more than one spatial dimension, which is summa-
rized in the survey article [23], has shown shock formation in solutions to various
quasilinear wave equations in a different regime: that of solutions generated by small
data supported in a compact subset ofR2 orR3. Recently, Miao and Yu proved a related

Footnote 14 continued
spatial dimensions, the wave equation corresponding to the Lagrangian L = 1−

√
1 + (m−1)αβ∂α	∂β	

admits global solutions whenever the data are small, smooth, and compactly supported. In particular, our
approach to proving shock formation certainly does not apply to this equation.
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large-data shock formation result [52] for a wave equation with cubic nonlinearities in
three spatial dimensions. In Subsect. 1.5, we describe these results and others in more
detail and compare/contrast them to our work here. We first provide an overview of
our analysis; we provide detailed proofs starting in Sect. 2.

At the close of this subsection, we would like to highlight some philosophical
parallels between our work here on stable singularity formation and certain global
existence results for the Navier-Stokes equations [6–9] and the Einstein-Vlasov system
with a positive cosmological constant [4]. In those works, the authors showed that a
class15 of global smooth solutions with symmetry can be perturbed in the class of non-
symmetric solutions to produce global16 solutions that are approximately symmetric.17

The interesting feature of these results is that the symmetric “background” solutions
are allowed to be large.

Similarly, our results provide a large class of plane symmetric shock-forming solu-
tions that are orbitally stable in the class of non-symmetric solutions.

1.2 Overview of the Analysis

We prove finite-time shock formation for solutions to (1.1a) for data such that initially,
∂1
 is allowed to be of any non-zero size while,18 roughly speaking, L(Flat)
 and
∂2
 are relatively small. Here and throughout, L(Flat) := ∂t + ∂1 is a vectorfield

that is null as measured by the Minkowski metric: mαβLα
(Flat)L

β

(Flat) = 0. We make
similar size assumptions on the higher derivatives at time 0; see Subsects. 7.3 and 7.7
for the details.

Our assumptions on the nonlinearities lead to Riccati-type terms ∼ (∂1
)2 in the
wave equation (1.1a), which seem to want to drive ∂1
 to blow up along the integral
curves of L(Flat). A caricature of this structure is: L(Flat)∂1
 = (∂1
)2 + Error.
However, our proof does not directly rely on writing the wave equation in this form or
by proving blowup via a Riccati-type argument; in order to make that kind of argument
rigorous, one would have to propagate the smallness of the other directional derivatives
of 
 (found in the term “Error”) all the way up to the singularity. However, the
rectangular coordinate partial derivatives are inadequate for propagating the smallness
near the singularity in more than one spatial dimension. In fact, in the regime that we
treat here, our arguments will suggest that generally, ∂t
, ∂1
, and ∂2
, all blow
up simultaneously since the rectangular partial derivatives are generally transversal to
the characteristic surfaces, whose intersection is tied to the blowup. These difficulties

15 In [6–9], the symmetric solutions are precisely the solutions to the 2D Navier-Stokes equations, which
were shown by Leray [44] to be globally regular for data belonging to L2. In [4], the symmetric solutions
included all T3-Gowdy solutions and a subset of the T2-symmetric solutions (all of which are known to be
future-global by [59]).
16 More precisely, the solutions in [4] are only shown to be future-global.
17 In [6], the perturbed solutions are allowed to be far-from-2D in a certain sense, though the proof relies
on an analyticity assumption on the data.
18 Throughout, if V is a vectorfield and f is a scalar function, then V f := V α∂α f denotes the derivative
of f in the direction V . If W is another vectorfield, then V W f := V α∂α(Wβ∂β f ), and similarly for
higher-order differentiations.
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are not present in simple model problems in one spatial dimension such as Burgers’
equation ∂t
+
∂x
 = 0; for Burgers’ equation, the blowup of ∂x
 is easy to derive
by commuting the equation with the coordinate derivative ∂x to obtain a Riccati ODE
in ∂x
 along characteristics.

The above discussion has alluded to a defining feature of our proof: we avoid
working with rectangular derivatives and instead propagate the smallness of dynamic
directional derivatives of the solution, tangent to the characteristics, all the way up to
the singularity. This allows us to show that the solution’s tangential derivatives do not
significantly affect the shock formation mechanisms, which are driven by a derivative
transversal to the characteristics. Consequently, in the solution regime under study,
the shock formation mechanisms are essentially the same as in the case of exact plane
symmetry. In particular, there is partial decoupling of the solution’s derivatives in
directions tangent to the characteristics from its transversal derivatives. We stress that
this effect is not easy to see. To uncover it, we develop an extension of Christodoulou’s
aforementioned framework [15] for proving shock formation; see Subsubsect. 1.5.4
for a discussion of some of the new ideas that are needed. The key ingredient in
the framework of [15] is an eikonal function u, which is a solution to the eikonal
equation. The eikonal equation is a hyperbolic PDE that depends on the spacetime
metric g = g(
) and thus on the wave variable. Specifically, in our study of equation
(1.1a), u solves the eikonal equation initial value problem

(g−1)αβ(
)∂αu∂βu = 0, ∂t u > 0, (1.4)

u|�0 = 1 − x1, (1.5)

where (x1, x2) are the rectangular coordinates19 on �0 � R × T. The level sets of
u are null (characteristic) hyperplanes for g(
), denoted by Pu or by P t

u when they
are truncated at time t . We refer to the open-at-the-top region trapped in between �0,
�t , P t

0, and P t
u as Mt,u , where �t denotes the standard flat hypersurface of constant

Minkowski time. We refer to the portion of �t trapped in between P t
0 and P t

u as �u
t .

The condition (1.5) implies that the trace of the level sets of u along �0 are straight
lines, which we denote by �0,u . For t > 0, the trace of the level sets of u along �t are
(typically) curves20 �t,u . See Figure 2 for a picture illustrating these sets and Def. 2.1
for rigorous definitions.

Eikonal functions u can be viewed as coordinates dynamically adapted to the
solution via a nonlinear flow. Their use in the context of proving global results for
nonlinear hyperbolic equations in more than one spatial dimension was pioneered
by Christodoulou and Klainerman in their celebrated work [11] on the stability of
Minkowski spacetime. Eikonal functions have also been used as central ingredients
in proofs of low-regularity well-posedness for quasilinear wave equations; see, for
example, [35,36,58,63].

19 x2 is only locally defined, but this is a minor detail that we typically downplay. We note, however,
the following fact that we use throughout our analysis: the corresponding rectangular partial derivative
vectorfield ∂2 can be globally defined so as to be non-vanishing and smooth relative to the rectangular
coordinates.
20 More precisely, the �t,u are diffeomorphic to the torus T.
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Fig. 2 The spacetime region and various subsets

Fig. 3 The dynamic vectorfield frame at two distinct points in P t
u , where 0 < u < 1

From u, we are able to construct an assortment of geometric quantities that can be
used to derive sharp information about the solution. The most important of these in
the context of shock formation is the inverse foliation density

μ := −1

(g−1)αβ(
)∂αt∂βu
> 0, (1.6)

where t is the rectangular time coordinate. The quantity 1/μ measures the density of
the level sets of u relative to the constant-time hypersurfaces �t . In our work here,
μ is initially close to 1 and when it vanishes, the density becomes infinite and the
level sets of u (the characteristics) intersect; see Figure 3 below, in which we illustrate
a scenario where μ has become small and a shock is about to form. In the solution
regime under study, we prove that the rectangular components gαβ remain near those
of the Minkowski metric mαβ = diag(−1, 1, 1) all the way up to the shock. Thus,
from (1.6), we infer that the vanishing of μ implies that some rectangular derivative

123



10 Page 14 of 198 J. Speck et al.

of u blows up. From experience with model equations in one spatial dimension such
as Burgers’ equation, one might expect that the intersection of the characteristics is
tied to the formation of a singularity in 
. Though it is not obvious, our proof in
fact reveals that in the regime under study, μ = 0 corresponds to the blowup of the
first21 rectangular derivatives of 
. In particular, on sufficiently large time intervals,
our work affords a sharp description of singularity formation characterized precisely
by the vanishing of μ.

Our analysis relies on the geometric coordinates (t, u, ϑ), where t = x0 and u
are as above and ϑ solves the evolution equation −(g−1)αβ(
)∂αu∂βϑ = 0 with
ϑ |�0 = x2, where x2 is the local rectangular coordinate on T. The most important
feature of the geometric coordinates is that relative to them, the shock singularity is
renormalizable, with the possible exception of the high derivatives.22 More precisely,
we show that the solution and its up-to-mid-order geometric derivatives (that is, the
geometric partial derivatives ∂

∂t , ∂
∂u , and ∂

∂ϑ
) remain bounded in L∞ all the way up

to the shock. In particular, the solution’s first derivatives relative to the geometric
coordinates do not blow up! The blowup of the solution’s first rectangular partial
derivatives is a “low-level” effect that could be obtained23 by transforming back to the
rectangular coordinates and showing that μ = 0 causes a degeneracy in the change of
variables (see Lemma 2.7).

As we alluded to in Remark 1.2, the new feature that makes the proof of shock for-
mation more difficult than typical global results for wave equations is: at the very high
orders, our energies are allowed to blow up like (min�u

t
μ)−p as μ → 0, where p is a

constant depending on the order of the energy; see Subsubsect. 1.4.2 for an overview.
An important aspect of our proof is that the blowup-exponents p are controlled by
certain universal24 structural constants appearing in the equations. The main contri-
bution of Christodoulou in [15] was showing how to derive the degenerate high-order
energy estimates and, crucially, proving that the degeneracy does not propagate down
to the low orders. These steps consume the majority of our effort here.

To derive estimates, rather than working with the geometric coordinate partial deriv-
ative frame, we instead replace ∂

∂u with a similar vectorfield X̆ that has slightly better
geometric properties, which we describe below; see Def. 2.6 for the details of the
construction. That is, we rely on the following dynamic vectorfield frame, which is
depicted at two distinct points along a fixed null hyperplane portion P t

u in Figure 3:

{
L , X̆ ,�

}
. (1.7)

21 For equation (1.3a), the blowup occurs in the second rectangular derivatives of 	.
22 The possibility that the high derivatives might behave worse is a fundamental difficulty that permeates
our analysis.
23 We use a slightly different, more direct argument to prove the blowup; see Subsubsect. 1.4.1 for an
overview.
24 These constants are the same for all of the wave equations that we study in this article.
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The vectorfield L = ∂
∂t is a null (that is, g(L , L) = 0) generator of Pu (in particular,

L is Pu-tangent) and � := ∂
∂ϑ

is �t,u-tangent with g(L ,�) = g(X̆ ,�) = 0. Relative
to the rectangular coordinates, we have

Lα = −μ(g−1)αβ∂βu. (1.8)

Our proof shows that all the way up to the shock, L and � remain close to their
flat analogs, which are respectively L(Flat) := ∂t + ∂1 and ∂2. The vectorfield X̆ is
transversal to Pu , �t -tangent, g-orthogonal to �t,u , and, most importantly, normalized
by g(X̆ , X̆) = μ2. In particular, the rectangular components X̆α vanish precisely at
the points where μ vanishes (that is, at the shock points). Our proof shows that X̆
remains near −μ∂1 all the way up to the shock. This is depicted in Figure 3, in which
the vectorfield X̆ is small in the region up top where μ is small.

Throughout the paper, we often depict Pu-tangent derivative operators such as L
and � with the symbol P . The main idea of our paper is to treat a regime in which the
initial data have pure transversal derivatives such as X̆ X̆
 and X̆
 that are of size
≈ δ̊ > 0, while all other derivatives such as P X̆
, P
, and 
 itself are of small size
ε̊. The quantity δ̊ can be either small or large, but our required smallness of ε̊ depends
on δ̊; see Subsects. 7.3 and 7.7 for the precise assumptions. Similar remarks apply
to μ and to the rectangular component functions Lα at time 0. To avoid lengthening
the paper, we generally do not closely track the dependence of our estimates on δ̊.
In particular, as we explain in Subsect. 2.1, we allow the “constants” C appearing in
the estimates to depend on δ̊. There is one crucially important exception: we carefully
track the dependence of a handful of important estimates on a quantity δ̊∗ that is related
to δ̊ and that controls the blowup-time:

δ̊∗ := 1

2
sup
�1

0

[
GL L X̆


]
− > 0 (1.9)

(see Def. 7.4), where GL L := d

d

gαβ(
)LαLβ and f− = |min{ f, 0}|. We explain

the connection between δ̊∗ and the blowup-time in Subsubsect. 1.4.1. In our proof,
we show that we can propagate the ε̊− δ̊ hierarchy (in various norms) all the way up
to the time of first shock formation, which we show is

{
1 +O(ε̊)

}
δ̊−1∗ . We give an

example of this kind of propagation in Subsubsect. 1.5.4. In practice, when proving
estimates via a bootstrap argument, we give ourselves a margin of error by showing
that we could propagate the hierarchy for classical solutions existing up to time 2δ̊−1∗ ,
which is plenty of time for the shock to form. Actually, our results show something
stronger: no other singularities besides shocks can form for times ≤ 2δ̊−1∗ . The factor
of 2 in the previous inequality is not important and could be replaced with any positive
constant larger than 1, but we would have to further shrink the allowable size of ε̊ as
the size of the constant increases.

One important reason why we are able to propagate the hierarchy for times up to
2δ̊−1∗ is: relative to the frame (1.7), the wave equation �g(
)
 = 0 has a miraculous
structure. Specifically, μ�g(
)
 = 0 is equivalent to (see Prop. 2.16)
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−L(μL
 + 2X̆
)+ μ/
 = N , (1.10)

where / denotes the covariant Laplacian induced by g along the curves �t,u and N
denotes quadratic terms depending on ≤ 1 derivatives of 
 and ≤ 2 derivatives of
u with the following critically important null structure: each product in N contains
at least one good Pu-tangent differentiation and thus inherits a smallness factor of
ε̊. In particular, products containing quadratic or higher powers of pure transversal
derivatives (such as (X̆
)2, (X̆
)3, etc.) are completely absent. This good structure
is related to Klainerman’s null condition, but unlike in his condition, the structure
of the cubic and higher-order terms matters. Another way to think about (1.10) is:
by bringing μ under the outer L differentiation, we have generated a product term
of the form −(Lμ) · · · . This leads to the cancellation of the worst term on the RHS,
which was proportional to μ−1(X̆
)2. Put differently, the term 1

2 GL L X̆
 from the
RHS of equation (1.12) below generates complete, nonlinear cancellation of a term
proportional to μ−1(X̆
)2. This null structure survives under commutations of the
wave equation with vectorfields adapted to the eikonal function and allows us to
propagate the smallness of the size ε̊ quantities even though the size δ̊ quantities are
allowed to be much larger.

Our strategy of propagating the smallness of some quantities while simultaneously
allowing derivatives transversal to the characteristics to be large has roots in the similar
approach taken by Christodoulou [16] in his celebrated proof of the formation of
trapped surfaces in solutions to the Einstein-vacuum equations and in the related
works [3,33,37,38,47–49]. Similar strategies have been used [51,61,62,65] to prove
global existence results for semilinear wave equations verifying the null condition in
regimes that allow for large transversal derivatives.

1.3 A Short Proof of Blowup for Plane Symmetric Simple Waves

We now illustrate the strategy discussed in Subsect. 1.2 by studying a model problem.
Specifically, we explain how to prove blowup for simple wave solutions (which we
explain below) to equation (1.1a) in one spatial dimension. Strictly speaking, such
solutions are not covered by our main theorem (Theorem 15.1), but nonetheless, our
model problem provides the main idea behind the easy part of the proof of the shock
formation and the role of the smallness of the data-size parameter ε̊ from (7.3). That
is, the solutions treated in our main theorem may be viewed as small perturbations of
solutions that are analogous to the ones treated in this subsection. Note that there is a
difference between25 imposing plane symmetry on solutions to (1.1a) in the case of two
spatial dimensions and studying equation (1.1a) in one spatial dimension. However,
this difference is minor (as we explain at the end of this subsection) and can be ignored
here.

25 In particular, detg depends on the coefficients of the metric corresponding to the “extra spatial dimen-
sions”.
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Specifically, we start by considering wave equations of the form

�g(
)
 = 0

on R
1+1. Throughout this subsection, we denote the standard rectangular coordinates

on R
1+1 by (x0, x1). We sometimes use the alternate notation (t, x) = (x0, x1).

We assume that the rectangular components of the metric verify gαβ = gαβ(
) =
mαβ+O(
). Here mαβ = diag(−1, 1) is the standard Minkowski metric. We assume
that the data (
|t=0, ∂t
|t=0) are supported in the unit interval [0, 1]. Also, for conve-
nience, we make the assumption (2.9). All of these assumptions could be significantly
weakened or eliminated, but we do not pursue those issues here.

We now let u and v be a pair of eikonal functions that increase towards the future
such that the level sets of u are transversal to those of v. That is, u and v are solutions
to

(g−1)αβ(
)∂αu∂βu = 0 = (g−1)αβ(
)∂αv∂βv

such that ∂t u, ∂tv > 0 and such that du and dv are linearly independent. For con-
venience, we choose the initial conditions u|t=0 = 1 − x , as in (1.4). We also set
v|t=0 = x to be concrete. As long as (u, v) do not degenerate, we may use them as
“null coordinate” functions in place of (t, x). We denote the corresponding coordinate
partial derivative vectorfields by ∂u, ∂v .

In two (spacetime) dimensions, g can be written, relative to the null coordinates, as
g = −�2(du ⊗ dv + dv ⊗ du), where � is a scalar-valued function. It follows (see
Footnote 7) that the covariant wave equation �g(
)
 = 0 is equivalent to

∂u∂v
 = 0,

where the nonlinearity is “hidden” in the definition of u, v above. Thus, we infer that
the condition ∂v
 = 0 is propagated by the solution if it is verified by the initial
data. We refer to such a solution 
 = 
(u) as a simple wave. Note that the simple-
wave-initial-data-assumption may be compared with (7.3) with ε̊ = 0. However, we
make the minor remark that the comparison is not perfect because according to our
definitions,26 ε̊ = 0 implies that 
 ≡ 0.

For simple waves, 
 is constant along the level sets of u and hence so are the
rectangular components (g−1)αβ = (g−1)αβ(
(u)). It follows that, when graphed in
the (t, x) plane, the level sets of u are straight lines which are not generally parallel.27

Thus, if the characteristic velocities (that is, the “slopes” of the level sets of u) are
initially not constant across different values of u, then from the compactness of the
support of the data, we conclude that there must exist two distinct level sets of u that
intersect in finite time. Clearly the rectangular derivatives ∂βu must blow up at the
intersection points. As we described in Subsect. 1.2, at such intersection points, the
quantity μ defined in (1.6) tends to 0. Below we explain why the vanishing of μ is

26 See Remark 1.9 for related discussions.
27 Note that this is the same behavior seen in the characteristics associated to solutions of Burgers’ equation.
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connected to the blowup of a first derivative of 
 in the direction of a vectorfield with
length of order 1.

We now compute the blowup-time by examining the quantity 1/μ. Our goal is to
explain why the blowup-time is tied to the quantity δ̊∗ defined in (1.9). To this end,
we define the vectorfield L as in (1.8) and the vectorfield X̆ = μX as in (2.17). Note
that in the present context, L is a scalar function multiple of ∂v . Note also that since
Lt = 1 (see (2.20a)) and since L is parallel to the straight line characteristics (in the
(t, x) plane), it follows that Lα = Lα(u) for α = 0, 1. From (2.26) and the above
discussion, we also see that Xα = Xα(u) for α = 0, 1. Just below, we will derive the
following evolution equation, valid for simple waves:

Lμ = 1

2
GL L X̆
, (1.11)

where GL L := d
d
 gαβ(
)LαLβ. Recalling that L = ∂

∂t |u , it is now clear that δ̊−1∗
is connected to the time of first vanishing of μ (the blowup-time), as we described in
Subsect. 1.2.

We now explain why a first derivative of 
 blows up when μ vanishes. To this end,
we note that Lμ = 1

2μGL L X
 and that by (2.21a), g(X, X) = 1. In particular, X

is a derivative of 
 with respect to a vectorfield of strictly positive length. Moreover,
from the above discussion, we see that GL L is constant along the integral curves of L
(that is, GL L = GL L(u)). It follows that if μ goes to 0 in finite time, then |X
| must
blow up.

To complete our analysis in this subsection, we will derive (1.11). To this end, we
differentiate (1.6) to derive the following identity, which relies on the facts that the
rectangular derivatives ∂αt are constant, and that, by the above discussion, (g−1)αβ is
constant along the lines of constant u:

Lμ−1 := Lα∂α(μ
−1) = μ(g−1)βγ ∂β t (g−1)αδ∂δu∂α∂γ u.

Differentiating the eikonal equation (g−1)αβ(
)∂αu∂βu = 0, we obtain

Lμ = 1

2
μ3(g−1)βγ ∂β t∂αu∂δu∂γ (g

−1)αδ,

which we can simplify to

Lμ = −1

2
μ(g−1)βγ ∂β t∂γ
GL L .

In the expression above, the vectorfield −(g−1)βγ ∂β t is equal to N γ (see (2.25)),
where N is the future-directed unit normal to �t . Hence, from (2.18) and the fact that
L
 = 0 for simple plane waves, we obtain the desired key expression (1.11). This
completes our discussion of blowup for simple plane waves.

We close this subsection by noting that similar analysis can be applied to plane
symmetric solutions to equation (1.1a) in two spatial dimensions, to the wave equation
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(1.3a) via the discussion in Appendix A, and to the equations described in Remark
1.8. In a coordinate system of eikonal functions u, v, all of those equations take the
form

∂u∂v
 = N (
, ∂
)∂u
∂v


for some coefficient function N . Hence, for simple waves (that is, waves with ∂v
 ≡
0), the above analysis carries over without any changes.

1.4 Overview of the Main Steps in the Proof

We now outline the main steps in the proof of Theorem 15.1, which is our main result.
Many of the geometric ideas and insights behind these steps are contained in [15].
Indeed, the main theme of the present paper is that the framework of [15] can be
extended to prove shock formation in solutions to quasilinear wave equations in a
regime different than the one treated in [15]: the regime of nearly simple outgoing
plane symmetric waves. For a discussion of the main new ideas in the present paper,
see Subsubsect. 1.5.4.

(1) We formulate the shock formation problem so that the fundamental dynamic quan-
tities to be solved for are 
, μ, and the rectangular spatial components28 L1, L2.
We refer to the latter three quantities as “eikonal function quantities” since they
depend on the first rectangular derivatives of u. We then derive evolution equations
for μ, L1, and L2 along the integral curves of the vectorfield L . These evolution
equations are essentially equivalent to the eikonal equation (1.4).

(2) We construct a good set of vectorfields Z := {L , X̆ ,Y } that we use to com-
mute the wave equation and also the evolution equations for the eikonal function
quantities. From the point of view of regularity considerations, it is important to
appreciate that the rectangular components of Z ∈ Z depend on the first rectangu-
lar derivatives of u. We will explain the importance of this fact in Subsubsect. 1.4.2
(see especially the discussion below equation (1.19)). Like �, the vectorfield Y
(constructed in Subsect. 2.8) is tangent to the �t,u , but it has better regularity prop-
erties than �. We use the full commutator set Z when deriving L∞ estimates for
the derivatives of the solution. When deriving energy estimates, we use only the
Pu-tangent subset P := {L ,Y }.

(3) To derive estimates, we make bootstrap assumptions on an open-at-the-top boot-
strap region MT(Boot),U0 := ∪s∈[0,T(Boot))�

U0
s , where 0 ≤ T(Boot) ≤ 2δ̊−1∗ (see

(1.9)) and MT(Boot),U0 is a spacetime subset trapped in between left-most and
right-most null hyperplanes and the flat bottom and top hypersurfaces �0 and
�T(Boot) ; see Figure 2 on pg. 13. We assume that μ > 0 on MT(Boot),U0 , that is, that
no shocks are present. We then make “fundamental” bootstrap assumptions about
the L∞ norms of various low-level derivatives of 
 with respect to vectorfields
in P . These assumptions are non-degenerate in the sense that they do not lead
to infinite expressions even when μ = 0. Using them, we derive non-degenerate

28 Note that (1.6) and (1.8) imply that L0 ≡ 1.
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L∞ estimates for the low-level Z derivatives of the eikonal function quantities
and other low-level derivatives of 
. Moreover, in Sect. 10, we derive related but
much sharper estimates for μ and some of its low-level derivatives. In particular,
using a posteriori estimates, we give a precise description showing that min�u

t
μ

vanishes linearly in t and moreover, we connect the vanishing rate to the initial
data quantity δ̊∗ defined in (1.9).29 In addition, we derive related sharp estimates
for certain time-integrals involving degenerate factors of 1/μ. The time integrals
appear in the Gronwall estimates we use to derive a priori energy estimates, as
we describe in Step (4). The estimates of Sect. 10 therefore play a critical role in
closing our proof.

(4) We use the L∞ estimates to derive up-to-top order L2-type (energy) estimates
for 
 and the eikonal function quantities on MT(Boot),U0 . This step is difficult,
in part because we must overcome the potential loss of a derivative tied to the
dependence of our commutation vectorfields on the rectangular derivatives of u.
To derive the L2 estimates, we commute the evolution equations with only the
Pu-tangent commutators P ∈P . Because of the good null structure of the wave
equation highlighted in (1.10) and the good properties of the vectorfields in P ,
we do not need to commute with the transversal derivative X̆ when deriving the
L2 estimates. As we have mentioned, at the high derivative levels, the energies
are allowed to blow up in a controlled fashion near the shock, while at the lower
derivative levels, the energies remain small all the way up to the shock. The
degeneracy of the high-order estimates is tied to our approach in avoiding the
derivative loss: we work with modified quantities that have unexpectedly good
regularity properties but that introduce a difficult factor of 1/μ into the top-order
energy identities. This 1/μ factor is the reason that we need the sharp time integral
estimates described Step (3); these sharp estimates affect the blowup-rates of our
top-order energy estimates, which are central to the entire proof. We remark that the
degeneracy of our high-order energy estimates reflects the “worst-case” behavior
of μ along �t . That is, regions where μ is small drive the degeneracy of our
high-order energy estimates along all of �t . An added layer of complexity is that
near the time of first shock formation, μ can be large at some points while being
near 0 at others and thus our energy estimates along �t have to simultaneously
account for both of these extremes. We also highlight again the following crucially
important feature of our proof: we must derive non-degenerate energy estimates
at the low-derivative levels. From such estimates, we can recover our fundamental
L∞ bootstrap assumptions via a simple geometric Sobolev embedding result (see
Lemma 12.4).

(5) The proof that μ → 0 and causes blowup (i.e., that the shock forms) before the
maximum allowed bootstrap time 2δ̊−1∗ is easy given the non-degenerate low-level
L∞ estimates; see Subsubsect. 1.4.1 for an outline of the proof.

Remark 1.10 (Straightforward bootstrap structure). The bootstrap structure of
our proof is very simple. Given the simple bootstrap assumptions from Step (3), the

29 Specifically, we show that there exists a (t, u)-dependent constant κ such that for 0 ≤ s ≤ t , we have
min�u

s
μ ≈ 1 − κs; see (10.15a).
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logic of our proof is essentially linear: the proofs of our estimates depend only on
previously proved estimates. We recover the bootstrap assumptions near the end of
the proof of the main theorem.

Steps (1)–(3) involve many geometric decompositions and computations but are
relatively standard. In the remainder of Sect. 1, we describe Steps (4) and (5) in more
detail, which have some important features that are specific to the problem of shock
formation. We start with the easy Step (5).

1.4.1 Outline of the Proof that the Shock Happens

The proofs that μ goes to 0 and that some first rectangular derivative of 
 blows up
are easy given the non-degenerate low-level estimates. Both of these facts are based
on the following evolution equation (derived in Lemma 2.12 as a consequence of the
eikonal equation):

Lμ = 1

2
GL L X̆
 +O(μL
). (1.12)

In (1.12), GL L := d
d
 gαβ(
)LαLβ and the term O(μL
) is depicted schemati-

cally. Our assumptions on the nonlinearities ensure that in the regime under study,
we have GL L ≈ 1. Using the ε̊ − δ̊ hierarchy, we have L(GL L X̆
) = O(ε̊). Since
L = ∂

∂t relative to the geometric coordinates, we can integrate this estimate to obtain

[GL L X̆
](t, u, ϑ) = [GL L X̆
](0, u, ϑ) + O(ε̊), where the implicit constant in O
is allowed to depend on the expected shock time δ̊−1∗ (see (1.9)). Inserting into (1.12),
we obtain

Lμ(t, u, ϑ) = 1

2
[GL L X̆
](0, u, ϑ)+O(ε̊). (1.13)

Integrating (1.13) and using μ(0, u, ϑ) = 1 +O(ε̊), we find that

μ(t, u, ϑ) = 1 + 1

2
[GL L X̆
](0, u, ϑ)t +O(ε̊). (1.14)

From (1.9) and (1.14), we see that for 0 ≤ t ≤ 2δ̊−1∗ , we have

min
�1

t

μ = 1 − δ̊∗t +O(ε̊). (1.15)

From (1.15), we see that μ vanishes for the first time at TLi f espan =
{
1 +O(ε̊)

}
δ̊−1∗ .

Moreover, the above argument can easily be extended to show that at the points
(TLi f espan, u, ϑ) where μ vanishes, the quantity |X̆
|(TLi f espan, u, ϑ) is uniformly
bounded from below, strictly away from 0; see inequality (15.6) and its proof. Since√

g(X̆ , X̆) = μ, we conclude that the derivative of 
 with respect to the g-unit-length

vectorfield X := μ−1 X̆
 ∼ −∂1
 must blow up at the points (TLi f espan, u, ϑ)where
μ vanishes.
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1.4.2 Energy Estimates at the Highest Order

By far, the most difficult part of the analysis is obtaining the high-order L2 estimates of
Step (4). To derive them, we use the well-known multiplier method. Specifically, we
derive energy identities by applying the divergence theorem to the vectorfield Jα :=
Qα

βT β on the region Mt,u , where Qμν[
] := Dμ
Dν
 − 1
2 gμν(g−1)αβDα
Dβ


is the energy-momentum tensorfield (see (3.1)) and T := (1 + 2μ)L + 2X̆ is a
timelike vectorfield30 verifying g(T, T ) = −4μ(1 + μ) < 0; see Prop. 3.5 for the
precise statement and Figure 2 for a picture illustrating the region of integration. As
we have mentioned, we are able to close our energy estimates by commuting the
wave equation with only Pu-tangent commutators P ∈ P (we commute with the
Pu-transversal vectorfield X̆ only when deriving low-level L∞ estimates). Moreover,
we do not rely on the lowest level energy identity corresponding to the non-commuted
equation. That is, we derive energy estimates for P
, P P
, etc. Consequently, for
our data, the energies are of small size ε̊ at time 0. At the first commuted level, the
energies E[P
](t, u) and null fluxes F[P
](t, u) have the following strength (note
carefully which terms contain explicit μ weights!):

E[P
](t, u) ∼
∫

�u
t

μ(L P
)2 + (X̆ P
)2 + μ|d/P
|2 d�, (1.16a)

F[P
](t, u) ∼
∫

P t
u

(L P
)2 + μ|d/P
|2 d�. (1.16b)

In (1.16a)–(1.16b), d/P
 denotes the �t,u-gradient of P
 (that is, the gradient of P

viewed as a function of the geometric torus coordinate ϑ) and the forms d� and d�
are constructed31 so that they remain non-degenerate all the way up to and including
the shock. We stress that the terms with μ weights in (1.16a)–(1.16b) become very
weak near the shock, and they are not useful for controlling error terms that lack μ

weights. Since both appearances of |d/P
|2 in (1.16a) involve μ weights, we must
find a different way to control error terms proportional to |d/P
|2 that does not rely
on E or F. To this end, we exploit a subtle spacetime integral K(t, u) with special
properties first identified by Christodoulou [15]; we explain this in Subsubsect. 1.4.4
in more detail.

With EM denoting the energy corresponding to commuting the wave equation M
times with elements P ∈P , ε̊ denoting the small size of the L2 quantities at time 0,
and μ�(t, u) := min{1,min�u

t
μ}, we derive the following energy estimate hierarchy

(see Prop. 14.1), valid for classical solutions when (t, u) ∈ [0, 2δ̊−1∗ ] × [0,U0]:
E18(t, u) ≤ C ε̊2μ−11.8

� (t, u), (1.17a)

E17(t, u) ≤ C ε̊2μ−9.8
� (t, u), (1.17b)

· · ·
E13(t, u) ≤ C ε̊2μ−1.8

� (t, u), (1.17c)

30 In many other works, the symbol T denotes the future-directed unit normal to �t . In contrast, in the
present article, the vectorfield T is not the future-directed unit normal to �t .
31 d� is a rescaled version of the canonical form induced by g on �t .
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E12(t, u) ≤ C ε̊2, (1.17d)

· · ·
E1(t, u) ≤ C ε̊2. (1.17e)

A similar hierarchy holds for the null fluxes F and the spacetime integrals K.
We now explain how to derive the top-order energy estimate (1.17a) and the origin

of its degeneracy with respect to μ. The main difficulty that one confronts in deriving
(1.17a) is that naive estimates do not work at the top order because they lead to the
loss of a derivative. The following mantra summarizes our approach to overcoming
this difficulty.

One can gain back the derivative, but only at the expense of incurring a factor
of μ−1 in the energy identities.

We now flesh out these issues. The hardest step in deriving (1.17a) is using the L∞
bootstrap assumptions and the L∞ estimates to obtain the following top-order energy
inequality:

E18(t, u) ≤ C ε̊2 + 4
∫ t

t ′=0

⎧⎨
⎩sup

�u
t ′

∣∣∣∣
Lμ

μ

∣∣∣∣

⎫⎬
⎭E18(t

′, u) dt ′ + · · · . (1.18)

The aforementioned factor of μ−1 is the one indicated on RHS (1.18). The second

hardest step is estimating the singular ratio sup
�u

t ′

∣∣∣∣
Lμ

μ

∣∣∣∣ in a way that allows us to derive

a Gronwall estimate from (1.18). To estimate the ratio, we need sharp information
describing how min�u

t ′ μ goes to 0. This analysis is very technical and is based on a
posteriori estimates involving possible late-time behaviors of μ; see Sect. 10. A key
ingredient is that by virtue of the wave equation (1.10) and equation (1.12), one can
show that L Lμ = O(ε̊), which implies that Lμ is approximately constant along the
integral curves of L on the time scale of interest. To explain the basic idea behind
the Gronwall estimates, let us pretend that μ is a function of t alone, that μ is near
0, and that Lμ < 0. Then recalling that L = ∂

∂t , we use Gronwall’s inequality and
(1.18) to derive E18(t, u) ≤ C ε̊2μ−4(t) × · · · . Note that the blowup-rate μ−4(t) is
determined by the numerical constant 4 on RHS (1.18). In particular, it is important
that the coefficient 4 of the dangerous integral is a structural constant that does not
depend on the number of times that the equations are differentiated. We remark that the
blow-up exponent on RHS (1.17a) is 11.8 rather than 4 because there are other difficult
error integrals on RHS (1.18) (which we ignore in this introduction) that contribute to
the top-order degeneracy.

We now sketch how we derive inequality (1.18) and explain the appearance of the

singular factor sup
�u

t ′

∣∣∣∣
Lμ

μ

∣∣∣∣. To illustrate the main ideas, we commute the wave equation

one time with a Pu-tangent commutation vectorfield P constructed in Step (2) and
pretend that the wave equation in P
 represents the top-order equation. An important
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fact is that the rectangular components of the vectorfields P ∈ P depend on 
 and
μ∂u (see (1.8)). Hence, upon commuting the wave equation with P , we obtain the
following schematic wave equation:

μ�g(
)P
 = μ∂2(μ∂u) · ∂
 + μ∂(μ∂u) · ∂2
 + · · · (1.19)

In (1.19), the schematic symbol · denotes tensorial contractions that produce products
with a special structure. Specifically, the P are designed so that the worst imaginable
error terms are completely absent on RHS (1.19), which is possible only because we
allow P to depend on ∂u. In particular, a careful decomposition of RHS (1.19) relative
to the frame (1.7) reveals that the factor X̆ X̆
 is absent. This is important because by
signature considerations, X̆ X̆
 would have come with the singular factor 1/μ, which
would prevent us from deriving non-degenerate estimates at the low orders. Because
of this structure, all terms μ∂(μ∂u) · ∂2
 are relatively easy to control all the way
up to the shock. The main difficulty is that the factor μ∂2(μ∂u) on RHS (1.19) seems
to have insufficient regularity to close the estimates: commuting the eikonal equation
(1.4), one obtains the evolution equation L∂3u ∼ ∂3
 + · · · , which is inconsistent
with the available regularity (two derivatives of 
) for solutions to (1.19). Clearly
this difficulty propagates upon further commuting the wave equation. In the energy
estimates, this difficulty leads to error integrals that are hard to control near the shock.
As we will explain, the most difficult (in the sense of degeneracy created by a factor
of 1/μ) error integral32 has the following schematic form:

2
∫ t

t ′=0

∫

�u
t ′

X̆
 · ∂2(μ∂u) · X̆ P
 d� dt ′, (1.20)

where the factor ∂2(μ∂u) in (1.20) has a special structure that we explain just below.
It remains for us to outline why (1.20) can be expressed as the integral on RHS (1.18)
plus other error integrals that are similar or easier to treat. The key fact, explained in
the next paragraph, is that ∂2(μ∂u) = μ−1Modified + μ−1GL L X̆ P
 + · · · , where
GL L is as in (1.13), Modified solves a good evolution equation with source terms that
have an allowable level of regularity, and · · · denotes terms that are easy to treat. Then
observing that X̆
 ·∂2(μ∂u) contains the special product GL L X̆
, we may use (1.12)
to substitute, which allows us to rewrite (1.20) in the form

4
∫ t

t ′=0

∫

�u
t ′

Lμ

μ
(X̆ P
)2 d� dt ′ + 2

∫ t

t ′=0

∫

�u
t ′
(X̆
)

Modified
μ

(X̆ P
) d� dt ′+· · · .
(1.21)

32 More precisely, this error integral is difficult only when the vectorfield P in (1.20) is equal to the �t,u -
tangent vectorfield Y . The case P = L is much easier to treat because in this case, one can show that the
term ∂2(μ∂u) involves at least one L differentiation. Consequently, we can use the Raychaudhuri equation
described below to algebraically replace ∂2(μ∂u) with terms involving ≤ 2 derivatives of 
.
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From (1.16a) and the first integral in (1.21), we obtain the difficult integral on
RHS (1.18). The integral involving Modified in (1.21) is difficult to treat,33 but the
resulting estimates are similar to the ones that we have sketched for the first integral.

We now elaborate on the special structure of the factor ∂2(μ∂u) appearing in
(1.20). Some rather involved computations (see Lemmas 2.18 and 4.2 and Prop. 4.4)
yield that the factor ∂2(μ∂u) appearing in (1.20) is equal to the geometric quan-
tity μPtrg/χ, where χ is the symmetric type

(0
2

)
�t,u-tangent34 tensorfield defined by

χ�� := g(D�L ,�), and trg/ denotes the trace with respect to the Riemannian metric
g/ induced on the �t,u by g. To estimate trg/χ, we rely on the well-known Raychaudhuri
equation from geometry, which yields the evolution equation Ltrg/χ = −RicL L +· · · ,
where RicL L := RicαβLαLβ is a component of the Ricci curvature tensor of g(
)

and the terms · · · involve fewer derivatives. The key point is that a careful decompo-
sition (see Lemma 6.1) shows that for solutions to (1.1a), all top-order terms contain
a perfect L derivative: μRicL L = L(−GL L X̆
 + μP
) + · · · , where the factor
−GL L X̆
 is precisely depicted. This remarkable structure was first35 observed36

by Klainerman and Rodnianski in their proof of low regularity well-posedness for
quasilinear wave equations [36] and was also used in [15,52,60]. Combining, we

find that L
{
μtrg/χ− GL L X̆
 + μP


}
= · · · . Taking one P derivative and setting

Modified := μPtrg/χ − GL L X̆ P
 + μP P
, we find that LModified = l.o.t. as
desired, where l.o.t. denotes terms with an allowable degree of differentiability.

Remark 1.11 (The need for elliptic estimates in three or more spatial dimen-
sions). In n spatial dimensions with n ≥ 3, it is no longer possible to obtain an equation
of the form LModified = l.o.t . The difficulty is that some third derivatives of u still
remain on the RHS: LModified = ∂2(μ∂u)+ l.o.t . However a careful decomposition
of the remaining term ∂2(μ∂u) on the RHS shows that ∂2(μ∂u) ∼ χ̂ · LP χ̂, where
L denotes Lie differentiation and χ̂ is the trace-free part of χ, which vanishes when
n = 2. To bound the top-order factor LP χ̂ in L2, one can derive elliptic estimates on
the n − 1 dimensional surfaces analogous to the �t,u in the present article; see, for
example, [11,15,36,52,60] for more details.

1.4.3 Less Degenerate Energy Estimates at the Lower Orders

We now explain why the energy estimates (1.17b)–(1.17d) become two powers less
degenerate relative to μ−1

� at each level in the descent, which eventually brings us to
the non-degenerate levels (1.17d)–(1.17e). To illustrate the method, we now pretend

33 We ignore it here; see the proofs of Prop. 11.10 and 14.2 and Lemma 14.8 for the details.
34 Note that the �t,u are one-dimensional curves and hence for any m and n, the space of all type

(m
n
)

�t,u -tangent tensors is one-dimensional. Hence, the study of �t,u -tangent tensorfields could be completely
reduced to the study of scalar functions. However, we do not carry out such a reduction in this article; we
prefer to retain the tensorial character of �t,u -tangent tensorfields because that structure allows us to directly
apply standard formulas and techniques from differential geometry.
35 A related but simpler observation was made in [11].
36 Although the authors needed to exploit this structure to avoid losing a derivative in their work [36], they
did not need to address the difficulty of obtaining estimates in regions where μ is near 0.
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that equation (1.19) represents one level below top order (equivalently, that three
derivatives of 
 in the norm ‖ · ‖L2(�u

t )
represents top order). The main idea is to

allow the loss of one derivative in the factor ∂2(μ∂u) ∼ Ptrg/χ in (1.20); a loss of one
derivative is permissible below top order.

We refer to the just-below-top-order energy that we are trying to estimate by
EOne−Below−T op. In this case, we can use the non-degenerate low-level estimate
‖X̆
‖L∞(�u

t )
� 1 and Cauchy-Schwarz to bound the error integral in (1.20) by

�
∫ t

t ′=0

∥∥Ptrg/χ
∥∥

L2(�u
t ′ )
E

1/2
One−Below−T op(t

′, u) dt ′. (1.22)

The expression (1.22) leads to a gain in powers of μ� because of the following critically
important estimate (see (10.36)), which shows that integrating in time produces the
gain: for constants B > 1, we have

∫ t

t ′=0

1

μB
� (t

′, u)
dt ′ � μ1−B

� (t, u). (1.23)

The point is that there are two time integrations in (1.22), the obvious one, and the
one that comes from the schematic relation

∥∥L Ptrg/χ
∥∥

L2(�u
t ′ )
∼ ‖PRicL L‖L2(�u

t ′ )
+

· · · ∼ ‖P P P
‖L2(�u
t ′ )
+ · · · ∼ μ

−1/2
� (t ′, u)E1/2

T op(t
′, u) + · · · , where we have

incurred the factor μ
−1/2
� in the last step due to the fact that the energies control

“geometric torus derivatives” P = d/ with a μ1/2 weight (see (1.16a)). By the already
proven37 bound E

1/2
T op(t

′, u) � ε̊μ−5.9
� (see (1.17a)) we can integrate the previous

estimate in time (see Lemma 13.2) to yield, via (1.23), the estimate
∥∥Ptrg/χ

∥∥
L2(�u

t ′ )
∼

∫ t
s=0

∥∥L Ptrg/χ
∥∥

L2(�u
s )

ds + · · · ∼ ε̊
∫ t ′

s=0 μ−6.4
� (s, u) ds + · · · � ε̊μ−5.4

� (t, u) + · · · .
The outer time integration in (1.22) leads to the gain of another power of μ�, which
in total yields the a priori estimate38

E
1/2
One−Below−T op(t, u) � ε̊μ−4.4

� (t, u) + · · · ,
an improvement over the top-order degeneracy. We can continue the descent in this
fashion, and when we reach the level (1.17e), the following analog of (1.23) (proved
below as (10.39)) allows us to completely break the μ−1

� degeneracy:

∫ t

t ′=0

1

μ
9/10
� (t ′, u)

dt ′ � 1. (1.24)

We conclude by remarking that the proofs of (1.23) and (1.24) are based on knowing
exactly how μ� goes to 0, that is, based on a sharp version of the caricature estimate

37 In practice, we have to derive a Gronwall estimate for the top-order and just-below-top-order energies
as a system, rather than treating the top energy completely separately.
38 We have ignored some other error integrals which are slightly more degenerate and only allow us to

prove the slightly weaker estimate E
1/2
One−Below−T op(t, u) � ε̊μ−4.9

� (t, u).
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μ�(t, u) ∼ 1 − t δ̊∗; see (10.15a). In particular, it is very important that μ� goes to 0
linearly in time.

1.4.4 The Coercive Spacetime Integral

As we highlighted in Subsubsect. 1.4.2, the energies (1.16a) and null fluxes (1.16b)
control geometric torus derivatives with μ weights, which makes them too weak to
control certain error integrals involving torus derivatives that lack μ weights, at least
in regions where μ is small. The saving grace is that as in [15,52,60], our energy
estimates generate a spacetime integral with a good sign. Under appropriate bootstrap
assumptions, the integral is strong in regions where μ is small and controls geometric
torus derivatives without μ weights. For the P-commuted wave equation, this integral
takes the form

K[P
](t, u) := 1

2

∫

Mt,u

[Lμ]−|d/P
|2 d�, (1.25)

where [Lμ]− = |min{Lμ, 0}|. The key estimate that makes (1.25) useful in regions of
small μ is: μ(t, u, ϑ) ≤ 1

4 �⇒ Lμ(t, u, ϑ) ≤ − 1
4 δ̊∗ (see (10.12)). Here δ̊∗ > 0 is

the data-dependent parameter (1.9) that controls the blowup-time. δ̊∗ is large enough
to be useful because of our assumption that ε̊ is sufficiently small. Note that the key
estimate has a “point of no return character” in that once μ becomes sufficiently small,
it must continue to shrink along the integral curves of L to form a shock. The proof
of the key estimate is non-trivial and is part of the detailed analysis of μ located in
Sect. 10.

1.5 Comparison with Previous Work

1.5.1 Blowup-Results in One Spatial Dimension

Under the assumption of plane symmetry, the finite-time breakdown of solutions to
(1.1a) or (1.3a) (for nonlinearities verifying the conditions described in Subsect. 2.2)
is well known and can be proved through the method of characteristics; our analysis
in Subsect. 1.3 was essentially a simple version of this method. Readers may consult
[23,60] for detailed examples derived with the help of sharp techniques paralleling
the ones employed in the present article.

There is a vast literature on the use of the method of characteristics to prove blowup
for various nonlinear hyperbolic systems. A far-from-exhaustive list of examples is:
the groundbreaking work of Riemann [54] mentioned at the beginning, Lax’s seminal
finite-time breakdown results [43] for scalar conservation laws and his aforemen-
tioned application of the method of Riemann invariants to 2 × 2 genuinely nonlinear
strictly hyperbolic systems [42], Jeffrey’s work [26] on magnetoacoustics, Jeffrey-
Korobeinikov’s work [24] on nonlinear electromagnetism, Jeffrey-Teymur’s work
[25] on hyperelastic solids, John’s extension [28] of Lax’s work to systems in one
spatial dimension with more than two unknowns (which required the development of
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new methods, in particularly identifying the important role played by simple waves,
since the method of Riemann invariants is no longer applicable), Liu’s further refine-
ment [46] of John’s work, John’s work [30] on spherically symmetric solutions to
the equations of elasticity, Klainerman-Majda’s work [34] on nonlinear vibrating
string equations, Bloom’s work [5] on nonlinear electrodynamics, and Cheng-Young-
Zhang’s work [10] on magnetohydrodynamics and related systems. Roughly, the
blowup in all of these works is proved by finding a quantity y(t) that verifies a Riccati-
type equation ẏ(t) = a(t)y2(t)+ Error, where a(t) is non-integrable in time near ∞
and Error is a small error term that does not interfere with the blowup. Recently,
Christodoulou and Raoul Perez gave a new sharp proof [14] of John’s blowup-results
[28] for genuinely nonlinear strictly hyperbolic quasilinear first-order systems in one
spatial dimension. They showed that these systems can be treated with extensions of
Christodoulou’s framework [15], which yields a sharp description of the blowup with
upper and lower bounds on the lifespan. Moreover, they applied their results to prove
shock formation in electromagnetic plane waves in a crystal.

1.5.2 Proofs of Breakdown by a Contradiction Argument in More Than One Spatial
Dimension

For nonlinear hyperbolic equations in more than one spatial dimension, many blowup-
results have been proved by a contradiction argument that bypasses the need to obtain a
detailed description of the singularity. For example, John gave a non-constructive proof
[29] showing that many wave equations in three spatial dimensions with quadratic non-
linearities exhibit finite-time blowup for a large set39 of smooth data. He did not need
to impose any size restriction on the data for his proof to work, but his proof did not
provide any information about the blowup-time. As a second example, we mention
Sideris’ well-known proof [57] of blowup for the compressible Euler equations in
three spatial dimensions under a convexity assumption on the equation of state and
under signed integral conditions on the data. His proof was based on virial identity
arguments that yielded a manifestly non-negative weighted space-integrated quantity
with a sufficiently negative time derivative, which eventually leads to a contradiction
even if one assumes that the solution is otherwise smooth. In particular, his proof gave
an explicit upper bound on the solution’s lifespan. There are many similar results avail-
able which prove blowup for various evolution equations via a virial identity argument.
We do not aim to survey the extensive literature here, but we do highlight the follow-
ing examples: semilinear Schrödinger equations [21], the relativistic Vlasov-Poisson
equation [20], and various semilinear wave and heat equations [32]. We note that for
semilinear Schrödinger, wave, and related equations, the state of the art knowledge of
the blowup has advanced far beyond proof of blowup by contradiction; see [50,53]
for surveys.

Though appealing in its shortness, a serious limitation of the virial identity approach
is that it relies specific algebraic structures of the equations that are unstable under
perturbations of the equations. Another limitation is that it provides a lifespan upper

39 For some nonlinearities, John’s proof yields blowup for all non-trivial, smooth, compactly supported
data.
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bound that can be inaccurate; without additional information, one must concede that
the solution could in principle blow up much sooner by a different mechanism. In
contrast, our proof has many robust elements (see, however, Remark 1.8), and our
work yields a sharp description of the solution’s lifespan and identifies the quantities
that blow up as well as the ones that remain regular.

1.5.3 Detailed Blowup-Results in More Than One Spatial Dimension

Alinhac was the first [1,2] to give a sharp description of singularity formation in
solutions to quasilinear wave equations in more than one spatial dimension without
symmetry assumptions. He addressed a compactly supported small-data regime in
which dispersive effects are eventually overcome by sufficiently strong quadratic non-
linearities. For convenience, even though these kinds of solutions eventually blow up,
we say that they belong to the “small-data dispersive regime.” Alinhac’s results have
been generalized to various equations by several authors; see, for example, [17–19]. In
the case of three spatial dimensions (more precisely, the data are given onR3), Alinhac
proved that whenever the nonlinearities in equation (1.3a) fail to satisfy Klainerman’s
null condition [40], there exists a set of data of small size ε̊ (in a Sobolev norm) such
that the solution decays for a long time at the linear rate t−1 before finally blowing up
at the “almost global existence” time ∼ exp(cε̊−1). More precisely, the singularity-

forming quantities40 behave like
ε̊

(1 + t)
[
1 +O(ε̊) ln(1 + t)

] , where the O(ε̊) term

in the denominator depends on the nonlinearities as well as the profile of the data and
the blowup (for some t > 0) occurs in regions where O(ε̊) < 0.

Alinhac’s data were posed in an annular region of R3, and he assumed that they ver-
ified a non-degeneracy condition. His results showed that the almost global existence
lifespan lower bounds, obtained by John and Klainerman [27,39,41] with the help of
dispersive estimates that delay41 the singularity formation, are in fact saturated. More-
over, his results confirmed John’s conjecture [31] regarding the asymptotically correct
description of the blowup-time in the limit ε̊ ↓ 0 for data verifying the non-degeneracy
condition.

Christodoulou’s remarkable work [15] yielded a sharp improvement (described
below) of Alinhac’s results for a similar class of small compactly supported data
given on R

3, and he did not make any non-degeneracy assumption. His main results
applied to irrotational regions of solutions to the special relativistic Euler equations
in the small-data dispersive regime. In such regions, the fluid equations reduce42 to a
special case of the wave equation (1.3a) in which additional structure is present. The
non-relativistic Euler equations were treated through the same approach in [13] and
feature the same additional structure, including that the irrotational fluid equations
derive from a Lagrangian (and thus can be written in Euler-Lagrange form) and that

40 In Alinhac’s equations of type (1.3a), the second rectangular derivatives of the solution blow up. In our
work on equations of type (1.1a), the first rectangular derivatives blow up.
41 By “delay,” we mean relative to the case of one spatial dimension, where the lack of dispersion leads to
blowup at time O(ε̊−1).
42 Up to simple renormalizations outlined in Appendix B.
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solutions possess several conserved quantities associated to various symmetries of the
Lagrangian. These assumptions were used in the proofs, in particular in exhibiting
the good null structure43 enjoyed by the equations. The equations also had some
additional structure due to the assumption that they model a physical fluid. In addition
to assuming that the data are of a small size ε̊ in a high Sobolev norm, Christodoulou
also made further assumptions on the data to ensure that a shock forms. His sufficient
conditions were phrased in terms of certain integrals of the data: shocks form in the
solution whenever the data integrals have the appropriate sign (determined by the
nonlinearities) and are not too small in magnitude relative to ε̊.

Christodoulou’s results were extended [60] to a larger class of equations and data by
Speck (see also the survey article [23], joint with Holzegel, Klainerman, and Wong).
In particular, for data given onR3, he proved a sharp small-data shock formation result
for equations (1.1a) or (1.3a) whenever the null condition fails. That is, he showed
that Christodoulou’s sharp shock formation results are not tied to the specific structure
of the fluid equations and that the additional structure present in those equations is
not needed to close the proof. Speck also showed that given any sufficiently regular
non-trivial compactly supported initial data, if they are rescaled by a small positive
factor, then the solution forms a shock in finite time. That is, all sufficiently regular
data profiles lead to shock formation if they are suitably rescaled.

Alinhac’s and Christodoulou’s approaches to proving shock formation share many
common features. For example, the main idea of Alinhac’s proof was to resolve the
singularity by constructing an eikonal function u, as in Subsect. 1.2. Moreover, near the
singularity, he changed variables to a new “geometric” coordinate system in which u
is one of the new coordinates. Relative to the geometric coordinates, he proved that the
solution to (1.3a) remains regular all the way up to the point where the characteristics
first intersect but that the change of variables map between the rectangular and geomet-
ric coordinates breaks down there. Changing variables back to rectangular coordinates,
he showed that the degeneracy implies that |∂2	| blows up in finite time precisely at
the point where the characteristics intersect. Alinhac also had to overcome the potential
loss of derivatives that we described in Subsubsect. 1.4.2 with the help of “modified”
quantities. However, the methods he used did not immediately eliminate all of the
derivative loss and thus differed in a fundamental way from Christodoulou’s approach.
Specifically, to close his energy estimates, Alinhac employed a Nash-Moser iteration
scheme. His scheme featured a free boundary due to the fact that the blowup-time for
each iterate can be slightly different. Although Alinhac gave a sharp description of
the asymptotic behavior of the solution near the singularity, his proof was not able
to reveal information beyond the first blowup-point. Moreover, in order for his proof
to close, the constant-time hypersurface of first blowup was allowed to contain only
one blowup-point. These fundamental technical limitations were tied to the presence
of the free boundary in his Nash-Moser iteration scheme and they are the reason that
he had to make the non-degeneracy assumption on the data; see [60] for additional
discussion regarding his approach.

43 In particular, in Christodoulou’s version of equation (A.5), the RHS completely vanishes. The vanishing
occurs because he studies equations of the form (1.3a) that derive from a Lagrangian.
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We now describe the most important difference between the approaches of Alinhac
and Christodoulou. The main advantage afforded by Christodoulou’s framework, as
shown in [13,15,60], is that in the small-data dispersive regime, there is a sharp
criterion for blowup. Specifically, the solution blows up at a given point ⇐⇒ μ

vanishes there. In particular, in the small-data dispersive regime, shocks are the only
kinds of singularities that can form. Since the behavior of μ is local in time and space,
the vanishing of μ at one point does not preclude one from continuing the solution
to a neighborhood of other nearby points where μ > 0. Moreover, {μ = 0} precisely
characterizes the singular portion of the boundary of the maximal development of
the data, that is, the portion of the boundary on which the solution blows up. Thus,
Christodoulou’s framework is able to reveal detailed information about the structure
of the maximal development of the data, the shape of the various components of its
boundary, and the behavior of the solution along it. The same information can be
extracted for the solutions that we study here; see Remark 1.5. The sharp description
is an essential ingredient in setting up the problem of extending the Euler solution
weakly beyond the first singularity. We note that an essential component of solving
this problem is obtaining information about the shock hypersurface across which
discontinuities occur. The problem was recently solved in spherical symmetry [12],
while the non-symmetric problem remains open and is expected to be of immense
difficulty.

1.5.4 Differences Between the Proof of Shock Formation in the Small-Data
Dispersive Regime and in the Nearly Plane Symmetric Regime

As we mentioned near the beginning of Sect. 1, the most important new feature of the
analysis in the nearly plane symmetric regime is that we rely on a different mechanism
to control the nonlinear error terms. More precisely, since solutions do not decay in
the nearly plane symmetric regime, our approach is based on the propagation of the
ε̊−δ̊ hierarchy described in Subsubsect. 1.4.1 (in other words, proving that our solution
remain close to a simple outgoing wave), rather than the smallness and dispersive decay
estimates44 used in the small-data dispersive regime [13,15,60]. We remark that there
is a technical simplification in the nearly plane symmetric regime that allows for a
shorter proof compared to the small-data dispersive regime: our propagation of the
ε̊− δ̊ hierarchy does not involve weights in t or the Euclidean radial coordinate r .

To propagate the ε̊− δ̊ hierarchy, we must make some observations about various
product/null structures in the equations that are not needed for treating the small-
data dispersive regime. Such structures are relevant both for obtaining suitable energy
estimates up to top order and for deriving non-degenerate L∞ estimates at the lower
derivative levels. We now give one example of such a structure:

Repeatedly commuting the wave equation μ�g(
)
 = 0 up to top order with
Pu-tangent vectorfields P ∈ P = {L ,Y } produces commutator error term

44 We recall that in both regimes, the solution remains regular at the low derivative levels with respect to
the geometric coordinates and the blowup occurs in the partial derivatives of the solution with respect to
the rectangular coordinates.
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products that are quadratic and higher order in the derivatives of 
, μ, and Li

with each product involving no more than one X̆ derivative.

The above structure is a consequence of the schematic structures [P1, P2] ∼ P3 and
[X̆ , P1] ∼ P2, where P1, P2, and P3 are arbitrary Pu-tangent vectorfields. These
schematic commutator relations are easy to see relative to the geometric coordinates
(t, u, ϑ). To further explain these issues, we first note that X̆ = ∂

∂u − ξ ∂
∂ϑ

, where
� = ∂

∂ϑ
and ξ is a scalar function (see (2.23)). From these expressions, it easily follows

that for Z1, Z2 ∈ {X̆ , P1, P2}, the commutator [Z1, Z2] belongs to span{ ∂
∂t ,

∂
∂ϑ
} and is

therefore P t
u-tangent (the key point is that the coefficient of ∂

∂u in the above expression

for X̆ is a constant!). That is, we have shown that [P1, P2] ∼ P3 and [X̆ , P1] ∼ P2.
Recalling the wave equation decomposition (1.10), we easily obtain the structure for
the commutators [μ�g(
), P] highlighted in the above indented sentence in the special
case P ∈ {L ,Y } relevant for our energy estimates.45 The structure is a manifestation of
the miraculous null structure mentioned in the discussion surrounding equation (1.10),
and it allows us to derive energy estimates for the L and Y derivatives of the solution
up to top order without having to derive energy estimates for its high X̆ derivatives.
Put differently, there is a kind of decoupling between energy estimates for the Pu-
tangential derivatives and the Pu-transversal derivatives. Moreover, the structure has
the following important consequence: all energy estimate error integrands generated
by commuting the wave equation with L and Y contain at most one δ̊-sized factor and
thus are at least quadratically small in the quantities that are expected to be of size ε̊.
This suggests that a Gronwall estimate will lead to the C ε̊2 smallness of the energies
for46 the relevant time scale t < 2δ̊−1∗ , as described in Subsect. 1.2. Indeed, modulo
the many difficulties with high-order energy degeneracy with respect to μ−1

� that
we previously explained, this is exactly what our energy estimate hierarchy (1.17a)–
(1.17e) reveals. This allows us to propagate the O(ε̊2) smallness of the energies of
the Pu-tangent derivatives of 
 without having to bound the energies47 of the pure
transversal derivatives such as X̆
, X̆ X̆
, etc., which can be of large size O(δ̊2).

For illustration, we now give one example of how the O(ε̊2) smallness of the
energies is used in our proof. We recall that our bootstrap argument heavily relies on
the expectation (described just below equation (1.15)) that the first vanishing time of μ

(that is, the blowup-time of the first rectangular derivatives of 
) is (1+O(ε̊))δ̊−1∗ . To
realize this expectation, we must show that the L
-involving products on RHS (1.12)
are of small size O(ε̊) all the way up to the shock. The desired smallness estimate
‖L
‖L∞(�u

t )
� ε̊ is a simple consequence of the O(ε̊2) smallness of the low-order

45 The detailed proof of the structure of the commutators [μ�g(
), P] for P ∈ {L , Y }, in the precise form
that we need for our proof, is based on straightforward but lengthy geometric computations carried out in
Lemma 4.2, Prop. 4.4 with Z ∈ {L , Y }, and Lemma 2.18.
46 As we explain in Subsect. 2.1, we use the convention that constants C are allowed to depend on δ̊ and
δ̊−1∗ .
47 We note, however, the following non-obvious feature of our proof, described at the start of Sect. 9: to
close our energy estimates at any order, we rely on the bound ‖X̆≤3
‖L∞(�u

t )
� δ̊ � 1, which we obtain

by commuting the wave equation up to two times with X̆ and treating the wave equation as a transport
equation up to derivative-losing terms.

123



Stable Shock Formation For Nearly Simple... Page 33 of 198 10

energies, a data smallness assumption, and Sobolev embedding; see Cor. 13.4 for a
proof.

We now further explain how the analysis of the small-data dispersive regime [13,
15,60] is different than our analysis here. In that regime, there is only one smallness
parameter capturing the size of a full spanning set of directional derivatives of the
solution at time 0, and the ε̊2 smallness of all energies from level 0 up to top order
can be propagated all the way up to the shock (modulo possible energy degeneracy
relative to powers of μ−1

� at the high orders). Because all directional derivatives are
controlled, there is no need to rely on the structure emphasized two paragraphs above,
namely that the energy estimates for the pure tangential derivatives (up to top order)
effectively decouple from energy estimates for transversal derivatives. The good null
structure mentioned above does, however, play an important role in allowing one to
control error terms and prove shock formation. The structure is used in a different
way: in place of the two-parameter ε̊ − δ̊ hierarchy exploited in the present article,
the error terms are controlled all the way up to the shock via a hierarchy of dispersive
estimates. More precisely, one relies on the fact that the transversal derivative of the
solution decays in time at a non-integrable rate tied to the formation of a shock, while
the tangential derivatives decay at an integrable rate and generate only small error
terms; see the next paragraph for more details. The availability of this decay hierarchy
is intimately connected to the good null structure, and we explain it more detail two
paragraphs below.

For the sake of comparison, we first provide some additional background on the
behavior of solutions in the small-data dispersive regime [13,15,60]. The data are
compactly supported functions onR3 of small Sobolev48 size ε̊, and the characteristics
are outgoing null cones Cu . The Cu , which are level sets of an eikonal function u, are
distorted versions of the Minkowskian cones {t − r = const}, where r is the standard
radial coordinate on Minkowski spacetime. The dispersive estimates take the following
form: relative to a suitable rescaled vectorfield frame analogous to (1.7), 
 and its
Cu-transversal derivative decay like ε̊(1 + t)−1 while its Cu-tangential derivatives
decay at the faster rate ε̊(1 + t)−2. Moreover, relative to the geometric coordinates,
related estimates hold for 
 at slightly higher derivative levels and for the low-order
derivatives of μ and the rectangular components Li . We now describe the mechanism
for the vanishing of μ (that is, for the formation of a shock) in the small-data dispersive
regime. The most relevant estimate takes the form Lμ = O(ε̊)(1+t)−1+O(ε̊)(1+t)−2

and is analogous to the estimate (1.13) in this paper.
The term O(ε̊)(1+ t)−1 corresponds to the size of the Cu-transversal derivative of

the solution, while the termO(ε̊)(1+t)−2 is an error term that bounds theCu-tangential

derivatives. In view of the fact that L = ∂

∂t
, the small-data estimate μ|t=0 ∼ 1, and

the observation that (1 + t)−1 is not integrable in t while (1 + t)−2 is, we see that

μ ∼ 1+O(ε̊) ln(1+ t). Hence, μ will vanish at a time exp
(
|O(ε̊)|−1

)
for data such

48 The work [60] showed that for equations of type (1.1a), the proof closes for small data verifying
(
̊, 
̊0) ∈ H25

e (�0)× H24
e (�0).
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that the factor O(ε̊) from the term O(ε̊)(1+ t)−1 is negative and sufficiently bounded
from below in magnitude.49

The derivation of the above mentioned directionally dependent decay rates in
the small-data dispersive regime is based on a modified version of Klainerman’s
commuting vectorfield method [41], the modification being that the vectorfields are
dynamically adapted to the characteristics through an eikonal function, much like the
vectorfields Z that we use in the present article (as described at the start of Sub-
sect. 1.4). As we mentioned previously, the use of an eikonal function in the context of
deriving global estimates for quasilinear hyperbolic equations originated in [11]. In the
small-data dispersive regime, one can exploit the decay properties mentioned above,
the good null structure mentioned in the discussion surrounding equation (1.10), and
various structures present in the evolution equations for μ and Li to show that the solu-
tion behaves, relative to the rescaled frame, much like a solution to a wave equation
that verifies Klainerman’s classic null condition. In particular, upon commuting the
wave equation μ�g(
)
 = 0 with an appropriate spanning commutation set, one can
show that the commutator error terms are quadratic and higher-order products such
that each product contains no more than one slowly decaying factor corresponding
to pure Cu-transversal differentiations. This is an analog, for a full spanning set of
commutation vectorfields, of the structure described in the second paragraph of this
subsubsection for the L and Y commutation vectorfields in our case.

Moreover, in the small-data dispersive regime, relative to the rescaled frame, one
can propagate the ε̊ smallness of the solution in various Sobolev norms and prove
conditional global existence and decay-type estimates. In particular, without any a
priori restriction on t (such as the restriction t < 2δ̊−1∗ made in our work here), one
can prove that the solution remains regular relative to both the geometric coordinates
and the rectangular coordinates as long as μ remains strictly positive. We mention again
that in contrast, in the nearly plane symmetric regime, there is no obvious structure
in the equations hinting at the validity of a conditional global existence-type result in
which the solution persists for all times as long as μ remains strictly positive. Rather,
as we explained in Subsect. 1.2, we propagate the ε̊ − δ̊ hierarchy only for times up
to 2δ̊−1∗ , which is long enough for the shock to form.

1.5.5 Blowup in a Large-Data Regime Featuring a One-Parameter Scaling of the
Data

Recently, Miao and Yu proved [52] a related shock formation result for the wave
equation −∂2

t φ + [1 + (∂tφ)
2]φ = 0 in three spatial dimensions with data that are

compactly supported in an annular region of radius ≈ 1 and thin width δ, where δ

is a small positive parameter. The data’s amplitude and their functional dependence
on a radial coordinate are rescaled by powers of δ. Consequently, the data and their
derivatives verify a hierarchy of estimates featuring various powers of δ. For example,
φ itself has small L∞ size δ3/2, its rectangular derivatives ∂αφ have L∞ size δ1/2,
and a certain derivative of ∂αφ that is transversal to the characteristics has large L∞

49 The precise behavior of the O(ε̊)(1 + t)−1 term depends on the nonlinearities as well as the profile of
the data and is connected to Friedlander’s radiation field; see [23,60] for more details.
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size δ−1/2. Due to the largeness, the blowup of the second rectangular derivatives of φ
happens within one unit of time. The scaling of the data is closely related to the short-
pulse ansatz pioneered by Christodoulou in his aforementioned proof of the formation
of trapped surfaces in solutions to the Einstein-vacuum equations [16]. The main
contribution of [52] was showing how to propagate the δ hierarchy estimates until the
time of first shock formation. In the proof, dispersive effects are not relevant. Instead,
the authors control nonlinear error terms by tracking the powers of δ associated to
each factor in the product. Roughly, the error terms have a product structure, typically
of the form small · large (relative to powers of δ), where the small factor often more
than compensates for the large one. That is, the authors show that the overall powers
of δ associated to the error term products are favorable in the sense that the smallness
of δ is sufficient for controlling them. In this way, a class of large data solutions can
be treated using techniques borrowed from the usual small-data framework.

Our results are related to those of [52] but are distinguished by our use of two
size parameters (the parameters ε̊ and δ̊ from Subsect. 1.2 and Subsubsect. 1.4.1),
which allows us to treat a set of initial conditions containing large data and, unlike
[52], small data too. As we described above, a key aspect of our proof is that we can
propagate the small size ε̊ of the Pu-tangent derivatives long enough for the shock to
form, even though the transversal derivatives can be of a relatively large size δ̊. To this
end, we must exploit the good product/null structure in the equations, as described in
Subsubsect. 1.5.4, in ways that go beyond the δ scaling structures exploited in [52].

2 Geometric Setup

In this section, we set up the geometric framework that we use for analyzing solutions.
We note that most of the basic geometric insights are present in [15] and that the
calculations in this section have analogs in [15]. For the reader’s convenience, we
re-derive the relevant results and adapt them in our setting. Similar remarks apply
throughout the article (see Subsubsect. 1.5.4 for an overview of the main new ideas of
the present work). We also note that for pedagogical reasons, there is some redundancy
with Sect. 1.

2.1 Notational Conventions and Shorthand Notation

We start by summarizing some of our notational conventions; the precise definitions
of some of the concepts referred to here are provided later in the article.

• Lowercase Greek spacetime indices α, β, etc. correspond to the rectangular space-
time coordinates defined in Subsect. 2.2 and vary over 0, 1, 2. Lowercase Latin
spatial indices a,b, etc. correspond to the rectangular spatial coordinates and vary
over 1, 2. All lowercase Greek indices are lowered and raised with the spacetime
metric g and its inverse g−1, and not with the Minkowski metric.

• We sometimes use · to denote the natural contraction between two tensors (and
thus raising or lowering indices with a metric is not needed). For example, if ξ is
a spacetime one-form and V is a spacetime vectorfield, then ξ · V := ξαV α .
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• If ξ is a one-form and V is a vectorfield, then ξV := ξαV α . Similarly, if W is
a vectorfield, then WV := WαV α = g(W, V ). We use similar notation when
contracting higher-order tensorfields against vectorfields. Similarly, if �ακβ are
the rectangular Christoffel symbols (2.61), then �U V W := UαV κWβ�ακβ .

• If ξ is an �t,u-tangent one-form (as defined in Subsect. 2.5), then ξ# denotes
its g/−dual vectorfield, where g/ is the Riemannian metric induced on �t,u by g.
Similarly, if ξ is a symmetric type

(0
2

)
�t,u-tangent tensor, then ξ# denotes the type(1

1

)
�t,u-tangent tensor formed by raising one index with g/−1 and ξ## denotes the

type
(2

0

)
�t,u-tangent tensor formed by raising both indices with g/−1.

• If ξ is an �t,u-tangent tensor, then the norm |ξ | is defined relative to the Riemannian
metric g/, as in Def. 7.1.

• Unless otherwise indicated, all quantities in our estimates that are not explicitly
under an integral are viewed as functions of the geometric coordinates (t, u, ϑ) of
Def. 2.5. Unless otherwise indicated, quantities under integrals have the functional
dependence established below in Def. 3.2.

• If Q1 and Q2 are two operators, then [Q1, Q2] = Q1 Q2 − Q2 Q1 denotes their
commutator.

• A � B means that there exists C > 0 such that A ≤ C B.
• A = O(B) means that |A| � |B|.
• Constants such as C and c are free to vary from line to line. Explicit and implicit

constants are allowed to depend in an increasing, continuous fashion on the data-
size parameters δ̊ and δ̊−1∗ from Subsect. 7.3. However, the constants can be chosen
to be independent of the parameters ε̊ and ε whenever ε̊ and ε are sufficiently small
relative to δ̊−1 and δ̊∗.

• �·� and �·� respectively denote the floor and ceiling functions.

2.2 The Structure of the Equation in Rectangular Components

In this subsection, we formulate equation (1.1a) in rectangular coordinates and state
our assumptions on the nonlinear terms. We use t = x0 ∈ R to denote the time
coordinate and (x1, x2) ∈ R × T to denote standard coordinates on �, where x2 is
locally defined. The vectorfields ∂t , ∂1, ∂2 are globally defined. We call {xα}α=0,1,2
the rectangular coordinates because relative to them, the standard Minkowski metric
on R×� takes the form mμν = diag(−1, 1, 1).

We assume that relative to the rectangular coordinates,

gμν = gμν(
) := mμν + g(Small)
μν (
), (μ, ν = 0, 1, 2), (2.1)

where g(Small)
μν (
) is a given smooth function of 
 with

g(Small)
μν (0) = 0. (2.2)

Relative to the rectangular coordinates, (1.1a) takes the form

(g−1)αβ∂α∂β
 − (g−1)αβ(g−1)κλ�ακβ∂λ
 = 0. (2.3)
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The�ακβ are the lowered Christoffel symbols50 of g relative to rectangular coordinates
and can be expressed as

�ακβ = �ακβ(
, ∂
) := 1

2

{
∂αgκβ + ∂βgακ − ∂κgαβ

}
(2.4)

= 1

2

{
Gκβ∂α
 + Gακ∂β
 − Gαβ∂κ


}
,

where

Gαβ = Gαβ(
) := d

d

gαβ(
). (2.5)

For later use, we also define

G ′
αβ = G ′

αβ(
) := d2

d
2 gαβ(
). (2.6)

We now describe our assumptions on the tensorfield Gαβ(
 = 0), which can be
viewed as a 3× 3 matrix with constant entries relative to rectangular coordinates. We
could prove the existence51 of stable shock-forming solutions whenever there exists
a Minkowski-null vectorfield L(Flat) (that is, mαβLα

(Flat)L
β

(Flat) = 0) such that

Gαβ(
 = 0)Lα
(Flat)L

β

(Flat) �= 0. (2.7)

The assumption (2.7) holds for most nonlinearities and is equivalent to the failure
of Klainerman’s classic null condition [40]. We recall that the main results that we
present in this article rely on the existence of a family of plane symmetric shock-
forming solutions. The existence of the family is based on the following assumption:
there exists a vectorfield L(Flat) ∈ span{∂t , ∂1} such that (2.7) holds. We may then
perform a Lorentz transformation on the t, x1 coordinates if necessary in order to put
L(Flat) into the following form, which we assume throughout the remainder of the
article:

L(Flat) = ∂t + ∂1. (2.8)

Note that under the above assumptions, LHS (2.7) is equal to the non-zero constant
G00(
 = 0)+ 2G01(
 = 0)+ G11(
 = 0).

Remark 2.1 (Genuinely nonlinear systems). Our assumption that the vectorfield
(2.8) verifies (2.7) is reminiscent of the well-known genuine nonlinearity condition

50 Our Christoffel symbol index conventions are such that for vectorfields V , we have DαV β = ∂αV β +
�

β
α λV λ, where � β

α λ := (g−1)βκ�ακλ.
51 The condition (2.7) would be sufficient for allowing us to prove the existence of stable large-data shock-
forming solutions. However, in order to handle the set of data (which includes some small data) stated in
Theorem 15.1, we need the additional assumption (2.8).
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for first-order strictly hyperbolic systems. In particular, for plane symmetric solutions
with 
 sufficiently small, the assumption ensures that there are quadratic Riccati-type
terms52 in the wave equation, which is the main mechanism driving the singularity
formation in the 2× 2 genuinely nonlinear strictly hyperbolic systems studied by Lax
[42].

By rescaling the metric by the scalar function 1/(g−1)00(
), we may assume
without loss of generality53 that

(g−1)00(
) ≡ −1. (2.9)

The assumption (2.9) simplifies many of our formulas.

Remark 2.2 In total, our assumptions on the nonlinearities imply that the term
1
2 GL L X̆
 on RHS (2.62), which lies at the heart of our analysis, is sufficiently strong
to drive μ to 0 in the regime under study.

2.3 Basic Constructions Involving the Eikonal Function

As we described in Subsect. 1.2, our entire work is based on an eikonal function, specif-
ically, the solution to the hyperbolic initial value problem (1.4)–(1.5). We associate
the following subsets of spacetime to u. They were depicted in Figure 2 on pg. 13.

Definition 2.1 (Subsets of spacetime). We define the following spacetime subsets:

�t ′ := {(t, x1, x2) ∈ R× R× T | t = t ′}, (2.10a)

�u′
t ′ := {(t, x1, x2) ∈ R× R× T | t = t ′, 0 ≤ u(t, x1, x2) ≤ u′}, (2.10b)

P t ′
u′ := {(t, x1, x2) ∈ R× R× T | 0 ≤ t ≤ t ′, u(t, x1, x2) = u′}, (2.10c)

�t ′,u′ := P t ′
u′ ∩�u′

t ′ = {(t, x1, x2) ∈ R× R× T | t = t ′, u(t, x1, x2) = u′},
(2.10d)

Mt ′,u′ := ∪u∈[0,u′]P t ′
u ∩ {(t, x1, x2) ∈ R× R× T | 0 ≤ t < t ′}. (2.10e)

We refer to the �t and �u
t as “constant time slices,” the P t

u as “null hyperplanes,”
and the �t,u as “curves.” We sometimes use the notation Pu in place of P t

u when we
are not concerned with the truncation time t . We restrict our attention to spacetime
regions with 0 ≤ u ≤ U0, where we recall (see (1.2)) that 0 < U0 ≤ 1 is a parameter,
fixed until Theorem 15.1.

52 The vectorfield frame that we construct in fact leads to the cancellation of the Riccati-type terms; see
the discussion just below (1.10).
53 Technically, rescaling the metric introduces a semilinear term proportional to (g−1)αβ(
)∂α
∂β
 in
the covariant wave equation corresponding to the rescaled metric. However, our proof will show that for
the solutions under study, this term makes a negligible contribution to the dynamics because it has a special
null structure (it verifies the strong null condition mentioned in Remark 1.8) that is visible relative to the
frame (2.19a). Hence, we ignore it for simplicity.

123



Stable Shock Formation For Nearly Simple... Page 39 of 198 10

Remark 2.3 The constants in all of our estimates can be chosen to be independent of
U0 ∈ (0, 1].

We associate the following gradient vectorfield to the eikonal function solution to
(1.4):

Lν
(Geo) := −(g−1)να∂αu. (2.11)

It is easy to see that L(Geo) is future-directed54 with

g(L(Geo), L(Geo)) := gαβLα
(Geo)L

β

(Geo) = 0, (2.12)

that is, L(Geo) is g-null. Moreover, we can differentiate the eikonal equation with
Dν := (g−1)ναDα and use the torsion-free property of the connection D to deduce
that 0 = (g−1)αβDαuDβDνu = −DαuDαLν

(Geo) = Lα
(Geo)DαLν

(Geo). That is, L(Geo)

is geodesic:

DL(Geo) L(Geo) = 0. (2.13)

In addition, since L(Geo) is proportional to the metric dual of the one-form du, which
is co-normal to the level sets Pu of the eikonal function, it follows that L(Geo) is g-
orthogonal to Pu . Hence, the Pu have null normals. Such hypersurfaces are known as
null hypersurfaces. Our analysis will show that the rectangular components of L(Geo)

blow up when the shock forms. In particular, as we described in Subsect. 1.2, the
formation of a shock is equivalent to the vanishing of the following quantity μ.

Definition 2.2 (Inverse foliationdensity). Let L0
(Geo) be the 0 rectangular component

of the vectorfield L(Geo) defined in (2.11). We define the inverse foliation density μ

as follows:

μ := −1

(g−1)αβ∂αt∂βu
= −1

(g−1)0α∂αu
= 1

L0
(Geo)

. (2.14)

The quantity 1/μ measures the density of the level sets of u relative to the constant-
time hypersurfaces �t . When μ becomes 0, the density becomes infinite and the level
sets of u intersect. We also note that the vanishing of μ is equivalent to the blow up
of DV u, where V := −(g−1)0α∂α is approximately equal to ∂t in the regime under
study.

In our analysis, we work with a rescaled version of L(Geo) that we refer to as L .
Our proof reveals that the rectangular components of L remain near those of L(Flat)

(which is defined in (2.8)) all the way up to the shock.

Definition 2.3 (Rescaled null vectorfield). We define the rescaled null (see (2.12))
vectorfield L as follows:

L := μL(Geo). (2.15)

54 Here and throughout, a vectorfield V is “future-directed” if its rectangular component V 0 is positive.
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Definition 2.4 (Geometric torus coordinate ϑ and the corresponding vectorfield
�). Along �1

0 , we define ϑ(t = 0, x1, x2) = x2. We extend ϑ to regions of the form
Mt,u by solving the transport equation Lϑ = 0 with ϑ subject to the above initial
conditions along �1

0 .
We define � = ∂

∂ϑ
:= ∂

∂ϑ
|t,u to be the vectorfield corresponding to partial differ-

entiation with respect to ϑ at fixed t and u.

Definition 2.5 (Geometric coordinates). We refer to (t, u, ϑ) as the geometric coor-
dinates.

Remark 2.4 (C1-equivalent differential structures until shock formation). We
often identify spacetime regions of the formMt,U0 (see (2.10e)) with the region [0, t)×
[0,U0]×T corresponding to the geometric coordinates. This identification is justified
by the fact that during the classical lifespan of the solutions under consideration, the
differential structure on Mt,U0 corresponding to the geometric coordinates is C1-
equivalent to the differential structure on Mt,U0 corresponding to the rectangular
coordinates. The equivalence is captured by the fact that the change of variables map
ϒ (see Def. 2.20) from geometric to rectangular coordinates is differentiable with
a differentiable inverse, until a shock forms; see Lemma 15.1 and Theorem 15.1.
However, at points where μ vanishes, the rectangular derivatives of 
 blow up (see
equation (15.6) and the discussion below it), the inverse map ϒ−1 becomes singular,
and the equivalence of the differential structures breaks down as well.

2.4 Important Vectorfields, the Rescaled Frame, and the Non-rescaled Frame

In this subsection, we define some additional vectorfields that we use in our analysis
and exhibit their basic properties.

Definition 2.6 (X , X̆ , and N ). We define X to be the unique vectorfield that is �t -
tangent, g-orthogonal to the �t,u , and normalized by

g(L , X) = −1. (2.16)

We define

X̆ := μX. (2.17)

We define

N := L + X. (2.18)

Definition 2.7 (Two frames). We define, respectively, the rescaled frame and the
non-rescaled frame as follows:

{L , X̆ ,�}, Rescaled frame, (2.19a)

{L , X,�}, Non-rescaled frame. (2.19b)
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Lemma 2.1 (Basic properties of X, X̆ , L, and N ). The following identities hold:

Lu = 0, Lt = L0 = 1, (2.20a)

X̆u = 1, X̆ t = X̆0 = 0, (2.20b)

g(X, X) = 1, g(X̆ , X̆) = μ2, (2.21a)

g(L , X) = −1, g(L , X̆) = −μ. (2.21b)

Moreover, relative to the geometric coordinates, we have

L = ∂

∂t
. (2.22)

In addition, there exists an �t,u-tangent vectorfield � = ξ� (where ξ is a scalar
function) such that

X̆ = ∂

∂u
−� = ∂

∂u
− ξ�. (2.23)

The vectorfield N defined in (2.18) is future-directed, g-orthogonal to �t and is
normalized by

g(N , N ) = −1. (2.24)

Moreover, relative to rectangular coordinates, we have (for ν = 0, 1, 2):

N ν = −(g−1)0ν. (2.25)

Finally, the following identities hold relative to the rectangular coordinates (for
ν = 0, 1, 2):

Xν = −Lν − δ0
ν , Xν = −Lν − (g−1)0ν, (2.26)

where δ0
ν is the standard Kronecker delta.

Proof We first prove (2.20a). We begin by using (1.4), (2.11), and (2.15) to deduce
that Lu = Lα∂αu = −μ(g−1)αβ∂αu∂βu = 0 as desired. The fact that Lt = 1 is a
simple consequence of (2.11), (2.14), and (2.15).

We now prove (2.20b). We begin by using (2.11), (2.15), (2.16), and (2.17) to
deduce that X̆u = μXα∂αu = −XαLα = −g(X, L) = 1. The fact that X̆ t = 0 is an
immediate consequence of the fact that by construction, X̆ is �t -tangent.

(2.23) then follows easily from (2.20b) and the fact that ∂
∂u and � span the tangent

space of �t at each point.
(2.21b) is an easy consequence of (2.16) and (2.17).

123



10 Page 42 of 198 J. Speck et al.

To derive the properties of N , we consider the vectorfield V ν := −(g−1)0ν , which
is g-dual to the one-form with rectangular components−δ0

ν and therefore g-orthogonal
to �t . By (2.9), g(V, V ) = (g−1)αβδ0

αδ
0
β = −1, so V is future-directed, timelike, and

unit-length. In particular, V belongs to the g-orthogonal complement of �t,u , a space
spanned by {L , X}. Thus, there exist scalars a, b such that V = aL + bX . Since
V t = V 0 = 1 = Lt = L0 and since Xt = X0 = 0, we find that a = 1, that is, that
V = L + bX . Taking the inner product of this expression with X and using (2.21b)
together with the fact that X is �t -tangent (and hence g-orthogonal to V ), we find that
0 = −1+ bg(X, X). Similarly, using (2.21b), the fact that L is null, and the previous
identity, we compute that −1 = g(V, V ) = −2b + b2g(X, X) = −2b + b = −b. It
follows that V = L+ X := N and g(X, X) = 1. We have thus obtained the properties
of N and obtained (2.24), (2.25), and the first identity in (2.21a). The second identity
in (2.21a) follows easily from the first one and definition (2.17). (2.26) follows from
the definition (2.18) of N and from lowering the indices in (2.25) with g.

To obtain (2.22), we simply use (2.20a) and the fact that by construction, we have
Lϑ = 0 (see Def. 2.4). � 

2.5 Projection Tensorfields, G(Frame), and Projected Lie Derivatives

Many of our constructions involve projections onto �t and �t,u .

Definition 2.8 (Projection tensorfields). We define the �t projection tensorfield �

and the �t,u projection tensorfield �/ relative to rectangular coordinates as follows:

� μ
ν := δ μ

ν − Nν Nμ = δ μ
ν + δ 0

ν Lμ + δ 0
ν Xμ, (2.27a)

�/ μ
ν := δ μ

ν + XνLμ + Lν(L
μ + Xμ) = δ μ

ν − δ 0
ν Lμ + Lν Xμ. (2.27b)

Definition 2.9 (Projections of tensorfields). Given any spacetime tensorfield ξ , we
define its �t projection �ξ and its �t,u projection �/ ξ as follows:

(�ξ)μ1···μm
ν1···νn

:= �
μ1
μ̃1

· · ·� μm
μ̃m

� ν̃1
ν1
· · ·� ν̃n

νn
ξ
μ̃1···μ̃m
ν̃1···̃νn

, (2.28a)

(�/ ξ)μ1···μm
ν1···νn

:= �/
μ1
μ̃1

· · ·�/ μm
μ̃m

�/ ν̃1
ν1
· · ·�/ ν̃n

νn
ξ
μ̃1···μ̃m
ν̃1···̃νn

. (2.28b)

We say that a spacetime tensorfield ξ is �t -tangent (respectively �t,u-tangent) if
�ξ = ξ (respectively if �/ ξ = ξ ). Alternatively, we say that ξ is a �t tensor (respec-
tively �t,u tensor).

Definition 2.10 (�t,u projection notation). If ξ is a spacetime tensor, then we define

ξ/ := �/ ξ. (2.29)
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If ξ is a symmetric type
(0

2

)
spacetime tensor and V is a spacetime vectorfield, then

we define

ξ/V := �/ (ξV ), (2.30)

where ξV is the spacetime one-form with rectangular components ξανV α , (ν =
0, 1, 2).

We often refer to the following arrays of �t,u-tangent tensorfields in our analysis.

Definition 2.11 (Components of G and G ′ relative to the non-rescaled frame).
We define

G(Frame) :=
(
GL L ,GL X ,G X X ,G/L ,G/X ,G/

)

to be the array of components of the tensorfield (2.5) relative to the non-rescaled frame
(2.19b). Similarly, we define G ′

(Frame) to be the analogous array for the tensorfield
(2.6).

Definition 2.12 (Lie derivatives). If Vμ is a spacetime vectorfield and ξ
μ1···μm
ν1···νn is

a type
(m

n

)
spacetime tensorfield, then relative to the arbitrary coordinates,55 the Lie

derivative of ξ with respect to V is the type
(m

n

)
spacetime tensorfield LV ξ with the

following components:

LV ξ
μ1···μm
ν1···νn

:= V α∂αξ
μ1···μm
ν1···νn

−
m∑

a=1

ξ
μ1···μa−1αμa+1···μm
ν1···νn ∂αVμa

+
n∑

b=1

ξμ1···μm
ν1···νb−1ανb+1···νn

∂νb V α. (2.31)

In addition, when V and W are both vectorfields, we often use the standard Lie
bracket notation [V,W ] := LV W .

It is a standard fact that Lie differentiation obeys the Leibniz rule as well as the
Jacobi-type identity

LVLW ξ − LWLV ξ = L[V,W ]ξ = LLV W ξ. (2.32)

Moreover, it is a standard fact based on the torsion-free property ofD that RHS (2.31) is
invariant upon replacing all coordinate partial derivatives ∂ with covariant derivatives
D .

In our analysis, we will apply the Leibniz rule for Lie derivatives to contractions
of tensor products of �t,u-tensorfields. Due in part to the special properties (such as
(2.59)) of the vectorfields that we use to differentiate, the non-�t,u components of
the differentiated factor in the products typically cancel. This motivates the following
definition.

55 It is well-known that RHS (2.31) is coordinate invariant.
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Definition 2.13 (�t,u and�t -projected Lie derivatives). Given a tensorfield ξ and a
vectorfield V , we define the�t -projected Lie derivativeLV ξ of ξ and the �t,u-projected
Lie derivative L/V ξ of ξ as follows:

LV ξ := �LV ξ, L/V ξ := �/LV ξ. (2.33)

Definition 2.14 (Geometric torus differential). If f is a scalar function on �t,u , then
d/ f := ∇/ f = �/D f , where D f is the gradient one-form associated to f .

The above definition avoids potentially confusing notation such as∇/ Li by replacing
it with d/Li ; the latter notation clarifies that Li is to be viewed as a scalar rectangular
component function.

Lemma 2.2 (Sometimes �t,u projection is redundant). Let ξ be a type
(0

n

)
spacetime

tensorfield. Then LN ξ = LN (�ξ) and L/Lξ = L/Lξ/ .

Proof To prove LN ξ = LN (�ξ), we will show that � α
μ LN�

ν
α = 0. Once we have

shown this, we combine this identity with the Leibniz rule to deduce the following
identity, where the first term on the RHS is exact and the second one schematic:
LN (�ξ) = LN ξ +� ·LN� · ξ. A careful analysis of the schematic term shows that
it always contains a factor of the form � α

μ LN�
ν
α , which vanishes. We have proved

the desired result.
We now show that � α

μ LN�
ν
α = 0. Actually, we prove a stronger result: LN�

μ
ν =

0. Since LN δ
μ
ν = 0 and since LN Nμ = 0, we see from (2.27a) that it suffices to

prove that LN Nν = 0. The LHS of the previous identity is equal to the one-form
(LN gνα)Nα . To show that it vanishes, we separately show that its N and �t -tangent
components vanish. For the former, we use the identity g(N , N ) = −1 and the Leibniz
rule for Lie derivatives to deduce the desired result (LN gνα)NαN ν = 0. It remains
only for us to show that (LN g)(V, N ) = 0 for �t -tangent vectorfields V . Using that
V t = 0, we compute that (LN V )t = N (V t) − V (Nt) = −V (1) = 0. It follows
that LN V is also �t -tangent and hence g(LN V, N ) = 0. By the Leibniz rule for Lie
derivatives, we conclude that 0 = N (g(V, N )) = (LN g)(V, N ) as desired.

The proof that L/Lξ = L/Lξ/ is similar and reduces to showing that �/ α
ν LL�/

μ
α =

0. From (2.27b), we see that it further reduces to showing that �/ α
ν LL {Xα Lμ

+Lα (Lμ + Xμ)} = 0. Since �/ annihilates L and X , we need only to confirm that
�/ α
ν LL(Xα + Lα) = 0, which is equivalent to �/ α

ν LL Nα = 0. Since � spans the
tangent space of �t,u , it suffices to show that �α · LL Nα = 0. This latter identity
follows easily from differentiating the identity �αNα = 0 with LL and using the
identity LL� = 0 (since L = ∂

∂t and � = ∂
∂ϑ

). � 

2.6 First and Second Fundamental Forms and Covariant Differential Operators

Definition 2.15 (First fundamental forms). We define the first fundamental form g
of �t and the first fundamental form g/ of �t,u as follows:

g := �g, g/ := �/ g. (2.34)
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We define the corresponding inverse first fundamental forms by raising the indices
with g−1:

(g−1)μν := (g−1)μα(g−1)νβg
αβ
, (g/−1)μν := (g−1)μα(g−1)νβg/αβ. (2.35)

Note that g is the Riemannian metric on �t induced by g and that g/ is the Rie-
mannian metric on �t,u induced by g. Moreover, a straightforward calculation shows
that (g−1)μαg

αν
= �

μ
ν and (g/−1)μαg/αν = �/

μ
ν .

Remark 2.5 Because the �t,u are one-dimensional manifolds, it follows that symmet-
ric type

(0
2

)
�t,u-tangent tensorfields ξ satisfy ξ = (trg/ξ)g/, where trg/ξ := g/−1 · ξ . This

simple fact simplifies some of our formulas compared to the case of higher spatial
dimensions. In the remainder of the article, we often use this fact without explicitly
mentioning it. Moreover, as we described in Remark 1.11, this fact is the reason that
we do not need to derive elliptic estimates in two spatial dimensions.

Definition 2.16 (Differential operators associated to the metrics). We use the fol-
lowing notation for various differential operators associated to the spacetime metric
g, the Minkowski metric m, and the Riemannian metric g/ induced on the �t,u .

• D denotes the Levi-Civita connection of the spacetime metric g.
• ∇/ denotes the Levi-Civita connection of g/.
• If ξ is an �t,u-tangent one-form, then div/ ξ is the scalar-valued function div/ ξ :=

g/−1 · ∇/ ξ .
• Similarly, if V is an �t,u-tangent vectorfield, then div/V := g/−1 · ∇/ V�, where V� is

the one-form g/−dual to V .
• If ξ is a symmetric type

(0
2

)
�t,u-tangent tensorfield, then div/ξ is the �t,u-tangent

one-form div/ ξ := g/−1 · ∇/ ξ , where the two contraction indices in ∇/ ξ correspond
to the operator ∇/ and the first index of ξ .

Definition 2.17 (Covariant wave operators and Laplacians). We use the following
standard notation.

• �g := (g−1)αβD2
αβ denotes the covariant wave operator corresponding to the

spacetime metric g.
• / := g/−1 · ∇/ 2 denotes the covariant Laplacian corresponding to g/.

Definition 2.18 (Second fundamental forms). We define the second fundamental
form k of �t , which is a symmetric type

(0
2

)
�t -tangent tensorfield, by

k := 1

2
LN g. (2.36)

We define the null second fundamental form χ of �t,u , which is a symmetric type(0
2

)
�t,u-tangent tensorfield, by

χ := 1

2
L/L g/. (2.37)
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From Lemma 2.2, we see that the following alternate expressions hold:

k = 1

2
LN g, χ = 1

2
L/L g. (2.38)

We now provide some identities that we use later.

Lemma 2.3 (Alternate expressions for the second fundamental forms). We have
the following identities:

χ�� = g(D�L ,�), (2.39a)

k/X� = g(D�L , X). (2.39b)

Proof We prove only (2.39b) since the proof of (2.39a) is similar. Using (2.38), we
compute that 2k/X� = (LN g)X� = (LN g)X� = g(DX N ,�) + g(D�N , X). Since
g(X, X) = 1 and N = L + X , we see that g(D�N , X) = g(D�L , X). Thus, to
complete the proof, we need only to show that g(DX N ,�) = g(D�L , X). To pro-
ceed, we note that since g(N , X) = 0 and g(X, X) = 1, we have g(D�N , X) =
−g(D�X, N ) = −g(D�X, L). Then since g(X, L) = −1, we conclude that
−g(D�X, L) = g(D�L , X) as desired. � 

2.7 Expressions for the Metrics

In this subsection, we decompose g relative to the non-rescaled frame and relative
to the geometric coordinates. We then provide expressions for various forms relative
to the geometric coordinates and for the change of variables map from geometric to
rectangular coordinates.

Lemma 2.4 (Expressions for g and g−1 in terms of the non-rescaled frame). We
have the following identities:

gμν = −LμLν − (LμXν + XμLν)+ g/μν, (2.40a)

(g−1)μν = −LμLν − (LμXν + XμLν)+ (g/−1)μν. (2.40b)

Proof It suffices to prove (2.40a) since (2.40b) then follows from raising the indices
of (2.40a) with g−1.

To verify the formula (2.40a), we contract each side against the rectangular coor-
dinates of pairs of elements of the frame {L , X,�} and check that both sides agree.
This of course requires that we know the inner products of all pairs of elements
of the frame, some of which follow from the basic properties of the frame vector-
fields, and some of which were established in Lemma 2.1. As an example, we note
that contracting the LHS against Lμ�ν yields g(L ,�) = 0, while contracting the
RHS yields −g(L , L)g(L ,�) − g(L , L)g(X,�) − g(X, L)g(L ,�) + g/(L ,�) =
0 + 0 + 0 + 0 = 0 as desired. As a second example, we note that contracting
the LHS against LμXν yields g(L , X) = −1, while contracting the RHS yields
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−g(L , L)g(L , X)−g(L , L)g(X, X)−g(X, L)g(L , X)+g/(L , X) = 0+0−1+0 =
−1 as desired. � 

The following scalar function captures the �t,u part of g.

Definition 2.19 (The metric component υ). We define the scalar function υ > 0 by

υ2 := g(�,�) = g/(�,�). (2.41)

It follows that relative to the geometric coordinates, we have

g/−1 = υ−2�⊗�. (2.42)

We now express g relative to the geometric coordinates.

Lemma 2.5 (Expressions for g and g−1 in terms of the geometric coordinate
frame). Relative to the geometric coordinate (t, u, ϑ), we have

g = − 2μdt ⊗ du + μ2du ⊗ du + υ2(dϑ + ξdu)⊗ (dϑ + ξdu), (2.43)

g−1 =− ∂

∂t
⊗ ∂

∂t
− μ−1 ∂

∂t
⊗ ∂

∂u
− μ−1 ∂

∂u
⊗ ∂

∂t
− μ−1ξ

∂

∂t
⊗�

− μ−1ξ�⊗ ∂

∂t
+ υ−2�⊗�. (2.44)

The scalar functions ξ and υ from above are defined respectively in (2.23) and (2.41).

Proof We recall that by Lemma 2.1 and (2.42), we have L = ∂
∂t , and μX = X̆ =

∂
∂u − ξ�, and g/−1 = υ−2 ∂

∂ϑ
⊗ ∂

∂ϑ
. Moreover, by (2.40b), we have g−1 = −L ⊗ L −

L ⊗ X − X ⊗ L + g/−1. Combining these identities, we easily conclude (2.44). (2.43)
then follows from (2.44) as a simple linear algebra exercise (just compute the inverse
of the 3 × 3 matrix corresponding to (2.44)). � 

We now provide expressions for the geometric volume form factors of g and g.

Corollary 2.6 (The geometric volume form factors of g and g). The following
identity is verified by the spacetime metric g:

|detg| = μ2υ2, (2.45)

where the determinant on the LHS is taken relative to the geometric coordinates
(t, u, ϑ).

Furthermore, the following identity is verified by the first fundamental form g of

�
U0
t :

detg|
�

U0
t
= μ2υ2, (2.46)

where the determinant on the LHS is taken relative to the geometric coordinates (u, ϑ)
induced on �

U0
t .
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Proof Equation (2.45) follows easily from computing the determinant of (2.43).
Next, we note that (2.43) implies that g = μ2du2 + υ2(dϑ + ξdu)(dϑ + ξdu). A

simple calculation then yields (2.46). � 
Definition 2.20 We define ϒ : [0, T ) × [0,U0] × T → MT,U0 , ϒ(t, u, ϑ) :=
(t, x1, x2), to be the change of variables map from geometric to rectangular coordi-
nates.

Lemma 2.7 (Basic properties of the change of variables map). We have the fol-
lowing expression for the Jacobian of ϒ:

∂ϒ

∂(t, u, ϑ)
:= ∂(x0, x1, x2)

∂(t, u, ϑ)
=
⎛
⎝

1 0 0
L1 X̆1 +�1 �1

L2 X̆2 +�2 �2

⎞
⎠ . (2.47)

Moreover, the Jacobian determinant of ϒ can be expressed as

det
∂(x0, x1, x2)

∂(t, u, ϑ)
= μ(detg

i j
)−1/2υ, (2.48)

where υ is the metric component from Def. 2.19 and (detg
i j
)−1/2 is a smooth function

of 
 in a neighborhood of 0 with (detg
i j
)−1/2(
 = 0) = 1. In (2.48), g is viewed

as the Riemannian metric on �
U0
t defined by (2.34) and detg

i j
is the determinant of

the corresponding 2× 2 matrix of components of g relative to the rectangular spatial
coordinates.

Proof Since ∂
∂t = L , first column of the matrix on RHS (2.47) is by definition

(Lx0, Lx1, Lx2)" = (1, L1, L2)", where " denotes the transpose operator and we
have used (2.20a). The second column is ( ∂

∂u x0, ∂
∂u x1, ∂

∂u x2)", and to obtain the form
stated on RHS (2.47), we use (2.23). The third column is (�x0,�x1,�x2)", and to
obtain the stated form, we use the fact that �x0 = �t = 0 (since � is �t -tangent).

To obtain (2.48), we first observe that the determinant of the RHS is equal to the
determinant of the 2× 2 lower right block. Moreover, since � and � are parallel, we
can assume that � ≡ 0. Also recalling that X̆ = μX , we see that the determinant

of interest is equal to μdetN , where N :=
(

X1 �1

X2 �2

)
. Next we consider the 2 × 2

matrix M :=
(

g(X, X) g(X,�)

g(�, X) g(�,�)

)
=
(

1 0
0 υ2

)
. On the one hand, we clearly have

detM = υ2. On the other hand, we have the matrix identity M = N" · g · N (where g
is viewed as a 2 × 2 matrix expressed relative to the spatial rectangular coordinates),
which implies that detM = detg(detN )2. Combining these identities, we conclude
(2.48). Finally, we note that since g

i j
= δi j + f(
)
 with f a tensor depending

smoothly on 
, we easily conclude that (detg
i j
)−1/2 is a smooth function of 
 in a

neighborhood of 0 with (detg
i j
)−1/2(
 = 0) = 1. � 
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2.8 Commutation Vectorfields

To obtain higher-order estimates for 
 and the eikonal function quantities along �t,u ,
we commute various evolution equations with an �t,u-tangent vectorfield. A natural
candidate commutator is the geometric coordinate partial derivative vectorfield �,
which solves the transport equation LL� = 0. In terms of the rectangular component
functions, the transport equation reads L�i = � · d/Li and thus �i is one degree less
differentiable than Li in directions transversal to L . This loss of a derivative intro-
duces technical complications into the analysis that have no obvious resolution. To
circumvent this difficulty, we instead commute with the �t,u-tangent vectorfield Y ,
obtained by projecting a rectangular coordinate vectorfield Y(Flat) onto the �t,u . The
identity (2.26) and Lemma 2.8 below together show that unlike �, the rectangular
components Y i have the same degree of differentiability as 
 and Li . Another advan-
tage of using the commutator Y is that its deformation tensor structure allows us to
derive our high-order energy estimates without commuting the wave equation with the
transversal vectorfield X̆ at high orders (see Def. 13.1 and Prop. 14.1). We note here
that at first glance, the top-order derivatives of the deformation tensor of Y that appear
in the top-order wave equation energy estimates seem to lose derivatives relative to 
.
However, we are able to overcome this difficulty by working with modified quantities,
which we construct in Sect. 6.

Definition 2.21 (The vectorfields Y(Flat) and Y ). We define the rectangular compo-
nents of the �t -tangent vectorfields Y(Flat) and Y as follows (i = 1, 2):

Y i
(Flat) := δi

2, (2.49)

Y i := �/ i
a Y a

(Flat) = �/ i
2 , (2.50)

where �/ is the �t,u projection tensorfield defined in (2.27b).

To prove our main theorem, we commute the equations with the elements of the
following set of vectorfields.

Definition 2.22 (Commutation vectorfields). We define the commutation set Z as
follows:

Z := {L , X̆ ,Y }, (2.51)

where L , X̆ , and Y are respectively defined by (2.15), (2.17), and (2.50).
We define the Pu-tangent commutation set P as follows:

P := {L ,Y }. (2.52)

The rectangular spatial components of L , X , and Y deviate from their flat values
by a small amount captured in the following definition.

123



10 Page 50 of 198 J. Speck et al.

Definition 2.23 (Perturbed part of various vectorfields). For i = 1, 2, we define
the following scalar functions:

Li
(Small) := Li − δi

1, Xi
(Small) := Xi + δi

1, Y i
(Small) := Y i − δi

2. (2.53)

The vectorfields L , X , and Y in (2.53) are defined in Defs. 2.3, 2.6, and 2.21.

Remark 2.6 From (2.1), (2.2), (2.26), and (2.53), we have that Xi
(Small) =

−Li
(Small) − (g−1)0i , where (g−1)0i (
 = 0) = 0. We will use this simple fact

later on.

In the next lemma, we characterize the discrepancy between Y(Flat) and Y .

Lemma 2.8 (Decomposition of Y(Flat)). We can decompose Y(Flat) into an �t,u-
tangent vectorfield and a vectorfield parallel to X as follows: since Y is �t,u-tangent,
there exists a scalar function ρ such that

Y i
(Flat) = Y i + ρXi , (2.54a)

Y i
(Small) = −ρXi . (2.54b)

Moreover, we have

ρ = g(Y(Flat), X) = gabY a
(Flat)X

b = g2a Xa = g(Small)
21 X1 − g22 X2

(Small). (2.55)

Proof The existence of the decomposition (2.54a) follows from the fact that by con-
struction, Y(Flat) and Y differ only by a vectorfield that is parallel to X (because the
�t,u projection tensorfield�/ annihilates the X component of the�t -tangent vectorfield
Y(Flat) while preserving its �t,u-tangent component).

The expression (2.54b) then follows from definition (2.53) and (2.54a).
To obtain (2.55), we contract (2.54a) against Xi and use (2.1)–(2.2), the identities

Y a Xa = 0 and Xa Xa = 1, and definition (2.53) � 

2.9 Deformation Tensors and Basic Vectorfield Commutator Properties

In this subsection, we start by recalling the standard definition of the deformation
tensor of a vectorfield. We then exhibit some basic properties enjoyed by the Lie
derivatives of various vectorfields.

Definition 2.24 (Deformation tensor of a vectorfield V ). If V is a spacetime vec-
torfield, then its deformation tensor (V )π (relative to the spacetime metric g) is the
symmetric type

(0
2

)
spacetime tensorfield

(V )παβ := LV gαβ = DαVβ +DβVα, (2.56)

where the last equality in (2.56) is a well-known consequence of (2.31) and the torsion-
free property of the connection D .
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Lemma 2.9 (Basic vectorfield commutator properties). The vectorfields [L , X̆ ],
[L ,Y ], and [X̆ ,Y ] are �t,u- tangent, and the following identities hold:

[L , X̆ ] = (X̆)π/#
L , [L ,Y ] = (Y )π/#

L , [X̆ ,Y ] = (Y )π/#
X̆
. (2.57)

Furthermore, if Z ∈ Z , then

L/Z g/ = (Z)π/, L/Z g/−1 = −(Z)π/
##
. (2.58)

Finally, if V is an �t,u-tangent vectorfield, then

[L , V ] and [X̆ , V ] are �t,u − tangent. (2.59)

Proof We first prove (2.59). We use the identities Lu = 0 and Lt = 1 to compute that
[L , V ]t = LV t−V Lt = L0−V 1 = 0 and [L , V ]u = LV u−V Lu = L0−V 0 = 0.
Since [L , V ] annihilates t and u, it must be �t,u-tangent as desired. A similar argument
based on the identities X̆u = 1 and X̆ t = 0 yields that [X̆ , V ] is �t,u-tangent.

We now prove (2.57). Using the arguments from the previous paragraph, we easily
deduce that the left-hand and right-hand sides of the identities are vectorfields that
annihilate the function t and are therefore �t -tangent. Hence, it suffices to show that
the inner products of the two sides of (2.57) with X̆ are equal and that the same holds
for inner products with Y . We give the details only in the case of the last identity
[X̆ ,Y ] = (Y )π/#

X̆
since the other two can be proved similarly. First, we note that the

inner product of X̆ and (Y )π/#
X̆

is trivially 0. Moreover, since we showed in the first

paragraph that [X̆ ,Y ] is �t,u-tangent, we conclude that g([X̆ ,Y ], X̆) = 0 as desired.
We now show that the inner products of Y and the two sides of the last identity in (2.57)
are equal. Using again the torsion-free property and the fact that g(X̆ ,Y ) = 0, we
compute that g([X̆ , Y ],Y ) = g(DX̆ Y,Y )− g(DY X̆ ,Y ) = g(DX̆ Y,Y )+ g(DY Y, X̆).
The RHS of this identity is equal to the inner product of the RHS of the last identity
in (2.57) with Y as desired.

To prove (2.58) for L/Z g/, we apply L/Z g/ to the identity (2.40a). The LHS of the
resulting identity is (Z)π/, while only the last term L/Z g/ survives on the RHS since
the �t,u-projection �/ annihilates the non-differentiated factors arising from the first
three tensor products on RHS (2.40a). We have thus proved (2.58) for L/Z g/. The iden-
tity (2.58) for L/Z g/−1 is a simple consequence of the identity for L/Z g/, the identity
(g/−1)ακg/κβ = �/ α

β , the Leibniz rule, and the identity (g/−1)ακL/Z�/
β
κ = 0, which

we now prove. Since (g/−1)αβ = υ−2�α�β , the proof reduces to showing that
(LZ�/

a
i )�i = 0. To this end, we differentiate the identity � = �/ · � and use the

Leibniz rule to deduce that LZ� = (LZ�/ ) ·�+�/ · LZ�. Using (2.59), we see that
LZ� = �/ · LZ�, which finishes the proof. � 
Lemma 2.10 (L, X̆ , Y commute with d/). For scalar functions f and V ∈ {L , X̆ ,Y },
we have

L/V d/ f = d/V f. (2.60)
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Proof We prove the identity only when V = X̆ since the remaining identities can be
proved similarly. To proceed, we contract (2.60) against Y and use the Leibniz rule
on the LHS to find that the identity is equivalent to X̆Y f − (LX̆ Y ) · d/ f = Y X̆ f . The
previous identity is equivalent to [X̆ ,Y ] = L/X̆ Y , which follows from (2.57). � 

2.10 The Rectangular Christoffel Symbols

In many of our subsequent calculations, we start by expressing quantities in rectangular
coordinates. The most important of these are the Christoffel symbols.

Lemma 2.11 (Christoffel symbols of g in rectangular coordinates). Let

�ακβ := 1

2

{
∂αgκβ + ∂βgακ − ∂κgαβ

}

denote the lowered Christoffel symbols of g relative to rectangular coordinates and
recall that Gαβ(
) = d

d
 gαβ(
). Then we have

�ακβ = 1

2

{
Gκβ∂α
 + Gακ∂β
 − Gαβ∂κ


}
. (2.61)

Proof (2.61) is a simple consequence of the chain rule. � 

2.11 Transport Equations for the Eikonal Function Quantities

We now use Lemma 2.11 to derive evolution equations for μ and the rectangular
components Li

(Small), (i = 1, 2).

Lemma 2.12 (The transport equations verified by μ and Li ). The inverse foliation
density μ defined in (2.14) verifies the following transport equation:

Lμ := ω = 1

2
GL L X̆
 − 1

2
μGL L L
 − μGL X L
. (2.62)

Moreover, the scalar-valued rectangular component functions Li
(Small), (i = 1, 2),

defined in (2.53), verify the following transport equation:

L Li
(Small) =− 1

2
GL L(L
)Li − 1

2
GL L(L
)(g−1)0i − G/ #

L · (d/xi )(L
)

+ 1

2
GL L(d/

#
) · d/xi . (2.63)

Proof We first prove (2.62). We start by writing the 0 component of the geodesic
equation DL(Geo) L(Geo) = 0 relative to rectangular coordinates with the help of
(2.61): L(Geo)L0

(Geo) = (g−1)0κ
{
(1/2)GL(Geo)L(Geo)∂κ
 − GκL(Geo) L(Geo)


}
. Using

this equation, the identity (g−1)0κ = −Lκ − Xκ (see (2.40b) and recall that L0 = 1
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and X0 = 0), the relation μ = 1/L0
(Geo), and the definition L = μL(Geo), we conclude

(2.62) from straightforward computations.
To prove (2.63), we use the definition L = μL(Geo) and (2.53) to write the

spatial components of the geodesic equation DL(Geo) L(Geo) = 0 relative to rectan-
gular components as L Li

(Small) = L Li = −(g−1)iκ�LκL + μ−1(Lμ)Li . Using

(2.40b) and (2.61), we compute that −(g−1)iκ�LκL = (Li + Xi )�L L L + Li�L X L −
(g/−1)iκ�LκL . Using (2.26) and (2.61), we express the RHS of the previous identity as
−(1/2)(g−1)0i GL L L
+ Li {GL X L
 − (1/2)GL L X
}−G/ i

L L
+ (1/2)GL L d/i
.
We then add this expression to the second product μ−1(Lμ)Li in the formula for
L Li

(Small) from above and use (2.62) to substitute for Lμ. We note in particular that

the terms proportional to Li GL L X
 and Li GL X L
 completely cancel. Also using
the simple identities G/ i

L = G/ #
L · d/xi and d/i
 = (d/#
) · d/xi , we conclude (2.63). � 

2.12 Connection Coefficients of the Rescaled Frame

We now derive expressions for the connection coefficients of the frame {L , X̆ ,�} in
terms of 
,μ, L1, L2. We also decompose some of the connection coefficients into
“regular” pieces and pieces that have a “singular” μ−1 factor.

Lemma 2.13 (Connection coefficients of the rescaled frame {L , X̆ ,�}). and their
decomposition into μ−1-singular and μ−1-regular pieces) Let ζ be the �t,u-tangent
one-form defined by (see the identity (2.39b))

ζ� := k/X� = g(D�L , X) = μ−1g(D�L , X̆). (2.64)

Then the covariant derivatives of the rescaled frame vectorfields can be expressed as
follows, where the tensorfields k, χ, and ω are defined in (2.36), (2.37), and (2.62):

DL L = μ−1ωL , (2.65a)

DX̆ L = −ωL + μζ# + d/#μ, (2.65b)

D�L = −ζ�L + trg/χ�, (2.65c)

DL X̆ = −ωL − μζ#, (2.65d)

DX̆ X̆ = μωL +
{
μ−1 X̆μ+ω

}
X̆ − μd/#μ, (2.65e)

D� X̆ = μζ�L + ζ� X̆ + μ−1(d/�μ)X̆ + μtrg/k/�− μtrg/χ�, (2.65f)

DL� = D�L , (2.65g)

D�� = ∇/��+ k/�� L + μ−1χ�� X̆ . (2.65h)

Furthermore, we can decompose the frame components of the �t,u-tangent tensor-
fields k/ and ζ into μ−1-singular and μ−1-regular pieces as follows:

ζ = μ−1ζ(T rans−
) + ζ(T an−
), (2.66a)

k/ = μ−1k/ (T rans−
) + k/ (T an−
), (2.66b)
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where

ζ(T rans−
) := −1

2
G/L X̆
, (2.67a)

k/ (T rans−
) := 1

2
G/ X̆
, (2.67b)

and

ζ(T an−
) := 1

2
G/X L
 − 1

2
GL X d/
 − 1

2
G X X d/
, (2.68a)

k/ (T an−
) := 1

2
G/ L
 − 1

2
G/L ⊗ d/
 − 1

2
d/
 ⊗ G/L − 1

2
G/X ⊗ d/
 − 1

2
d/
 ⊗ G/X .

(2.68b)

Proof The identity (2.65a) follows easily from the geodesic equationDL(Geo) L(Geo) =
0 and the definition L = μL(Geo).

To derive (2.65d), we expand DL X̆ = aL L + aX̆ X̆ + a��, where the a are scalar
functions. Taking the inner product of each side with L and using g(L , X̆) = −μ,
g(L ,�) = 0, and (2.65a), we find that−aX̆μ = g(DL X̆ , L) = −Lμ−g(X̆ ,DL L) =
0 as desired. Taking the inner product of each side with X̆ and using in addition that
g(X̆ , X̆) = μ2 and g(X̆ ,�) = 0, we find that −μaL = g(DL X̆ , X̆) = μLμ as
desired. Finally, taking the inner product of each side with � and using in addition
that 0 = [L ,�] = DL�−D�L (where the second equality follows from the torsion-
free property of D), we find that a�g(�,�) = g(DL X̆ ,�) = −g(X̆ ,DL�) =
−g(X̆ ,D�L) = −μζ� as desired. A similar argument yields (2.65b); we omit the
full details and instead only note that the argument relies in part on the identity
g(DX̆ L ,�) = −g(DX̆�, L) = −g(D� X̆ , L) − g([X̆ ,�], L) = −g(D� X̆ , L).
The second equality follows from the torsion-free property of D , while the last one
follows from the fact that [X̆ ,�] is �t,u-tangent, which is a simple consequence of
(2.23). A similar argument also yields (2.65e); we omit the details.

To derive (2.65c), we expand D�L = aL L+aX̆ X̆+a��. Taking the inner product
of each side with L and using the identities noted above as well as g(L , L) = 0, we
find that aX̆ = 0 as desired. Similarly, taking the inner product of each side with X̆ , we
find that −μaL = g(D�L , X̆) = μζ� as desired. Similarly, taking the inner product
of each side with� and using (2.39a), we find that a�g(�,�) = g(D�L ,�) = χ��,
from which we easily conclude that a� = trg/χ as desired.

(2.65g) is a simple consequence of the identity [L ,�] = 0 and the torsion-free
property of D .

To prove (2.65h), we expand D�� = aL L+aX̆ X̆+a��. Taking the inner product
of each side with L and using the identities noted above, we find that −aX̆μ =
g(D��, L) = −g(D�L ,�) = −trg/χg(�,�) = −χ�� as desired. Taking the
inner product of each side with X̆ , and using (2.17), (2.18), and (2.65c), we find that
−μaL = g(D��, X̆)−μχ�� = −g(D� X̆ ,�)−μtrg/χg(�,�) = −μg(D�X,�)−
μtrg/χg(�,�) = −μg(D�N ,�) = −μk/�� as desired. Taking the inner product of
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each side with � and using that ∇/ ξ = �/Dξ for �t,u-tangent tensorfields ξ , we find
that a�g(�,�) = g(D��,�) = g(∇/ ��,�) as desired.

To prove (2.65f), we expand D� X̆ = aL L+aX̆ X̆ +a��. Taking the inner product
of each side with L and using and using the identities noted above as well as (2.65c),
we find that −aX̆μ = g(D� X̆ , L) = −�μ− g(D�L , X̆) = −�μ− μζ� as desired.
Taking the inner product of each side with X̆ , we find that −μaL = g(D� X̆ , X̆) −
μ2aX̆ = −μ2ζ� as desired. Finally, taking the inner product of each side with � and
using (2.65h), we find that a�g(�,�) = g(D� X̆ ,�) = −g(X̆ ,D��) = μk/�� −
μχ�� = μtrg/k/ g(�,�)− μtrg/χg(�,�) as desired.

We now prove (2.66a), (2.67a), and (2.68a). Our proof relies on the identity

(LN g)X� = G X�L
 − GL�X
 − GL X�
 − G X X�
. (2.69)

To prove (2.69), we use (2.18), (2.25), (2.40a), (2.40b), the chain rule identity
Ngαβ = Gαβ N
, and the inverse matrix differentiation identity −V (g−1)0α =
(g−1)0κ(g−1)αλGκλV
 (valid for any vectorfield V ) to deduce that

(LN g)X� =G X�N
 + gXα�Nα + gα�X Nα

=G X�L
 + G X�X
 + gXα(g
−1)0κ(g−1)αλGκλ�


+ gα�(g
−1)0κ(g−1)αλGκλX


=G X�L
 + G X�X
 − GL X�
 − G X X�
 − GL�X
 − G X�X
.
(2.70)

We have thus proved (2.69). We now use (2.38), (2.39b), (2.64), and (2.69) to compute
that ζ� = (1/2)RHS (2.69), which easily yields (2.66a), (2.67a), and (2.68a).

The identities (2.66b), (2.67b), and (2.68b) can be proved by employing a similar
argument; we omit the details. � 

We will use the next lemma when deriving L∞ estimates for the transversal deriv-
atives of the rectangular component functions Li

(Small).

Lemma 2.14 (Formula for X̆ Li ). We have the following identity for the scalar-valued
functions Li

(Small), (i = 1, 2):

X̆ Li
(Small) =

{
−1

2
GL L X̆
 + 1

2
μGL L L
 + μGL X L
 + 1

2
μG X X L


}
Li

+
{
−1

2
GL L X̆
 + 1

2
μGL L L
 + μGL X L
 + 1

2
μG X X L


}
(g−1)0i

−
{

G/ #
L X̆
 + 1

2
μG X X d/#


}
· d/xi + (d/#μ) · d/xi . (2.71)

Proof Throughout this proof,∇ denotes the Levi-Civita connection of the background
Minkowski metric mαβ = diag(−1, 1, 1). Since L0 = 1, we can view ∇X̆ L as a �t -
tangent vectorfield with rectangular spatial components X̆ Li . Since X and � span the
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tangent space of �t at each point, we can expand ∇X̆ L = aX X + a��, where aX and
a� are scalar functions. Taking the inner product of each side with X , we find that
aX = g(∇X̆ L , X) = g(DX̆ L , X)− �X̆ X L , where �X̆ X L := X̆αXκ Lβ�ακβ and �ακβ

is given by (2.61). Using (2.61), (2.62), and (2.65a), we compute that g(DX̆ L , X) =
ω = 1

2 GL L X̆
 − 1
2μGL L L
 − μGL X L
 and �X̆ X L = 1

2μG X X L
. Hence, aX =
1
2 GL L X̆
 − 1

2μGL L L
 − μGL X L
 − 1
2μG X X L
. Similarly, we find that a� =

g(DX̆ L ,�)−�X̆�L . Using (2.65a), we compute that g(DX̆ L ,�) = μζ�+ d/�μ and

�X̆�L = 1
2

{
μG X�L
 + GL� X̆
 − μGL X d/�


}
. Hence, using (2.66a), (2.67a),

and (2.68a) to substitute for μζ, we deduce that a� = −GL� X̆
 − 1
2μG X X d/�
 +

d/�μ. Combining these identities, using the identity �i = d/�xi , and using (2.26) to
replace Xi with −Li − (g−1)0i , we conclude (2.71). � 

2.13 Useful Expressions for the Null Second Fundamental Form

Lemma 2.15 (Identities involving χ). We have the following identities:

χ = gab(d/La)⊗ d/xb + 1

2
G/ L
, (2.72a)

trg/χ = gabg/−1 ·
{
(d/La)⊗ d/xb

}
+ 1

2
g/−1 · G/ L
, (2.72b)

L ln υ = trg/χ, (2.72c)

where χ is the �t,u-tangent tensorfield defined by (2.37) and υ is the metric component
from Def. 2.19.

Proof To prove (2.72a), we use (2.39a) and (2.61) to compute, relative to rectangular
coordinates, that χ�� = gab(�La)�b + ���L = gab(�La

(Small))�
b + 1

2 G��L
.

Noting that �xb = � · d/xb, we easily conclude (2.72a). To deduce (2.72b), we
simply take the g/−trace of (2.72a). To prove (2.72c), we use the Leibniz rule, the
fact that [L ,�] = 0, and the torsion-free property of D to compute that L(υ2) =
L[g(�,�)] = 2g(DL�,�) = 2g(D�L ,�) = 2χ�� = 2trg/χg(�,�) = 2trg/χυ2,

from which the desired identity easily follows. � 

2.14 Frame Decomposition of the Wave Operator

In this subsection, we decompose μ�g(
) relative to the rescaled frame. The factor of
μ is important for our decompositions.

Proposition 2.16 (Frame decomposition of μ�g(
) f ). Let f be a scalar function.
Then relative to the rescaled frame {L , X̆ ,�}, μ�g(
) f can be expressed in either of
the following two forms:
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μ�g(
) f = −L(μL f + 2X̆ f )+ μ/ f − trg/χX̆ f − μtrg/k/ L f − 2μζ# · d/ f,
(2.73a)

= −(μL + 2X̆)(L f )+ μ/ f − trg/χX̆ f −ωL f + 2μζ# · d/ f

+ 2(d/#μ) · d/ f, (2.73b)

where the �t,u-tangent tensorfields χ, ζ, and k/ can be expressed via (2.72a), (2.66a),
and (2.66b).

Proof To derive (2.73a), we first use (2.40b) to decompose

μ�g(
) f = −μLαLβD2
αβ f − 2Lα X̆βD2

αβ f + (g/−1) ·D2 f

= −L(μL f + 2X̆ f )+ (g/−1) ·D2 f

+ μ(DL Lα)Dα f + 2(DL X̆α)Dα f + (Lμ)L f. (2.74)

Next, we note that �(� f ) = �αDα(�
βDβ f ) = D2

�� f + (D��)αDα f = ∇/ 2
�� f +

(∇/ ��) · d/ f . Hence, by (2.65h), we have D2
�� f = ∇/ 2

�� f − k/�� L f − μ−1χ�� X̆ f .

Consequently, μ(g/−1) · D2 f = (1/g(�,�))
{
μ∇/ 2

�� f − μk/�� L f − χ�� X̆ f
}
=

μ/ f −μtrg/k/ L f − trg/χX̆ f . We now substitute this identity into RHS (2.74). We also
use Lemma 2.13 to substitute for the terms μ(DL Lα)Dα f and 2(DL X̆α)Dα f . The
identity (2.73a) then follows from straightforward calculations.

The proof of (2.73b) is similar and we omit the details. � 

2.15 Frame Components of the Deformation Tensors of the Commutation
Vectorfields

In this subsection, we decompose the deformation tensors (see Def. 2.24) of the com-
mutation vectorfields (2.51) relative to the rescaled frame. The exact structure of a
few of the terms, including the precise numerical constants, affects the degree of
degeneracy of our top-order energy estimates.

The main result of this subsection is Lemma 2.18. We first provide a preliminary
lemma in which we calculate certain covariant derivatives of the �t,u projection ten-
sorfield �/ .

Lemma 2.17 (Frame covariant derivatives of�/ ). Let �/ be the type
(1

1

)
�t,u projec-

tion tensorfield defined in (2.27b). Then the following identities hold:

(DL�/ ) · X = μ−1ζ(T rans−
)# + ζ(T an−
)#, (2.75a)

(DL�/ ) ·� = −μ−1ζ
(T rans−
)
� L − ζ

(T an−
)
� L , (2.75b)

(DX̆�/ ) · X = d/#μ, (2.75c)

(DX̆�/ ) ·� = ζ
(T rans−
)
� L +μζ

(T an−
)
� L + ζ

(T rans−
)
� X

+ μζ
(T an−
)
� X + (d/�μ)X, (2.75d)
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(D��/ ) · X = χ #
� − μ−1k/ (T rans−
)#

� − k/ (T an−
)#
� , (2.75e)

(D��/ ) ·� = μ−1k/(T rans−
)
�� L + k/(T an−
)

�� L + χ��X. (2.75f)

In the above expressions, the �t,u-tangent tensorfields χ, ζ(T rans−
), k/(T rans−
) ,
ζ(T an−
), and k/(T an−
) are defined by (2.37), (2.67a), (2.67b), (2.68a), and (2.68b).

Proof The main idea of the proof is to use the decompositions provided by
Lemma 2.13. As examples, we prove (2.75a) and (2.75d). The remaining identities
in the lemma can be proved using similar arguments and we omit those details. To
prove (2.75a), we differentiate the identity �/ · X̆ = 0 and use the identity X̆ = μX
to deduce that (DL�/ ) · X = μ−1(DL�/ ) · X̆ = −μ−1�/ · DL X̆ . The desired identity
(2.75a) now follows easily from the previous identity, (2.65d), and (2.66a).

To prove (2.75d), we differentiate the identity �/ ·� = � to deduce (DX̆�/ ) ·� =
DX̆�−�/ ·DX̆�. Since DX̆�−D� X̆ = [X̆ ,�] is �t,u-tangent (see Lemma 2.9), it
follows that (DX̆�/ ) ·� = D� X̆ −�/ ·D� X̆ . The desired identity (2.75d) now follows
easily from the previous identity, (2.65f), and (2.66a). � 

We now provide the main lemma of Subsect. 2.15.

Lemma 2.18 (The frame components of (Z)π ). We have the following identities for
the frame components of the deformation tensors (see Def. 2.24) of the commutation
vectorfields Z ∈ Z (see definition (2.51)):

(X̆)πL L = 0, (X̆)πX̆ X = 2X̆μ, (X̆)πL X̆ = −X̆μ, (2.76a)

(X̆)π/L = −d/μ− 2ζ(T rans−
) − 2μζ(T an−
), (X̆)π/X̆ = 0, (2.76b)

(X̆)π/ = −2μχ+ 2k/ (T rans−
) + 2μk/ (T an−
), (2.76c)

(L)πL L = 0, (L)πX̆ X = 2Lμ, (L)πL X̆ = −Lμ, (2.77a)
(L)π/L = 0, (L)π/X̆ = d/μ+ 2ζ(T rans−
) + 2μζ(T an−
), (2.77b)
(L)π/ = 2χ, (2.77c)

(Y )πL L = 0, (Y )πX̆ X = 2Yμ, (Y )πL X̆ = −Yμ, (2.78a)

(Y )π/L = −χ · Y + 1

2
(G/ · Y )L
 + ρG/X L
 + 1

2
(G/L · Y )d/


− ρGL X d/
 − 1

2
ρG X X d/
, (2.78b)

(Y )π/X̆ = μχ · Y + ρd/μ+ ρG/X X̆
 − 1

2
μρG X X d/


− 1

2
μ(G/ · Y )L
 + μ(G/L · Y )d/
 + μ(G/X · Y )d/
, (2.78c)

(Y )π/ = 2ρχ+ 1

2
(G/ · Y )⊗ d/
 + 1

2
d/
 ⊗ (G/ · Y )− ρG/ L
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+ ρG/L ⊗ d/
 + ρd/
 ⊗ G/L + ρG/X ⊗ d/
 + ρd/
 ⊗ G/X . (2.78d)

The scalar function ρ from above is as in Lemma 2.8, while the �t,u-tangent tensorfields
χ, ζ(T rans−
), k/ (T rans−
), ζ(T an−
), and k/ (T an−
) from above are as in (2.37),
(2.67a), (2.67b), (2.68a), and (2.68b).

Proof We give a detailed proof of the identities (2.78a)–(2.78d), some of which involve
the observation of important cancellations. The proofs of the remaining identities do
not involve such cancellations. Hence, they are easier to prove and we omit those
details.

First, we deduce (Y )πL L = 2g(DLY, L) = −2g(DL L ,Y ), where to obtain the sec-
ond equality, we differentiated the identity g(L ,Y ) = 0. Using (2.65a), we conclude
that g(DL L ,Y ) = 0 as desired.

Next, we use similar reasoning to obtain (Y )πX̆ X = 2μ−1g(DX̆ Y, X̆) =
−2μ−1g(DX̆ X̆ ,Y ) Using (2.65e), we conclude that the previous expression is equal
to 2g(d/#μ,Y ) = 2Yμ as desired.

Next, we use similar reasoning to obtain (Y )πL X̆ = g(DLY, X̆) + g(DX̆ Y, L) =
−g(DL X̆ ,Y )−g(DX̆ L ,Y ). Using (2.65a) and (2.65d), we conclude that the previous
expression is equal to −g(d/#μ,Y ) = −Yμ as desired.

Next, we use similar reasoning to obtain g((Y )π/#
L ,�) = g(DLY,�)+g(D�Y, L) =

g(DLY,�)− g(D�L ,Y ). By (2.65c), we have −g(D�L ,Y ) = −χY�. From defini-
tion (2.50), we derive

g(DLY,�) = g((DL�/ ) · Y(Flat),�)+ g(DLY(Flat),�). (2.79)

Using (2.54a), (2.75a), and (2.75b), we compute that

g((DL�/ ) · Y(Flat),�) = μ−1ρζ
(T rans−
)
� + ρζ

(T an−
)
� . (2.80)

Next, using that LY i
(Flat) = 0 and (2.61), we compute that

g(DLY(Flat),�) = �L�Y(Flat) = �L�Y + ρ�L�X

= 1

2
G/L� Y
 + 1

2
G/�Y L
 − 1

2
GL X�


+ 1

2
μ−1ρG/L� X̆
 + 1

2
ρG/X� L
 − 1

2
ρGL X�
. (2.81)

Combining the above calculations, noting that the term μ−1ρζ
(T rans−
)
� exactly can-

cels the dangerous term 1
2μ−1ρG/L� X̆
 on RHS (2.81) (see (2.67a)), using (2.68a),

and noting that G/L� Y
 = (G/L · Y )�
, we conclude (2.78b).
Next, we use similar reasoning to obtain g((Y )π/#

X̆
,�) = g(DX̆ Y,�)+g(D�Y, X̆) =

g(DX̆ Y,�) − g(D� X̆ ,Y ). By (2.65f), we have −g(D� X̆ ,Y ) = −μk/Y� + μχ�Y .
From definition (2.50), we derive

g(DX̆ Y,�) = g((DX̆�/ ) · Y(Flat),�)+ g(DX̆ Y(Flat),�). (2.82)

123



10 Page 60 of 198 J. Speck et al.

Using (2.54a), (2.75c), and (2.75d), we compute that

g((DX̆�/ ) · Y(Flat),�) = ρ�μ. (2.83)

Next, using that X̆Y i
(Flat) = 0 and (2.61), we compute that

g(DX̆ Y(Flat),�) =�X̆�Y(Flat)
= �X̆�Y + ρ�X̆�X

= 1

2
μG/X� Y
 + 1

2
G/Y� X̆
 − 1

2
μ(G/X · Y )�


+ ρG/X� X̆
 − 1

2
μρG X X�
. (2.84)

Combining the above calculations, using (2.66b), (2.67b), and (2.68b) to substitute
for −μk/Y� , and noting that G/X� Y
 = (G/X · Y )�
, we conclude (2.78c).

Next, we note that (Y )π/�� = 2g(D�Y,�). From definition (2.50), we derive

g(D�Y,�) = g((D��/ ) · Y(Flat),�)+ g(D�Y(Flat),�). (2.85)

Using (2.54a), (2.75e), and (2.75f), we compute that

g((D��/ ) · Y(Flat),�) = ρχ�� − μ−1ρk/��
(T rans−
) − ρk/��

(T an−
)#. (2.86)

Next, using that �Y i
(Flat) = 0 and (2.61), we compute that

g(D�Y(Flat),�) = ���Y(Flat) = ���Y + ρ���X

= 1

2
G/�Y �
 + 1

2
μ−1ρG/�� X̆
. (2.87)

Combining the above calculations, noting that the term −μ−1ρk/��
(T rans−
) on

RHS (2.86) exactly cancels the dangerous term 1
2μ−1ρG/�� X̆
 on RHS (2.87) (see

(2.67b)), and using (2.68b), we conclude (2.78d). � 

2.16 Arrays of Fundamental Unknowns

Our goal in this subsection is to show that many scalar functions and tensorfields
that we have introduced depend on just a handful of more fundamental functions
and tensorfields. This reduction highlights the structures that are relevant for deriving
estimates, with the exception of the delicate top-order estimates that are based on
modified quantities (which we define in Sect. 6). The main result is Lemma 2.19. We
start by introducing some convenient shorthand notation that we use throughout the
rest of the article.
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Definition 2.25 (Shorthand notation for the unknowns). We define the following
arrays γ and γ of scalar functions:

γ :=
(

, L1

(Small), L2
(Small)

)
, (2.88a)

γ :=
(

,μ− 1, L1

(Small), L2
(Small)

)
. (2.88b)

Remark 2.7 (Schematic functional dependence). In the remainder of the article,
we use the notation f(ξ(1), ξ(2), · · · , ξ(m)) to schematically depict an expression (often
tensorial and involving contractions) that depends smoothly on the �t,u-tangent ten-
sorfields ξ(1), ξ(2), · · · , ξ(m). Note that in general, f(0) �= 0.

Lemma 2.19 (Schematic structure of various tensorfields). We have the following
schematic relations for scalar functions:

gαβ, (g
−1)αβ, (g−1)αβ, g/αβ, (g/

−1)αβ,Gαβ,G ′
αβ,�/

α
β , Lα, Xα,Y α = f(γ), (2.89a)

GL L ,GL X ,G X X ,G ′
L L ,G ′

L X ,G ′
X X = f(γ), (2.89b)

g(Small)
αβ ,Y α

(Small), Xα
(Small), ρ = f(γ)γ,

(2.89c)

X̆α = f(γ). (2.89d)

Moreover, we have the following schematic relations for �t,u-tangent tensorfields:

g/,G/L ,G/X ,G/ ,G ′/L ,G ′/X ,G ′/ = f(γ, d/x1, d/x2), (2.90a)

Y = f(γ, g/−1, d/x1, d/x2), (2.90b)

ζ(T an−
), k/ (T an−
) = f(γ, d/x1, d/x2)P
, (2.90c)

ζ(T rans−
), k/ (T rans−
) = f(γ, d/x1, d/x2)X̆
, (2.90d)

χ = f(γ, d/x1, d/x2)Pγ, (2.90e)

trg/χ = f(γ, g/−1, d/x1, d/x2)Pγ. (2.90f)

Remark 2.8 (Clarification regarding the dependence of f on g/−1). On the RHS
of (2.90b) and (2.90f), we view g/−1 as a type

(2
0

)
�t,u-tangent tensorfield. In contrast,

on LHS (2.89a), we are viewing the rectangular components (g/−1)αβ to be scalar
functions. Therefore, it is not redundant to include the dependence of f on g/−1 in the
relations (2.90b) and (2.90f).

Proof The relations in (2.89a)–(2.89d) all follow easily from the definitions of the
quantities involved, so we prove only one representative relation. Specifically, to obtain
the schematic form of Y α

(Small) in (2.89c), we use (2.54b), (2.55), Remark 2.6, and the

fact that Y 0
(Small) = 0.

The relations in (2.90a)–(2.90f) are also easy to derive from the definitions of the
quantities involved and some simple observations. We give proofs of a few representa-
tive examples. To obtain (2.90b), we let Y� be the g/ dual of Y so that Y = g/−1 ·Y�. It is
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easy to see that we have the following identity for �t,u -tangent one-forms: Y� = Yad/xa ;
it can be checked by contracting both sides against elements of {L , X,�}. We now note
that Ya = gabY b. Thus, by (2.89a), we have Ya = f(γ). Combining the above observa-
tions, we find that Y� = f(γ, d/x1, d/x2), from which the desired relation (2.90b) easily
follows. To obtain (2.90e)–(2.90f), we apply similar reasoning based on the identities
(2.72a)–(2.72b). � 

3 Energy Identities and Basic Ingredients in the L2 Analysis

In this section, we establish the integral identities that we use in our L2 analysis.

3.1 Fundamental Energy Identity

To derive energy estimates, we rely on the energy-momentum tensor Q, which is the
symmetric type

(0
2

)
tensor

Qμν = Qμν[
] := Dμ
Dν
 − 1

2
gμν(g

−1)αβDα
Dβ
. (3.1)

In the next lemma, we exhibit the basic divergence property of Q; we omit the
proof, which is a simple calculation.

Lemma 3.1 (Basic divergence property of Q). For solutions to μ�g
 = F, we
have

μDαQαν = FDν
. (3.2)

In the next lemma, we provide the components of Q relative to the rescaled frame.

Lemma 3.2 (The frame components of Q). The components of the energy-
momentum tensor Q relative to the rescaled frame can be expressed as follows:

QL L [
] = (L
)2, QL X̆ [
] = −1

2
μ(L
)2 + 1

2
μ|d/
|2, (3.3a)

Q X̆ X̆ [
] =
1

2
μ2(L
)2 + (X̆
)2 + μ(L
)X̆
 − 1

2
μ2|d/
|2, (3.3b)

Q/L [
] = (L
)d/
, Q/ X̆ [
] = (X̆
)d/
, (3.3c)

Q/ [
] = 1

2
(L
)2g/+ μ−1(L
)(X̆
)g/+ 1

2
|d/
|2g/. (3.3d)

Proof The lemma is a simple consequence of the formula (3.1) and the frame decom-
positions of g and g−1 provided by (2.40a) and (2.40b). � 

We derive our energy estimates with the help of the following multiplier vectorfield.
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Definition 3.1 (The timelike multiplier vectorfield T ). We define (see Footnote 30
on pg. 22 regarding the notation)

T := (1 + 2μ)L + 2X̆ . (3.4)

A simple calculation yields that g(T, T ) = −4μ(1+μ). Thus, T is g-timelike when-
ever μ > 0. This property is important because it leads to coercive energy identities.

In the next lemma, we provide the frame components of (T )π . These are important
for our energy estimates because (T )π appears in our fundamental energy-flux identity
(see Prop. 3.5).

Lemma 3.3 (The frame components of (T )π ). The components of the deformation
tensor (T )π (see Def. 2.24) of the multiplier vectorfield (3.4) can be expressed as
follows relative to the rescaled frame:

(T )πL L = 0, (3.5a)

(T )πL X̆ = −
{

Lμ+ 4μLμ+ 2X̆μ
}
, (3.5b)

(T )πX̆ X = 2(1 + 2μ)Lμ, (3.5c)

(T )π/L = −2d/μ− 4
{
ζ(T rans−
) + μζ(T an−
)

}
, (3.5d)

(T )π/X̆ = d/μ+ 2(1 + 2μ)
{
ζ(T rans−
) + μζ(T an−
)

}
, (3.5e)

(T )π/ = 2χ+ 4
{

k/ (T rans−
) + μk/ (T an−
)
}
. (3.5f)

The �t,u tensorfields χ, ζ(T rans−
), k/ (T rans−
), ζ(T an−
), and k/ (T an−
) from above
are as in (2.37), (2.67a), (2.67b), (2.68a), and (2.68b).

Proof The proof is similar to that of Lemma 2.18 but is much simpler because can-
cellations do not play a role; we therefore omit the details. � 

We define our geometric integrals in terms of length, area, and volume forms that
remain non-degenerate throughout the evolution, all the way up to the shock.

Definition 3.2 (Non-degenerate forms and related integrals). We define the length
form dλg/ on �t,u , the area form d� on �u

t , the area form d� on P t
u , and the volume

form d� on Mt,u as follows (relative to the geometric coordinates):

dλg/ = dλg/(t,u,ϑ) := υ(t, u, ϑ)dϑ, d� = d�(t, u′, ϑ) := dλg/(t, u′, ϑ)du′,
d� = d�(t ′, u, ϑ) := dλg/(t

′, u, ϑ)dt ′, d� = d�(t ′, u′, ϑ) := dλg/(t
′, u′, ϑ)du′dt ′,

(3.6)

where υ is the scalar function from Def. 2.19.
If f is a scalar function, then we define

∫

�t,u

f dλg/ :=
∫

ϑ∈T
f (t, u, ϑ) υ(t, u, ϑ)dϑ, (3.7a)
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∫

�u
t

f d� :=
∫ u

u′=0

∫

ϑ∈T
f (t, u′, ϑ) υ(t, u′, ϑ)dϑdu′, (3.7b)

∫

P t
u

f d� :=
∫ t

t ′=0

∫

ϑ∈T
f (t ′, u, ϑ) υ(t ′, u, ϑ)dϑdt ′, (3.7c)

∫

Mt,u

f d� :=
∫ t

t ′=0

∫ u

u′=0

∫

ϑ∈T
f (t ′, u′, ϑ) υ(t ′, u′, ϑ)dϑdu′dt ′. (3.7d)

Remark 3.1 The canonical forms associated to g and g are respectively μd� and
μd� .

We now define energies and null fluxes, which serve as building blocks for the
quantities that we use in our L2 analysis of solutions.

Definition 3.3 (Energy and null flux). In terms of the non-degenerate forms of
Def. 3.2, we define the energy functional E[·] and null flux functional F[·] as fol-
lows:

E[
](t, u) :=
∫

�u
t

μQN T [
] d�, F[
](t, u) :=
∫

P t
u

QLT [
] d�, (3.8)

where N and T are the vectorfields defined in (2.18) and (3.4).

In the next lemma, we reveal the coercive nature of E[
] and F[
].
Lemma 3.4 (Coercivity of the energy and null flux). The energy and null flux from
Def. 3.3 enjoy the following coerciveness properties:

E[
](t, u) =
∫

�u
t

1

2
(1 + 2μ)μ(L
)2 + 2μ(L
)X̆
 + 2(X̆
)2

+ 1

2
(1 + 2μ)μ|d/
|2 d�, (3.9a)

F[
](t, u) =
∫

P t
u

(1 + μ)(L
)2 + μ|d/
|2 d�. (3.9b)

Proof The lemma follows from the identities

μQN T = 1

2
(1 + μ)μ(L
)2 + 1

2
(μL
 + 2X̆
)2 + 1

2
(1 + 2μ)μ|d/
|2, (3.10)

QLT = (1 + μ)(L
)2 + μ|d/
|2, (3.11)

which are a simple consequence of Lemma 3.2 and the identities (2.18) and (3.4). � 
In the next proposition, we provide the fundamental energy-flux identities that

hold for solutions to the inhomogeneous wave equation μ�g(
)
 = F. The term F
represents the error terms that arise upon commuting the homogeneous equation (1.1a)
after it has been multiplied by the factor μ (see Remark 4.1 below for an explanation

123



Stable Shock Formation For Nearly Simple... Page 65 of 198 10

of why we include the factor μ). See Figure 2 on pg. 13 for a picture of the spacetime
region Mt,u on which we apply the divergence theorem and the relevant boundary
surfaces �u

0 , �u
t , P t

0, and P t
u .

Remark 3.2 In Figure 2, the (unlabeled) front and back boundaries should be iden-
tified; they represent the same “periodic timelike surface” {ϑ = const} and thus they
do not make a contribution to the energy identity of Prop. 3.5.

Proposition 3.5 (Fundamental energy-flux identity). For solutions 
 to

μ�g(
)
 = F

that vanish along the outer null hyperplaneP0, we have the following identity involving
the energy and flux from Def. 3.3:

E[
](t, u)+ F[
](t, u)

= E[
](0, u)−
∫

Mt,u

{
(1 + 2μ)(L
)+ 2X̆


}
F d�

− 1

2

∫

Mt,u

μQαβ [
](T )παβ d�. (3.12)

Furthermore, with f+ := max{ f, 0} and f− := max{− f, 0}, we have

(T )P[
] := −1

2
μQαβ [
](T )παβ = −1

2
μ|d/
|2 [Lμ]−

μ
+

5∑
i=1

(T )P(i)[
], (3.13)

where

(T )P(1)[
] := (L
)2
{
−1

2
Lμ+ X̆μ− 1

2
μtrg/χ− trg/k/

(T rans−
) − μtrg/k/
(T an−
)

}
,

(3.14a)

(T )P(2)[
] := −(L
)(X̆
)
{

trg/χ+ 2trg/k/
(T rans−
) + 2μtrg/k/

(T an−
)
}
, (3.14b)

(T )P(3)[
] := μ|d/
|2
{

1

2

[Lμ]+
μ

+ X̆μ

μ
+ 2Lμ− 1

2
trg/χ

− trg/k/
(T rans−
) − μtrg/k/

(T an−
)

}
, (3.14c)

(T )P(4)[
] := (L
)(d/#
) ·
{
(1 − 2μ)d/μ+ 2ζ(T rans−
) + 2μζ(T an−
)

}
,

(3.14d)

(T )P(5)[
] := −2(X̆
)(d/#
) ·
{

d/μ+ 2ζ(T rans−
) + 2μζ(T an−
)
}
. (3.14e)

The tensorfields χ, ζ(T rans−
), k/ (T rans−
), ζ(T an−
), and k/ (T an−
) from above are
as in (2.37), (2.67a), (2.67b), (2.68a), and (2.68b).
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Proof We define the vectorfield Jα := Qαβ [
]Tβ , where T is defined in (3.4). We
decompose J = J t ∂

∂t + J u ∂
∂u + J��, where J t , J u , J� are scalar functions and we

recall that � = ∂
∂ϑ

. We claim that

J u = −μ−1 QLT [
], (3.15)

J t = μJ u − JX = −QLT [
] − Q XT [
] = −QN T [
], (3.16)

where N is the vectorfield defined in (2.18). To derive (3.15), we take the inner
product of the decomposition equation with L and use (2.23) to find that g(J, L) =
J u g(L , ∂

∂u ) = J u g(L , ∂
∂u −ξ�) = J u g(L , X̆) = −μJ u . Since g(J, L) = QLT [
],

we have obtained the desired identity (3.15). The proof of (3.16) is similar and we
omit it. Next, we note the identity

∫

Mt,u

μDα Jα d� =
∫ t

t ′=0

∫ u

u′=0

∫

ϑ∈T
∂

∂t

(
μυ J t)+ ∂

∂u

(
μυ J u)

+ ∂

∂ϑ

(
μυ J�

)
dt ′ du′ dϑ. (3.17)

(3.17) follows from the standard identity for the divergence of a vectorfield expressed
relative to a coordinate frame (in this case the geometric coordinates) and the formula
(2.45), which implies that |detg|1/2 = μυ (where the determinant is taken relative to
the geometric coordinates). Using Fubini’s theorem, carrying out some integrations
in (3.17), and noting that the integral of ∂

∂ϑ

(
μυ J�

)
over T vanishes, we deduce

RHS (3.1.17) =
∫ u

u′=0

∫

ϑ∈T
(
μυ J t) (t, u′, ϑ) du′ dϑ

−
∫ u

u′=0

∫

ϑ∈T
(
μυ J t) (0, u′, ϑ) du′ dϑ

+
∫ t

t ′=0

∫

ϑ∈T
(
μυ J u) (t ′, u, ϑ) dt ′ dϑ

−
∫ t

t ′=0

∫

ϑ∈T
(
μυ J u) (t ′, 0, ϑ) dt ′ dϑ. (3.18)

Inserting (3.15) and (3.16) into (3.18), we obtain all terms in (3.12) except for the two
Mt,u integrals on the RHS. The proof of (3.12) will be complete once we show that the
integrands under the Mt,u integrals sum to μDα(Qαβ [
]Tβ). This fact follows from
(3.2) and the symmetry of Q, which imply that μDα(Qαβ [
]Tβ) = 1

2μQαβ(T )παβ +
μ(T
)F.

It remains for us to derive (3.13). We first write Qαβ [
](T )παβ = (g−1)αβ(g−1)κλ

Qακ [
](T )πβλ. We then decompose the two g−1 factors relative to the frame {L , X,�}
with the formula (2.40b). Also using Lemmas 3.2 and 3.3, we conclude (3.13) from
straightforward calculations. � 
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To close our top-order energy estimates, we must perform some additional integra-
tions by parts, going beyond those of Prop. 3.5. We provide the required identities in
the next lemma.

Lemma 3.6 (Identities connected to integration by parts). The following identities
hold for scalar functions f :

∂

∂t

∫

�t,u

f dλg/ =
∫

�t,u

L f + trg/χ f dλg/, (3.19a)

∂

∂u

∫

�t,u

f dλg/ =
∫

�t,u

X̆ f + 1

2
trg/

(X̆)π/ f dλg/, (3.19b)

∂

∂t

∫

�u
t

f d� =
∫

�u
t

L f + trg/χ f d�. (3.19c)

Moreover, we have the following integration by parts identities:

∫

�t,u

(Y f1) f2 dλg/ = −
∫

�t,u

f1(Y f2) dλg/ −
∫

�t,u

1
2 trg/

(Y )π/︷︸︸︷
div/Y f1 f2 dλg/, (3.20)

∫

Mt,u

(L f1) f2 d� = −
∫

Mt,u

f1(L f2) d� −
∫

Mt,u

trg/χ f1 f2 d�

+
∫

�u
t

f1 f2 d� −
∫

�u
0

f1 f2 d�. (3.21)

Finally, the following integration by parts identity holds for scalar functions η:
∫

Mt,u

(1 + 2μ)(X̆
)(LPN
)Yη d�

=
∫

Mt,u

(1 + 2μ)(X̆
)(YPN
)Lη d�

−
∫

�u
t

(1 + 2μ)(X̆
)(YPN
)η d� +
∫

�u
0

(1 + 2μ)(X̆
)(YPN
)η d�

+
∫

Mt,u

Error1[PN
;η] d� +
∫

�u
t

Error2[PN
;η] d�

−
∫

�u
0

Error2[PN
;η] d�, (3.22)

where

Error1[PN
;η] := 2(Lμ)(X̆
)(YPN
)η+ (1 + 2μ)(L X̆
)(YPN
)η

+ (1 + 2μ)(X̆
)((Y )π/#
L · d/PN
)η+ (1 + 2μ)(X̆
)trg/χ(YP

N
)η

+ 2(Yμ)(X̆
)(PN
)Lη+ (1 + 2μ)(Y X̆
)(PN
)Lη

+ 1

2
(1 + 2μ)(X̆
)trg/

(Y )π/(PN
)Lη
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+ 2(LYμ)(X̆
)(PN
)η+ 2(Yμ)(L X̆
)(PN
)η

+ 2(Yμ)(X̆
)trg/χ(P
N
)η+ (Lμ)(X̆
)trg/

(Y )π/(PN
)η

+ (1 + 2μ)(LY X̆
)(PN
)η+ (1 + 2μ)(X̆
)(Y trg/χ)(P
N
)η

+ (1 + 2μ)(Y X̆
)trg/χ(P
N
)η+ 1

2
(1 + 2μ)(L X̆
)trg/

(Y )π/(PN
)η

+ (1 + 2μ)(X̆
)(div/ (Y )π/#
L )(P

N
)η+ 1

2
(1 + 2μ)(X̆
)trg/χtrg/

(Y )π/(PN
)η,

(3.23a)
Error2[PN
;η] := −2(Yμ)(X̆
)(PN
)η− (1 + 2μ)(Y X̆
)(PN
)η

− 1

2
(1 + 2μ)(X̆
)trg/

(Y )π/(PN
)η. (3.23b)

Proof To prove (3.19b), we first fix t and construct a local coordinate ϑ̃ on �
U0
t =

∪u∈[0,U0]�t,u by setting ϑ̃ = ϑ on �t,0 and then propagating ϑ̃ by solving the transport
equation X̆ ϑ̃ = 0. Since X̆u = 1, it follows that relative to the coordinates (u, ϑ̃)
on �

U0
t , we have [X̆ , ∂

∂ϑ̃
] = 0 and X̆ = ∂

∂u . Relative to (u, ϑ̃) coordinates on �
U0
t ,

we have g/−1 = υ̃−2 ∂

∂ϑ̃
⊗ ∂

∂ϑ̃
and dλg/ = υ̃d ϑ̃ , where υ̃2 = g( ∂

∂ϑ̃
, ∂

∂ϑ̃
) (see (2.41),

(2.42), and (3.6)). Differentiating with L/X̆ and using (2.58), we find that −(X̆)π/
## =

L/X̆ g/−1 = −2υ̃−3 X̆ υ̃ ∂

∂ϑ̃
⊗ ∂

∂ϑ̃
. Contracting against g/, we obtain the identity X̆ ln υ̃ =

(1/2)trg/(X̆)π/. We now express the integrand on LHS (3.19b) in (u, ϑ̃) coordinates,
differentiate under the integral, and use that X̆ = ∂

∂u in these coordinates to obtain
∂
∂u

∫
�t,u

f dλg/ =
∫
�t,u

{
X̆ f + (X̆ ln υ̃) f

}
υ̃dϑ̃ . Using this identity and the previous

expression for X̆ ln υ̃, we conclude (3.19b).
The proof of (3.19a) is similar and relies on the identity L ln υ = trg/χ (see (2.72c));

we omit the details.
(3.19c) follows from (3.19a) and the fact that

∫
�u

t
· · · d� = ∫ u

u′=0

∫
�t,u′

· · · dλg/du′.
(3.20) follows easily from integrating the identity (Y f1) f2+(Y f2) f1 = Y ( f1 f2) =

div/ ( f1 f2Y )− f1 f2div/Y over �t,u .
(3.21) follows from integrating the identity (3.19c) with f = f1 f2 with respect to

time from time 0 to time t .
The identity (3.22) follows from a series of tedious but straightforward integrations

by parts that we now describe. We first integrate by parts using (3.21) in order to move
the L operator off of LPN
. This procedure results in the presence of the integral
− ∫Mt,u

(1+ 2μ)(X̆
)(PN
)LYη d� (among others). We then commute L and Y

to obtain the identity LYη = Y Lη+ (Y )π/#
L · d/η (see (2.57)), which we substitute into

the previous integral. We then use (3.20) to move all Y derivatives off of all factors of
η in all of the error integrals. Finally, we integrate by parts on the �t,u to move all d/
derivatives off of all factors of η in all of the error integrals. � 

4 The Structure of the Terms in the Commuted Wave Equation

To derive energy estimates for the higher derivatives of 
, we commute the wave
equation μ�g(
)
 = 0 with vectorfields Z ∈ Z . In this section, we reveal the
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precise structure of the commutator error terms [Z ,μ�g(
)]
. By precise structure,
we mean that we decompose all terms relative to the rescaled frame {L , X̆ ,�} and
keep track of the exact expressions including the constant coefficients; some of these
constants affect the number of derivatives we need to close our estimates.

Remark 4.1 We have included the factor ofμ in front of the operator�g(
) in the wave
equation because it leads to important cancellations in the commutation identities.

We start with the following standard commutation identity.

Lemma 4.1 ([11, Lemma 7.1.3]). If ξα1···αn is any type
(0

n

)
spacetime tensorfield, V

is any spacetime vectorfield, and (V )π is its deformation tensor (see Def. 2.24), then

DβLV ξα1···αn − LVDβξα1···αn

= 1

2

n∑
i=1

{
Dαi

(V )π κ
β +Dβ

(V )π κ
αi
−Dκ (V )παiβ

}
ξα1···αi−1καi+1···αn . (4.1)

We now use Lemma 4.1 to derive an identity for [μ�g, Z ].
Lemma 4.2 (Vectorfield-covariant wave operator commutation lemma). For the
vectorfields Z ∈ Z (see Def. 2.22), which by Lemma 2.18 satisfy (Z)πL L = 0 and
(Z)πL X̆ = −Zμ, we have the following commutation identity:

μ�g(
)(Z
) =μDα

{
(Z)παβDβ
 − 1

2
trg

(Z)πDα


}
+ Z(μ�g(
)
)

+ 1

2
trg/

(Z)π/(μ�g(
)
), (4.2)

where trg
(Z)π := (g−1)αβ(Z)παβ .

Proof We begin by applying Z to μ�g(
)
 and using the Leibniz rule for Lie deriv-
atives and the Lie derivative identity (LZ g−1)αβ = −(Z)παβ to obtain the identity
Z(μ�g(
)
) = (Zμ)�g(
)
 − μ(Z)παβDαDβ
 + μ(g−1)αβLZDαDβ
. Apply-
ing (4.1) with ξ := D
, we obtain DαDβ Z
 = LZDαDβ
 + 1

2

{
Dα

(Z)πλβDλ 


+ Dβ
(Z)παλDλ
 −Dλ

(Z)παβDλ

}
. Contracting the previous identity against

(g−1)αβ and using the Leibniz rule for Lie derivatives and the aforementioned identity
(LZ g−1)αβ = −(Z)παβ , we find that

�g(
)Z
 = Z(�g(
)
)+ (Z)παβDαDβ
 + (Dα
(Z)παλ)Dλ


− 1

2
Dλ

{
(g−1)αβ(Z)παβ

}
Dλ


= Z(�g(
)
)+Dα

{
(Z)παβDβ
 − 1

2
trg

(Z)πDα


}

+ 1

2
trg

(Z)π�g(
)
. (4.3)
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The identity (4.2) now follows easily from (4.3), the identity 1
2 trg

(Z)π = − 1
2
(Z)πL L −

μ−1(Z)πL X̆ + 1
2 trg/(Z)π/ (see (2.40b)), and the assumed properties (Z)πL L = 0 and

(Z)πL X̆ = −Zμ. � 
In the next proposition, we decompose the first term on RHS (4.2) relative to the

rescaled frame. Our proof of the proposition relies on the following lemma.

Lemma 4.3 (Spacetime divergence in terms of derivatives of frame components).
Let J be a spacetime vectorfield. Let μJ = −μJL L−JX̆ L−JL X̆ +μJ/ be its
decomposition relative to the rescaled frame, where JL = J αLα , JX̆ = J α X̆α ,
and J/ = �/J . Then

μDαJ
α = −L(μJL)− L(JX̆ )− X̆(JL)+ div/ (μJ/ )− μtrg/k/JL − trg/χJX̆ ,

(4.4)

where the �t,u-tangent tensorfields χ and k/ can be expressed via (2.72a) and (2.66b).

Proof Using (2.40b), we find that

μDαJ
α = μ(g−1)αβDαJβ

= −L(μJL)− L(JX̆ )− X̆(JL)+ (g/−1)αβDα(μJβ)

+ (Lμ)JL + μ(DL Lα)Jα + (DL X̆α)Jα + (DX̆ Lα)Jα −J/ · d/μ.
(4.5)

Next, we use Lemma 2.13 to substitute for DL L , DL X̆ , and DX̆ L; we find that all
terms on the last line of (4.5) cancel. We then use the rescaled frame decomposi-
tion formula to express (g/−1)αβDα(μJβ) = div/ (μJ/ ) − μJL(g/−1)αβDαLβ −
JX̆ (g/

−1)αβDαLβ −JL(g/−1)αβDα X̆β and then Lemma 2.13 to deduce the follow-
ing identities, which we substitute into the previous equation: (g/−1)αβDαLβ = trg/χ
and (g/−1)αβDα X̆β = μtrg/k/ − μtrg/χ. Straightforward calculations then lead to (4.4).

� 
We now decompose the term μDα

{
(Z)παβDβ
 − 1

2 trg
(Z)πDα


}
from RHS (4.2)

relative to the rescaled frame.

Proposition 4.4 (Frame decomposition of the divergence of the key inhomoge-
neous term). For vectorfields Z ∈ Z , which have (Z)πL L = 0 and (Z)πL X̆ = −Zμ,
we have the following identity for the first term on RHS (4.2):

μDα

{
(Z)παβDβ
 − 1

2
trg

(Z)πDα


}
= K (Z)

(π−Danger)[
]

+K (Z)
(π−Cancel−1)[
] +K (Z)

(π−Cancel−2)[
]
+K (Z)

(π−Less Dangerous)[
] +K (Z)
(π−Good)[
]

+K (Z)
(
) [
] +K (Z)

(Low)[
], (4.6)
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where

K (Z)
(π−Danger)[
] := −(div/ (Z)π/#

L)X̆
, (4.7a)

K (Z)
(π−Cancel−1)[
] :=

{
1

2
X̆ trg/

(Z)π/− div/ (Z)π/#
X̆
− μdiv/ (Z)π/#

L

}
L
, (4.7b)

K (Z)
(π−Cancel−2)[
] :=

{
−L/X̆

(Z)π/#
L + d/#(Z)πL X̆

}
· d/
, (4.7c)

K (Z)
(π−Less Dangerous)[
] :=

1

2
μ(d/#trg/

(Z)π/) · d/
, (4.7d)

K (Z)
(π−Good)[
] :=

1

2
μ(Ltrg/

(Z)π/)L
 + (L(Z)πL X̆ )L
 + (L(Z)πX̆ X )L


+ 1

2
(Ltrg/

(Z)π/)X̆
 − μ(L/L
(Z)π/#

L) · d/
 − (L/L
(Z)π/#

X̆
) · d/
,

(4.7e)

K (Z)
(
) [
] :=

{
1

2
μtrg/

(Z)π/+ (Z)πL X̆ + (Z)πX̆ X

}
L2


+ trg/
(Z)π/L X̆
 − 2μ(Z)π/#

L · d/L
 − 2(Z)π/#
X̆
· d/L


− 2(Z)π/#
L · d/X̆
 + (Z)πL X̆/
 + 1

2
μtrg/

(Z)π//
, (4.8)

and

K (Z)
(Low)[
]

:=
{

1

2
(Lμ)trg/

(Z)π/+ 1

2
μtrg/k/ trg/

(Z)π/+ trg/χ
(Z)πL X̆ + trg/χ

(Z)πX̆ X − (Z)π/#
L · d/μ

}
L


+1

2
trg/χtrg/

(Z)π/X̆
 +
{
−(Lμ)(Z)π/#

L − μtrg/k/ (Z)π/#
L − trg/χ

(Z)π/#
X̆
+ trg/

(Z)π/d/#μ+ trg/χμζ#
}
· d/
.

(4.9)

In the above expressions, the �t,u-tangent tensorfields χ, ζ, and k/ , are as in (2.72a),
(2.66a), and (2.66b).

Proof We define J to be the spacetime vectorfield whose divergence is taken on
LHS (4.6):J α := (Z)παβDβ
− 1

2 (g
−1)κλ(Z)πκλDα
. With the help of Lemma 2.4,

we compute that

JL = −1

2
trg/

(Z)π/L
 + (Z)π/#
L · d/
, (4.10)

JX̆ = −(Z)πL X̆ L
 − (Z)πX̆ X L
 + (Z)π/#
X̆
· d/
 − 1

2
trg/

(Z)π/X̆
, (4.11)

μJ/ = −μ(Z)π/#
L L
 − (Z)π/#

X̆
L
 − (Z)π/#

L X̆
 + (Z)πL X̆ d/#
 + 1

2
μtrg/

(Z)π/d/#
.

(4.12)

The proposition then follows from the divergence formula (4.4) and tedious but
straightforward calculations. We remark that in our calculations, we use the iden-
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tity [L , X̆ ] = −d/#μ−2μζ # (see (2.57) and (2.76b)) to replace the term 1
2 trg/(Z)π/X̆ L


arising from (4.10) with 1
2 trg/(Z)π/L X̆
 + 1

2 trg/(Z)π/(d/#μ) · d/
 + trg/(Z)π/μζ # · d/
. � 

5 Differential Operator Commutation Identities

In this section, we provide a collection of commutation identities that we use when
commuting the equations. The precise numerical constants and the structure of tensor
contractions in these identities is not important for our estimates. Thus, we present
some of the identities in schematic form.

Definition 5.1 (Notation for repeated differentiation). We recall the commutation
sets Z and P from Def. 2.22. We label the three vectorfields in Z as follows:
Z(1) = L , Z(2) = Y, Z(3) = X̆ . Note that P = {Z(1), Z(2)}. We define the following
vectorfield operators:

• If 	I = (ι1, ι2, · · · , ιN ) is a multi-index of order | 	I | := N with ι1, ι2, · · · , ιN ∈
{1, 2, 3}, then Z

	I := Z(ι1)Z(ι2) · · · Z(ιN ) denotes the corresponding N th order

differential operator. We write Z N rather than Z
	I when we are not concerned

with the structure of 	I .
• Similarly, L/ 	IZ := L/Z(ι1)

L/Z(ι2 )
· · ·L/Z(ιN ) denotes an N th order �t,u-projected Lie

derivative operator (see Def. 2.13), and we write L/N
Z when we are not concerned

with the structure of 	I .
• If 	I = (ι1, ι2, · · · , ιN ), then 	I1 + 	I2 = 	I means that 	I1 = (ιk1 , ιk2 , · · · , ιkm )

and 	I2 = (ιkm+1 , ιkm+2 , · · · , ιkN ), where 1 ≤ m ≤ N and k1, k2, · · · , kN is a
permutation of 1, 2, · · · , N .

• Sums such as 	I1 + 	I2 + · · · + 	IM = 	I have an analogous meaning.
• Pu-tangent operators such as P 	I are defined analogously, except in this case we

clearly have ι1, ι2, · · · , ιN ∈ {1, 2}.
Remark 5.1 (Schematic depiction of the structure of Z 	I andP 	I ). In deriving our
estimates, we often need only partial information about the structure of the operators
Z

	I and P
	I . Thus, in Subsect. 7.2, we introduce additional shorthand notation that

captures the information that we need.

Lemma 5.1 (Preliminary identities for commuting Z ∈ Z with ∇/ ). For each Z -
multi-index 	I and integer n ≥ 1, there exist constants C 	I1, 	I2,··· , 	IM+1,n

such that the

following commutator identity holds for all type
(0

n

)
�t,u-tangent tensorfields ξ :

[∇/ ,L/ 	IZ ]ξ

=
|	I |∑

M=1

∑
	I1+···+ 	IM+1=	I

| 	Ia |≥1 for 1≤a≤M

C 	I1, 	I2,··· , 	IM+1,n
(g/−1)M (L/ 	I1

Z g/) · · · (L/ 	IM−1
Z g/)︸ ︷︷ ︸

absent whenM=1

(∇/L/ 	IM
Z g/)(L/ 	IM+1

Z ξ).

(5.1)
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Moreover, with div/ denoting the torus divergence operator from Def. 2.16, for each
Z -multi-index 	I , there exist constants C 	I1, 	I2,··· , 	IM+1,i1,i2

such that the following com-

mutator identity holds for all symmetric type
(0

2

)
�t,u-tangent tensorfields ξ :

[div/ ,L/ 	IZ ]ξ =
∑

i1+i2=1

| 	I |∑
M=1

∑
	I1+···+ 	IM+1=	I

| 	Ia |≥1 for 1≤a≤M

× C 	I1, 	I2,··· , 	IM+1,i1,i2
(g/−1)M+1 (L/ 	I1

Z g/) · · · (L/ 	IM−1
Z g/)︸ ︷︷ ︸

absent when i1=M=1

(∇/ i1L/ 	IM
Z g/)(∇/ i2L/ 	IM+1

Z ξ).

(5.2)

Finally, for each Z -multi-index 	I and each commutation vectorfield Z ∈ Z , there
exist constants C 	I1, 	I2,··· , 	IM+1

and C 	I1, 	I2,··· , 	IM+1,i1,i2
such that the following commuta-

tor identity holds for all scalar-valued functions f :

[∇/ 2,L/ 	IZ ] f

=
|	I |∑

M=1

∑
	I1+···+ 	IM+1=	I

| 	Ia |≥1 for 1≤a≤M

C 	I1, 	I2,··· , 	IM+1
(g/−1)M (L/ 	I1

Z g/) · · · (L/ 	IM−1
Z g/)︸ ︷︷ ︸

absent when M=1

(∇/L/ 	IM
Z g/)(d/Z

	IM+1 f ),

(5.3a)

[/ ,Z 	I ] f =
∑

i1+i2=1

| 	I |∑
M=1

∑
	I1+···+ 	IM+1=	I

| 	Ia |≥1 for 1≤a≤M

× C 	I1, 	I2,··· , 	IM+1,i1,i2
(g/−1)M+1 (L/ 	I1

Z g/) · · · (L/ 	IM−1
Z g/)︸ ︷︷ ︸

absent when i1=M=1

(∇/ i1L/ 	IM
Z g/)(∇/ i2+1Z

	IM+1 f ).

(5.3b)

In equations (5.1)–(5.3b), we have omitted all tensorial contractions in order to con-
dense the presentation.

Proof We claim that for Z ∈ Z , we have the schematic identity [∇/ ,L/Z ]ξ ∼ (∇/L/Z g/)# ·
ξ , correct up to constants. From this identity and the fact that L/Z g/−1 = −(L/Z g/)##

(see (2.58)), a straightforward argument involving induction in | 	I |, omitted here, yields
(5.1). We now prove the claim in the case that ξ is an �t,u-tangent one-form. The case
of higher-order tensorfields then follows easily from the Leibniz rules for ∇/ and L/Z
and we omit those details. Moreover, it is easy to reduce the proof to the case ξ� = 1
(that is, ξ = d/ϑ); we thus assume for the remainder of the proof that ξ = d/ϑ . We
now recall that υ2 = g/(�,�) (see (2.41)). Note that ∇/ is entirely determined by the
formula ∇/ �� = υ−1(�υ)�. We first address the case Z = L . By Lemma 2.10 and
the fact that Lϑ = 0, we have ∇/L/Lξ = ∇/ 2(Lϑ) = 0. Next, we compute compute that
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∇/ 2
��ϑ := (∇/ 2ϑ) ·�⊗� = ��ϑ−(∇/ ��) ·d/ϑ = −υ−1�υ. Also using [L ,�] = 0,

we compute that L/L∇/ 2
��ϑ := (L/L∇/ 2ϑ) · � ⊗ � = −υ−1�Lυ + υ−2(Lυ)�υ.

Similarly, we compute that (L/L g/)�� = 2υLυ, (∇/L/L g/)��� = 2υ�Lυ − 2(�υ)Lυ,
and (∇/L/L g/)# · (ξ ⊗ � ⊗ �) = 2υ−1L�υ − 2υ−2(�υ)Lυ. Combining the above
computations, we conclude that [∇/ ,L/L ]ξ = 1

2 (∇/L/L g/)# · ξ as desired. To treat the case

Z = X̆ , we first fix t and construct a local coordinate ϑ̃ on �
U0
t such that X̆ = ∂

∂u , as
in the proof of Lemma 3.6. The proof then mirrors the proof in the case Z = L . We
now treat the case Z = Y , which is �t,u-intrinsic. The result follows from Lemma 4.1,
which for the �t,u-tangent vectorfield Y applies with D replaced by ∇/ and g replaced
by g/. We have thus proved the claim, which completes the proof of (5.1).

(5.2) then follows as a straightforward consequence of (5.1), the fact that div/ ξ =
g/−1 · ∇/ ξ for symmetric type

(0
2

)
�t,u-tangent tensorfields ξ , and the aforementioned

identity L/Z g/−1 = −(L/Z g/)##.
To prove (5.3a), we first use Lemma 2.10 to deduce that ∇/ 2L/Z f = ∇/ (L/Z d/ f ) =

LZ∇/ 2 f + [∇/ ,L/Z ] · d/ f . The identity (5.3a) now follows from (5.1) with ξ := d/ f and
a straightforward argument involving induction in | 	I | and Lemma 2.10; we omit the
details.

(5.3b) follows easily from (5.3a), the identity/ = g/−1 ·∇/ 2, and the aforementioned
identity L/Z g/−1 = −(L/Z g/)##. � 
Lemma 5.2 (Preliminary Lie derivative commutation identities). Let 	I =
(ι1, ι2, · · · , ιN ) be an N th-order Z multi-index, let f be a function, and let ξ be
a type

(m
n

)
�t,u-tangent tensorfield with m + n ≥ 1. Let i1, i2, · · · , iN be any per-

mutation of 1, 2, · · · , N and let 	I ′ = (ιi1 , ιi2 , · · · , ιiN ). Then there exist constants
C 	I1, 	I2,ιk1 ,ιk2

such that

{
Z

	I −Z
	I ′} f

=
∑

	I1+	I2+ιk1+ιk2=	I
Z(ιk1

)∈{L ,X̆}, Z(ιk2
)∈{X̆ ,Y }, Z(ιk1

) �=Z(ιk2
)

C 	I1, 	I2,ιk1 ,ιk2
L/ 	I1
Z

(Z(ιk2
))
π/#

Z(ιk1
)
· d/Z

	I2 f,

(5.4a)

{
L/ 	IZ − L/ 	I ′Z

}
ξ =

∑
	I1+	I2+ιk1+ιk2=	I

Z(ιk1
)∈{L ,X̆}, Z(ιk2

)∈{X̆ ,Y }, Z(ιk1
) �=Z(ιk2

)

C 	I1, 	I2,ιk1 ,ιk2
L/L/ 	I1Z

(Z(ιk2
))
π/#

Z(ιk1
)

L/ 	I2
Z ξ.

(5.4b)

In (5.4a)–(5.4b), 	I1 + 	I2 + ιk1 + ιk2 = 	I means that 	I1 = (ιk3 , ιk4 , · · · , ιkm ), and
	I2 = (ιkm+1 , ιkm+2 , · · · , ιkN ), where k1, k2, · · · , kN is a permutation of 1, 2, · · · , N.
In particular, | 	I1| + | 	I2| = N − 2.
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Proof The identities (5.4a) and (5.4b) are straightforward to verify using Lemmas 2.9
and 2.10, the facts that (W )π/#

Z = −(Z)π/#
W for W ∈ {X̆ ,Y } and Z ∈ {L , X̆} (see

Lemma 2.18), and the Lie derivative commutation property (2.32). � 

6 Modified Quantities Needed for Top-Order Estimates

As we explained in Subsubsect. 1.4.2, in order to close our top-order energy estimates
without incurring derivative loss, we must work with modified quantities. The modified
quantities allow us to control the top-order derivatives of trg/χ. In this section, we define
these “fully modified quantities” and derive transport equations for them. At the top
order, we also need “partially modified quantities,” which are similar but serve a
different purpose: they enable us to avoid the appearance of certain �u

t error integrals
in the energy estimates that are too large to be controlled all the way up to the shock.
These error integrals arise when we integrate by parts with respect to L using the
identity (3.22).

6.1 Curvature Tensors and the Key Ricci Component Identity

The calculations related to the modified quantities are involved. A convenient way to
organize them is to rely on the curvature tensors of g.

Definition 6.1 (Curvature tensors of g). The Riemann curvature tensor Rαβκλ of
the spacetime metric g is the type

(0
4

)
spacetime tensorfield defined by

g(D2
U V W −D2

V U W, Z) = −R(U, V,W, Z), (6.1)

where U , V , W , and Z are arbitrary spacetime vectors. In (6.1), D2
U V W :=

UαV βDαDβW .
The Ricci curvature tensor Ricαβ of g is the following type

(0
2

)
tensorfield:

Ricαβ := (g−1)κλRακβλ. (6.2)

We now provide the lemma that forms the crux of the construction of the modified
quantities.

Lemma 6.1 (The key identity verified by μRicL L ). Assume that �g(
)
 = 0. Then
the following identity holds for the Ricci curvature component RicL L := RicαβLαLβ :

μRicL L = L

{
−GL L X̆
 − 1

2
μtrg/G/ L
 − 1

2
μGL L L
 + μG/#

L · d/


}
+ A, (6.3)

where A has the following schematic structure, where Z ∈ Z and P is P t
u-tangent:

A = f(γ, g/−1, d/x1, d/x2, Z
)P
. (6.4)
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Furthermore, without assuming �g(
)
 = 0, we have

RicL L = (Lμ)

μ
trg/χ+ L

{
−1

2
trg/G/ L
 − 1

2
GL L L
 + G/#

L · d/


}
− 1

2
GL L/
 +B,

(6.5)

where B has the following schematic structure:

B = f(γ, g/−1, d/x1, d/x2)(P
)Pγ. (6.6)

Sketch of a proof We sketch the proof instead of providing complete details since the
computations are lengthy and since the identities follow from inserting the schematic
relations provided by Lemma 2.19 into the identities derived in [60, Corollary 11.1.13].
We start by sketching the proof of (6.5). First, we note that straightforward but tedious
computations imply that relative to the rectangular coordinate system, the compo-
nents of R can be expressed as

Rμναβ (6.7)

= 1

2

{
GβμD

2
αν
 + GανD

2
βμ
 − GβνD

2
αμ
 − GαμD

2
βν


}

+ 1

4
GμαGνβ(g

−1)κλ(∂κ
)(∂λ
)− 1

4
GμβGνα(g

−1)κλ(∂κ
)(∂λ
)

+ 1

4
(g−1)κλ[Gλ(ν∂α)
][Gκ(μ∂β)
] − 1

4
(g−1)κλ[Gλ(μ∂α)
][Gκ(ν∂β)
]

+ 1

2

{
G′
βμ(∂α
)(∂ν
)+ G′

αν(∂β
)(∂μ
)− G′
βν(∂α
)(∂μ
)− G′

αμ(∂β
)(∂ν
)
}
,

where D2
 (which is a symmetric type
(0

2

)
tensorfield) denotes the second covariant

derivative of 
. We then contract both sides of (6.7) against LμLα(g/−1)νκ , which
yields the desired term RicL L on the LHS. Finally, we use Lemmas 2.13 and 2.19 to
express the RHS of the contracted identity in the form written on RHS (6.5).

The main idea behind the proof of (6.3) is to multiply both sides of (6.5) by μ and
use the wave equation in the form (2.73a); the wave equation allows us to replace μ

times the term −1

2
GL L/
 from (6.5) with −1

2
L
{
μGL L L
 + 2GL L X̆
)

}
up to

error terms involving an admissible number of derivatives. This completes our proof
sketch of the lemma. � 

6.2 The Definitions of the Modified Quantities and Their Transport Equations

We now define the modified quantities.

Definition 6.2 (Modified versions of the pure Pu-tangent derivatives of trg/χ). Let
PN be an N th order pure Pu-tangent commutation vectorfield operator. We define
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the fully modified quantity (PN )X as follows:

(PN )X := μPN trg/χ+PNX, (6.8a)

X := −GL L X̆
 − 1

2
μtrg/G/ L
 − 1

2
μGL L L
 + μG/#

L · d/
. (6.8b)

We define the partially modified quantity (PN )X̃ as follows:

(PN )X̃ :=PN trg/χ+ (PN )̃X, (6.9a)

(PN )̃X := −1

2
trg/G/ LPN
 − 1

2
GL L LPN
 + G/ #

L · d/PN
. (6.9b)

We also define the following “0th-order” version of (6.9b):

X̃ := −1

2
trg/G/ L
 − 1

2
GL L L
 + G/ #

L · d/
. (6.10)

We now derive the transport equation verified by the fully modified quantities.

Proposition 6.2 (The transport equation for the fully modified version of
PN trg/χ). Assume that �g(
)
 = 0. Let PN be an N th-order Pu-tangent com-

mutation vectorfield operator, and let (P
N )X and X be the corresponding quantities

defined in (6.8a) and (6.8b). Then (PN )X verifies the following transport equation:

L(PN )X −
(

2
Lμ

μ
− 2trg/χ

)
(PN )X

= μ[L ,PN ]trg/χ−
(

2
Lμ

μ

)
PNX+ 2trg/χP

NX

+ [L ,PN ]X+ [μ,PN ]Ltrg/χ+ [PN , Lμ]trg/χ
−
{
PN

(
μ(trg/χ)

2
)
− 2μtrg/χP

N trg/χ
}
−PNA, (6.11)

where A is the term on RHS (6.3).

Proof From (2.39a), the identity [L ,�] = 0, the torsion-free property of D , and
Def. 6.1, we deduce L/Lχ�� = g(D�DL L ,�)+ g(D�L ,D�L)−RL�L�. Viewing
both sides to be a type

(0
2

)
�t,u-tangent tensorfield, we take the g/ trace, use L/L g/−1 =

−2χ## (which follows from definition (2.37) and (2.58)), use Lemma 2.13, and carry
out straightforward calculations to derive

μLtrg/χ = (Lμ)trg/χ− μ(trg/χ)
2 − μRicL L . (6.12)

Then from (6.3) and (6.12), we find that

L
{
μtrg/χ+ X

} = 2(Lμ)trg/χ− μ(trg/χ)
2 − A. (6.13)
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Applying PN to (6.13) and performing straightforward commutations, we find that

L
{
μPN trg/χ+PNX

}
= 2(Lμ)PN trg/χ− 2μtrg/χP

N trg/χ+ μ[L ,PN ]trg/χ
+ [L ,PN ]X+ [μ,PN ]Ltrg/χ+ [PN , Lμ]trg/χ
−
{
PN

(
μ(trg/χ)

2
)
− 2μtrg/χP

N trg/χ
}
−PNA.

(6.14)

The identity (6.11) now follows easily from (6.14) and the definition of (PN )X . � 
We now derive the transport equation verified by the partially modified quantities.

Proposition 6.3 (The transport equation for the partially modified version of
PN−1trg/χ). LetPN−1 be an (N−1)st order purePu-tangent commutation vectorfield

operator, and let (PN−1)X̃ be the corresponding partially modified quantity defined
in (6.9a). Then (PN−1)X̃ verifies the following transport equation:

L(PN−1)X̃ = 1

2
GL L/P

N−1
 + (PN−1)B, (6.15)

where the inhomogeneous term (PN−1)B is given by

(PN−1)B = −PN−1B−PN−1(trg/χ)
2

+ 1

2
[PN−1,GL L ]/
 + 1

2
GL L [PN−1,/ ]
 + [L ,PN−1]trg/χ

+ [L ,PN−1]X̃+ L
{
(PN−1 )̃X−PN−1X̃

}
, (6.16)

B is defined in (6.6), (P
N−1 )̃X is defined in (6.9b), and X̃ is defined in (6.10).

Proof From (6.12), we find that

Ltrg/χ = Lμ

μ
trg/χ− (trg/χ)

2 − RicL L . (6.17)

Then from (6.5) and (6.17), we deduce that

L
{
trg/χ+ X̃

} = 1

2
GL L/
 − (trg/χ)

2 −B. (6.18)

We note in particular that the dangerous product
Lμ

μ
trg/χ from (6.5) and (6.17) cancels

from (6.18). The desired identity (6.16) now follows from applying PN−1 to (6.18)
and carrying out straightforward operator commutations. � 
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7 Norms, Initial Data, Bootstrap Assumptions, and Smallness
Assumptions

In this section, we first introduce the pointwise norms that we use to control solutions.
We then describe our assumptions on the size of the initial data. Finally, we state
bootstrap assumptions that we use throughout most of the rest of the paper to derive
estimates.

7.1 Norms

In our analysis, we primarily estimate scalar functions and �t,u-tangent tensorfields. We
always use the metric g/ when taking the pointwise norm of �t,u-tangent tensorfields,
a concept which we make precise in the next definition.

Definition 7.1 (Pointwise norms). If ξμ1···μm
ν1···νn is a type

(m
n

)
�t,u tensor, then we define

the norm |ξ | ≥ 0 by

|ξ |2 := g/μ1μ̃1 · · · g/μm μ̃m (g/
−1)ν1ν̃1 · · · (g/−1)νn ν̃nξμ1···μm

ν1···νn
ξ
μ̃1···μ̃m
ν̃1···̃νn

. (7.1)

Our analysis relies on the following L2 and L∞ norms.

Definition 7.2 (L2 and L∞ norms). In terms of the non-degenerate forms of Def. 3.2,
we define the following norms for �t,u-tangent tensorfields:

‖ξ‖2
L2(�t,u)

:=
∫

�t,u

|ξ |2 dλg/, ‖ξ‖2
L2(�u

t )
:=
∫

�u
t

|ξ |2 d�,

‖ξ‖2
L2(P t

u)
:=
∫

P t
u

|ξ |2 d�, (7.2a)

‖ξ‖L∞(�t,u)
:= ess supϑ∈T|ξ |(t, u, ϑ),

‖ξ‖L∞(�u
t )
:= ess sup(u′,ϑ)∈[0,u]×T|ξ |(t, u′, ϑ),

‖ξ‖L∞(P t
u)
:= ess sup(t ′,ϑ)∈[0,t]×T|ξ |(t ′, u, ϑ). (7.2b)

Remark 7.1 (Subset norms). In our analysis below, we occasionally use norms
‖ · ‖L2(�) and ‖ · ‖L∞(�), where � is a subset of �u

t . These norms are defined by
replacing �u

t with � in (7.2a) and (7.2b).

7.2 Strings of Commutation Vectorfields and Vectorfield Seminorms

The following shorthand notation captures the relevant structure of our vectorfield
operators and allows us to depict estimates schematically.
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Remark 7.2 Some operators in Def. 7.3 are decorated with a ∗. These operators
involve Pu-tangent differentiations that often lead to a gain in smallness in the esti-
mates. More precisely, the operators PN∗ always lead to a gain in smallness while the
operators Z N ;M∗ lead to a gain in smallness except perhaps when they are applied to
μ (because Lμ and its X̆ derivatives are not small).

Definition 7.3 (Strings of commutation vectorfields and vectorfield seminorms).

• Z N ;M f denotes an arbitrary string of N commutation vectorfields in Z (see
(2.51)) applied to f , where the string contains at most M factors of the P t

u-
transversal vectorfield X̆ .

• PN f denotes an arbitrary string of N commutation vectorfields in P (see (2.52))
applied to f .

• For N ≥ 1, Z N ;M∗ f denotes an arbitrary string of N commutation vectorfields in
Z applied to f , where the string contains at least one P t

u-tangent factor and at

most M factors of X̆ . We also set Z 0;0∗ f := f .
• For N ≥ 1, PN∗ f denotes an arbitrary string of N commutation vectorfields in
P applied to f , where the string contains at least one factor of Y or at least two
factors of L .

• For �t,u-tangent tensorfields ξ , we similarly define strings of �t,u-projected Lie
derivatives such as L/N ;M

Z ξ .

We also define pointwise seminorms constructed out of sums of the above strings
of vectorfields:

• |Z N ;M f | simply denotes the magnitude of one of the Z N ;M f as defined above
(there is no summation).

• |Z ≤N ;M f | is the sum over all terms of the form |Z N ′;M f | with N ′ ≤ N and
Z N ′;M f as defined above. When N = M = 1, we sometimes write |Z ≤1 f |
instead of |Z ≤1;1 f |.

• |Z [1,N ];M f | is the sum over all terms of the form |Z N ′;M f | with 1 ≤ N ′ ≤ N
and Z N ′;M f as defined above.

• Sums such as |P [1,N ]∗ f |, |L/≤N ;M
Z ξ |, |Y≤1 f |, |X̆ [1,N ] f |, etc., are defined analo-

gously. For example, |X̆ [1,N ] f | = |X̆ f |+ |X̆ X̆ f |+ · · ·+|
N copies︷ ︸︸ ︷

X̆ X̆ · · · X̆ f |. We write
|P∗ f | instead of |P [1,1]∗ f |.

7.3 Assumptions on the Initial Data and the Behavior of Quantities Along �0

In this subsection, we introduce our Sobolev norm assumptions on the data, which
involve several size parameters. We then derive identities and estimates for various
quantities on �0. In Subsect. 7.7, we describe our assumptions on the size parameters.

We first recall that (
|�0 , ∂t
|�0) := (
̊, 
̊0) and that we assume (
̊, 
̊0) ∈
H19

e (�1
0)×H18

e (�1
0). We assume that the data verify the following size estimates (see

Subsect. 7.2 regarding the vectorfield operator notation):
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∥∥∥Z ≤17;3∗ 


∥∥∥
L∞(�1

0 )
,

∥∥∥Z ≤19;3∗ 


∥∥∥
L2(�1

0 )
≤ ε̊,

∥∥∥X̆ [1,3]

∥∥∥

L∞(�1
0 )
:= δ̊ > 0.

(7.3)

Remark 7.3 (Non-optimal regularity assumptions involving higher transversal
derivatives). The data assumptions (7.3) involving two or more transversal derivatives
of 
 are not optimal relative to our proof; we have stated our assumptions in the
form (7.3) only for convenience. For example, in the parts of our proof that involve
three transversal derivatives of 
 (see Prop. 9.2), we use only the data assumptions∥∥∥Z ≤4;2∗ 


∥∥∥
L∞(�1

0 )
≤ ε̊,

∥∥∥L X̆ X̆ X̆

∥∥∥

L∞(�1
0 )
≤ ε̊, and

∥∥∥X̆ X̆ X̆

∥∥∥

L∞(�1
0 )
≤ δ̊. Similar

remarks apply to the initial regularity of the eikonal function quantities, which we
exhibit in Lemma 7.3.

In the next definition, we introduce the data-dependent number δ̊∗, which is of
crucial importance. Our main theorem shows that for ε̊ sufficiently small, the time of
first shock formation is (1 +O(ε̊))δ̊−1∗ .

Definition 7.4 (The quantity that controls the blowup-time). We define

δ̊∗ := 1

2
sup
�1

0

[
GL L X̆


]
− . (7.4)

Remark 7.4 Our proof of shock formation relies on the assumptions that δ̊∗ > 0
and that δ̊∗ is not too small compared to other quantities; see Subsect. 7.7. These
assumptions are tied to the fact that we are studying blowup for perturbations of
right-moving simple plane symmetric waves, as is depicted in Figure 3.

To prove our main theorem, we make assumptions on the relative sizes of the above
parameters; see Subsect. 7.7.

Our next goal is to derive estimates for various quantities along �1
0 that hold when-

ever the data verify (7.3) and ε̊ is sufficiently small. We start by providing two lemmas
that yield some identities that are relevant for that analysis.

Lemma 7.1 (Identities involving ∂i u). The following identity holds:

(g−1)ab∂au∂bu = μ−2. (7.5)

In (7.5), g−1 is the inverse of the Riemannian metric g on �
U0
t defined by (2.34).

Furthermore, the rectangular spatial derivatives of u verify (for i = 1, 2):

μ∂i u = Xi . (7.6)

Proof Since−μ∂αu = Lα (see (2.11) and (2.15)), (7.6) follows from the first identity
in (2.26). To deduce (7.5), we use (7.6) to substitute for ∂au and ∂bu on LHS (7.6) and
use the normalization condition (g−1)ab Xa Xb = g(X, X) = 1 (see (2.21a)). � 
Lemma 7.2 (Algebraic identities along�0). The following identities hold along �0
(for i = 1, 2):
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μ = 1√
(g−1)11

, Li
(Small) =

(g−1)i1√
(g−1)11

− δi1 − (g−1)0i , �i = (g−1)i1

(g−1)11 − δi1,

(7.7)

where g is viewed as the 2 × 2 matrix of rectangular spatial components of the

Riemannian metric on �0 defined by (2.34), g−1 is the corresponding inverse matrix,
and � is the �t,u-tangent vectorfield from (2.23).

Proof The identity for μ is a simple consequence of (7.5) and the fact that by
construction, u|�0 = 1 − x1 (see (1.5)). Next, using in addition (7.6), we deduce

that Xi = −μ(g−1)iaδ1
a = −μ(g−1)i1 = − (g−1)i1

√
(g−1)11

along �0. Also using that

Li = N i − Xi (see (2.18)), N i = −(g−1)0i (see (2.25)), and Li
(Small) = Li − δi

1

(see (2.53)), we easily conclude the desired identity for Li
(Small). Next, we recall that

by construction, ϑ |�0 = x2 (see Def. 2.4). Hence, ∂
∂u = −∂1 and � = ∂2 along

�0. Also using that X̆ = ∂
∂u − � (see (2.23)), (7.6), and X̆ = μX , we conclude that

�i = −δi1 − X̆ i = −δi1 + μ
(g−1)i1
√
(g−1)11

= −δi1 + (g−1)i1

(g−1)11 as desired. � 

In the next lemma, we provide estimates verified by the eikonal function quantities
μ and Li

(Small) along �1
0 . The estimates are a consequence of the assumptions (7.3)

on the initial data of 
 as well as the evolution equations verified by μ and Li
(Small).

Lemma 7.3 (Behavior of the eikonal function quantities along �1
0). For initial

data verifying (7.3), the following L2 and L∞ estimates hold along �1
0 whenever ε̊ is

sufficiently small, where the implicit constants are allowed to depend on δ̊:

∥∥∥Z ≤19;3∗ Li
(Small)

∥∥∥
L2(�1

0 )
� ε̊,

∥∥∥X̆ [1,3]Li
(Small)

∥∥∥
L2(�1

0 )
� 1, (7.8)

‖μ− 1‖L2(�1
0 )
,

∥∥∥P [1,19]∗ μ
∥∥∥

L2(�1
0 )

� ε̊,

(7.9a)∥∥∥L X̆ [0,2]μ
∥∥∥

L2(�1
0 )
,

∥∥∥X̆ [0,2]Lμ
∥∥∥

L2(�1
0 )
,

∥∥∥X̆ L X̆μ
∥∥∥

L2(�1
0 )
,

∥∥∥X̆ [1,2]μ
∥∥∥

L2(�1
0 )

� 1,

(7.9b)
∥∥∥Z ≤17;2∗ Li

(Small)

∥∥∥
L∞(�1

0 )
� ε̊,

∥∥∥X̆ [1,2]Li
(Small)

∥∥∥
L∞(�1

0 )
� 1, (7.10)

‖μ− 1‖L∞(�1
0 )
,

∥∥∥P [1,17]∗ μ
∥∥∥

L∞(�1
0 )

� ε̊,

(7.11a)∥∥∥L X̆ [0,2]μ
∥∥∥

L∞(�1
0 )
,

∥∥∥X̆ [0,2]Lμ
∥∥∥

L∞(�1
0 )
,

∥∥∥X̆ L X̆μ
∥∥∥

L∞(�1
0 )
,

∥∥∥X̆ [1,2]μ
∥∥∥

L∞(�1
0 )

� 1.

(7.11b)
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Sketch of proof We only sketch the proofs of the estimates because they have a lengthy
component and because we give complete details of related but more complicated
estimates in our proofs of Propositions 8.10 and 9.2 below. An easy part of the proof is
deriving estimates involving derivatives with respect to the �0-tangent vectorfields X̆
and Y ; we can use the identities (7.7) to express (μ−1)|�0 and Li

(Small)|�0 in the form

f(
)
 with f smooth. We can then repeatedly differentiate f(
)
 with respect to X̆ ,Y
and use the assumptions (7.3) and the standard Sobolev calculus to obtain the desired
L2 and L∞ estimates. Under the umbrella of the Sobolev calculus, we include the
embedding estimate ‖ f ‖L∞(�0,u) � ‖Y f ‖L2(�0,u)

+ ‖ f ‖L2(�0,u)
(valid with a uniform

implicit constant for u ∈ [0,U0]). This Sobolev embedding estimate is easy to derive
because along �0,u , we have � = ∂2, Y = (1+O(ε̊))∂2, and dλg/ = (1+O(ε̊)) dϑ .
Thus, the embedding result follows from the standard one on the torus T equipped
with the standard Euclidean metric.

Another easy part of the proof is obtaining the desired estimates for L≤19μ,
L≤19Li

(Small), and their derivatives up to top order with respect to X̆ and Y (where all

X̆ and Y derivatives occur after the L differentiations). To derive them, we can repeat-
edly use the evolution equations (2.62) and (2.63) to substitute for Lμ and L Li

(Small)
and argue as in the previous paragraph. In obtaining these estimates, the main point
(which is easy to see with the help of (2.62) and (2.63)) is that the quantities that we
claim are � ε̊ contain at least one small factor Z ≤19;3∗ 
, which by (7.3) yields the
desired smallness factor ε̊.

The lengthy part of the proof is deriving estimates for the derivatives of μ and
Li
(Small) that involve both L and the�0-tangent operators {X̆ ,Y }, where the�0-tangent

differentiation acts before L does. A model term is L X̆ Li
(Small). The main idea of the

argument is to first write L X̆ Li
(Small) = X̆ L Li

(Small)+[L , X̆ ]Li
(Small). The advantage

of this decomposition is that the arguments given in the previous paragraph imply that∥∥∥X̆ L Li
(Small)

∥∥∥
L2(�1

0 )
� ε̊. Thus, the main step remaining is to establish commutation

estimates showing that, roughly speaking, the commutator operators [L , X̆ ], [L ,Y ],
and [X̆ ,Y ] lead to products involving at least one (good) �t,u-tangent differentiation,
which provides the smallness factor ε̊ in the relevant expressions. The identities in
(2.57) feature �t,u-tangent right-hand sides and thus imply the availability of the desired
structure after one commutation. To derive estimates up to top order, we must also show
that a suitable version of this structure survives under higher-order differentiations and
commutations. We establish the necessary commutation estimates in Lemmas 8.7, 8.8,
and 9.1 below under bootstrap assumptions that are consistent with the evolution of
the solution. In the inequalities stated in those lemmas, the bootstrap assumptions are
used to gain a factor of ε1/2 in various quadratic terms that appear on the right-hand
sides, where ε is a small bootstrap parameter. Along�0, the lemmas can be established
without the bootstrap assumptions by using the same arguments given in their proofs.
In fact, one can ignore the availability of the smallness factor. After establishing the
commutation Lemmas along �0 we can derive the desired estimates using induction

in the number of derivatives. For example, to deduce that
∥∥∥L L X̆μ

∥∥∥
L2(�1

0 )
� ε̊, we

write L L X̆μ = X̆ L Lμ+[L L , X̆ ]μ. The argument sketched in the previous paragraph
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implies that
∥∥∥X̆ L Lμ

∥∥∥
L2(�1

0 )
� ε̊. To conclude that

∥∥∥[L L , X̆ ]μ
∥∥∥

L2(�1
0 )

� ε̊, we can

use the commutator estimate (8.24) to derive the pointwise bound
∣∣∣[L L , X̆ ]μ

∣∣∣ �
∣∣YZ ≤1;1μ

∣∣+
∣∣∣P [1,2]∗ γ

∣∣∣+
∣∣∣Z ≤2;1∗ γ

∣∣∣+ ∣∣P≤2γ
∣∣. The RHS involves only up-to-order

2 derivatives of quantities that, by induction, would have been shown to be bounded
in the norm ‖·‖L2(�1

0 )
by � ε̊. � 

7.4 T(Boot), the Positivity of µ, and the Diffeomorphism Property of ϒ

We now state some basic bootstrap assumptions. We start by fixing a real number
T(Boot) with

0 < T(Boot) ≤ 2δ̊−1∗ . (7.12)

We assume that on the spacetime domain MT(Boot),U0 (see (2.10e)), we have

μ > 0. (BAμ > 0)

Inequality (BAμ > 0) implies that no shocks are present in MT(Boot),U0 .
We also assume that

The change of variables mapϒ from Def. 2.20 is a C1 diffeomorphism from

[0, T(Boot))× [0,U0] × T onto its image. (7.13)

7.5 Fundamental L∞ Bootstrap Assumptions

Our fundamental bootstrap assumptions for 
 are that the following inequalities hold
on MT(Boot),U0 (see Subsect. 7.2 regarding the vectorfield operator notation):

∥∥∥P≤11


∥∥∥
L∞(�u

t )
≤ ε, (BA
)

where ε is a small positive bootstrap parameter whose smallness we describe in
Subsect. 7.7.

7.6 Auxiliary L∞ Bootstrap Assumptions

In deriving pointwise estimates, we find it convenient to make the following auxiliary
bootstrap assumptions. In Prop. 8.10, we will derive strict improvements of these
assumptions.
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Auxiliary bootstrap assumptions for small quantities. We assume that the follow-
ing inequalities hold on MT(Boot),U0 :

∥∥∥Z ≤10;1∗ 


∥∥∥
L∞(�u

t )
≤ ε1/2, (AUX1
)

∥∥∥LP [1,9]μ
∥∥∥

L∞(�u
t )
,

∥∥∥P [1,9]∗ μ
∥∥∥

L∞(�u
t )
≤ ε1/2, (AUX1μ)

∥∥∥Z ≤9;1∗ Li
(Small)

∥∥∥
L∞(�u

t )
≤ ε1/2, (AUX1L(Small))

∥∥∥L/≤8;1
Z χ

∥∥∥
L∞(�u

t )
≤ ε1/2. (AUX1χ)

Auxiliary bootstrap assumptions for quantities that are allowed to be large.

∥∥∥X̆

∥∥∥

L∞(�u
t )
≤
∥∥∥X̆


∥∥∥
L∞(�u

0 )
+ ε1/2, (AUX2
)

‖Lμ‖L∞(�u
t )
≤ 1

2

∥∥∥GL L X̆

∥∥∥

L∞(�u
0 )
+ ε1/2, (AUX2μ)

‖μ‖L∞(�u
t )
≤ 1 + 2δ̊−1∗

∥∥∥GL L X̆

∥∥∥

L∞(�u
0 )
+ ε1/2, (AUX3μ)

∥∥∥X̆ Li
(Small)

∥∥∥
L∞(�u

t )
≤
∥∥∥X̆ Li

(Small)

∥∥∥
L∞(�u

0 )
+ ε1/2. (AUX2L(Small))

7.7 Smallness Assumptions

For the remainder of the article, when we say that “A is small relative to B,” we mean
that there exists a continuous increasing function f : (0,∞) → (0,∞) such that
A ≤ f (B). In principle, the functions f could always be chosen to be polynomials
with positive coefficients or exponential functions.56 However, to avoid lengthening
the paper, we typically do not specify the form of f .

Throughout the rest of the paper, we make the following relative smallness assump-
tions. We continually adjust the required smallness in order to close our estimates.

• ε is small relative to δ̊−1, where δ̊ is the data-size parameter from (7.3).
• ε is small relative to the data-size parameter δ̊∗ from (7.4).

The first assumption will allow us to control error terms that, roughly speaking, are
of size εδ̊k for some integer k ≥ 0. The second assumption is relevant because the
expected blowup-time is approximately δ̊−1∗ , and the assumption will allow us to show
that various error products featuring a small factor ε remain small for t < 2δ̊−1∗ , which
is plenty of time for us to show that a shock forms.

56 The exponential functions appear, for example, in our energy estimates, during our Gronwall argument;
see the proof of Prop. 14.1 given in Subsect. 14.9.
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Finally, we assume that

ε̊ ≤ ε, (7.14)

where ε̊ is the data smallness parameter from (7.3).

Remark 7.5 δ̊ and δ̊∗ do not have to be small.

Remark 7.6 (The existence of data verifying the size assumptions). We now sketch
why there exists an open set of data (
|�0 , ∂t
|�0) = (
̊, 
̊0) that are compactly
supported in�1

0 and that satisfy the above size assumptions involving ε̊, δ̊−1, and δ̊∗. It
is enough to show that there exist plane symmetric data (
̊, 
̊0) (that is, data depending
only on x1) because the size assumptions are stable under Sobolev-class perturbations
(without symmetry), where the relevant Sobolev space is H19

e (�1
0)× H18

e (�1
0). Note

that in plane symmetry,
� and Y are proportional to ∂2 and all ∂2 derivatives of all scalar functions defined

throughout the article vanish. Moreover, even though L and X̆ do not necessarily
commute, [L , X̆ ] is �t,u-tangent (see Lemma 2.9) and therefore proportional to ∂2.
Thus, when [L , X̆ ] acts as a differential operator on a scalar function, it annihilates it.

To see that suitable plane symmetric data exist, we first note that since Remark 2.6
and (7.7) imply that X̆ = −(1 + O(
))∂1 along �0 and Li

(Small) = O(
) along

�1
0 , a simple argument relative to rectangular coordinates (omitted here) yields that it

is possible to find smooth plane symmetric data such that ‖
̊‖L∞(�1
0 )

is as small

as we want relative to 1
2 sup�1

0

[
GL L X̆


]
− (see definition (7.4)) and relative to

1/‖X̆ [1,3]
̊‖L∞(�1
0 )

(see (7.3)); for example, one can consider functions 
̊ that have a

small amplitude but with |∂1
̊| relatively large in some very small sub-interval of [0, 1]
(that is, with a short-but-steep peak). If ∂1
̊ has the correct sign in the sub-interval,

this will produce the desired relative largeness of 1
2 sup�1

0

[
GL L X̆


]
−. Moreover,

since L
|�1
0
= ∂t
|�1

0
+ L1∂1
|�1

0
= 
̊0 + L1∂1
̊, we can choose 
̊0 in terms of


̊ so that ‖X̆ [1,3]L
‖L∞(�1
0 )

is as small as we want (we could even make L
|�1
0
≡ 0

by setting 
̊0 := −L1∂1
̊). Moreover, from the above remarks, we conclude that
the same smallness holds for all permutations of the operators X̆ [1,3]L acting on 


along �1
0 . To obtain the desired smallness of ‖X̆ K L J
‖L∞(�1

0 )
for 1 ≤ J , K ≤ 3,

and J + K ≤ 17 and ‖X̆ K L J
‖L2(�1
0 )

for 1 ≤ J , K ≤ 3, and J + K ≤ 19, we
can inductively use the evolution equations (2.73b), (2.62), and (2.63) and the rela-
tions (7.7), much like we described in the proof sketch of Lemma 7.3 (note that we
must simultaneously derive estimates for the derivatives of μ and Li

(Small) in order to
obtain the smallness estimates for 
). See also Subsect. B.2 for a discussion, based
on the method of Riemann invariants, of the existence of plane symmetric data ver-
ifying the desired size assumptions in the case of the irrotational relativistic Euler
equations.
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8 Preliminary Pointwise Estimates

In this section, we use the assumptions on the data and the bootstrap assumptions from
Sect. 7 to derive pointwise estimates for the simplest error terms that appear in the
commuted wave equation. The arguments are tedious but not too difficult. In Sect. 9,
we derive related estimates involving higher transversal derivatives. In Sects. 10, and
11, we use the preliminary estimates to derive related but more difficult estimates.

In the remainder of the article, we schematically express many of our inequalities
by stating them in terms of the arrays γ and γ from Def. 2.25. We also remind the
reader that we often use the abbreviations introduced in Subsect. 7.2 to schematically
indicate the structure of various derivative operators.

8.1 Differential Operator Comparison Estimates

We start by establishing comparison estimates for various differential operators.

Lemma 8.1 (The norm of �t,u-tangent tensors can be measured via Y contrac-
tions). Let ξα1···αn be a type

(0
n

)
�t,u-tangent tensor with n ≥ 1. Under the data-size

and bootstrap assumptions of Subsects. 7.4–7.6 and the smallness assumptions of
Subsect. 7.7, we have

|ξ | =
{

1 +O(ε1/2)
}
|ξY Y ···Y |. (8.1)

The same result holds if |ξY Y ···Y | is replaced with |ξY ·|, |ξY Y ·|, etc., where ξY · is the
type

( 0
n−1

)
tensor with components Y α1ξα1α2···αn , and similarly for ξY Y ·, etc.

Proof (8.1) is easy to derive relative to rectangular coordinates by using the decom-
position (g/−1)i j = 1

|Y |2 Y i Y j and the estimate |Y | = 1+O(ε1/2). This latter estimate

follows from the identity |Y |2 = gabY aY b = (δab + g(Small)
ab )(δa

2 + Y a
(Small))(δ

b
2 +

Y b
(Small)), the fact that g(Small)

ab = f(γ)γ with f smooth and similarly for Y a
(Small) (see

Lemma 2.19), and the bootstrap assumptions. � 
Lemma 8.2 (Controlling∇/ derivatives in terms of Y derivatives). Let f be a scalar
function on �t,u. Under the data-size and bootstrap assumptions of Subsects. 7.4–7.6
and the smallness assumptions of Subsect. 7.7, the following comparison estimates
hold on MT(Boot),U0 :

|d/ f | ≤ (1 + Cε1/2) |Y f | , |∇/ 2 f | ≤ (1 + Cε1/2) |d/(Y f )| + Cε|d/ f |. (8.2)

Proof The first inequality in (8.2) follows directly from Lemma 8.1. To prove the
second, we first use Lemma 8.1, the identity ∇/ 2

Y Y f = Y · d/(Y f )−∇/ Y Y · d/ f , and the
estimate |Y | = 1 +O(ε1/2) noted in the proof of Lemma 8.1 to deduce that

|∇/ 2 f | ≤ (1 + Cε1/2)|∇/ 2
Y Y f | ≤ (1 + Cε1/2)|d/(Y f )| + |∇/ Y Y ||d/ f |. (8.3)

123



10 Page 88 of 198 J. Speck et al.

Next, we use Lemma 8.1 and the identity (Y )π/Y Y = ∇/ Y (g/(Y,Y )) = Y (gabY aY b) to
deduce that

∣∣∇/ Y Y
∣∣ �

∣∣g(∇/ Y Y,Y )
∣∣ �

∣∣∣(Y )π/Y Y

∣∣∣ �
∣∣∣Y (gabY aY b)

∣∣∣ . (8.4)

Since Lemma 2.19 implies that gabY aY b = f(γ)with f smooth, the bootstrap assump-
tions yield that RHS (8.4) is � |Yγ| � ε1/2. The desired inequality now follows from
this estimate, (8.3), and (8.4). � 
Lemma 8.3 (Controlling L/V and ∇/ derivatives in terms of L/Y derivatives). Let
ξα1···αn be a type

(0
n

)
�t,u-tangent tensor with n ≥ 1 and let V be an �t,u-tangent

vectorfield. Under the data-size and bootstrap assumptions of Subsects. 7.4–7.6 and
the smallness assumptions of Subsect. 7.7, the following comparison estimates hold
on MT(Boot),U0 :

∣∣L/V ξ
∣∣ � |V | ∣∣L/Y ξ

∣∣+ |ξ | ∣∣L/Y V
∣∣+ ε1/2|ξ ||V |, (8.5)

|∇/ ξ | � |L/Y ξ | + ε1/2|ξ |. (8.6)

Proof To prove (8.5), we first note the schematic identity L/V ξ = ∇/ V ξ +
∑

ξ · ∇/ V ,
which follows from applying �/ to both sides of (2.31), recalling that RHS (2.31) is
invariant upon replacing all coordinate partial derivatives ∂ with covariant derivatives
D , and recalling that ∇/ = �/D when acting on �t,u-tangent tensorfields ξ . Also using
Lemma 8.1, we find that

|L/V ξ | � |V ||∇/ Y ξ | + |ξ ||∇/ Y V |. (8.7)

Next, we note that the torsion-free property of ∇/ implies that ∇/ Y V = L/Y V + ∇/ V Y .
Hence, using Lemma 8.1, (8.4), and the estimate |∇/ Y Y | � ε1/2 shown in the proof of
Lemma 8.2, we find that

|∇/ Y V | � |L/Y V | + |V ||∇/ Y | � |L/Y V | + |V ||∇/ Y Y | � |L/Y V | + ε1/2|V |. (8.8)

Similarly, we have

|∇/ Y ξ | � |L/Y ξ | + ε1/2|ξ |. (8.9)

The desired estimate (8.5) now follows from (8.7), (8.8), and (8.9).
The estimate (8.6) follows from applying Lemma 8.1 to ∇/ ξ and using (8.9). � 

8.2 Basic Facts and Estimates that We Use Silently

For the reader’s convenience, we present here some basic facts and estimates that we
silently use throughout the rest of the paper when deriving estimates.
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(1) All quantities that we estimate can be controlled in terms of the small quantities
γ = {
,μ− 1, L1

(Small), L2
(Small)} and their derivatives (where the X̆ derivatives

do not have to be small, nor does Lμ).
(2) We typically use the Leibniz rule for the operators L/Z and∇/ when deriving point-

wise estimates for the L/Z and ∇/ derivatives of tensor products of the schematic
form

∏m
i=1 vi , where the vi are scalar functions or �t,u-tangent tensors. Our deriv-

ative counts are such that all vi except at most one are uniformly bounded in
L∞ on MT(Boot),U0 . Thus, our pointwise estimates often explicitly feature (on the
right-hand sides) only the factor with the most derivatives on it, multiplied by a
constant that uniformly bounds the other factors. In some estimates, the right-hand
sides also gain a smallness factor, such as ε1/2, generated by the remaining v′i s.

(3) The operators L/N
Z commute through d/, as shown by Lemma 2.10.

(4) As differential operators acting on scalar functions, we have Y = (1 +O(γ)) d/ =
(1+O(ε1/2))d/, a fact which follows from the proof of Lemma 8.2, (8.14a), and the
bootstrap assumptions. Hence, for scalar functions f , we sometimes schematically
depict d/ f as (1 +O(γ)) P f or P f when the factor 1 + O(γ) is not important.
Similarly, the proofs of Lemmas 8.2 and 8.3 show that we can depict / f by
f(P≤1γ, g/−1)P [1,2]∗ f (or P [1,2]∗ f when the factor f(P≤1γ, g/−1) is not impor-
tant) and, for type

(0
n

)
�t,u-tangent tensorfields ξ , ∇/ ξ by f(P≤1γ, g/−1)L/≤1

P ξ (or

L/≤1
P ξ when the factor f(P≤1γ, g/−1) is not important).

(5) We remind the reader that all constants are allowed to depend on the data-size
parameters δ̊ and δ̊−1∗ .

8.3 Pointwise Estimates for the Rectangular Coordinates and the Rectangular
Components of Some Vectorfields

Lemma 8.4 (Pointwise estimates for xi and the rectangular components of sev-
eral vectorfields). Assume that N ≤ 18 and V ∈ {L , X,Y }. Let xi = xi (t, u, ϑ)
denote the rectangular coordinate function and let x̊ i = x̊ i (u, ϑ) := xi (0, u, ϑ).
Under the data-size and bootstrap assumptions of Subsects. 7.4–7.6 and the smallness
assumptions of Subsect. 7.7, the following pointwise estimates hold on MT(Boot),U0 ,
for i = 1, 2 (see Subsect. 7.2 regarding the vectorfield operator notation):

∣∣∣V i
∣∣∣ � 1 + |γ| , (8.10a)

∣∣∣P [1,N ]V i
∣∣∣ �

∣∣∣P≤N γ
∣∣∣ , (8.10b)

∣∣∣Z [1,N ];1∗ V i
∣∣∣ �

∣∣∣Z ≤N ;1∗ γ
∣∣∣ , (8.10c)

∣∣∣Z [1,N ];1V i
∣∣∣ �

∣∣∣Z ≤N ;1γ
∣∣∣ , (8.10d)

∣∣∣X̆ i
∣∣∣ � 1 + |γ|, (8.10e)

∣∣∣P [1,N ] X̆ i
∣∣∣ �

∣∣∣P≤N γ
∣∣∣ , (8.10f)

∣∣∣Z [1,N ];1∗ X̆ i
∣∣∣ �

∣∣∣Z ≤N ;1∗ γ
∣∣∣ , (8.10g)
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∣∣∣Z [1,N ];1 X̆ i
∣∣∣ �

∣∣∣Z ≤N ;1γ
∣∣∣ , (8.10h)

∣∣∣xi − x̊ i
∣∣∣ � 1, (8.11a)

∣∣∣d/xi
∣∣∣ � 1 + |γ| , (8.11b)

∣∣∣d/P [1,N ]xi
∣∣∣ �

∣∣∣P≤N γ
∣∣∣ , (8.11c)

∣∣∣d/Z [1,N ];1∗ xi
∣∣∣ �

∣∣∣Z ≤N ;1∗ γ
∣∣∣+

∣∣∣P [1,N ]∗ γ
∣∣∣ , (8.11d)

∣∣∣d/Z [1,N ];1xi
∣∣∣ �

∣∣∣P≤N γ
∣∣∣+

∣∣∣P [1,N ]∗ γ
∣∣∣ , (8.11e)

∣∣∣PN Y i
(Small)

∣∣∣ �
∣∣∣P≤N γ

∣∣∣ , (8.12a)
∣∣∣Z N ;1∗ Y i

(Small)

∣∣∣ �
∣∣∣Z ≤N ;1∗ γ

∣∣∣ , (8.12b)
∣∣∣Z N ;1Y i

(Small)

∣∣∣ �
∣∣∣Z ≤N ;1γ

∣∣∣ . (8.12c)

In the case i = 2 at fixed u, ϑ , LHS (8.11a) is to be interpreted as the Euclidean
distance traveled by the point x2 in the flat universal covering space R of T along the
corresponding integral curve of L over the time interval [0, t].
Proof See Subsect. 8.2 for some comments on the analysis. Lemma 2.19 implies that
for V ∈ {L , X,Y }, the component V i = V xi verifies V i = f(γ) with f smooth.
Similarly, Y i

(Small) verifies Y i
(Small) = f(γ)γ with f smooth and X̆ xi = X̆ i verifies

X̆ i = f(γ) with f smooth. The estimates of the lemma therefore follow easily from
the bootstrap assumptions, except for the estimates (8.11a)–(8.11e). To obtain (8.11a),
we first argue as above to deduce |Lxi | = |Li | = |f(γ)| � 1. Since L = ∂

∂t , we may
integrate along the integral curves of L starting from t = 0 and use the previous
estimate to conclude (8.11a). To derive (8.11b), we use (8.2) with f = xi to deduce
|d/xi | � |Y xi | = |Y i | = |f(γ)| � 1 + |γ| as desired. The proofs of (8.11c)–(8.11e)
are similar, but we also use Lemma 2.10 to commute vectorfields under d/. � 

8.4 Pointwise Estimates for Various �t,u-Tensorfields

Lemma 8.5 (Crude pointwise estimates for the Lie derivatives of g/ and g/−1).
Assume that N ≤ 18. Under the data-size and bootstrap assumptions of Subsects. 7.4–
7.6 and the smallness assumptions of Subsect. 7.7, the following pointwise estimates
hold on MT(Boot),U0 (see Subsect. 7.2 regarding the vectorfield operator notation):

∣∣∣L/N+1
P g/

∣∣∣ ,
∣∣∣L/N+1

P g/−1
∣∣∣
∣∣∣L/N

Pχ
∣∣∣ ,
∣∣∣PN trg/χ

∣∣∣ �
∣∣∣P≤N+1γ

∣∣∣ , (8.13a)
∣∣∣L/N+1;1

Z∗ g/
∣∣∣ ,
∣∣∣L/N+1;1

Z∗ g/−1
∣∣∣ ,
∣∣∣L/N ;1

Z χ
∣∣∣ ,
∣∣∣Z N ;1trg/χ

∣∣∣ �
∣∣∣Z ≤N+1;1∗ γ

∣∣∣+
∣∣∣P [1,N+1]∗ γ

∣∣∣ ,
(8.13b)
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∣∣∣L/N+1;1
Z g/

∣∣∣ ,
∣∣∣L/N+1;1

Z g/−1
∣∣∣ �

∣∣∣Z ≤N+1;1γ
∣∣∣+

∣∣∣P [1,N+1]∗ γ
∣∣∣ .

(8.13c)

Proof See Subsect. 8.2 for some comments on the analysis. By Lemma 2.19, we have
g/ = f(γ, d/x1, d/x2). The desired estimates for L/N+1

P g/ thus follow from Lemma 8.4

and the bootstrap assumptions. The desired estimates for L/N+1
P g/−1 then follow from

repeated use of the second identity in (2.58) and the estimates forL/N+1
P g/. The estimates

for L/N
Pχ and PN trg/χ follow from the estimates for L/N+1

P g/ and L/N+1
P g/−1 since χ ∼

L/P g/ (see (2.37)) and trg/χ ∼ g/−1 · L/P g/. � 
Lemma 8.6 (Pointwise estimates for the Lie derivatives of Y and some deforma-
tion tensor components). Assume that N ≤ 18. Under the data-size and bootstrap
assumptions of Subsects. 7.4–7.6 and the smallness assumptions of Subsect. 7.7, the
following pointwise estimates hold on MT(Boot),U0 (see Subsect. 7.2 regarding the
vectorfield operator notation):

|Y | ≤ 1 + C |γ| , (8.14a)∣∣∣L/[1,N ]P Y
∣∣∣ ≤ C

∣∣∣P≤N γ
∣∣∣ , (8.14b)

∣∣∣L/[1,N ];1Z∗ Y
∣∣∣ ≤ C

∣∣∣Z ≤N ;1∗ γ
∣∣∣+ C

∣∣∣P [1,N ]∗ γ
∣∣∣ , (8.14c)

∣∣∣L/[1,N ];1Z Y
∣∣∣ ≤ C

∣∣∣Z ≤N ;1γ
∣∣∣+ C

∣∣∣P [1,N ]∗ γ
∣∣∣ , (8.14d)

∣∣∣L/N
P

(Y )π/L

∣∣∣ ,
∣∣∣L/N

P
(Y )π/#

L

∣∣∣ �
∣∣∣P≤N+1γ

∣∣∣ , (8.15a)
∣∣∣L/N ;1

Z
(Y )π/L

∣∣∣ ,
∣∣∣L/N ;1

Z
(Y )π/#

L

∣∣∣ �
∣∣∣Z ≤N+1;1∗ γ

∣∣∣+ ε1/2
∣∣∣Z ≤N ;1γ

∣∣∣+ ε1/2
∣∣∣P [1,N ]∗ γ

∣∣∣ ,
(8.15b)∣∣∣L/N

P
(Y )π/X̆

∣∣∣ ,
∣∣∣L/N

P
(Y )π/#

X̆

∣∣∣ �
∣∣∣Z ≤N+1;1∗ 


∣∣∣+
∣∣∣P≤N+1γ

∣∣∣+
∣∣∣P [1,N ]∗ γ

∣∣∣ , (8.16)

∣∣∣(X̆)π/L

∣∣∣ ,
∣∣∣(X̆)π/#

L

∣∣∣ �
∣∣∣Z ≤1


∣∣∣+ |P∗μ| , (8.17a)
∣∣∣L/[1,N ]P

(X̆)π/L

∣∣∣ ,
∣∣∣L/[1,N ]P

(X̆)π/#
L

∣∣∣ �
∣∣∣Z ≤N+1;1∗ 


∣∣∣+
∣∣∣P≤N+1γ

∣∣∣+
∣∣∣P [1,N+1]∗ γ

∣∣∣ ,
(8.17b)∣∣∣L/N

P
(L)π/

∣∣∣ ,
∣∣∣L/N

P
(Y )π/

∣∣∣ �
∣∣∣P≤N+1γ

∣∣∣ , (8.18a)
∣∣∣L/N ;1

Z
(L)π/

∣∣∣ ,
∣∣∣L/N ;1

Z
(Y )π/

∣∣∣ �
∣∣∣Z ≤N+1;1∗ γ

∣∣∣+ ε1/2
∣∣∣Z ≤N ;1γ

∣∣∣+ ε1/2
∣∣∣P [1,N ]∗ γ

∣∣∣ .
(8.18b)

Proof See Subsect. 8.2 for some comments on the analysis. To prove (8.15a) for (Y )π/#
L ,

we first note that by Lemma 2.19 and (2.78b), we have (Y )π/#
L = f(γ, g/−1, d/x1, d/x2)Pγ.

We now apply L/N
P to the previous relation. We bound the derivatives of g/−1 and d/x

with Lemmas 8.4 and 8.5. Also using the bootstrap assumptions, we conclude the

123



10 Page 92 of 198 J. Speck et al.

desired result. A similar argument yields the same estimate for (Y )π/L . The proof of
(8.15b) is similar and we omit the details.

Since Lemma 2.19 implies that Y = f(γ, g/−1, d/x1, d/x2), similar reasoning yields
(8.14c)–(8.14d).

Inequality (8.14a) follows from the slightly more precise arguments already given
in the proof of Lemma 8.1.

The proof of (8.16) is similar and is based on the observation that by Lemma 2.19
and (2.78c), we have

(Y )π/#
X̆
= f(γ, g/−1, d/x1, d/x2)Pγ+ f(γ, g/−1, d/x1, d/x2, X̆
)γ+ f(γ, g/−1)d/μ,

and a similar schematic relation holds for (Y )π/X̆ .
The proofs of (8.17a)–(8.17b) are similar and are based on the observation that by

Lemma 2.19, (2.66a), and (2.76b), we have

(X̆)π/#
L = f(γ, g/−1, d/x1, d/x2)X̆
 + f(γ, g/−1, d/x1, d/x2)P
 + g/−1d/μ,

and a similar schematic relation holds for (X̆)π/L .
The proofs of (8.18a)–(8.18b) are similar and are based on the fact that by

Lemma 2.19, (2.77c), and (2.78d), we have (L)π/, (Y )π/ = f(γ, g/−1, d/x1, d/x2)Pγ. � 

8.5 Commutator Estimates

In this subsection, we establish some commutator estimates.

Lemma 8.7 (Pure Pu-tangent commutator estimates). Assume that 1 ≤ N ≤ 18.
Let 	I be an order | 	I | = N + 1 multi-index for the set P of Pu-tangent commutation
vectorfields (see Def. 5.1), and let 	I ′ be any permutation of 	I . Let f be a scalar
function, and let ξ be an �t,u-tangent one-form or a type

(0
2

)
�t,u-tangent tensorfield.

Under the data-size and bootstrap assumptions of Subsects. 7.4–7.6 and the smallness
assumptions of Subsect. 7.7, the following commutator estimates hold on MT(Boot),U0

(see Subsect. 7.2 regarding the vectorfield operator notation):

∣∣∣P 	I f −P
	I ′ f
∣∣∣ � ε1/2

∣∣∣P [1,N ]∗ f
∣∣∣+

∣∣∣P [1,�N/2�]∗ f
∣∣∣
∣∣∣P≤N γ

∣∣∣ . (8.19a)

Moreover, if 1 ≤ N ≤ 17 and 	I is as above, then the following commutator
estimates hold:

∣∣∣[∇/ 2,PN ] f
∣∣∣ � ε1/2

∣∣∣P [1,N ]∗ f
∣∣∣+

∣∣∣P [1,�N/2�]∗ f
∣∣∣
∣∣∣P≤N+1γ

∣∣∣ , (8.20a)
∣∣∣[/ ,PN ] f

∣∣∣ � ε1/2
∣∣∣P [1,N+1]∗ f

∣∣∣+
∣∣∣P [1,�N/2�]∗ f

∣∣∣
∣∣∣P≤N+1γ

∣∣∣ , (8.20b)

∣∣∣L/ 	IPξ − L/ 	I ′Pξ

∣∣∣ � ε1/2
∣∣∣L/[1,N ]P ξ

∣∣∣+
∣∣∣L/≤�N/2�

P ξ

∣∣∣
∣∣∣P≤N+1γ

∣∣∣ , (8.21a)
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∣∣∣[∇/ ,L/N
P ]ξ

∣∣∣ � ε1/2
∣∣∣L/≤[1,N−1]

P ξ

∣∣∣
︸ ︷︷ ︸

Absent if N=1

+
∣∣∣L/≤�N/2�

P ξ

∣∣∣
∣∣∣P≤N+1γ

∣∣∣ , (8.21b)

∣∣∣[div/ ,L/N
P ]ξ

∣∣∣ � ε1/2
∣∣∣L/[1,N ]P ξ

∣∣∣+
∣∣∣L/≤�N/2�

P ξ

∣∣∣
∣∣∣P≤N+1γ

∣∣∣ . (8.21c)

Finally, if 1 ≤ N ≤ 17, then we have the following alternate version of (8.20a):

∣∣∣[∇/ 2,PN ] f
∣∣∣ �

∣∣∣P≤�N/2�+1γ
∣∣∣
∣∣∣P [1,N ]∗ f

∣∣∣+
∣∣∣P [1,�N/2�]∗ f

∣∣∣
∣∣∣P≤N+1γ

∣∣∣ . (8.22)

Proof See Subsect. 8.2 for some comments on the analysis. We first prove (8.19a).
Using (5.4a) and Lemma 2.9, we see that it suffices to bound

∑
N1+N2≤N−1

∣∣∣L/N1
P

(Y )π/#
L

∣∣∣
∣∣∣YPN2 f

∣∣∣ . (8.23)

The desired bound of (8.23) by � RHS (8.19a) now follows easily from (8.15a) and
the bootstrap assumptions.

The proof of (8.21a) is similar but relies on (5.4b) in place of (5.4a) and also (8.5)

with V := (Zιk2
)
π/#

Zιk1
(to handle the first Lie derivative operator on RHS (5.4b)).

The proofs of (8.20a), (8.20b), and (8.22) are similar and are based on the commu-
tation identities (5.3a)–(5.3b), the identity (2.58), and the estimate (8.18a).

The proofs of (8.21b)–(8.21c) are similar and are based on the commutation iden-
tities (5.1)–(5.2) � 
Lemma 8.8 (Mixed Pu-transversal-tangent commutator estimates). Assume that

1 ≤ N ≤ 18. Let Z 	I be a Z -multi-indexed operator containing exactly one X̆
factor, and assume that | 	I | := N +1. Let 	I ′ be any permutation of 	I . Let f be a scalar
function. Under the data-size and bootstrap assumptions of Subsects. 7.4–7.6 and the
smallness assumptions of Subsect. 7.7, the following commutator estimates hold on
MT(Boot),U0 (see Subsect. 7.2 regarding the vectorfield operator notation):

∣∣∣Z 	I f −Z
	I ′ f
∣∣∣ �

∣∣∣P [1,N ]∗ f
∣∣∣+ ε1/2

∣∣∣YZ ≤N−1;1 f
∣∣∣

+
∣∣∣P [1,�N/2�]∗ f

∣∣∣
∣∣∣∣∣

(
P [1,N ]∗ γ

Z ≤N ;1∗ γ

)∣∣∣∣∣+
∣∣∣YZ ≤�N/2�−1;1 f

∣∣∣
∣∣∣P≤N γ

∣∣∣ .
(8.24)

Moreover, if 1 ≤ N ≤ 17, then the following estimates hold:

∣∣∣[∇/ 2,Z N ;1] f
∣∣∣ �

∣∣∣Z ≤N ;1∗ f
∣∣∣+

∣∣∣P≤�N/2� f
∣∣∣
∣∣∣∣∣

(
P [1,N+1]∗ γ

Z ≤N+1;1∗ γ

)∣∣∣∣∣
+
∣∣∣Z ≤�N/2�∗ f

∣∣∣
∣∣∣P≤N+1γ

∣∣∣ , (8.25a)
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∣∣∣[/ ,Z N ;1] f
∣∣∣ �

∣∣∣Z ≤N+1;1∗ f
∣∣∣+

∣∣∣P≤�N/2� f
∣∣∣
∣∣∣∣∣

(
P [1,N+1]∗ γ

Z ≤N+1;1∗ γ

)∣∣∣∣∣
+
∣∣∣Z ≤�N/2�∗ f

∣∣∣
∣∣∣P≤N+1γ

∣∣∣ . (8.25b)

Proof See Subsect. 8.2 for some comments on the analysis. The proof is similar to
that of Lemma 8.7, so we only sketch it by highlighting the few differences worth
mentioning. To illustrate the differences, we prove (8.24) in detail. To proceed, we
argue as in the proof of (8.23) and use that precisely one factor of Z 	I is equal to X̆ ,
thereby deducing that

LHS (8.5.6) �
∑

N1+N2≤N−1

∣∣∣L/N1
P

(X̆)π/#
L

∣∣∣
∣∣∣YPN2 f

∣∣∣+
∑

N1+N2≤N−1

∣∣∣L/N1
P

(Y )π/#
X̆

∣∣∣
∣∣∣YPN2 f

∣∣∣

+
∑

N1+N2≤N−1

∣∣∣L/N1;1
Z

(Y )π/#
L

∣∣∣
∣∣∣YPN2 f

∣∣∣

+
∑

N1+N2≤N−1

∣∣∣L/N1
P

(Y )π/#
L

∣∣∣
∣∣∣YZ N2;1 f

∣∣∣ . (8.26)

The key point in (8.26) is that all �t,u-projected Lie derivatives that fall on (X̆)π/#
L or

(Y )π/#
X̆

are with respect to vectorfields in P . The desired bound (8.24) now follows
easily from the estimates (8.15a)–(8.17b) and the bootstrap assumptions. Note that the
first term on RHS (8.17a) is not necessarily small and hence, in contrast to (8.19a),
we do not gain a smallness factor of ε1/2 in front of the first term on RHS (8.24).

The remaining estimates stated in Lemma 8.8 can be proved by making similar
modifications to our proof of Lemma 8.7 and employing the estimates of Lemma 8.6.

� 
Corollary 8.9 Assume that 1 ≤ N ≤ 18. Under the assumptions of Lemma 8.8, the
following pointwise estimates hold on MT(Boot),U0 :

∣∣∣PN−1/


∣∣∣ �
∣∣∣P≤N+1


∣∣∣+
∣∣∣P≤N γ

∣∣∣ . (8.27)

Proof See Subsect. 8.2 for some comments on the analysis. Writing PN−1/
 =
/PN−1
+[PN−1,/ ]
, we see that the corollary is a simple consequence of (8.2),
(8.20b) with f = 
, and the bootstrap assumptions. � 

8.6 Transport Inequalities and Improvements of the Auxiliary Bootstrap
Assumptions

In the next proposition, we use the previous estimates to derive transport inequali-
ties for the eikonal function quantities and improvements of the auxiliary bootstrap
assumptions. The transport inequalities form the starting point for our derivation of
L2 estimates for the below-top-order derivatives of the eikonal function quantities
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(see Subsect. 14.2). In proving the proposition, we must in particular propagate the
smallness of the ε̊-sized quantities even though some terms in the evolution equations
involve δ̊-sized quantities, which are allowed to be large. To this end, we must find
and exploit effective partial decoupling between various quantities, which is present
because of the special structure of the evolution equations relative to the geometric
coordinates and because of the good properties of the commutation vectorfield sets
Z and P .

Proposition 8.10 (Transport inequalities and improvements of the auxiliary
bootstrap assumptions). Under the data-size and bootstrap assumptions of Sub-
sects. 7.4–7.6 and the smallness assumptions of Subsect. 7.7, the following estimates
hold on MT(Boot),U0 (see Subsect. 7.2 regarding the vectorfield operator notation):
Transport inequalities for the eikonal function quantities.

• Transport inequalities for μ. The following pointwise estimate holds:

|Lμ| �
∣∣∣Z ≤1


∣∣∣ . (8.28a)

Moreover, for 1 ≤ N ≤ 18, the following estimates hold:

∣∣∣LPN μ
∣∣∣ ,
∣∣∣PN Lμ

∣∣∣ �
∣∣∣Z ≤N+1;1∗ 


∣∣∣+
∣∣∣P≤N γ

∣∣∣+ ε

∣∣∣P [1,N ]∗ γ
∣∣∣ . (8.28b)

• Transport inequalities for Li
(Small) and trg/χ. For N ≤ 18, the following estimates

hold:

∣∣∣∣
(

LPN Li
(Small)

LPN−1trg/χ

)∣∣∣∣ ,
∣∣∣∣
(
PN L Li

(Small)
PN−1Ltrg/χ

)∣∣∣∣ �
∣∣∣P≤N+1


∣∣∣+ ε

∣∣∣P≤N γ
∣∣∣ ,

(8.29a)

∣∣∣∣
(

LZ N ;1Li
(Small)

LZ N−1;1trg/χ

)∣∣∣∣ ,
∣∣∣∣
(
Z N ;1L Li

(Small)
Z N−1;1Ltrg/χ

)∣∣∣∣ �
∣∣∣Z ≤N+1;1∗ 


∣∣∣+
∣∣∣∣∣

(
εP [1,N ]∗ γ

Z ≤N ;1∗ γ

)∣∣∣∣∣ .
(8.29b)

L∞ estimates for 
 and the eikonal function quantities.

• L∞ estimates involving at most one transversal derivative of 
. The following
estimates hold:

∥∥∥X̆

∥∥∥

L∞(�u
t )
≤
∥∥∥X̆


∥∥∥
L∞(�u

0 )
+ Cε, (8.30a)

∥∥∥Z ≤10;1∗ 


∥∥∥
L∞(�u

t )
≤ Cε. (8.30b)
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• L∞ estimates for μ. The following estimates hold:

‖Lμ‖L∞(�u
t )
= 1

2

∥∥∥GL L X̆

∥∥∥

L∞(�u
0 )
+O(ε),

(8.31a)∥∥∥LP [1,9]μ
∥∥∥

L∞(�u
t )
,

∥∥∥P [1,9]∗ μ
∥∥∥

L∞(�u
t )
≤ Cε, (8.31b)

‖μ− 1‖L∞(�u
t )
≤ 2δ̊−1∗

∥∥∥GL L X̆

∥∥∥

L∞(�u
0 )
+ Cε. (8.32a)

• L∞ estimates for Li
(Small) and χ. The following estimates hold:

∥∥∥LP≤10 Li
(Small)

∥∥∥
L∞(�u

t )
,

∥∥∥P≤10 Li
(Small)

∥∥∥
L∞(�u

t )
≤ Cε, (8.33a)

∥∥∥LZ ≤9;1Li
(Small)

∥∥∥
L∞(�u

t )
,

∥∥∥Z ≤9;1∗ Li
(Small)

∥∥∥
L∞(�u

t )
≤ Cε, (8.33b)

∥∥∥X̆ Li
(Small)

∥∥∥
L∞(�u

t )
≤
∥∥∥X̆ Li

(Small)

∥∥∥
L∞(�u

0 )
+ Cε,

(8.33c)

∥∥∥L/≤9
P χ

∥∥∥
L∞(�u

t )
,

∥∥∥L/≤9
P χ#

∥∥∥
L∞(�u

t )
,

∥∥∥P≤9trg/χ
∥∥∥

L∞(�u
t )
≤ Cε, (8.34)

∥∥∥L/≤8;1
Z χ

∥∥∥
L∞(�u

t )
,

∥∥∥L/≤8;1
Z χ#

∥∥∥
L∞(�u

t )
,

∥∥∥Z ≤8;1trg/χ
∥∥∥

L∞(�u
t )
≤ Cε. (8.35)

Remark 8.1 (The auxiliary bootstrap assumptions of Subsect. 7.6 are now redun-
dant). Since Prop. 8.10 in particular provides an improvement of the auxiliary
bootstrap assumptions of Subsect. 7.6, we do not bother to include those bootstrap
assumptions in the hypotheses of any of the lemmas or propositions proved in the
remainder of the article.

Proof of Prop. 8.10 See Subsect. 8.2 for some comments on the analysis. We must
derive the estimates in a viable order. Throughout this proof, we use the estimates
of Lemma 7.3 and the assumption (7.14) without explicitly mentioning them each
time. We refer to these as “conditions on the data.” Similarly, when we say that we
use the “bootstrap assumptions,” we mean the assumptions on MT(Boot),U0 stated in
Subsects. 7.4–7.6.

Proof of the estimates (8.29a) for LPN Li
(Small) and PN L Li

(Small) and (8.33a): We

prove the estimate (8.29a) for LPN Li
(Small) and omit the proof forPN L Li

(Small); the
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proof of the latter estimate is similar but simpler because it involves fewer commutation
estimates. To derive the desired bound, in place of (8.29a), we first show that

∣∣∣LPN Li
(Small)

∣∣∣ �
∣∣∣P≤N+1


∣∣∣+ ε1/2
∣∣∣P≤N γ

∣∣∣ . (8.36)

The factors of ε1/2 in (8.36) arise from the auxiliary bootstrap assumptions of Sub-
sect. 7.6. At the end of the proof, we will have shown that the auxiliary bootstrap
assumptions have been improved in that they hold with Cε in place of ε1/2. Using this
improvement, we easily conclude (8.29a) for LPN Li

(Small) by repeating the proof

of (8.36) with Cε in place of the factor ε1/2. To prove (8.36), we commute equation
(2.63) with PN and use Lemma 2.19 to derive the schematic equation

LPN Li
(Small) = [L ,PN ]Li

(Small) +PN
{

f(γ, g/−1, d/x1, d/x2)P

}
. (8.37)

To bound the second term on RHS (8.37) by RHS (8.36), we use Lemmas 8.4 and 8.5

and the bootstrap assumptions. To bound the remaining term
∣∣∣[L ,PN ]Li

(Small)

∣∣∣, we

use the commutator estimate (8.19a) with f = Li
(Small) and the bootstrap assump-

tions. We have thus proved the desired bound (8.36). Next, to derive the estimate∥∥∥LP≤10 Li
(Small)

∥∥∥
L∞(�u

t )
� ε stated in (8.33a), we use (8.36) and the bootstrap

assumptions. To obtain the estimates
∥∥∥P≤10 Li

(Small)

∥∥∥
L∞(�u

t )
� ε stated in (8.33a),

we first use the fundamental theorem of calculus to write

P≤10 Li
(Small)(t, u, ϑ) =P≤10 Li

(Small)(0, u, ϑ)+
∫ t

s=0
LP≤10 Li

(Small)(s, u, ϑ) ds.

(8.38)

We then use the conditions on the data to bound
∣∣∣P≤10 Li

(Small)(0, u, ϑ)
∣∣∣ � ε and the

inequality
∥∥∥LP≤10 Li

(Small)

∥∥∥
L∞(�u

t )
� ε to bound the time integral on RHS (8.38) by

� T(Boot)ε � ε, which in total yields the desired result.

Proof of (8.28a): We first use equation (2.62) and Lemma 2.19 to deduce Lμ =
f(γ)P
+f(γ)X̆
. The desired estimate (8.28a) now follows easily from the previous
expression and the bootstrap assumptions.

Proof of (8.30a) and (8.30b): We first note that in proving (8.30b), we may assume that
the operator Z ≤10;1∗ contains the factor X̆ since otherwise the estimate is implied by
the bootstrap assumption (BA
). To proceed, we use equation (2.73a), Lemma 2.19,
and the aforementioned fact Lμ = f(γ)P
 + f(γ)X̆
 to rewrite the wave equation
as

L X̆
 = f(γ)/
 + f(γ, g/−1, d/x1, d/x2, P
, X̆
)P P


+ f(γ, g/−1, d/x1, d/x2, P
, X̆
)Pγ. (8.39)
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Commuting (8.39) with PN , (0 ≤ N ≤ 9), and using Lemmas 8.4 and 8.5 and the
bootstrap assumptions, we find that

∣∣∣LPN X̆

∣∣∣ ≤

∣∣∣LPN X̆
 −PN L X̆

∣∣∣+

∣∣∣PN L X̆

∣∣∣

�
∣∣∣LPN X̆
 −PN L X̆


∣∣∣+
∣∣∣[/ ,PN ]


∣∣∣
+
∣∣∣P≤N+2;1


∣∣∣+ ε1/2
∣∣∣Z ≤N+1;1∗ 


∣∣∣+
∣∣∣P≤N+1γ

∣∣∣+ε1/2
∣∣∣P [1,N ]∗ γ

∣∣∣ .
(8.40)

Using in addition the commutator estimates (8.24) and (8.20b) with f = 
, we bound
the two commutator terms on the second line of RHS (8.40) by � the terms on the
last line of RHS (8.40). The bootstrap assumptions imply that most terms on the last
line of (8.40) are � ε. The exceptional terms (that is, the ones not included in “most
terms”) are P≤10 Li

(Small) for i = 1, 2, but we have already shown that these terms are

bounded in the norm ‖·‖L∞(�u
t )

by � ε. In total, we find that
∥∥∥LP≤9 X̆


∥∥∥
L∞(�u

t )
� ε.

Integrating along the integral curves of L as in (8.38) and using the conditions on the

data, we conclude (8.30a) and also the estimate
∥∥∥P [1,9] X̆


∥∥∥
L∞(�u

t )
� ε. Moreover,

we use the commutator estimate (8.24) with f = 
 and the bootstrap assumptions
to commute the factor of X̆ in Z ≤10;1∗ so that it hits 
 first, thereby concluding that∥∥∥Z ≤10;1∗ 


∥∥∥
L∞(�u

t )
�
∥∥∥P [1,9] X̆


∥∥∥
L∞(�u

t )
+ ε � ε. We have thus proved the desired

bound (8.30b).

Proof of (8.31a) and (8.32a): To derive (8.31a), we first use equation (2.62) and
Lemma 2.19 to write Lμ = 1

2 GL L X̆
 + f(γ)P
. From the previous expression and

the bootstrap assumptions, we deduce that ‖Lμ‖L∞(�u
t )
= 1

2

∥∥∥GL L X̆

∥∥∥

L∞(�u
t )
+

O(ε). Next, we use Lemma 2.19 to deduce that GL L X̆
 = f(γ)X̆
. Applying L to

the previous expression and using the bounds
∥∥∥L Li

(Small)

∥∥∥
L∞(�u

t )
,
∥∥∥L X̆


∥∥∥
L∞(�u

t )
� ε

proven above and the bootstrap assumptions, we find that
∥∥∥L(GL L X̆
)

∥∥∥
L∞(�u

t )
� ε.

Integrating along the integral curves of L as in (8.38) and using the previous inequality,

we find that
∥∥∥GL L X̆


∥∥∥
L∞(�u

t )
=
∥∥∥GL L X̆


∥∥∥
L∞(�u

0 )
+O(ε). Inserting this estimate

into the first estimate of this paragraph, we conclude (8.31a). The estimate (8.32a)
then follows from integrating along the integral curves of L as in (8.38) and using
(8.31a), the conditions on the data, and the assumption T(Boot) ≤ 2δ̊−1∗ .

Proof of (8.28b) and (8.31b): We now prove (8.28b) for LPN μ. The proof forPN Lμ

is similar but simpler because it involves fewer commutation estimates; we omit these
details. To proceed, in place of (8.28b), we first prove that

∣∣∣LPN μ
∣∣∣ �

∣∣∣Z ≤N+1;1∗ 


∣∣∣+
∣∣∣P≤N γ

∣∣∣+ ε1/2
∣∣∣P [1,N ]∗ γ

∣∣∣ . (8.41)
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As we described above, at the end of the proof, we will have shown that the auxiliary
bootstrap assumptions have been improved in that they hold with Cε in place of ε1/2

and this improvement implies that (8.41) holds with Cε in place of ε1/2 as desired.
To prove (8.41), we commute the equation Lμ = f(γ)P
 + f(γ)X̆
 (see equation
(2.62) and Lemma 2.19) with PN to deduce the schematic identity

LPN μ = [L ,PN ]μ+PN
{

f(γ)X̆
 + f(γ)P

}
. (8.42)

To bound the second term on RHS (8.42) by RHS (8.41), we use the already proven
bound (8.33a) and the bootstrap assumptions. To bound the term [L ,PN ]μ on
RHS (8.42) by RHS (8.41), we use the commutator estimate (8.19a) with f = μ

and the bootstrap assumptions. To prove the estimate
∥∥LP [1,9]μ

∥∥
L∞(�u

t )
� ε

stated in (8.31b), we use (8.41), the already proven bounds (8.33a) and (8.30b), and

the bootstrap assumptions. The estimate (8.31b) for
∥∥∥P [1,9]∗ μ

∥∥∥
L∞(�u

t )
then follows

from integrating along the integral curves of L as in (8.38) and using the estimate∥∥LP [1,9]μ
∥∥

L∞(�u
t )

� ε and the conditions on the data.

Proof of (8.29b) for LZ N ;1Li
(Small) andZ

N ;1L Li
(Small) and (8.33b): We now prove

(8.29b) for LZ N ;1Li
(Small). The proof of (8.29b) for Z N ;1L Li

(Small) is similar but
simpler because it involves fewer commutation estimates; we omit these details. We
may assume that Z N ;1 contains a factor X̆ since otherwise the desired estimate is
implied by (8.29a). The proof is similar to the proof of (8.36), the new feature being

that we need to exploit the already proven estimates
∥∥∥P≤10 Li

(Small)

∥∥∥
L∞(�u

t )
� ε

and
∥∥∥Z ≤10;1∗ 


∥∥∥
L∞(�u

t )
� ε. To proceed, we note that (8.37) holds with Z N ;1 in

place of PN on both sides and that the non-commutator term is easy to bound
by using arguments similar to the ones we used in proving (8.29a). It remains

for us to bound the commutator term
∣∣∣[L ,Z N ;1]Li

(Small)

∣∣∣ by � RHS (8.29b).

This estimate follows from the commutator estimate (8.24) with f = Li
(Small),

the already proven estimate for P≤10 Li
(Small) mentioned above (to bound the fac-

tor
∣∣∣P [1,�N/2�]∗ f

∣∣∣ from the second line of RHS (8.24) by � ε), and the bootstrap

assumptions. We have thus obtained the desired estimate (8.29b) for LZ N ;1Li
(Small).

Next, from from the estimate (8.29b) for LZ N ;1Li
(Small), the already proven esti-

mates
∥∥∥P≤10 Li

(Small)

∥∥∥
L∞(�u

t )
� ε and

∥∥∥Z ≤10;1∗ 


∥∥∥
L∞(�u

t )
� ε, and the bootstrap

assumptions, we find that
∥∥∥LZ ≤9;1Li

(Small)

∥∥∥
L∞(�u

t )
� ε. This completes the proof

of (8.33b) for the first term
∥∥∥LZ ≤9;1Li

(Small)

∥∥∥
L∞(�u

t )
on the LHS. Integrating

along the integral curves of L as in (8.38) and using the estimate (8.33b) for∥∥∥LZ ≤9;1Li
(Small)

∥∥∥
L∞(�u

t )
as well as the conditions on the data, we conclude the

estimate (8.33b) for
∥∥∥Z ≤9;1∗ Li

(Small)

∥∥∥
L∞(�u

t )
as well as (8.33c).
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Proof of (8.34) and (8.35): These two estimates follow from Lemma 8.5,

the already proven estimates
∥∥∥Z ≤10;1∗ 


∥∥∥
L∞(�u

t )
,

∥∥∥P≤10 Li
(Small)

∥∥∥
L∞(�u

t )
,

∥∥∥∥Z ≤9;1∗ Li
(Small)

∥∥∥∥
L∞(�u

t )

� ε and the bootstrap assumptions.

Proof of the estimate (8.29a) for PN−1Ltrg/χ: We first take the g/−trace of equa-
tion (2.72a), apply L , and use the schematic identity L/L g/−1 = (g/−1)−2χ =
f(γ, g/−1, d/x1, d/x2)Pγ to deduce that Ltrg/χ = f(γ, g/−1, d/x1, d/x2)P Lγ+l.o.t., where
l.o.t. := f(P≤1γ, g/−1, d/x1, d/x2)Pγ + f(γ,L/≤1

P g/−1, d/x1, d/x2)Pγ +
f(γ, g/−1, d/P≤1x1, d/P≤1x2)Pγ. We now apply PN−1 to this identity and use

Lemmas 8.4 and 8.5 and the already proven estimates
∥∥∥Z ≤10;1∗ 


∥∥∥
L∞(�u

t )
� ε

and
∥∥∥Z ≤9;1∗ Li

(Small)

∥∥∥
L∞(�u

t )
� ε, which implies that

∣∣PN−1Ltrg/χ
∣∣ �

∑2
i=1∣∣∣PN+1Li

(Small)

∣∣∣+ RHS (8.29a), where PN+1 contains a factor of L . We may com-

mute the factor of L to the front using the commutator estimate (8.24) with f =
Li
(Small), the already proven estimate for P≤10 Li

(Small) mentioned above (to bound

the factor
∣∣∣P [1,�N/2�]∗ f

∣∣∣ from the second line of RHS (8.24) by � ε), and the boot-

strap assumptions, which yields
∣∣∣PN+1Li

(Small)

∣∣∣ �
∣∣∣LPN Li

(Small)

∣∣∣+ RHS (8.29a).

Moreover, we have already shown that
∣∣∣LPN Li

(Small)

∣∣∣ � RHS (8.29a). We have thus

proved the estimate for
∣∣PN−1Ltrg/χ

∣∣ stated in (8.29a). To obtain the same estimate
for

∣∣LPN−1trg/χ
∣∣, we use the commutator estimate (8.19a) with f = trg/χ, (8.13a), the

already proven estimates
∥∥∥Z ≤10;1∗ 


∥∥∥
L∞(�u

t )
� ε and

∥∥∥Z ≤9;1∗ Li
(Small)

∥∥∥
L∞(�u

t )
� ε to

deduce that
∣∣LPN−1trg/χ

∣∣ �
∣∣PN−1Ltrg/χ

∣∣+ ε
∣∣P≤N γ

∣∣. The desired bound (8.29a)
for

∣∣LPN−1trg/χ
∣∣ now follows from this estimate and the one we established for∣∣PN−1Ltrg/χ

∣∣ just above.

Proof sketch of the estimate (8.29b) for LZ N−1;1trg/χ andZ N−1;1Ltrg/χ: The proof
is much like the proof of the estimates for PN−1Ltrg/χ and LPN−1trg/χ given in the
previous paragraph. The only notable change is that we must use the commutator esti-
mate (8.24) with f = trg/χ (in place of the one (8.19a) used in the previous paragraph)
in order to obtain the estimate for LZ N−1;1trg/χ from the one for Z N−1;1Ltrg/χ.

We remark that all factors leading to the gain of the factor ε on RHS (8.29b) have
already been bounded in ‖ · ‖L∞ by � ε. � 

The following corollary is an immediate consequence of the fact that we have
improved the auxiliary bootstrap assumptions by showing that they hold with ε1/2

replaced by Cε.

Corollary 8.11 (ε1/2 canbe replacedbyCε). All prior inequalities whose right-hand
sides feature an explicit factor of ε1/2 remain true with ε1/2 replaced by Cε.
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9 L∞ Estimates Involving Higher Transversal Derivatives

Our energy estimates are difficult to derive when μ is small because some prod-
ucts in the energy identities contain the dangerous factor 1/μ. In order to control
the degeneracy, we rely on the estimate ‖X̆ X̆μ‖L∞(�u

t )
� 1. In particular, we use

this estimate in proving inequality (10.13) (see the estimate (10.32)), which is essen-
tial for showing that the low-order energies do not blow up as μ → 0. We derive
the bound ‖X̆ X̆μ‖L∞(�u

t )
� 1 by commuting the evolution equation (2.62) for μ

with up to two factors of X̆ . Since RHS (2.62) depends on X̆
 and Li
(Small), in

order to derive the desired bound, we must obtain estimates for ‖X̆ X̆ X̆
‖L∞(�u
t )

,

‖X̆ X̆ Li
(Small)‖L∞(�u

t )
, etc. We provide the necessary estimates in Sect. 9. The main

result is
Prop. 9.2.

9.1 Auxiliary Bootstrap Assumptions

To facilitate the analysis, we introduce the following auxiliary bootstrap assumptions.
In Prop. 9.2, we derive strict improvements of the assumptions based on our assump-
tions (7.3) on the data.

Auxiliary bootstrap assumptions for small quantities. We assume that the follow-
ing inequalities hold onMT(Boot),U0 (see Subsect. 7.2 regarding the vectorfield operator
notation):

∥∥∥Z ≤4;2∗ 


∥∥∥
L∞(�u

t )
≤ ε1/2, (BA′1
)

∥∥∥X̆Yμ
∥∥∥

L∞(�u
t )
,

∥∥∥X̆ L Lμ
∥∥∥

L∞(�u
t )
,

∥∥∥X̆Y Yμ
∥∥∥

L∞(�u
t )
,

∥∥∥X̆ LYμ
∥∥∥

L∞(�u
t )
≤ ε1/2,

(BA′1μ)

and

(BA′1μ) also holds for all permutations of the vectorfield operators on LHS (BA′1μ),
(BA′′1μ)

∥∥∥Z ≤3;2∗ Li
(Small)

∥∥∥
L∞(�u

t )
≤ ε1/2. (BA′1L(Small))

Auxiliary bootstrap assumptions for quantities that are allowed to be large. We
assume that the following inequalities hold on MT(Boot),U0 :

∥∥∥X̆ M


∥∥∥
L∞(�u

t )
≤
∥∥∥X̆ M


∥∥∥
L∞(�u

0 )
+ ε1/2, (2 ≤ M ≤ 3), (BA′2
)
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∥∥∥L X̆ Mμ
∥∥∥

L∞(�u
t )
≤ 1

2

∥∥∥X̆ M
{

GL L X̆

}∥∥∥

L∞(�u
0 )
+ ε1/2, (1 ≤ M ≤ 2),

(BA′2μ)

∥∥∥X̆ Mμ
∥∥∥

L∞(�u
t )

≤
∥∥∥X̆ Mμ

∥∥∥
L∞(�u

0 )
+ 2δ̊−1∗

∥∥∥X̆ M
{

GL L X̆

}∥∥∥

L∞(�u
0 )
+ ε1/2,

(1 ≤ M ≤ 2), (BA′3μ)

∥∥∥X̆ X̆ Li
(Small)

∥∥∥
L∞(�u

t )
≤
∥∥∥X̆ X̆ Li

(Small)

∥∥∥
L∞(�u

0 )
+ ε1/2. (BA′2L(Small))

9.2 Commutator Estimates Involving Two Transversal Derivatives

In this subsection, we provide some basic commutation estimates that complement
those of Subsect. 8.5.

Lemma 9.1 (Mixed Pu-transversal-tangent commutator estimates involving two
X̆ derivatives). Let Z 	I be a Z -multi-indexed operator containing exactly two X̆
factors, and assume that 3 ≤ | 	I | := N +1 ≤ 4. Let 	I ′ be any permutation of 	I . Under
the data-size and bootstrap assumptions of Subsects. 7.4–7.5 and Subsect. 9.1 and
the smallness assumptions of Subsect. 7.7, the following commutator estimates hold
for functions f on MT(Boot),U0 (see Subsect. 7.2 regarding the vectorfield operator
notation):

∣∣∣Z 	I f −Z
	I ′ f
∣∣∣ �

∣∣∣YZ ≤N−1;1 f
∣∣∣+ ε

∣∣∣YZ ≤N−1;2 f
∣∣∣

︸ ︷︷ ︸
Absent if N=2

. (9.1)

Moreover, we have

∣∣∣[/ , X̆ X̆ ] f
∣∣∣ �

∣∣∣YZ ≤2;1 f
∣∣∣ . (9.2)

Proof See Subsect. 8.2 for some comments on the analysis. To prove (9.1), we split
the terms on RHS (5.4a) into the case where at most one X̆ derivative falls on f and
the case where both X̆ derivatives fall on f . In the former case, at most two derivatives
fall on the deformation tensors, while in the latter case, at most one derivative (which
must be Pu-tangent) falls on them. We thus find that

LHS (9.1) �
{∣∣∣L/≤2;2

Z
(Y )π/#

L

∣∣∣+
∣∣∣L/≤2;1

Z
(X̆)π/#

L

∣∣∣+
∣∣∣L/≤2;1

Z
(Y )π/#

X̆

∣∣∣
} ∣∣∣YZ ≤N−1;1 f

∣∣∣
+
{∣∣∣L/≤1

P
(Y )π/#

L

∣∣∣+
∣∣∣L/≤1

P
(Y )π/#

X̆

∣∣∣
} ∣∣∣YZ ≤N−1;2 f

∣∣∣ . (9.3)
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From the identities (2.76b), (2.78b), and (2.78c) and Lemma 2.19, we deduce that the

terms in braces on the first line of RHS (9.3) are �
∣∣∣L/≤2;2

Z f(P≤1γ, g/−1, d/x1, d/x2)

∣∣∣+∣∣∣L/≤2;1
Z f(P≤1γ, g/−1, d/x1, d/x2,Z ≤1
)

∣∣∣. We now show that both terms from the pre-

vious inequality are � 1, which yields the desired bound (this is a simple estimate,
where the main point that requires demonstration is that all terms in the braces
are sufficiently regular such that we have control of their relevant derivatives in
L∞). To handle the first term from the previous inequality, we first commute L/≤2;2

Z
under d/ and use that Z xi = Zi = f(γ) for Z ∈ Z to bound factors involv-

ing the derivatives of d/x by �
∣∣∣Z ≤2;1γ

∣∣∣. Moreover, using (2.58) and the fact that

g/ = f(γ, d/x1, d/x2), we deduce that
∣∣∣L/≤2;2

Z g/−1
∣∣∣ �

∣∣Z ≤2;2γ
∣∣ +

∣∣∣Z ≤2;1γ
∣∣∣. We thus

find that
∣∣∣L/≤2;2

Z f(P≤1γ, g/−1, d/x1, d/x2)

∣∣∣ �
∣∣Z ≤3;2γ

∣∣ +
∣∣∣Z ≤2;1γ

∣∣∣. From the L∞

estimates of Prop. 8.10 and the bootstrap assumptions of Subsect. 9.1, we deduce
that the RHS of the previous inequality is � 1 as desired. Similar reasoning yields

that
∣∣∣L/≤2;1

Z f(P≤1γ, g/−1, d/x1, d/x2,Z ≤1
)

∣∣∣ � 1, which completes the proof of the

bound for the terms in braces on the first line of RHS (9.3). To handle the terms in
braces on the second line of RHS (9.3), we use Lemma 8.6 and the L∞ estimates of
Prop. 8.10 to bound them by � ε. We have thus proved (9.1).

The proof of (9.2) is similar and relies on the commutation identity (5.3b) and the
estimates of Lemma 8.5; we omit the details. � 

9.3 The Main Estimates Involving Higher-Order Transversal Derivatives

In the next proposition, we provide the main estimates of Sect. 9. In particular, the
proposition yields strict improvements of the bootstrap assumptions of Subsect. 9.1.

Proposition 9.2 (L∞ estimates involving higher-order transversal derivatives).
Under the data-size and bootstrap assumptions of Subsects. 7.4–7.5 and Subsect. 9.1
and the smallness assumptions of Subsect. 7.7, the following estimates hold on
MT(Boot),U0 (see Subsect. 7.2 regarding the vectorfield operator notation):
L∞ estimates involving two or three transversal derivatives of 
.

∥∥∥LZ ≤4;2∗ 


∥∥∥
L∞(�u

t )
≤ Cε, (9.4a)

∥∥∥Z ≤4;2∗ 


∥∥∥
L∞(�u

t )
≤ Cε, (9.4b)

∥∥∥X̆ X̆

∥∥∥

L∞(�u
t )
≤
∥∥∥X̆ X̆


∥∥∥
L∞(�u

0 )
+ Cε, (9.4c)

∥∥∥L X̆ X̆ X̆

∥∥∥

L∞(�u
t )
≤ Cε, (9.4d)

∥∥∥X̆ X̆ X̆

∥∥∥

L∞(�u
t )
≤
∥∥∥X̆ X̆ X̆


∥∥∥
L∞(�u

0 )
+ Cε. (9.4e)
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L∞ estimates involving one or two transversal derivatives of μ.

∥∥∥L X̆μ
∥∥∥

L∞(�u
t )
≤ 1

2

∥∥∥X̆
(

GL L X̆

)∥∥∥

L∞(�u
0 )
+ Cε, (9.5a)

∥∥∥X̆μ
∥∥∥

L∞(�u
t )
≤
∥∥∥X̆μ

∥∥∥
L∞(�u

0 )
+ δ̊−1∗

∥∥∥X̆
(

GL L X̆

)∥∥∥

L∞(�u
0 )
+ Cε, (9.5b)

∥∥∥L X̆Yμ
∥∥∥

L∞(�u
t )
,

∥∥∥L X̆ L Lμ
∥∥∥

L∞(�u
t )
,

∥∥∥L X̆Y Yμ
∥∥∥

L∞(�u
t )
,

∥∥∥L X̆ LYμ
∥∥∥

L∞(�u
t )
≤ Cε,

(9.5c)∥∥∥X̆Yμ
∥∥∥

L∞(�u
t )
,

∥∥∥X̆ L Lμ
∥∥∥

L∞(�u
t )
,

∥∥∥X̆Y Yμ
∥∥∥

L∞(�u
t )
,

∥∥∥X̆ LYμ
∥∥∥

L∞(�u
t )
≤ Cε,

(9.5d)

(9.3.2c)− (9.3.2d) also hold for all permutations of the vectorfield operators

on the LHS, (9.5e)
∥∥∥L X̆ X̆μ

∥∥∥
L∞(�u

t )
≤ 1

2

∥∥∥X̆ X̆
(

GL L X̆

)∥∥∥

L∞(�u
0 )
+ Cε, (9.5f)

∥∥∥X̆ X̆μ
∥∥∥

L∞(�u
t )
≤
∥∥∥X̆ X̆μ

∥∥∥
L∞(�u

0 )
+ δ̊−1∗

∥∥∥X̆ X̆
(

GL L X̆

)∥∥∥

L∞(�u
0 )
+ Cε. (9.5g)

L∞ estimates involving one or two transversal derivatives of Li
(Small).

∥∥∥Z ≤3;2∗ Li
(Small)

∥∥∥
L∞(�u

t )
≤ Cε, (9.6a)

∥∥∥X̆ X̆ Li
(Small)

∥∥∥
L∞(�u

t )
≤
∥∥∥X̆ X̆ Li

(Small)

∥∥∥
L∞(�u

0 )
+ Cε. (9.6b)

Sharp pointwise estimates involving the critical factor GL L . Moreover, if 0 ≤ M ≤
2 and 0 ≤ s ≤ t < T(Boot), then we have the following estimates:

∣∣∣X̆ M GL L(t, u, ϑ)− X̆ M GL L(s, u, ϑ)
∣∣∣ ≤ Cε(t − s), (9.7)

∣∣∣X̆ M
{

GL L X̆

}
(t, u, ϑ)− X̆ M

{
GL L X̆


}
(s, u, ϑ)

∣∣∣ ≤ Cε(t − s). (9.8)

Furthermore, with L(Flat) = ∂t + ∂1, we have

Lμ(t, u, ϑ) = 1

2
GL(Flat)L(Flat) (
 = 0)X̆
(t, u, ϑ)+O(ε), (9.9)

where GL(Flat)L(Flat) (
 = 0) is a non-zero constant.

Remark 9.1 (The auxiliary bootstrap assumptions of Subsect. 9.1 are now redun-
dant). Since Prop. 9.2 in particular provides an improvement of the auxiliary bootstrap
assumptions of Subsect. 9.1, we do not bother to include those bootstrap assumptions
in the hypotheses of any of the lemmas or propositions proved in the remainder of the
article.
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Proof of Prop. 9.2 See Subsect. 8.2 for some comments on the analysis. We must
derive the estimates in a viable order. Throughout this proof, we use the estimates of
Lemma 7.3 and the assumption (7.14) without explicitly mentioning them each time.
We refer to these as “conditions on the data.” Similarly, when we say that we use “the
bootstrap assumptions,” we mean the assumptions stated in Subsect. 9.1.

Proof of (9.4a)–(9.4c): We may assume that the operator Z ≤4;2∗ contains two factors
of X̆ , since otherwise the desired estimates are implied by (8.30b). To proceed, we
commute the wave equation (8.39) with X̆PM , (0 ≤ M ≤ 2), and use Lemmas 8.4
and 8.5, the L∞ estimates of Prop. 8.10, and the bootstrap assumptions to deduce that

∣∣∣L X̆PM X̆

∣∣∣�
∣∣∣Z ≤M+3;1∗ 


∣∣∣+
∣∣∣Z ≤M+2;1∗ γ

∣∣∣+
∣∣∣[/ , X̆PM ]


∣∣∣+
∣∣∣[L , X̆PM ]X̆


∣∣∣ .
(9.10)

The L∞ estimates of Prop. 8.10 imply that the first two terms on RHS (9.10) are � ε.
Moreover, using in addition the commutator estimate (8.25b) with f = 
, we see

that
∣∣∣[/ , X̆PM ]


∣∣∣ is � the first term on RHS (9.10) and hence � ε as well.

To bound [L , X̆PM ]X̆
, we use the commutator estimate (8.24) with f = X̆
,

Cor. 8.11, and the L∞ estimates of Prop. 8.10 to deduce
∣∣∣[L , X̆PM ]X̆


∣∣∣ �∣∣∣Z ≤M+2;1∗ 


∣∣∣+ε
∣∣∣Z ≤M+2;2∗ 


∣∣∣. The estimates of Prop. 8.10 and the bootstrap assump-

tions imply that
∣∣∣Z ≤M+2;1∗ 


∣∣∣ � ε, while the bootstrap assumptions imply that

ε

∣∣∣Z ≤M+2;2∗ 


∣∣∣ � ε. Combining these estimates, we deduce that
∣∣∣L X̆PM X̆


∣∣∣ � ε.

Integrating along the integral curves of L as in (8.38) and using the previous estimate,

we find that
∥∥∥X̆PM X̆


∥∥∥
L∞(�u

t )
≤
∥∥∥X̆PM X̆


∥∥∥
L∞(�u

0 )
+ Cε. Using the previous

estimate and the conditions on the data, and using (9.1) with f = 
, the L∞ esti-
mates of Prop. 8.10, and the bootstrap assumptions to reorder the factors in the operator
X̆PM X̆ as desired (up to error terms bounded in ‖ · ‖L∞(�u

t )
by � ε), we conclude

the desired estimates (9.4b) and (9.4c). Finally, we similarly reorder the factors in

L X̆PM X̆
 and use the estimates
∣∣∣L X̆PM X̆


∣∣∣ � ε and (9.4b) to obtain (9.4a).

Proof of (9.7)–(9.8) in the cases 0 ≤ M ≤ 1: It suffices to prove

∣∣∣L X̆ M GL L

∣∣∣ ,
∣∣∣L X̆ M

{
GL L X̆


}∣∣∣ � ε, (9.11)

for once we have shown (9.11), we can obtain the desired estimates by integrating
along the integral curves of L from time s to t (in analogy with (8.38)) and using the
estimates (9.11). To proceed, we first use Lemma 2.19 to deduce that GL L = f(γ)
and GL L X̆
 = f(γ)X̆
. Hence, to obtain (9.11) when M = 0, we differentiate
these two identities with L and use the L∞ estimates of Prop. 8.10 and the bootstrap
assumptions. The proof is similar in the case M = 1, but we must also use the estimate
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∥∥∥L X̆ X̆

∥∥∥

L∞(�u
t )

� ε, which is a consequence of the previously established estimate

(9.4b).

Proof of (9.9): We first use (2.62), the fact that GL L ,GL X = f(γ) (see
Lemma 2.19), and the L∞ estimates of Prop. 8.10 to deduce that Lμ(t, u, ϑ) =
1
2 [GL L X̆
](t, u, ϑ)+O(ε). Since L0 = L0

(Flat) = 1, Li = Li
(Flat) + Li

(Small), and
Gαβ = Gαβ(
 = 0)+O(
), we can use the L∞ estimates of Prop. 8.10 to deduce
that GL L(t, u, ϑ) = GL(Flat)L(Flat) (
 = 0)+O(ε). Combining this estimate with the
previous one and using (8.30a), we conclude (9.9).

Proof of (9.5a)–(9.5e): Let 1 ≤ K ≤ 3 be an integer. We commute equation (2.62)
withZ K ;1 and use the aforementioned relations GL L ,GL X = f(γ), the L∞ estimates
of Prop. 8.10, and the bootstrap assumptions to deduce

∣∣∣LZ K ;1μ
∣∣∣ ≤ 1

2

∣∣∣Z K ;1 {GL L X̆

}∣∣∣+

∣∣∣Z ≤K+1;1∗ 


∣∣∣+
∣∣∣[L ,Z K ;1]μ

∣∣∣ . (9.12)

We now show that the last two terms on RHS (9.12) are � ε. We already proved∣∣∣Z ≤K+1;1∗ 


∣∣∣ � ε in Prop. 8.10. To bound [L ,Z K ;1]μ, we use the commutator esti-

mate (8.24) with f = μ, the L∞ estimates of Prop. 8.10, and Cor. 8.11 to deduce that∣∣[L ,Z K ;1]μ∣∣ �
∣∣∣P [1,K ]∗ μ

∣∣∣+ε
∣∣YZ ≤K−1;1μ

∣∣. The L∞ estimates of Prop. 8.10 imply

that
∣∣∣P [1,K ]∗ μ

∣∣∣ � ε, while the bootstrap assumptions imply that ε
∣∣YZ ≤K−1;1μ

∣∣ � ε

as well. We have thus shown that

∥∥∥LZ K ;1μ
∥∥∥

L∞(�u
t )
≤ 1

2

∥∥∥Z K ;1 {GL L X̆

}∥∥∥

L∞(�u
t )
+ Cε. (9.13)

We split the remainder of the proof into two cases, starting with the case Z K ;1 = X̆ .
Using the bound (9.8) with s = 0 and M = 1 (established above), we can replace the
norm ‖ · ‖L∞(�u

t )
on RHS (9.13) with the norm ‖ · ‖L∞(�u

0 )
plus an error term that is

bounded in the norm ‖ · ‖L∞(�u
t )

by ≤ Cε, which yields (9.5a). Integrating along the
integral curves of L as in (8.38), using the resulting estimate for

∥∥LZ K ;1μ
∥∥

L∞(�u
t )

,

and using the assumption T(Boot) ≤ 2δ̊−1∗ , we conclude (9.5b). In the remaining case,
Z K ;1 is not the operator X̆ . That is, K > 1 and Z K ;1 must contain a Pu-tangent
factor, which is equivalent to Z K ;1 = Z K ;1∗ . Recalling that GL L X̆
 = f(γ)X̆
 and
using the estimates of Prop. 8.10, the bootstrap assumptions, and (9.4b), we find that∥∥∥Z K ;1∗

{
GL L X̆


}∥∥∥
L∞(�u

t )
� ε. Thus, in this case, we have shown that RHS (9.13)

� ε as desired. Integrating along the integral curves of L as in (8.38) and using the

estimate
∥∥∥LZ K ;1∗ μ

∥∥∥
L∞(�u

t )
� ε just obtained, we conclude that

∥∥∥Z K ;1∗ μ
∥∥∥

L∞(�u
t )
≤

∥∥∥Z K ;1∗ μ
∥∥∥

L∞(�u
0 )
+ Cε. All bounds in (9.5c)–(9.5e) now follow from the previous

estimate and the conditions on the data except for the estimate (9.5e) concerning the
permutations of the vectorfields in (9.5c). To obtain the remaining estimate (9.5e), we
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use the commutation estimate (8.24) with f = μ, the L∞ estimates of Prop. 8.10, the
estimate (9.5d), and the bootstrap assumptions.

Proof of (9.6a) and (9.6b): We may assume that the operator Z ≤3;2∗ in (9.6a) contains
two factors of X̆ since otherwise the desired estimate is implied by (8.33b). To pro-
ceed, we express (2.71) in the schematic form X̆ Li

(Small) = f(γ, g/−1, d/x1, d/x2)X̆
+
f(γ, g/−1, d/x1, d/x2)P
 + f(g/−1, d/x1, d/x2)d/μ. We now apply P X̆ to this identity,
where P ∈ P . Using Lemmas 8.4 and 8.5, the L∞ estimates of Prop. 8.10, the
already proven estimates (9.4b), (9.5d), and (9.5e), and the bootstrap assumptions, we
deduce that

∣∣∣P X̆ X̆ Li
(Small)

∣∣∣ �
∣∣∣Z ≤3;2∗ 


∣∣∣+
∣∣∣Z ≤3;1∗ γ

∣∣∣+
∣∣∣YZ ≤2;1∗ μ

∣∣∣+
∣∣∣P [1,2]∗ μ

∣∣∣ � ε. (9.14)

Also using the commutator estimate (9.1) with f = Li
(Small) to reorder the factors of

the operator P X̆ X̆ as desired up to error terms bounded in the norm ‖·‖L∞(�u
t )

by � ε,

we conclude (9.6a). Moreover, a special case of (9.6a) is the bound
∣∣∣L X̆ X̆ Li

(Small)

∣∣∣ �
ε. Integrating along the integral curves of L as in (8.38) and using the previous estimate,
we conclude (9.6b).

Proof of (9.4d) and (9.4e): We commute equation (8.39) with X̆ X̆ and argue as in the
proof of (9.10) to deduce that

∣∣∣L X̆ X̆ X̆

∣∣∣ �

∣∣∣Z ≤4;2∗ 


∣∣∣+
∣∣∣Z ≤3;2∗ γ

∣∣∣+
∣∣∣[/ , X̆ X̆ ]


∣∣∣+
∣∣∣L X̆ X̆ X̆
 − X̆ X̆ L X̆


∣∣∣ .
(9.15)

We clarify that the proof of (9.15) requires the bounds
∣∣L/X̆L/X̆ g/−1

∣∣ , ∣∣L/X̆L/X̆ d/x
∣∣ � 1,

which we obtained in the proof of Lemma 9.1. Next, we note that the already proven

estimates (9.4b) and (9.6a) imply that
∣∣∣Z ≤4;2∗ 


∣∣∣ ,
∣∣∣Z ≤3;2∗ γ

∣∣∣ � ε. Next, we use (9.2)

with f = 
 to bound the commutator term
∣∣∣[/ , X̆ X̆ ]


∣∣∣ by � the first term on

RHS (9.15) (and hence it is � ε too). Next, we use (9.1) with f = X̆
 and N = 2

to deduce that
∣∣∣L X̆ X̆ X̆
 − X̆ X̆ L X̆


∣∣∣ �
∣∣∣Z ≤4;2∗ 


∣∣∣. As we have mentioned, we

already have shown that
∣∣∣Z ≤4;2∗ 


∣∣∣ � ε. Combining these estimates, we deduce that∣∣∣L X̆ X̆ X̆

∣∣∣ � ε, which implies (9.4d). Integrating along the integral curves of L as

in (8.38) and using the previous estimate, we conclude the desired estimate (9.4e).

Proof of (9.7)–(9.8) in the case M = 2: The proof is very similar to the proof given
above in the cases M = 0, 1, so we only highlight the main new ingredients needed in

the case M = 2: we must use the estimates
∣∣∣L X̆ X̆ X̆


∣∣∣ � ε and
∣∣∣L X̆ X̆ Li

(Small)

∣∣∣ � ε

established in (9.4d) and (9.6a) in order to deduce (9.11) in the case M = 2.
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Proof of (9.5f)–(9.5g): We commute equation (2.62) with X̆ X̆ and argue as in the
proof of (9.12) to obtain

∣∣∣L X̆ X̆μ
∣∣∣ ≤ 1

2

∣∣∣X̆ X̆
{

GL L X̆

}∣∣∣+

∣∣∣Z ≤3;2∗ 


∣∣∣+
∣∣∣L X̆ X̆μ− X̆ X̆ Lμ

∣∣∣ . (9.16)

Using the commutator estimate (9.1) with f = μ, the L∞ estimates of Prop. 8.10, and

the already proven bound (9.5d), we deduce that
∣∣∣L X̆ X̆μ− X̆ X̆ Lμ

∣∣∣ �
∣∣YZ ≤1μ

∣∣ � ε.

Next, we use (9.4b) to deduce that
∣∣∣Z ≤3;2∗ 


∣∣∣ � ε. Thus, we have shown that the last

two terms on RHS (9.16) are � ε. The remainder of the proof of (9.5f)–(9.5g) now
proceeds as in the proof of (9.5a)–(9.5b), thanks to the availability of the already
proven estimates (9.7)–(9.8) in the case M = 2. � 

10 Sharp Estimates for µ

In this section, we derive sharp pointwise estimates for μ and its derivatives that are far
more detailed than those of Sects. 8 and 9. We use these estimates in Sect. 14 when we
derive a priori energy estimates. To close the energy estimates, we must have precise
knowledge of how μ vanishes, which is the main information derived in Sect. 10.

Many results derived in this section are based on a posteriori estimates in which
the behavior of a quantity at times 0 ≤ s ≤ t is tied to the behavior of other quantities
at the “late time” t , where t < T(Boot). For this reason, some of our analysis refers to
quantities q = q(s, u, ϑ; t) that are functions of the geometric coordinates (s, u, ϑ)
and the “late time parameter” t . When we state and derive estimates for such quantities,
s is the “moving” time variable verifying 0 ≤ s ≤ t .

10.1 Auxiliary Quantities for Analyzing µ and First Estimates

We start by defining some quantities that play a role in our analysis of μ.

Definition 10.1 (Auxiliary quantities used to analyze μ). We define the following
quantities, where we assume that 0 ≤ s ≤ t for those quantities that depend on both
s and t :

M(s, u, ϑ; t) :=
∫ s′=t

s′=s

{
Lμ(t, u, ϑ)− Lμ(s′, u, ϑ)

}
ds′, (10.1a)

μ̊(u, ϑ) := μ(s = 0, u, ϑ), (10.1b)

M̃(s, u, ϑ; t) := M(s, u, ϑ; t)

μ̊(u, ϑ)− M(0, u, ϑ; t)
, (10.1c)

μ(Approx)(s, u, ϑ; t) := 1 + Lμ(t, u, ϑ)

μ̊(u, ϑ)− M(0, u, ϑ; t)
s + M̃(s, u, ϑ; t). (10.1d)

The following quantity captures the worst-case smallness of μ along �u
t . We use it

to capture the degeneracy of our high-order energy estimates.
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Definition 10.2 (Definition of μ�).

μ�(t, u) := min{1,min
�u

t

μ}. (10.2)

Remark 10.1 It is redundant to take the min with 1 in (10.2) because μ ≡ 1 along
P0; we have done this only to emphasize that μ�(t, u) ≤ 1.

We now provide some basic estimates for the auxiliary quantities.

Lemma 10.1 (First estimates for the auxiliary quantities). Under the data-size
and bootstrap assumptions of Subsects. 7.4–7.5 and the smallness assumptions of
Subsect. 7.7, the following estimates hold for (t, u, ϑ) ∈ [0, T(Boot)) × [0,U0] × T

and 0 ≤ s ≤ t:

μ̊(u, ϑ) = 1 +O(ε), (10.3)

μ̊(u, ϑ) = 1 + M(0, u, ϑ; t)+O(ε). (10.4)

In addition, the following pointwise estimates hold:

|Lμ(t, u, ϑ)− Lμ(s, u, ϑ)| � ε(t − s), (10.5)

|M(s, u, ϑ; t)|, |M̃(s, u, ϑ; t)| � ε(t − s)2, (10.6)

μ(s, u, ϑ) = (1 +O(ε))μ(Approx)(s, u, ϑ; t). (10.7)

Proof (10.3) follows from (7.11a) and (7.14). To prove (10.5), we note that (8.31b)
implies that |L Lμ| � ε. Integrating this estimate along the integral curves of L from
time s to time t , we conclude (10.5). The estimate (10.4) and the estimate (10.6) for
M then follow from definition (10.1a) and the estimate (10.5). (10.6) for M̃ follows
from definition (10.1c), the estimate (10.6) for M , and (10.4).

To prove (10.7), we first note the following identity, which is a straightforward
consequence of Def. 10.1:

μ(s, u, ϑ) = {
μ̊(u, ϑ)− M(0, u, ϑ; t)

}
μ(Approx)(s, u, ϑ; t). (10.8)

The desired estimate (10.7) now follows from (10.8) and (10.4). � 
To derive sharp estimates forμ, it is convenient to distinguish between regions where

μ is shrinking and regions where it is not. This motivates the following definition.

Definition 10.3 (Regions of distinct μ behavior). For each t ∈ [0, T(Boot)), s ∈
[0, t], and u ∈ [0,U0], we partition

[0, u] × T = (+)Vu
t ∪ (−)Vu

t , (10.9a)

�u
s = (+)�u

s;t ∪ (−)�u
s;t , (10.9b)
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where

(+)Vu
t :=

{
(u′, ϑ) ∈ [0, u] × T | Lμ(t, u′, ϑ)

μ̊(u′, ϑ)− M(0, u′, ϑ; t)
≥ 0

}
, (10.10a)

(−)Vu
t :=

{
(u′, ϑ) ∈ [0, u] × T | Lμ(t, u′, ϑ)

μ̊(u′, ϑ)− M(0, u′, ϑ; t)
< 0

}
, (10.10b)

(+)�u
s;t :=

{
(s, u′, ϑ) ∈ �u

s | (u′, ϑ) ∈ (+)Vu
t

}
, (10.10c)

(−)�u
s;t :=

{
(s, u′, ϑ) ∈ �u

s | (u′, ϑ) ∈ (−)Vu
t

}
. (10.10d)

Remark 10.2 (Positive denominators) The estimate (10.4) implies that the denom-
inator μ̊(u′, ϑ)− M(0, u′, ϑ; t) in (10.10a)–(10.10b) remains strictly positive all the
way up to the shock in the solution regime under consideration. We include the denom-
inator in the definitions (10.10a)–(10.10b) because it helps to clarify the connection
between the sets (+)Vu

t ,
(−)Vu

t and the parameter κ defined in (10.14).

10.2 Sharp Pointwise Estimates for µ and Its Derivatives

In the next proposition, we derive sharp pointwise estimates for μ and its derivatives.

Proposition 10.2 (Sharp pointwise estimates for μ, Lμ, and X̆μ). Under the data-
size and bootstrap assumptions of Subsects. 7.4–7.5 and the smallness assumptions
of Subsect. 7.7, the following estimates hold for (t, u, ϑ) ∈ [0, T(Boot))× [0,U0] ×T

and 0 ≤ s ≤ t .

Upper bound for
[Lμ]+

μ
.

∥∥∥∥
[Lμ]+

μ

∥∥∥∥
L∞(�u

s )

≤ C. (10.11)

Smallμ implies Lμ is negative.

μ(s, u, ϑ) ≤ 1

4
�⇒ Lμ(s, u, ϑ) ≤ −1

4
δ̊∗. (10.12)

Upper bound for
[X̆μ]+

μ
.

∥∥∥∥∥
[X̆μ]+

μ

∥∥∥∥∥
L∞(�u

s )

≤ C√
T(Boot) − s

. (10.13)
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Sharp spatially uniform estimates. Consider a time interval s ∈ [0, t] and define the
(t, u-dependent) constant κ by

κ := − min
(u′,ϑ)∈[0,u]×T

Lμ(t, u′, ϑ)
μ̊(u′, ϑ)− M(0, u′, ϑ; t)

. (10.14)

Note that κ ≥ 0 in view of the estimate (10.4) and the fact that Lμ vanishes along the
flat null hyperplane P0. Then

μ�(s, u) = {1 +O(ε)} {1 − κs} , (10.15a)

‖[Lμ]−‖L∞(�u
s )
=
{{

1 +O(ε1/2)
}
κ, if κ ≥ √

ε,

O(ε1/2), if κ ≤ √
ε.

(10.15b)

We also have

κ ≤ {1 +O(ε)} δ̊∗. (10.16a)

Moreover, when u = 1, we have

κ = {1 +O(ε)} δ̊∗. (10.16b)

Sharp estimates when (u′, ϑ) ∈ (+)Vu
t . We recall that the set (+)Vu

t is defined in
(10.10a).

If 0 ≤ s1 ≤ s2 ≤ t , then the following estimate holds:

sup
(u′,ϑ)∈(+)Vu

t

μ(s2, u′, ϑ)
μ(s1, u′, ϑ)

≤ C. (10.17)

In addition, if s ∈ [0, t] and (+)�u
s;t is as defined in (10.10c), then we have

inf
(+)�u

s;t
μ ≥ 1 − Cε. (10.18)

In addition, if s ∈ [0, t] and (+)�u
s;t is as defined in (10.10c), then we have

∥∥∥∥
[Lμ]−

μ

∥∥∥∥
L∞((+)�u

s;t )
≤ Cε. (10.19)

Sharp estimates when (u′, ϑ) ∈ (−)Vu
t . Assume that the set (−)Vu

t defined in (10.10b)
is non-empty, and consider a time interval s ∈ [0, t]. Let κ > 0 be as in (10.14). Then
the following estimate holds:

sup
0≤s1≤s2≤t
(u′,ϑ)∈(−)Vu

t

μ(s2, u′, ϑ)
μ(s1, u′, ϑ)

≤ 1 + Cε. (10.20)
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Furthermore, if s ∈ [0, t] and (−)�u
s;t is as defined in (10.10d), then the following

estimate holds:

‖[Lμ]+‖L∞((−)�u
s;t ) ≤ Cε. (10.21)

Finally, there exists a constant C > 0 such that if 0 ≤ s ≤ t , then

‖[Lμ]−‖L∞((−)�u
s;t ) ≤

{{
1 + Cε1/2

}
κ, if κ ≥ √

ε,

Cε1/2, if κ ≤ √
ε.

(10.22)

Approximate time-monotonicity of μ−1
� (s, u). There exists a constant C > 0 such

that if 0 ≤ s1 ≤ s2 ≤ t , then

μ−1
� (s1, u) ≤ (1 + Cε)μ−1

� (s2, u). (10.23)

Proof See Subsect. 8.2 for some comments on the analysis.

Proof of (10.11): Clearly it suffices for us to prove that for (s, u, ϑ) ∈ [0, t]×[0,U0]×
T, we have [Lμ(s, u, ϑ)]+/μ(s, u, ϑ) ≤ C . We may assume that [Lμ(s, u, ϑ)]+ > 0
since otherwise the desired estimate is trivial. Then by (10.5), for 0 ≤ s′ ≤ s ≤ t <
T(Boot) ≤ 2δ̊−1∗ , we have that Lμ(s′, u, ϑ) ≥ Lμ(s, u, ϑ) − Cε(s − s′) ≥ −Cε.
Integrating this estimate with respect to s′ starting from s′ = 0 and using (10.3), we
find that μ(s, u, ϑ) ≥ 1−Cεs ≥ 1−Cε and thus 1/μ(s, u, ϑ) ≤ 1+Cε. Also using
the bound |Lμ(s, u, ϑ)| ≤ C (that is, (8.31a)), we conclude the desired estimate.

Proof of (10.12): By (10.5), for 0 ≤ s ≤ t < T(Boot) ≤ 2δ̊−1∗ , we have that
Lμ(s, u, ϑ) = Lμ(0, u, ϑ)+O(ε). Integrating this estimate with respect to s starting
from s = 0 and using (10.3), we find that μ(s, u, ϑ) = 1+O(ε)+sLμ(0, u, ϑ). It fol-
lows that whenever μ(s, u, ϑ) < 1/4, we have Lμ(0, u, ϑ) < − 1

2 δ̊∗(3/4 +O(ε)) =
− 3

8 δ̊∗ +O(ε). Again using (10.5) to deduce that Lμ(s, u, ϑ) = Lμ(0, u, ϑ)+O(ε),
we arrive at the desired estimate (10.12).

Proof of (10.16a) and (10.16b): We prove only (10.16b) since (10.16a) follows from
nearly identical arguments. Above we showed that for 0 ≤ t < T(Boot) ≤ 2δ̊−1∗ , we
have Lμ(t, u, ϑ) = Lμ(0, u, ϑ)+O(ε). Moreover, equation (2.62) and Lemma 2.19
imply that Lμ = 1

2 GL L X̆
 + f(γ)P
. From this relation and the L∞ estimates of

Prop. 8.10, we deduce that Lμ(0, u, ϑ) = 1
2 [GL L X̆
](0, u, ϑ)+O(ε). In addition,

from (10.4), we deduce that μ̊(u, ϑ) − M(0, u, ϑ; t) = 1 + O(ε). Combining these
estimates and appealing to definitions (7.4) and (10.14), we conclude (10.16b).

Proof of (10.15a) and (10.23): We first prove (10.15a). We start by establishing the
following preliminary estimate for the crucial quantity κ = κ(t, u) (see (10.14)):

tκ < 1. (10.24)
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Using (10.1d), (10.8), (10.4), and (10.6), we deduce that the following estimate
holds for (s, u′, ϑ) ∈ [0, t] × [0, u] × T:

μ(s, u′, ϑ) = (1 +O(ε))

{
1 + Lμ(t, u′, ϑ)

μ̊(u′, ϑ)− M(0, u′, ϑ; t)
s +O(ε)(t − s)2

}
.

(10.25)

Setting s = t in equation (10.25), taking the min of both sides over (u′, ϑ) ∈ [0, u]×T,
and appealing to definitions (10.2) and (10.14), we deduce that μ�(t, u) = (1 +
O(ε))(1 − κt). Since μ�(t, u) > 0 by (BAμ > 0), we conclude (10.24).

Having established the preliminary estimate, we now take the min of both sides
over (u′, ϑ) ∈ [0, u] × T, and appeal to definitions (10.2) and (10.14) to obtain:

min
(u′,ϑ)∈[0,u]×T

μ(s, u′, ϑ) = (1 +O(ε))
{

1 − κs +O(ε)(t − s)2
}
. (10.26)

We will show that the terms in braces on RHS (10.26) verify

1 − κs +O(ε)(t − s)2 = (1 + f(s, u; t)) {1 − κs} , (10.27)

where

f(s, u; t) = O(ε). (10.28)

The desired estimate (10.15a) then follows easily from (10.26)–(10.28) and definition
(10.2). To prove (10.28), we first use (10.27) to solve for f(s, u; t):

f(s, u; t) = O(ε)(t − s)2

1 − κs
= O(ε)(t − s)2

1 − κt + κ(t − s)
. (10.29)

We start by considering the case κ ≤ (1/4)δ̊∗. Since 0 ≤ s ≤ t < T(Boot) ≤ 2δ̊−1∗ , the
denominator in the middle expression in (10.29) is ≥ 1/2, and the desired estimate
(10.28) follows easily whenever ε is sufficiently small. In remaining case, we have κ >

(1/4)δ̊∗. Using (10.24), we deduce that RHS (10.29) ≤ 1
κO(ε)(t − s) ≤ Cεδ̊−2∗ � ε

as desired.
Inequality (10.23) then follows as a simple consequence of (10.15a).

Proof of (10.15b) and (10.22): To prove (10.15b), we first use (10.5) to deduce that
for 0 ≤ s ≤ t < T(Boot) ≤ 2δ̊−1∗ and (u′, ϑ) ∈ [0, u] × T, we have Lμ(s, u′, ϑ) =
Lμ(t, u′, ϑ)+O(ε). Appealing to definition (10.14) and using the estimate (10.4), we
find that ‖[Lμ]−‖L∞(�u

s )
= κ+O(ε). If

√
ε ≤ κ, we see that as long as ε is sufficiently

small, we have the desired bound κ+O(ε) = (1 +O(ε1/2))κ. On the other hand, if
κ ≤ √

ε, then similar reasoning yields that ‖[Lμ]−‖L∞(�u
s )
= κ+O(ε) = O(

√
ε) as

desired. We have thus proved (10.15b).
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The proof of (10.22) is similar and we omit the details.

Proof of (10.13): We fix times s and t with 0 ≤ s ≤ t < T(Boot) and a point
p ∈ �u

s with geometric coordinates (s, ũ, ϑ̃). Let ι : [0, u] → �u
s be the integral

curve of X̆ that passes through p and that is parametrized by the values u′ of the

eikonal function. We set F(u′) := μ ◦ ι(u′) and Ḟ(u′) := d

du′
F(u′) = (X̆μ) ◦

ι(u′). We must bound
[X̆μ]+

μ
|p = [Ḟ (̃u)]+

F (̃u)
. We split the proof into three cases that

exhaust all possibilities. In the first case, we assume that Ḟ (̃u) = X̆μ|p ≤ 0. Then
[Ḟ (̃u)]+/F (̃u) = 0 ≤ RHS (10.13) as desired. In the second case, we assume that
Ḟ(u′) ≥ 0 for u′ ∈ [0, ũ]. Then since F(0) = 1 (because the solution is trivial in
the exterior of the flat null hyperplane P0), we have that F(u′) ≥ F(0) = 1 for
u′ ∈ [0, ũ]. Also using the bounds ‖μ‖L∞(�u

s )
, ‖X̆μ‖L∞(�u

s )
≤ C (that is, (8.32a)

and (9.5b)), we deduce that [Ḟ (̃u)]+/F (̃u) ≤ C ≤ RHS (10.13) as desired. In the
final case, we have Ḟ (̃u) = X̆μ|p > 0 and there exists a largest number u∗ ∈ (0, ũ)
such that Ḟ(u∗) = 0 (and hence Ḟ(u′) > 0 for u′ ∈ (u∗, ũ]). We will use the
following estimate for μ(Min)(s, u′) := min(u′′,ϑ)∈[0,u′]×T μ(s, u′′, ϑ), which holds
for all 0 ≤ s ≤ t < T(Boot) and u′ ∈ [0, u]:

μ(Min)(s, u′) ≥ max {(1 − Cε)κ(t − s), (1 − Cε)(1 − κs)} , (10.30)

where κ = κ(t, u) is defined in (10.14). We prove (10.30) below in the last paragraph
of the proof.

To proceed, we set H := supMT(Boot),U0
X̆ X̆μ. By the mean value theorem, we have

H > 0 (since Ḟ (̃u) > 0 and Ḟ(u∗) = 0). Moreover, by (9.5g), we have H ≤ C . In
the next paragraph, we will use the mean value theorem to prove that at the point p
of interest, we have

μ− μ(Min) ≥ 1

4

[X̆μ]2+
H

. (10.31)

Rearranging (10.31), we find that [X̆μ]+ ≤ 2H1/2√μ− μ(Min) and thus the following
bound holds at p:

[X̆μ]+
μ

≤ 2H1/2
√

μ− μ(Min)

μ
. (10.32)

We now view RHS (10.32) as a function of the real variable μ (with all other parameters
fixed) on the domain [μ(Min),∞). A simple calculus exercise yields that RHS (10.32)
≤ H1/2/

√
μ(Min). Combining this estimate with (10.30) and using the aforementioned

bound H ≤ C , we deduce that
[X̆μ]+

μ
|p ≤ C min

{
1/(κ1/2(t − s)1/2), 1/(1 − κs)1/2

}
.

If κ ≤ (1/4)δ̊∗, then 1 − κs ≥ 1 − (1/4)δ̊∗T(Boot) ≥ 1/2, and the desired bound
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[X̆μ]+
μ

|p ≤ C ≤ C/T 1/2
(Boot) ≤ C/(T(Boot) − s)1/2 ≤ RHS (10.13) follows easily

from the second term in the min. If κ ≥ (1/4)δ̊∗, then 1/κ ≤ C , and using the first

term in the min, we deduce that
[X̆μ]+

μ
|p ≤ C/(t − s)1/2. Since this estimate holds

for all t < T(Boot) with a uniform constant C , we conclude (10.13) in this case.
To prove the bound (10.31) used above, we set u1 := ũ − (1/2)Ḟ (̃u)/H and use

the mean value theorem to deduce that for u′ ∈ [u1, ũ], we have Ḟ (̃u) − Ḟ(u′) ≤
H (̃u − u′) ≤ (1/2)Ḟ (̃u). Thus, we have

Ḟ(u′) ≥ 1

2
Ḟ (̃u), for u′ ∈ [u1, ũ]. (10.33)

Again using the mean value theorem and also (10.33), we deduce that F (̃u)−F(u1) ≥
(1/2)Ḟ (̃u)(̃u − u1) = (1/4)Ḟ2(̃u)/H . Noting that the definition of μ(Min) implies
that F(u1) ≥ μ(Min)(s, ũ), we conclude the desired estimate (10.31).

It remains for us to prove (10.30). Reasoning as in the proof of (10.25)–(10.28)
and using (10.24), we find that for 0 ≤ s ≤ t < T(Boot) and u′ ∈ [0, u], we have
μ(Min)(s, u′) ≥ (1− Cε) {1 − κs} ≥ (1− Cε)κ(t − s). From these two inequalities,
we conclude the desired bound (10.30).

Proof of (10.20): A straightforward modification of the proof of (10.15a), based
on equation (10.25) and on replacing κ in (10.26)–(10.27) with Lμ(t, u′, ϑ) (without
taking the min on the LHS of the analog of (10.26)), yields that for 0 ≤ s ≤ t < T(Boot)

and (u′, ϑ) ∈ (−)Vu
t , we have μ(s, u′, ϑ) = {1 +O(ε)} {1 − ∣∣Lμ(t, u′, ϑ)

∣∣ s
}
. The

estimate (10.20) then follows as a simple consequence.

Proof of (10.17), (10.18), and (10.19): By (10.5), if (u′, ϑ) ∈ (+)Vu
t and 0 ≤ s ≤

t < T(Boot), then [Lμ]−(s, u, ϑ) ≤ Cε and Lμ(s, u, ϑ) ≥ −Cε. Integrating the
latter estimate with respect to s from 0 to t and using (10.3), we find that if 0 ≤ s <

T(Boot) and (u′, ϑ) ∈ (+)Vu
t , then μ(s, u′, ϑ) ≥ 1 − Cε(1 + s) ≥ 1 − Cε. Moreover,

from (8.32a), we have the crude bound μ(s, u′, ϑ) ≤ C . The desired bounds (10.17),
(10.18), and (10.19) now readily follow from these estimates.

Proof of (10.21): By (10.5), if (u′, ϑ) ∈ (−)Vu
t and 0 ≤ s ≤ t < T(Boot), then

[Lμ]+(s, u′, ϑ) = [Lμ]+(t, u′, ϑ) + O(ε) = O(ε). The desired bound (10.21) thus
follows. � 

10.3 Sharp Time-Integral Estimates Involving µ

In Prop. 10.3, we use the sharp pointwise estimates of Prop. 10.2 to derive sharp
estimates for time integrals involving powers of μ−1

� . The time-integral estimates are
a primary ingredient in the Gronwall-type argument that we use to derive a priori
energy estimates (see Prop. 14.1), which are degenerate with respect to powers of
μ−1
� at the high orders (see inequality (14.1a)). The estimates of Prop. 10.3 directly

influence the degree of μ−1
� -degeneracy found in our high-order energy estimates.
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Proposition 10.3 (Fundamental estimates for time integrals involving μ−1). Let
μ�(t, u) be as defined in (10.2). Let

B > 1

be a real number. Under the data-size and bootstrap assumptions of Subsects. 7.4–
7.5 and the smallness assumptions of Subsect. 7.7, the following estimates hold for
(t, u) ∈ [0, T(Boot))× [0,U0]:
Estimates relevant for borderline top-order spacetime integrals. There exists a con-
stant C > 0 such that if B

√
ε ≤ 1, then

∫ t

s=0

‖[Lμ]−‖L∞(�u
s )

μB
� (s, u)

ds ≤ 1 + C
√
ε

B − 1
μ1−B
� (t, u). (10.34)

Estimates relevant for borderline top-order hypersurface integrals. There exists a
constant C > 0 such that

‖Lμ‖L∞((−)�u
t;t )

∫ t

s=0

1

μB
� (s, u)

ds ≤ 1 + C
√
ε

B − 1
μ1−B
� (t, u). (10.35)

Estimates relevant for less dangerous top-order spacetime integrals. There exists a
constant C > 0 such that if B

√
ε ≤ 1, then

∫ t

s=0

1

μB
� (s, u)

ds ≤ C

{
2B + 1

B − 1

}
μ1−B
� (t, u). (10.36)

Estimates for integrals that lead to only ln μ−1
� degeneracy. There exists a constant

C > 0 such that

∫ t

s=0

‖[Lμ]−‖L∞(�u
s )

μ�(s, u)
ds ≤ (1 + C

√
ε) ln μ−1

� (t, u)+ C
√
ε. (10.37)

In addition, there exists a constant C > 0 such that

∫ t

s=0

1

μ�(s, u)
ds ≤ C

{
ln μ−1

� (t, u)+ 1
}
. (10.38)

Estimates for integrals that break the μ−1
� degeneracy. There exists a constant C >

0 such that
∫ t

s=0

1

μ
9/10
� (s, u)

ds ≤ C. (10.39)
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Proof Proof of (10.34), (10.35), and (10.37): To prove (10.34), we first consider the
case κ ≥ √

ε in (10.15b). Using (10.15a) and (10.15b), we deduce that
∫ t

s=0

‖[Lμ]−‖L∞(�u
s )

μB
� (s, u)

ds = (1 +O(ε1/2))

∫ t

s=0

κ

(1 − κs)B
ds

≤ 1 +O(ε1/2)

B − 1

1

(1 − κt)B−1 = 1 +O(ε1/2)

B − 1
μ1−B
� (t, u)

(10.40)

as desired. We now consider the case κ ≤ √
ε in (10.15b). Using (10.15a) and (10.15b)

and the fact that 0 ≤ s ≤ t < T(Boot) ≤ 2δ̊−1∗ , we see that for ε sufficiently small
relative to δ̊∗, we have

∫ t

s=0

‖[Lμ]−‖L∞(�u
s )

μB
� (s, u)

ds ≤ Cε1/2
∫ t

s=0

1

(1 − κs)B
ds

≤ Cε1/2 1

(1 − κt)B−1 ≤ 1

B − 1
μ1−B
� (t, u) (10.41)

as desired. We have thus proved (10.34). The estimate (10.37) can be proved in a
similar fashion; we omit the details.

Inequality (10.35) can be proved in a similar fashion with the help of the estimate
(10.22); we omit the details.

Proof of (10.36), (10.38), and (10.39): To prove (10.36), we first use (10.15a) to
deduce

∫ t

s=0

1

μB
� (s, u)

ds ≤ C
∫ t

s=0

1

(1 − κs)B
ds. (10.42)

We first assume that κ ≤ (1/4)δ̊∗. Then since 0 ≤ t < T(Boot) < 2δ̊−1∗ , we see
from (10.15a) that μ�(s, u) ≥ (1/4) for 0 ≤ s ≤ t and that RHS (10.42) ≤ C2Bt ≤
C2B δ̊−1∗ ≤ C2B ≤ C2Bμ1−B

� (t, u) as desired. In the remaining case, we have κ >

(1/4)δ̊∗, and we can use (10.15a) and the estimate 1/κ ≤ C to bound RHS (10.42) by

≤ C

κ

1

B − 1

1

(1 − κt)B−1 ≤ C

B − 1
μ1−B
� (t, u) (10.43)

as desired.
Inequalities (10.38) and (10.39) can be proved in a similar fashion; we omit the

details, aside from remarking that the last step of the proof of (10.39) relies on the
trivial estimate (1 − κt)1/10 ≤ 1. � 

11 Pointwise Estimates for the Error Integrands

Recall that if PN is an N th-order Pu-tangent vectorfield operator, then PN
 solves
an inhomogeneous wave equation of the form μ�g(PN
) = F. In this section,
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we start by identifying the difficult error terms in F; see Subsect. 11.1. The difficult
terms are products that contain a factor involving certain top derivatives of the eikonal
function; we have to work hard to control these products in the energy estimates. The
remaining terms have a structure that we call “Harmless≤N ” (see Def. 11.1) and are
easy to control. Next, we derive pointwise estimates for the difficult products. After
deriving some preliminary estimates, we provide the main result in this direction in
Prop. 11.10. Finally, in Subsect. 11.6, we derive pointwise estimates for the error terms∑5

i=1
(T )P(i) on RHS (3.13), which are generated by the deformation tensor of the

multiplier vectorfield T .
The following definition encapsulates error term factors that are easy to bound in

the energy estimates. Most factors that arise in our analysis are of this form.

Definition 11.1 (Harmless terms). A Harmless≤N term is any term such that
under the data-size and bootstrap assumptions of Subsects. 7.4–7.5 and the smallness
assumptions of Subsect. 7.7, the following bound holds on MT(Boot),U0 (see Sub-
sect. 7.2 regarding the vectorfield operator notation):

∣∣∣Harmless≤N
∣∣∣ �

∣∣∣Z ≤N+1;1∗ 


∣∣∣+
∣∣∣Z ≤N ;1∗ γ

∣∣∣+
∣∣∣P [1,N ]∗ γ

∣∣∣ . (11.1)

In the next lemma, we provide L∞ estimates for Harmless≤9 terms.

Lemma 11.1 (L∞ estimate for Harmless≤9 terms). Under the data-size and boot-
strap assumptions of Subsects. 7.4–7.5 and the smallness assumptions of Subsect. 7.7,
the following pointwise estimates hold for the terms Harmless≤9 from Def. 11.1 on
MT(Boot),U0 :

∣∣∣Harmless≤9
∣∣∣ � ε. (11.2)

Proof The estimate (11.2) follows directly from the L∞ estimates of Prop. 8.10. � 

11.1 Identification of the Key Difficult Error Term Factors

In the next proposition, we identify the products that are difficult to control in the
energy estimates.

Proposition 11.2 (Identification of the key difficult error term factors). For 1 ≤
N ≤ 18 in (11.3a) and N ≤ 18 in (11.3b), we have the following estimates:

μ�g(Y
N−1L
) = (d/#
) · (μd/Y N−1trg/χ)+ Harmless≤N , (11.3a)

μ�g(Y
N
) = (X̆
)Y N trg/χ+ ρ(d/#
) · (μd/Y N−1trg/χ)+ Harmless≤N . (11.3b)

Furthermore, if 2 ≤ N ≤ 18 and PN is any N th order Pu-tangent operator except
for Y N−1L or Y N , then

μ�g(P
N
) = Harmless≤N . (11.3c)
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We provide the proof of Prop. 11.2 in Subsect. 11.4. In Subsects. 11.2–11.3, we
establish some preliminary identities and estimates. As in Sect. 6, we use the Riemann
curvature tensor of g to aid our calculations.

11.2 Preliminary Lemmas Connected to Commutation

We start with a lemma that provides an identity for the curvature component trg/RX̆ ·L·.
It is an analog of Lemma 6.1.

Lemma 11.3 (An expression for trg/RX̆ ·L·). Let Rαβκλ be the Riemann curvature
tensor from Def. 6.1. Then the curvature component trg/RX̆ ·L· := (g/−1) ·RX̆ ·L· can be
expressed as follows, where all terms are exact except for f(· · · ):

trg/RX̆ ·L· =
1

2

{
μG/#

X · d/L
 + G/#
L · d/X̆
 − trg/G/ L X̆
 − μGL X/


}

+ 1

4
μ−1G/#

L · G/L (X̆
)2 − 1

2
μ−1G/#

L · (d/μ)X̆


+ 1

2

{
GL X trg/χX̆
 + μtrg/χG/#

L · d/
 − μtrg/χG/#
X · d/


}

+ f(γ, g/−1, d/x1, d/x2, Z
)P
. (11.4)

Proof Lemma 11.3 follows from inserting the schematic relations provided by
Lemma 2.19 into the identities derived in [60, Lemma 15.1.3]. We therefore do not
provide a detailed proof here. We remark that the main ideas behind the proof are the
same as those of Lemma 6.1. In particular, the main idea is to contract the curvature
tensor Rμναβ , given by (6.7), against X̆μLα(g/−1)νκ and to use Lemmas 2.13 and 2.19
to express the RHS of the contracted identity in the form written on RHS (11.4). � 

We now use Lemma 11.3 to derive an identity for X̆ trg/χ.

Lemma 11.4 (An expression for X̆ trg/χ in terms of other variables). X̆ trg/χ can be
expressed as follows, where the term /μ on RHS (11.5) is exactly depicted and the
terms f(· · · ) are schematically depicted:

X̆ trg/χ = /μ+ f(γ, g/−1, d/x1, d/x2)P X̆
 + f(γ, g/−1, d/x1, d/x2)P P
 (11.5)
+f(γ, X̆
, Pγ, g/−1, d/x1, d/x2) · (Pγ,∇/ 2x1,∇/ 2x2).

Proof We start with the following analog of (6.12). The proof is similar but is slightly
more computationally intensive due in part to the fact that [X̆ ,�] �= 0 (see [60,
Lemma 15.1.4] for detailed computations):

X̆ trg/χ =/μ+ trg/∇/ (μζ)− trg/RX̆ ·L·
+ μζ# · ζ+ ζ# · d/μ− trg/

(X̆)π/trg/χ− (Lμ)trg/χ− μ(trg/χ)
2 + trg/χ(μtrg/k/ ).

(11.6)

We now substitute RHS (11.4) for the third term on RHS (11.6) and use (2.72b),
(2.62), (2.66a), and (2.66b) to substitute for trg/χ, Lμ, ζ, and k/ on RHS (11.6). The
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only important observation is that the two μ−1-singular products on the second line
of RHS (11.4) (generated by the term −trg/RX̆ ·L· on RHS (11.6)) are, in view of
the expression (2.67a) for ζ(T rans−
)#, exactly canceled by the corresponding terms
μ−1ζ(T rans−
)# ·ζ(T rans−
) and μ−1ζ(T rans−
)# ·d/μ (generated, in view of equation
(2.66a), by the products μζ# · ζ and ζ# · d/μ on RHS (11.6)).

Also using Lemma 2.19, we arrive at the desired expression (11.5). � 
We now derive higher-order analogs of Lemma 11.4.

Lemma 11.5 (Identification of the only non-Harmless≤N term in PN−1 X̆ trg/χ).
Assume that 1 ≤ N ≤ 18. Under the data-size and bootstrap assumptions of Sub-
sects. 7.4–7.5 and the smallness assumptions of Subsect. 7.7, the following estimate
holds on MT(Boot),U0 (see Subsect. 7.2 regarding the vectorfield operator notation):

∣∣∣PN−1 X̆ trg/χ−/PN−1μ
∣∣∣ �

∣∣∣Z ≤N+1;1∗ 


∣∣∣+
∣∣∣P≤N γ

∣∣∣+ ε

∣∣∣P [1,N ]∗ γ
∣∣∣ . (11.7)

Proof We start by applying PN−1 to (11.5). We then decompose the first term as
PN−1/μ = /PN−1μ + [PN−1,/ ]μ. We put the principal term /PN−1μ on
LHS (11.7), while to bound

∣∣[PN−1,/ ]μ∣∣ by � RHS (11.7), we use the commutator
estimate (8.20b) with N − 1 in the role of N and f = μ, the L∞ estimates of
Prop. 8.10, and Cor. 8.11. To deduce that the PN−1 derivative of the remaining
terms on RHS (11.5), with the exception of terms involving ∇/ 2x1 and ∇/ 2x2, are
bounded in magnitude by � RHS (11.7), we use Lemmas 8.4 and 8.5 and the L∞
estimates of Prop. 8.10. We now bound thePN−1 derivative of the terms on RHS (11.5)
involving derivatives of ∇/ 2x1 and∇/ 2x2. We first show that

∣∣∇/ 2xi
∣∣ �

∣∣P≤1γ
∣∣. To this

end, we note that inequality (8.3) and the argument given just below it imply that∣∣∇/ 2xi
∣∣ �

∣∣d/Y xi
∣∣ + ∣∣d/xi

∣∣ |Yγ|. The desired bound now follows from the previous
inequality, Lemma 8.4, and the L∞ estimates of Prop. 8.10. We now show that for
1 ≤ M ≤ N − 1, we have

∣∣L/M
P∇/ 2xi

∣∣ �
∣∣P≤M+1γ

∣∣. To this end, we first decompose
L/M
P∇/ 2xi = ∇/ 2PM xi + [L/M

P ,∇/ 2]xi . Next, using (8.2), we deduce
∣∣∇/ 2PM xi

∣∣ �∣∣d/P [1,M+1]xi
∣∣. Using Lemma 8.4, we bound the RHS of the previous inequality by

�
∣∣P≤M+1γ

∣∣ as desired. To deduce that
∣∣[L/M

P ,∇/ 2]xi
∣∣ �

∣∣P≤M+1γ
∣∣, we also use the

commutator estimate (8.22) with f = xi and the L∞ estimates of Prop. 8.10. We have
thus shown that for 0 ≤ M ≤ N − 1, we have

∣∣L/M
P∇/ 2xi

∣∣ �
∣∣P≤M+1γ

∣∣ Combining
the previous inequality with the L∞ estimates of Prop. 8.10, we find that the PN−1

derivative of the products on RHS (11.5) involving a factor ∇/ 2xi are bounded in
magnitude by � RHS (11.7). We have thus proved the lemma. � 

11.3 The Important Terms in the Derivatives of (L)π and (Y)π

The most difficult terms in our energy estimates depend on the “top-order non−L-
involving derivatives” of the eikonal function quantities, which appear in some frame
components of the top derivatives of the deformation tensors (L)π and (Y )π . In the
next lemma, we identify the difficult terms.
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Lemma 11.6 (Identification of the important top-order terms in (L)π and (Y )π ).
Assume that 1 ≤ N ≤ 18. Under the data-size and bootstrap assumptions of Sub-
sects. 7.4–7.5 and the smallness assumptions of Subsect. 7.7, the following estimates
hold on MT(Boot),U0 (see Subsect. 7.2 regarding the vectorfield operator notation):
Important top-order terms in (L)π. We have

∣∣∣PN−1 X̆ trg/
(L)π/− 2/PN−1μ

∣∣∣ �
∣∣∣Z ≤N+1;1∗ 


∣∣∣+
∣∣∣Z ≤N ;1∗ γ

∣∣∣+ ε

∣∣∣P [1,N ]∗ γ
∣∣∣ ,

(11.8a)
∣∣∣L/N−1

P d/#(L)πL X̆

∣∣∣ ,
∣∣∣PN−1div/ (L)π/#

X̆
−/PN−1μ

∣∣∣ ,
∣∣∣L/N−1

P d/#trg/
(L)π/− 2d/#PN−1trg/χ

∣∣∣
�
∣∣∣Z ≤N+1;1∗ 


∣∣∣+
∣∣∣Z ≤N ;1∗ γ

∣∣∣+ ε

∣∣∣P [1,N ]∗ γ
∣∣∣ . (11.8b)

Important top-order terms in (Y )π . We have

∣∣∣L/N−1
P L/X̆

(Y )π/#
L + (/PN−1μ)Y

∣∣∣ ,
∣∣∣PN−1 X̆ trg/

(Y )π/− 2ρ/PN−1μ
∣∣∣

�
∣∣∣Z ≤N+1;1∗ 


∣∣∣+
∣∣∣Z ≤N ;1∗ γ

∣∣∣+ ε

∣∣∣P [1,N ]∗ γ
∣∣∣ , (11.9a)

∣∣∣PN−1div/ (Y )π/#
L+YPN−1trg/χ

∣∣∣ ,
∣∣∣PN−1div/ (Y )π/#

X̆
−
{
μYPN−1trg/χ+ρ/PN−1μ

}∣∣∣ ,
∣∣∣L/N−1

P d/#(Y )πL X̆ + (/PN−1μ)Y
∣∣∣ ,
∣∣∣L/N−1

P d/#trg/
(Y )π/− 2ρd/#PN−1trg/χ

∣∣∣
�
∣∣∣Z ≤N+1;1∗ 


∣∣∣+
∣∣∣Z ≤N ;1∗ γ

∣∣∣+ ε

∣∣∣P [1,N ]∗ γ
∣∣∣ . (11.9b)

Above, within a given inequality, the symbol PN−1 on the LHS always denotes the
same order N − 1 Pu-tangent vectorfield operator.

Proof See Subsect. 8.2 for some comments on the analysis. We first prove the esti-

mate (11.9a) for
∣∣∣L/N−1

P L/X̆
(Y )π/#

L + (/PN−1μ)Y
∣∣∣. We apply L/N−1

P L/X̆ to the g/−dual

of (2.78b). Note that χ = trg/χg/. The principal top-order term is generated when
all derivatives fall on trg/χ in the product −trg/χY . The top-order product of interest
is therefore −(PN−1 X̆ trg/χ)Y . Using (11.7), Lemma 8.6, and the L∞ estimates of
Prop. 8.10, we see that this top-order product is equal to −(/PN−1μ)Y (whose neg-
ative is found on LHS (11.9a)) plus an error term that is � RHS (11.9a) as desired. Also
using Lemma 8.5, we deduce that the remaining terms in the Leibniz expansion of
−L/N−1

P L/X̆ (trg/χY ) are � RHS (11.9a). Using Lemma 2.19, we see that the remaining
terms on the g/−dual of RHS (2.78b) are of the form f(γ, g/−1, d/x1, d/x2)P
.

Hence, their L/N−1
P L/X̆ = L/N ;1

Z derivatives can be bounded by � RHS (11.9a) via
the estimates of Lemmas 8.4 and 8.5 and the L∞ estimates of Prop. 8.10. We have thus

proved the desired estimate. The proof of (11.9a) for
∣∣∣PN−1 X̆ trg/(Y )π/− 2ρ/PN−1μ

∣∣∣
follows similarly from the identity (2.78d) for (Y )π/, and the proof of (11.8a) follows
similarly from the identity (2.77c) for (L)π/; we omit the details.
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To prove (11.9b) for
∣∣PN−1div/ (Y )π/#

L + YPN−1trg/χ
∣∣, we first use the commu-

tator estimate (8.21c) with ξ = (Y )π/L and N − 1 in the role of N , the estimate
(8.15a), and the L∞ estimates of Prop. 8.10 to commute the operator L/N−1

P

through div/ in the term PN−1div/ (Y )π/#
L = L/N−1

P div/ (Y )π/L , thus obtaining that

PN−1div/ (Y )π/#
L = div/ L/N−1

P
(Y )π/L up to error terms that are bounded in magnitude

by � RHS (11.9b). It remains for us to analyze the terms that arise from apply-
ing div/ L/N−1

P = g/−1 · ∇/L/N−1
P to RHS (2.78b). As in the previous paragraph, the

principal top-order term is generated when all derivatives fall on trg/χ in the product
−χ · Y = −trg/χY� = −trg/χg/ · Y . The top-order product of interest (whose negative
is found on LHS (11.9b)), is therefore −(d/PN−1trg/χ) · Y = −YPN−1trg/χ. More-
over, we see that the remaining terms in the Leibniz expansion of −div/ L/N−1

P (trg/χY�)

are �
∑

N1+N2+N3≤N
N1≤N−1

∣∣∣PN1 trg/χ
∣∣∣
∣∣∣L/N2

P g/
∣∣∣
∣∣∣L/N3

PY
∣∣∣. We now bound these terms by �

RHS (11.9b) via the estimates of Lemmas 8.5 and 8.6 and the L∞ estimates of
Prop. 8.10. Using Lemma 2.19, we see that the remaining terms on RHS (2.78b)
are of the form f(γ, d/x1, d/x2)P
.

To bound their div/ L/N−1
P derivatives by � RHS (11.9b), we use the same arguments

given in the previous paragraph with the minor new addition that we also need the
bound

∣∣∇/ 2PN−1xi
∣∣ �

∣∣P≤N γ
∣∣, which we obtained in the proof of Lemma 11.5.

We have thus obtained the desired result. The proof of (11.9b) for∣∣∣PN−1div/ (Y )π/#
X̆
− {

μYPN−1trg/χ+ ρ/PN−1μ
}∣∣∣ follows similarly from the iden-

tity (2.78c) for (Y )π/X̆ , the fact that ρ = f(γ)γ (see Lemma 2.19), the estimate
(8.16), and Cor. 8.11; we omit the details, noting only that Cor. 8.11 allows us
to replace the factor ε1/2 on RHS (8.21c) with Cε. The proof of (11.8b) for∣∣∣PN−1div/ (L)π/#

X̆
−/PN−1μ

∣∣∣ follows similarly from the identity (2.77b) for (L)π/X̆ ,

the estimates (8.17a)–(8.17b), and Cor. 8.11; we omit the details, noting only that
Cor. 8.11 allows us to replace the factor ε1/2 on RHS (8.21c) with Cε. The proof of

(11.8b) for
∣∣∣L/N−1

P d/#(L)πL X̆

∣∣∣ is based on the identity (2.77a) for (L)πL X̆ and the esti-

mate (8.28b) and is similar but simpler; we omit the details. The proof of (11.8b) for∣∣∣L/N−1
P d/#trg/(L)π/− 2d/#PN−1trg/χ

∣∣∣ is similar and is based on the identity (2.77c) for (L)π/;

we omit the details. The proof of (11.9b) for
∣∣∣L/N−1

P d/#(Y )πL X̆ + (/PN−1μ)Y
∣∣∣ follows

similarly from the identity (2.78a) for (Y )πL X̆ and the trivial identity −Yμ = −Y · d/μ
relevant for the term on the RHS of the identity; we omit the details.

The proof of (11.9b) for
∣∣∣L/N−1

P d/#trg/(Y )π/− 2ρd/#PN−1trg/χ
∣∣∣ follows similarly from

the identity (2.78d) for (Y )π/; we omit the details. � 

The top-order derivatives of (L)π and (Y )π involving at least one L differentiation
and the below-top-order derivatives of (L)π and (Y )π lead to negligible error terms in
the energy estimates. In the next lemma, we derive the relevant pointwise estimates
that will allow us to establish this fact.
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Lemma 11.7 (Pointwise estimates for the negligible derivatives of (L)π and (Y )π ).
Assume that 1 ≤ N ≤ 18 and let P ∈P = {L ,Y }. Under the data-size and bootstrap
assumptions of Subsects. 7.4–7.5 and the smallness assumptions of Subsect. 7.7, the
following estimates hold on MT(Boot),U0 :

∣∣∣P≤N−1Ltrg/
(P)π/

∣∣∣ ,
∣∣∣P≤N−1L(P)πL X̆

∣∣∣ ,
∣∣∣P≤N−1L(P)πX̆ X

∣∣∣ ,
∣∣∣L/≤N−1

P L/L
(P)π/#

L

∣∣∣ ,
∣∣∣L/≤N−1

P L/L
(P)π/#

X̆

∣∣∣ �
∣∣∣Z ≤N+1;1∗ 


∣∣∣+
∣∣∣P≤N γ

∣∣∣+
∣∣∣P [1,N ]∗ γ

∣∣∣ . (11.10)

Moreover, the following below-top-order estimates hold:

∣∣∣P≤N−1trg/
(P)π/

∣∣∣ ,
∣∣∣P≤N−1(P)πL X̆

∣∣∣ ,
∣∣∣P≤N−1(P)πX̆ X

∣∣∣ ,
∣∣∣L/≤N−1

P
(P)π/#

L

∣∣∣ ,
∣∣∣L/≤N−1

P
(P)π/#

X̆

∣∣∣
�
∣∣∣Z ≤N ;1∗ 


∣∣∣+
∣∣∣P≤N γ

∣∣∣+
∣∣∣P [1,N ]∗ γ

∣∣∣+ 1. (11.11)

Proof See Subsect. 8.2 for some comments on the analysis. We first prove (11.10).
From Prop. 2.18, equation (2.62), and Lemma 2.19, we see that the deformation tensor
components trg/(P)π/, (P)πL X̆ , · · · , (P)π/#

X̆
on LHS (11.10) are schematically of the form

f(γ, g/−1, d/x1, d/x2)P
 + f(γ, g/−1, d/x1, d/x2)X̆
 + f(γ, g/−1, d/x1, d/x2)trg/χ

+ f(γ, g/−1, d/x1, d/x2)d/μ.

We now apply L/≤N−1
P L/L . If all derivatives fall on trg/χ, then we use (8.29a) to bound

P≤N−1Ltrg/χ and we bound the remaining factors multiplying P≤N−1Ltrg/χ by � 1
via Lemmas 8.4 and 8.5 and the L∞ estimates of Prop. 8.10. Similarly, if all derivatives
fall on d/μ, we bound d/P≤N−1Lμ with (8.28b) and we bound the remaining factors
multiplying d/P≤N−1Lμ by � 1. If most (but not all) derivatives fall on trg/χ or d/μ,
then we bound all terms using the above arguments and also (8.13a). If most derivatives
fall on P
 or X̆
, then we bound these factors by the first term on RHS (11.10) and
use the above arguments to bound the remaining factors by � 1.

The proof of (11.11) is similar but simpler and we therefore omit the details. � 

11.4 Proof of Prop. 11.2

We now use the previous results to establish Prop. 11.2. See Subsect. 8.2 for some
comments on the analysis. Throughout the proof, we silently use the definition of
Harmless≤N terms from Def. 11.1 and the estimates of Lemma 11.1. We give a
detailed proof of (11.3b) and then at the end, we sketch the minor changes needed to
prove (11.3a). To condense the notation, we define the following commutation vector-
field (Z)J α[
], which is just alternate notation for the term in braces on RHS (4.2):

(Z)J α[
] := (Z)παβDβ
 − 1

2
trg

(Z)πDα
. (11.12)
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Iterating (4.2), using �g(
)
 = 0, and using the estimate
∥∥P≤9trg/(Y )π/

∥∥
L∞(�u

t )
� ε

(which follows from (2.58), (8.13a), and the L∞ estimates of Prop. 8.10), we find that

μ�g(
)(Y
N
) = Y N−1

(
μD (Y )

α J
α[
]

)
+ Error, (11.13)

where

|Error| �
∑

N1+N2+N3≤N−1
N1,N2≤N−2

(
1 +

∣∣∣Y N1 trg/
(Y )π/

∣∣∣
) ∣∣∣Y N2

(
μD (Y )

α J
α[Y N3
]

)∣∣∣ . (11.14)

We first analyze the main term Y N−1
(
μD (Y )

α J
α[
]

)
on RHS (11.13), which con-

tains all of the top-order derivatives of the eikonal function quantities. By (4.6), we
may equivalently analyze Y N−1K (Y )

(π−Danger)[
] + Y N−1K (Y )
(π−Cancel−1)[
] + · · · +

Y N−1K (Y )
(Low)[
]. We argue one term at a time.

Analysis of Y N−1K (Y )
(π−Danger)[
]. By (4.7a), we have

Y N−1K (Y )
(π−Danger)[
] = −

∑
N1+N2=N−1

(Y N1 div/ (Y )π/#
L)Y

N2 X̆
. (11.15)

We first consider the case N1 = N − 1. Inequality (8.30a) and the first inequal-
ity in (11.9b) yield that −(Y N−1div/ (Y )π/#

L)X̆
 = (Y N trg/χ)X̆
 + Harmless≤N ,
which in particular yields the desired first product on RHS (11.3b). To show that
the remaining summands are Harmless≤N , we again use the first inequality in
(11.9b) (now with N1 + 1 in the role of N ) to deduce that (Y N1 div/ (Y )π/#

L)Y
N2 X̆
 =

(Y N1+1trg/χ)Y N2 X̆
 + (Harmless≤N1)Y N2 X̆
. Since N1 ≤ N − 2, (8.13a) implies
that Y N1+1trg/χ = Harmless≤N1+2 ≤ Harmless≤N . From these estimates and
the L∞ estimates of Prop. 8.10, we easily conclude that (Y N1 div/ (Y )π/#

L)Y
N2 X̆
 =

Harmless≤N as desired.
Analysis of Y N−1K (Y )

(π−Cancel−1)[
]. From (4.7b), we have

Y N−1K (Y )
(π−Cancel−1)[
]

=
∑

N1+N2=N−1

{
1

2
Y N1 X̆ trg/

(Y )π/− Y N1 div/ (Y )π/#
X̆
− Y N1(μdiv/ (Y )π/#

L)

}
Y N2 L
.

(11.16)
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We first consider the case in which N1 = N − 1 in all three terms in braces on RHS
(11.16) and all derivatives fall on the deformation tensor components. From the sec-
ond inequality in (11.9a) and the first and second inequalities in (11.9b), we see that
the main top-order eikonal function terms 2ρ/Y N−1μ and μY N trg/χ completely can-
cel from the terms in braces, leaving only products of the form Harmless≤N ×
L
 = Harmless≤N . When N1 = N − 1, there are also terms in which at
least one derivative falls on the factor μ in the product

{
Y N−1(μdiv/ (Y )π/#

L)
}

L
 on
RHS (11.16). We will show that these terms= Harmless≤N . We first bound them by
�
∑

N1+N2≤N−1 N2≤N−2

∣∣Y N1μ
∣∣ ∣∣Y N2 div/ (Y )π/#

L

∣∣ |L
|. Again using the first inequality

in (11.9b) (now with N2 + 1 in the role of N ) to control Y N2 div/ (Y )π/#
L , we bound the

RHS of the previous inequality by

�
∑

N1+N2≤N−1
N2≤N−2

Harmless≤N1

∣∣∣Y N2+1trg/χ+ Harmless≤N2

∣∣∣ |L
| .

Since N2 ≤ N − 2, the arguments given in our analysis of Y N−1K (Y )
(π−Danger)[
]

yield that Y N2+1trg/χ = Harmless≤N . From these estimates and the L∞ estimates of
Prop. 8.10, we easily conclude that the terms under consideration = Harmless≤N as
desired. We now consider the remaining cases, in which N1 ≤ N −2 in all three terms
in braces on RHS (11.16). Again using second inequality in (11.9a) and the first and
second inequalities in (11.9b) (now with N1 + 1 in the role of N ) and the arguments
given above, we deduce that the products under consideration = Harmless≤N plus
error products generated by the terms on LHS (11.9a) and LHS (11.9b). The error
products are in magnitude

�
∑

N1+N2+N3≤N−1
N1≤N−2

∣∣∣Y N1+1trg/χ
∣∣∣
∣∣∣Y N2μ

∣∣∣
∣∣∣Y N3 L


∣∣∣+
∑

N1+N2≤N−1
N1≤N−2

∣∣∣ρ/ Y N1μ
∣∣∣
∣∣∣Y N2 L


∣∣∣ .

Since N1 ≤ N − 2, the arguments given above and the fact that ρ = f(γ)γ
(see Lemma 2.19) combine to yield that the RHS of the previous expression =
Harmless≤N as desired.
Analysis of Y N−1K (Y )

(π−Cancel−2)[
]. From (4.7c), we have

Y N−1K (Y )
(π−Cancel−2)[
] =

∑
N1+N2=N−1

{
−L/N1

Y L/X̆
(Y )π/#

L + L/N1
Y d/#(Y )πL X̆

}
· d/Y N2
.

(11.17)

In the case N1 = N−1, we use the first inequality in (11.9a), and the third inequality in
(11.9b) to deduce that the top-order eikonal function terms (/PN−1μ)Y completely
cancel from the terms in braces on RHS (11.17). The remaining analysis now parallels
our analysis of Y N−1K (Y )

(π−Cancel−1)[
], with the minor addition that we must also
use the estimate (8.14a) to bound the factors of |Y | that arise. We thus conclude that
RHS (11.17) = Harmless≤N as desired.
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Analysis of Y N−1K (Y )
(π−Less Dangerous)[
]. From (4.7d), we have

Y N−1K (Y )
(π−Less Dangerous)[
] =

∑
N1+N2=N−1

1

2

{
L/N1

Y (μd/#trg/
(Y )π/)

}
· d/Y N2
.

(11.18)

We first consider the case N1 = N − 1 on RHS (11.18) and all derivatives fall on
trg/(Y )π/. Using the fourth inequality in (11.9b), we see that 1

2μ(d/#Y N−1trg/(Y )π/) · d/
 =
ρμ(d/#PN−1trg/χ) ·d/
+ Harmless≤N , which in particular yields the desired second
product on RHS (11.3b). All remaining terms on RHS (11.17) have≤ N−2 derivatives
falling on d/#trg/(Y )π/, and the arguments given in our analysis ofK (Y )

(π−Cancel−1)[
] yield

that the corresponding products = Harmless≤N as desired.
Analysis of Y N−1K (Y )

(π−Good)[
]. From (4.7e), we have

Y N−1K
(Y )
(π−Good)[
] =

∑
N1+N2=N−1

{
1

2
Y N1 (μLtrg/

(X̆)π/)+ Y N1 L(X̆)πL X̆ + Y N1 L(X̆)πX̆ X

}
Y N2 L


+ 1

2

∑
N1+N2=N−1

(Y N1 Ltrg/
(Z)π/)Y N2 X̆


−
∑

N1+N2=N−1

{
L/N1

Y (μL/L
(Z)π/#

L )+ (L/N1
Y L/L

(Z)π/#
X̆
)
}
· d/Y N2
. (11.19)

We claim that all terms on RHS (11.19)= Harmless≤N without the need to observe
any cancellations. The main point is that all deformation tensor components are hit
with an L derivative and hence can be bounded with the estimate (11.10). Otherwise,
the analysis is essentially the same as our analysis of Y N−1K (Y )

(π−Cancel−1)[
].
Analysis of Y N−1K (Y )

(
) [
]. We will show that these terms = Harmless≤N . The

terms in K (Y )
(
) [
] (see (4.8)) are of the form f(γ)π P Z
+ f(γ)/
 where P ∈ {d/}∪

P , Z ∈ Z , and π ∈
{

trg/(Y )π/, (Y )πL X̆ ,
(Y )πX̆ X ,

(Y )π/#
L ,

(Y )π/#
X̆

}
. We therefore conclude

that
∣∣∣Y N−1K (Y )

(
) [
]
∣∣∣ �

∣∣∣Z ≤N+1;1∗ 


∣∣∣+ ∣∣P≤N γ
∣∣+

∣∣∣P [1,N ]∗ γ
∣∣∣ = Harmless≤N by

using (8.27), (11.11), and the L∞ estimates of Prop. 8.10
Analysis of Y N−1K (Y )

(Low)[
]. We will show that these terms= Harmless≤N . Using

Lemma 2.19, we see that (see (4.9))K (Y )
(Low)[
] = f(P≤1γ, g/−1, d/x1, d/x2, X̆
)π Pγ

where π and P are as in the previous paragraph. Hence, we conclude that
Y N−1K (Y )

(Low)[
] = Harmless≤N by using the same arguments as in the previous

paragraph together with Lemmas 8.4 and 8.5 (to bound the derivatives of g/−1 and
d/x).

Summing the above estimates and recalling the splitting (4.6), we conclude that the

main term Y N−1
(
μD (Y )

α J
α[
]

)
on RHS (11.13) is equal to RHS (11.3b) as desired.

To complete the proof of (11.3b), it remains only for us to show that RHS (11.14)
� Harmless≤N . The main point is that N2 ≤ N − 2 in these terms and hence they
do not involve the top-order derivatives of μ or L1

(Small), L2
(Small). We first consider
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the case N1 ≤ 9 in inequality (11.14). Using the bound
∥∥P≤9trg/(Y )π

∥∥
L∞(�u

t )
� ε

mentioned just below (11.12), we see that when N1 ≤ 9, it suffices to bound

∑
N2+N3≤N−1

N2≤N−2

∣∣∣Y N2
(
μD (Y )

α J
α[Y N3
]

)∣∣∣ . (11.20)

That is, we must bound the terms Y N2K (Y )
(π−Danger)[Y N3
]+· · ·+Y N2K (Y )

(Low)[Y N3
].
To this end, we repeat the proofs of the above estimates for Y N−1K (Y )

(π−Danger)[
] +
· · · + Y N−1K (Y )

(Low)[
] but with N2 in place of N − 1 and Y N3
 in place of the
explicitly written 
 terms, the key point being that N2 ≤ N − 2. The same arguments
immediately yield that all terms = Harmless≤N2+N3+1 ≤ Harmless≤N except for
products of the form (X̆Y N3
)Y N2+1trg/χ and ρ(d/#Y N3
) · (μd/Y N2 trg/χ) correspond-
ing to the two explicitly written products on RHS (11.3b). Since N2 ≤ N − 2, we can
bound these two products by ≤ Harmless≤max{N3,N2+2} ≤ Harmless≤N with the
help of the relation ρ = f(γ)γ (see Lemma 2.19), (8.13a), and the L∞ estimates of
Prop. 8.10.

To complete the proof of the desired bound for RHS (11.14), we must handle the case
N1 ≥ 10 on RHS (11.14) (and thus N2+N3 ≤ 7). The arguments given in the previous

paragraph yield that Y N2
(
μD (Y )

α J
α[Y N3
]

)
= Harmless≤max{N2+N3+1,N2+2} ≤

Harmless≤9. Using this estimate and Lemma 11.1, we deduce that∣∣∣Y N2
(
μD (Y )

α J
α[Y N3
]

)∣∣∣ � ε. From this estimate, we deduce that the terms on

RHS (11.14) with N1 ≥ 10 are �
∣∣∣Y≤N−1trg/

(Y )π/

∣∣∣. Finally, (2.58), (8.13a), and

the L∞ estimates of Prop. 8.10) together yield that
∣∣∣Y≤N−1trg/

(Y )π/

∣∣∣ �
∣∣∣P≤N γ

∣∣∣ =
Harmless≤N as desired. We have thus proved (11.3b).

The proof of (11.3a) is essentially the same with a few minor differences that we
now mention. The term Y N−1K (L)

(π−Danger)[
] (see (4.7a)) is actually trivial in this

case because (L)π/#
L = 0 (see (2.77b)). We again observe cancellation of the top-order

eikonal function quantities in Y N−1K (L)
(π−Cancel−1)[
] (see (4.7b)) up to Harmless≤N

errors. Specifically, with the help of (11.8a)–(11.8b) and the fact that (L)π/#
L = 0, we

observe cancellation of / Y N−1μ. In contrast, without the need to observe any can-
cellations, all terms in Y N−1K (L)

(π−Cancel−2)[
] (see (4.7c)) = Harmless≤N , thanks

to the estimate (11.8b) for L/N−1
P d/#(L)πL X̆ and the fact that (L)π/#

L = 0. The main
term on RHS (11.3a) comes from the case when all N − 1 derivatives in the term
Y N−1K (L)

(π−Less Dangerous)[
] fall on the factor trg/(L)π/ from (4.7d), where we substi-

tute RHS (2.77c) for (L)π/. All other terms on RHS (11.3a) are Harmless≤N , as in the
proof of (11.3b).

To prove (11.3c), we first note that PN must be either of the form PN−1L or
PN−1Y , where PN−1 contains a factor of L . In the former case, by using essentially
the same arguments we used in the proof of (11.3a) but with PN−1L in the role of
Y N−1L , we deduce that
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�g(P
N−1L
) = (d/#
) · (μd/PN−1trg/χ)+ Harmless≤N . (11.21)

The L∞ estimates of Prop. 8.10 imply that the first product on RHS (11.21) is �∣∣PN trg/χ
∣∣, where PN contains a factor of L . We now commute the operator L to the

front and use (8.19a) with f = trg/χ, (8.13a), and the L∞ estimates of Prop. 8.10 to
deduce that the commutator error terms= Harmless≤N . We then use (8.29a) to bound

the non-commutator term as follows:
∣∣∣LPN−1trg/χ

∣∣∣ �
∣∣∣P≤N+1


∣∣∣ +
∣∣∣P≤N γ

∣∣∣ =
Harmless≤N . We have thus proved (11.3c) in this case.

In the remaining case of (11.3c), in which PN is of the form PN−1Y and PN−1

contains a factor of L , we use essentially the same arguments we used in the proof of
(11.3b) but with PN−1Y in the role of Y N to deduce

�g(P
N−1Y
) = (X̆
)PN−1Y trg/χ+ ρ(d/#
) · (μd/PN−1trg/χ)+ Harmless≤N ,

(11.22)

where the operators PN−1 in (11.22) contain a factor of L . The L∞ estimates of
Prop. 8.10 imply that the first product on RHS (11.22) is �

∣∣PN trg/χ
∣∣, where PN

contains a factor of L . Therefore, the arguments from the previous paragraph yield that
this term= Harmless≤N as desired. Also using that ρ = f(γ)γ (see (2.89c)), we find
that the second product on RHS (11.22) is �

∣∣PN trg/χ
∣∣, where PN contains a factor

of L . The arguments from the previous paragraph yield that this term= Harmless≤N

as desired. We have thus proved (11.3c) and completed the proof of Prop. 11.2.

11.5 Pointwise Estimates for the Fully Modified Quantities

In this subsection, we obtain pointwise estimates for the most difficult product we
encounter in our energy estimates: (X̆
)Y N trg/χ. The main result is Prop. 11.10. The
proof of the proposition relies on pointwise estimates for the fully modified quantities,
which we first derive. We start with a simple lemma in which we obtain pointwise
estimates for some of the inhomogeneous terms in the transport equations verified by
the fully modified and partially modified quantities.

Lemma 11.8 (Pointwise estimates forPNX andPN X̃). Assume that N ≤ 18. Let
X be the quantity defined in (6.8b), let X̃ be the quantity defined in (6.10), let (Y

N−1 )̃X be
the quantity from (6.9b) (with Y N−1 in the role ofPN ), and let (P

N−1)Bbe the quantity
defined in (6.16). Under the data-size and bootstrap assumptions of Subsects. 7.4–7.5
and the smallness assumptions of Subsect. 7.7, the following pointwise estimates hold
on MT(Boot),U0 :

∣∣∣Y NX+ GL L X̆Y N


∣∣∣ � μ
∣∣∣P≤N+1


∣∣∣+
∣∣∣Z ≤N ;1∗ 


∣∣∣+
∣∣∣P≤N γ

∣∣∣+
∣∣∣P [1,N ]∗ γ

∣∣∣ ,
(11.23a)∣∣∣P≤NX

∣∣∣ �
∣∣∣Z ≤N+1;1∗ 


∣∣∣+
∣∣∣P≤N γ

∣∣∣+
∣∣∣P [1,N ]∗ γ

∣∣∣ , (11.23b)
∣∣∣PN X̃

∣∣∣ �
∣∣∣P≤N+1


∣∣∣+
∣∣∣P≤N γ

∣∣∣ , (11.23c)
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∣∣∣Y (Y N−1 )̃X
∣∣∣ �

∣∣∣P≤N+1


∣∣∣ , (11.23d)
∣∣∣(PN−1)B

∣∣∣ � ε

∣∣∣P≤N γ
∣∣∣ . (11.23e)

Proof See Subsect. 8.2 for some comments on the analysis. Throughout this proof,
we silently use the L∞ estimates of Prop. 8.10.

To prove (11.23a), we first use (6.8b) and Lemma 2.19 to obtain X = −GL L X̆
+
μf(γ, g/−1, d/x1, d/x2)P
. We now apply Y N to this identity and bring the top-order
term GL L X̆Y N
 over to the left (as indicated on LHS (11.23a)), which leaves
the commutator terms [GL L ,Y N ]X̆
 and GL L [X̆ ,Y N ]
 on the RHS. To bound∣∣Y N

{
μf(γ, g/−1, d/x1, d/x2)P


}∣∣ by ≤ RHS (11.23a), we use Lemmas 8.4 and 8.5.
Note that we have paid special attention to terms in which all derivatives Y N fall on P
;

these terms are bounded by the first term on RHS (11.23a). To bound
∣∣∣[GL L ,Y N ]X̆


∣∣∣
by ≤ RHS (11.23a), we use the fact that GL L = f(γ) (see Lemma 2.19). To

bound
∣∣∣GL L [X̆ ,Y N ]


∣∣∣ by ≤ RHS (11.23a), we also use the commutator estimate

(8.24) with f = 
. The proof of (11.23b) is similar but simpler and we omit the
details. The same is true for the proof of (11.23c) since by Lemma 2.19, we have
X̃ = f(γ, g/−1, d/x1, d/x2)P
.

To derive (11.23d), we first use (6.9b) and Lemma 2.19 to deduce that Y (Y N−1 )̃X =
Y
{
f(γ, g/−1, d/x1, d/x2)PN


}
. The estimate (11.23d) now follows easily from the

previous expression and Lemmas 8.4 and 8.5.
We now prove (11.23e). We bound term PN−1(trg/χ)

2 from RHS (6.16) by ≤
RHS (11.23e) with the help of inequality (8.13a). We bound the term [GL L ,P

N−1]/

using the aforementioned relation GL L = f(γ) and Cor. 8.9. To bound the
term GL L [/ ,PN−1]
, we also use the commutator estimate (8.20b) with 


in the role of f and Cor. 8.11. We bound the term [L ,PN−1]trg/χ with the
help of the commutator estimate (8.19a) with trg/χ in the role of f and inequal-
ity (8.13a). We bound [L ,PN−1]X̃ with the help of the commutator estimate

(8.19a) with f = X̃ and (11.23c). To bound L
{
(PN−1 )̃X−PN−1X̃

}
, we first

note that (6.9b), (6.10), and the Leibniz rule imply that the magnitude of this

term is �
∑

N1+N2≤N
N1≥1

∣∣∣L/N1
P G#

(Frame)

∣∣∣
∣∣∣PN2+1


∣∣∣+
∣∣∣G#

(Frame)

∣∣∣
∣∣∣[L , LPN−1]


∣∣∣. Since

Lemma 2.19 implies that G#
(Frame) = f(γ, g/−1, d/x1, d/x2), the desired bound for the

sum follows from Lemmas 8.4 and 8.5. To bound the term
∣∣∣G#

(Frame)

∣∣∣ ∣∣[L , LPN−1]
∣∣
by ≤ RHS (11.23e), we also use the commutator estimate (8.19a) with f = 
 and
Cor. 8.11. This completes the proof of (11.23e) and finishes the proof of the lemma.

� 

Recall that the fully modified quantities (P
N )X verify the transport equation (6.11).

In the next lemma, we integrate this transport equation and derive pointwise estimates
for (PN )X . The lemma is a preliminary ingredient in the proof of Prop. 11.10.
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Lemma 11.9 (Estimates for solutions to the transport equation verified by
(PN )X ). Assume that 1 ≤ N ≤ 18 and let (P

N )X and X be as in Prop. 6.2. Assume
that PN = Y N . Under the data-size and bootstrap assumptions of Subsects. 7.4–7.5
and the smallness assumptions of Subsect. 7.7, the following pointwise estimate holds
on MT(Boot),U0 :

∣∣∣(Y N )X
∣∣∣ (t, u, ϑ) ≤C

∣∣∣(Y N )X
∣∣∣ (0, u, ϑ)

+ 2 (1 + Cε)

∫ t

s=0

[Lμ(s, u, ϑ)]−
μ(s, u, ϑ)

∣∣∣Y NX
∣∣∣ (s, u, ϑ) ds

+ C
∫ t

s=0

{∣∣∣Z ≤N+1;1∗ 


∣∣∣+
∣∣∣P≤N γ

∣∣∣+
∣∣∣P [1,N ]∗ γ

∣∣∣
}
(s, u, ϑ) ds.

(11.24)

Proof To prove (11.24), we set PN = Y N in equation (6.11) and, in this part of the
proof, we view the terms in the equation as functions of (s, u, ϑ). Corresponding to

the factor

(
−2

Lμ

μ
+ 2trg/χ

)
on the left-hand side, we define the integrating factor

ι(s, u, ϑ) := exp

{∫ s

t ′=0

(
−2

Lμ

μ
(t ′, u, ϑ)+ 2trg/χ

)
(t ′, u, ϑ) dt ′

}
. (11.25)

We then rewrite (6.11) as L(ι(P
N )X ) = ι × RHS (6.11) and integrate this equation

with respect to s from s = 0 to s = t . Using the estimate (8.34) for trg/χ, we find that

ι(s, u, ϑ) = (1 +O(ε))
μ2(0, u, ϑ)

μ2(s, u, ϑ)
. (11.26)

From Def. 10.3 and the estimates (10.17) and (10.20), we find that

sup
0≤s′≤t

μ(t, u, ϑ)

μ(s′, u, ϑ)
≤ C. (11.27)

From (11.26) and (11.27), it is straightforward to see that the desired bound (11.24)
follows once we establish the following bounds for terms generated by the terms on
RHS (6.11) (recall that PN = Y N ):

∣∣∣μ[L ,Y N ]trg/χ
∣∣∣ (s, u, ϑ)

≤ Cε

∣∣∣(Y N )X
∣∣∣ (s, u, ϑ)+ Cε

∣∣∣Z ≤N+1;1∗ 


∣∣∣ (s, u, ϑ)+ Cε

∣∣∣P≤N γ
∣∣∣ (s, u, ϑ)

+ Cε

∣∣∣P [1,N ]∗ γ
∣∣∣ (s, u, ϑ), (11.28)
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2

(
μ(t, u, ϑ)

μ(s, u, ϑ)

)2 ∣∣∣∣
Lμ(s, u, ϑ)

μ(s, u, ϑ)

∣∣∣∣
∣∣∣Y NX

∣∣∣ (s, u, ϑ)

≤ 2(1 + Cε)

∣∣∣∣
[Lμ]−(s, u, ϑ)

μ(s, u, ϑ)

∣∣∣∣
∣∣∣Y NX

∣∣∣ (s, u, ϑ)

+ C
∣∣∣Z ≤N+1;1∗ 


∣∣∣ (s, u, ϑ)+ C
∣∣∣P≤N γ

∣∣∣ (s, u, ϑ)+ C
∣∣∣P [1,N ]∗ γ

∣∣∣ (s, u, ϑ),

(11.29)

all remaining terms on RHS (6.11) are in magnitude

≤ C
∣∣∣Z ≤N+1;1∗ 


∣∣∣ (s, u, ϑ)+ C
∣∣∣P≤N γ

∣∣∣ (s, u, ϑ)+ C
∣∣∣P [1,N ]∗ γ

∣∣∣ (s, u, ϑ).

(11.30)

We note that in deriving (11.24), the product Cει

∣∣∣(Y N )X
∣∣∣ arising from the first term

on RHS (11.28) needs to be treated with Gronwall’s inequality. However, due to the
small factor ε, this product has only the negligible effect of contributing to the factors
of Cε on RHS (11.24).

To derive (11.29), we first note the trivial bound

∣∣∣∣
Lμ(s, u, ϑ)

μ(s, u, ϑ)

∣∣∣∣ ≤
∣∣∣∣
[Lμ]−(s, u, ϑ)

μ(s, u, ϑ)

∣∣∣∣+∣∣∣∣
[Lμ]+(s, u, ϑ)

μ(s, u, ϑ)

∣∣∣∣. To bound the terms on LHS (11.29) arising from the factor
∣∣∣∣
[Lμ]+(s, u, ϑ)

μ(s, u, ϑ)

∣∣∣∣ by ≤ the terms on the last line of RHS (11.29), we use (10.11),

(11.27), and the estimate (11.23b). To bound the terms on LHS (11.29) aris-

ing from the factor

∣∣∣∣
[Lμ]−(s, u, ϑ)

μ(s, u, ϑ)

∣∣∣∣, we consider the partitions from Def. 10.3.

When (u, ϑ) ∈ (+)Vu
t , we use the bounds (10.19) and (11.27) to deduce that(

μ(t, u, ϑ)

μ(s, u, ϑ)

)2 ∣∣∣∣
[Lμ]−(s, u, ϑ)

μ(s, u, ϑ)

∣∣∣∣ ≤ Cε. Combining this bound with (11.23b), we eas-

ily conclude that the terms of interest are ≤ the terms on the last line of RHS (11.29).
Finally, when (u, ϑ) ∈ (−)Vu

t , we use (10.20) to deduce that

2

(
μ(t, u, ϑ)

μ(s, u, ϑ)

)2 ∣∣∣∣
[Lμ]−(s, u, ϑ)

μ(s, u, ϑ)

∣∣∣∣ ≤ 2(1 + Cε)

∣∣∣∣
[Lμ]−(s, u, ϑ)

μ(s, u, ϑ)

∣∣∣∣ .

Thus, we conclude that the terms under consideration are ≤ the terms on the first line
of RHS (11.29) as desired.

To deduce (11.28), we use definition (6.8a), use the commutator estimate (8.19a)
with f = trg/χ, the estimates (8.34), (8.13a), and (8.32a), and Cor. 8.11 to deduce that

μ[L ,Y N ]trg/χ � εμ
∣∣∣Y N trg/χ

∣∣∣+ ε

∣∣∣P≤N γ
∣∣∣

� ε

∣∣∣(Y N )X
∣∣∣+ ε

∣∣∣P≤N γ
∣∣∣+ ε

∣∣∣Y NX
∣∣∣ . (11.31)
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To bound the last term on RHS (11.31), we simply quote (11.23b). We have thus
proved the desired estimate (11.28).

We now prove (11.30). To bound the term 2trg/χY NX from RHS (6.11), we use the
estimate (8.34) for trg/χ and (11.23b).

To bound the term [L ,Y N ]X from RHS (6.11), we first note that (11.23b) and

the L∞ estimates of Prop. 8.10 yield that
∥∥∥P≤9X

∥∥∥
L∞(�u

t )
≤ Cε. Hence, using the

commutator estimate 8.8 with f = X and (11.23b), we conclude that
∣∣∣[L ,Y N ]X

∣∣∣ �∣∣∣Z ≤N+1;1∗ 


∣∣∣+
∣∣∣P≤N γ

∣∣∣+
∣∣∣P [1,N ]∗ γ

∣∣∣ as desired.

To bound the product [PN , Lμ]trg/χ from RHS (6.11), we first note that its

magnitude is �
∥∥∥P [1,9]Lμ

∥∥∥
L∞(�u

t )

∣∣∣P≤N−1trg/χ
∣∣∣ +

∣∣∣P≤N Lμ
∣∣∣
∥∥∥P≤8trg/χ

∥∥∥
L∞(�u

t )
.

We now bound the first product in the previous inequality by � RHS (11.30)
with the help of (8.13a) and (8.31b) and the second by � RHS (11.30) with the
help of (8.28b) and (8.34). A similar argument that takes into account the esti-
mates (8.29a), (8.31a), (8.31b) and (8.32a) yields the same bound for the term
[μ,PN ]Ltrg/χ from RHS (6.11). A similar argument yields the same bound for the
term

{
PN

(
μ(trg/χ)2

)− 2μtrg/χPN trg/χ
}

from RHS (6.11), the key point being that
the top-order term PN trg/χ cancels from this difference. To bound the last term PNA
from RHS (6.11) in magnitude by � RHS (11.30), we apply PN to both sides of
(6.4). The desired bound now follows from Lemmas 8.4 and 8.5 and the L∞ estimates
of Prop. 8.10. We have thus established (11.24). � 

We now use Lemmas 11.9 and 11.8 to establish the proposition.

Remark 11.1 (Boxed constants affect high-order energy blowup-rates). The
“boxed constants” such as the 2 appearing on the RHS of inequality (11.32) and

the 8.1 appearing on the RHS of inequality (14.2a) are important because they affect
the blowup-rate of our high-order energy estimates with respect to powers of μ−1

� .

Proposition 11.10 (The key pointwise estimate for (X̆
)Y N trg/χ). Assume that 1 ≤
N ≤ 18. Under the assumptions of Lemma 11.9, the following pointwise estimate holds
on MT(Boot),U0 :
∣∣∣(X̆
)Y N trg/χ

∣∣∣ (t, u, ϑ)

≤ 2

∥∥∥∥
[Lμ]−

μ

∥∥∥∥
L∞(�u

t )

∣∣∣X̆Y N


∣∣∣ (t, u, ϑ)

+ 4 (1+Cε)
‖[Lμ]−‖L∞(�u

t )

μ�(t, u)

∫ t

t ′=0

‖[Lμ]−‖L∞(�u
t ′ )

μ�(t ′, u)

∣∣∣X̆Y N


∣∣∣ (t ′, u, ϑ) dt ′ + Error,

(11.32)

where
|Error| (t, u, ϑ)

� 1

μ�(t, u)

∣∣∣(Y N )X
∣∣∣ (0, u, ϑ)+

∣∣∣Z ≤N+1;1∗ 


∣∣∣ (t, u, ϑ)
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+ 1

μ�(t, u)

∣∣∣Z ≤N ;1∗ 


∣∣∣ (t, u, ϑ)

+ 1

μ�(t, u)

∣∣∣P≤N γ
∣∣∣ (t, u, ϑ)+ 1

μ�(t, u)

∣∣∣P [1,N ]∗ γ
∣∣∣ (t, u, ϑ)

+ ε
1

μ�(t, u)

∫ t

t ′=0

1

μ�(t ′, u)

∣∣∣Z ≤N+1;1∗ 


∣∣∣ (t ′, u, ϑ) dt ′

+ 1

μ�(t, u)

∫ t

t ′=0

∣∣∣Z ≤N+1;1∗ 


∣∣∣ (t ′, u, ϑ) dt ′

+ 1

μ�(t, u)

∫ t

t ′=0

1

μ�(t ′, u)

{∣∣∣Z ≤N ;1∗ 


∣∣∣+
∣∣∣P≤N γ

∣∣∣+
∣∣∣P [1,N ]∗ γ

∣∣∣
}
(t ′, u, ϑ) dt ′.

(11.33)

Furthermore, we have the following less precise pointwise estimate:
∣∣∣μY N trg/χ

∣∣∣ (t, u, ϑ)

�
∣∣∣(Y N )X

∣∣∣ (0, u, ϑ)+ μ
∣∣∣PN+1


∣∣∣ (t, u, ϑ)+
∣∣∣X̆PN


∣∣∣ (t, u, ϑ)

+
∣∣∣Z ≤N ;1∗ 


∣∣∣ (t, u, ϑ)+
∣∣∣P≤N γ

∣∣∣ (t, u, ϑ)+
∣∣∣P [1,N ]∗ γ

∣∣∣ (t, u, ϑ)

+
∫ t

t ′=0

1

μ�(t ′, u)

∣∣∣X̆PN


∣∣∣ (t ′, u, ϑ) dt ′ +
∫ t

t ′=0

∣∣∣Z ≤N+1;1∗ 


∣∣∣ (t ′, u, ϑ) dt ′

+
∫ t

t ′=0

1

μ�(t ′, u)

{∣∣∣Z ≤N ;1∗ 


∣∣∣+
∣∣∣P≤N γ

∣∣∣+
∣∣∣P [1,N ]∗ γ

∣∣∣
}
(t ′, u, ϑ) dt ′.

(11.34)

Proof We first prove (11.32)–(11.33). Using (6.8a) and (6.8b), we split

(X̆
)Y N trg/χ = − X̆


μ
Y NX+ X̆


μ
(Y N )X . (11.35)

We now bound the first product on RHS (11.35). Using (2.62) and (11.23a), we deduce
that

∣∣∣∣∣
X̆


μ
Y NX

∣∣∣∣∣ ≤ 2

∣∣∣∣
Lμ

μ

∣∣∣∣
∣∣∣X̆Y N


∣∣∣+ C

∣∣∣∣
1

2
GL L L
 + GL X L


∣∣∣∣
∣∣∣X̆Y N


∣∣∣

+ C
∣∣∣X̆


∣∣∣
∣∣∣P≤N+1


∣∣∣+ C

∣∣∣∣∣
X̆


μ

∣∣∣∣∣
{∣∣∣Z ≤N ;1∗ 


∣∣∣+
∣∣∣P≤N γ

∣∣∣+
∣∣∣P [1,N ]∗ γ

∣∣∣
}
.

(11.36)

To handle the first product on RHS (11.36), we use (10.11) to deduce that 2

∣∣∣∣
Lμ

μ

∣∣∣∣ ≤

2

∣∣∣∣
[Lμ]−

μ

∣∣∣∣+ 2

∣∣∣∣
[Lμ]+

μ

∣∣∣∣ ≤ 2

∥∥∥∥
[Lμ]−

μ

∥∥∥∥
L∞(�u

t )

+ C , which easily leads to the product
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under consideration being bounded by ≤ the sum of the first term on RHS (11.32)
and the second term on RHS (11.33). To handle the second product on RHS (11.36),
we first note that by Lemma 2.19, we have GL L ,GL X = f(γ). The L∞ estimates

of Prop. 8.10 thus yield that

∣∣∣∣
1

2
GL L L
 + GL X L


∣∣∣∣ ≤ Cε, from which we easily

deduce that the second product on RHS (11.36) is ≤ the term |Error| from (11.33).
Moreover, it is easy to deduce that the remaining terms on RHS (11.36) are ≤ |Error|,
thanks to the estimate

∥∥∥X̆

∥∥∥

L∞(�u
t )
≤ C (that is, (8.30a)).

We now bound the second product
X̆


μ
(Y N )X on RHS (11.35). We start by mul-

tiplying both sides of (11.24) by
X̆


μ
. We first address the product of

X̆


μ
and the

second product 2 (1 + Cε) · · · on RHS (11.24). We now use inequality (11.23a) to
substitute for the term

∣∣Y NX
∣∣ appearing in the integrand. The easy terms to bound are

those that arise from RHS (11.23a); using the bound
∥∥∥X̆


∥∥∥
L∞(�u

t )
≤ C mentioned

above and the bound ‖Lμ‖L∞(�u
t )
≤ C (that is, (8.31a)), it is easy to see that their

contribution to the product of
X̆


μ
and the first product 2 (1+Cε) · · · is ≤ the term

|Error| from (11.33). It remains for us bound the error term generated by the main
part of the integrand factor

∣∣Y NX
∣∣, which is given by the term GL L X̆Y N
 from LHS

(11.23a). Specifically, we must bound

2 (1 + Cε)

{
X̆


μ

}
(t, u, ϑ)

∫ t

s=0

[Lμ]−(s, u, ϑ)

μ(s, u, ϑ)

∣∣∣GL L X̆Y N


∣∣∣ (s, u, ϑ) ds.

(11.37)

We use (9.7) to replace the factor GL L(s, u, ϑ) with GL L(t, u, ϑ) up to the error
factor Cε. We then pull GL L(t, u, ϑ) out of the ds integral, multiply it against{

X̆


μ

}
(t, u, ϑ), and use the arguments used to deduce (11.36) as well as those

given just below it to deduce that

{
GL L

X̆


μ

}
(t, u, ϑ) = 2

[Lμ]−(t, u, ϑ)

μ(t, u, ϑ)
+O(1).

The portion of (11.37) corresponding to the factor 2
[Lμ]−(t, u, ϑ)

μ(t, u, ϑ)
is clearly ≤

the product 4 (1 + Cε) · · · on the second line of RHS (11.32). Moreover, using the
bound ‖Lμ‖L∞(�u

t )
≤ C mentioned above to bound the [Lμ]−(s, u, ϑ) integrand

factor and also using the bound
∥∥∥X̆


∥∥∥
L∞(�u

t )
≤ C mentioned above, we find that the

portion of (11.37) corresponding to the factorO(1) from above is≤ the last product on

RHS (11.33) (here we are using the simple fact that the factor
1

μ�(t, u)
on the outside

of the integral in the last product is ≥ 1). Similarly, the error factor Cε mentioned
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above, generated by replacing GL L(s, u, ϑ) with GL L(t, u, ϑ), leads to a term that is
� the term on RHS (11.33) featuring the coefficient ε.

To complete the proof, it remains for us to bound the magnitude of the product of
X̆


μ
and the term C

∣∣∣(Y N )X
∣∣∣ (0, u, ϑ) on RHS (11.24) by ≤ |Error| and the magni-

tude of the product of
X̆


μ
and the last time integral C

∫ t
s=0 · · · on RHS (11.24) by

≤ |Error|, where |Error| verifies (11.33) in each case. The desired estimates follow

easily from the bound
∥∥∥X̆


∥∥∥
L∞(�u

t )
≤ C mentioned above. We have thus proved

(11.32)–(11.33).
The proof of (11.34) is similar but simpler so we omit the details. The main simpli-

fications are the presence of an additional power of μ on LHS (11.34) and that we no
longer have to observe the special structure that led to the factor Lμ on RHS (11.36). � 

11.6 Pointwise Estimates for the Error Terms Generated by the Multiplier
Vectorfield

In this subsection, we derive simple pointwise estimates for the energy estimate error
terms generated by the deformation tensor of the multiplier vectorfield T .

Lemma 11.11 (Pointwise bounds for the error terms generated by the deforma-
tion tensor of T ). Consider the multiplier vectorfield error terms
(T )P(1)[
], · · · , (T )P(5)[
] defined in (3.14a)–(3.14e). Let ς > 0 be a real number.
Under the data-size and bootstrap assumptions of Subsects. 7.4–7.5 and the smallness
assumptions of Subsect. 7.7, the following pointwise inequality holds on MT(Boot),U0

(without any absolute value taken on the left), where the implicit constants are inde-
pendent of ς :

5∑
i=1

(T )P(i)[
] �(1 + ς−1)(L
)2 + (1 + ς−1)(X̆
)2 + μ|d/
|2 + ς δ̊∗|d/
|2

+ 1√
T(Boot) − t

μ|d/
|2. (11.38)

Proof See Subsect. 8.2 for some comments on the analysis. Using the schematic
relations (2.90c) and (2.90d), the estimate (8.11b), and the L∞ estimates of Props. 8.10
and 9.2, it is straightforward to verify that the terms in braces on the RHS of (3.14a),
(3.14b), (3.14d), and (3.14e) are bounded in magnitude by � 1. It follows that for i =
1, 2, 4, 5,

∣∣(T )P(i)[
]
∣∣ is � the sum of the terms on the first line of RHS (11.38). The

factors of ς and δ̊∗ appear on RHS (11.38) because we use Young’s inequality to bound
(T )P(4)[
] � |L
||d/
| ≤ ς−1δ̊−1∗ (L
)2+ς δ̊∗|d/
|2 ≤ Cς−1(L
)2+Cς δ̊∗|d/
|2.
Similar remarks apply to (T )P(5)[
].

To bound the term (T )P(3)[
], we also need to use the estimates (10.11) and (10.13),
which allow us to bound the first two terms in braces on RHS (3.14c). Note that since
no absolute value is taken on LHS (11.38), we are free to replace the factor (X̆μ)/μ

from RHS (3.14c) with the factor [X̆μ]+/μ (which we bounded in (10.13)). � 
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11.7 Pointwise Estimates for the Partially Modified Quantities

Recall that the partially modified quantity (Y N−1)X̃ verifies the transport equation
(6.15). In this subsection, we use the transport equation to derive pointwise estimates
for (Y N−1)X̃ and its L derivative.

Lemma 11.12 (Pointwise estimates for the partially modified quantities). Assume
that 1 ≤ N ≤ 18 and let (Y

N−1)X̃ be the partially modified quantity defined by (6.9a).
Under the data-size and bootstrap assumptions of Subsects. 7.4–7.5 and the smallness
assumptions of Subsect. 7.7, the following pointwise estimates hold on MT(Boot),U0 :

∣∣∣L(Y N−1)X̃
∣∣∣ ≤ 1

2
|GL L |

∣∣∣/ Y N−1


∣∣∣+ Cε

∣∣∣P≤N+1


∣∣∣+ Cε

∣∣∣P≤N γ
∣∣∣ ,

(11.39a)∣∣∣(Y N−1)X̃
∣∣∣ (t, u, ϑ) ≤

∣∣∣(Y N−1)X̃
∣∣∣ (0, u, ϑ)

+ 1

2
|GL L | (t, u, ϑ)

∫ t

t ′=0

∣∣∣/ Y N−1


∣∣∣ (t ′, u, ϑ) dt ′

+ Cε

∫ t

t ′=0

{∣∣∣P≤N+1


∣∣∣+
∣∣∣P≤N γ

∣∣∣
}
(t ′, u, ϑ) dt ′. (11.39b)

Proof To prove (11.39a), we must bound the terms on RHS (6.15), where Y N−1 is in
the role of PN−1. Clearly the first term on RHS (11.39a) arises from the first term on
RHS (6.15). To bound the terms on RHS (6.16), we simply quote (11.23e).

To derive (11.39b), we integrate (11.39a) along the integral curves of L . The only
subtle point is that we bound the time integral of the first term on RHS (11.39a) as fol-
lows by using (9.7) with M = 0 and s = t ′:

∫ t
t ′=0

{|GL L |
∣∣/ Y N−1


∣∣} (t ′, u, ϑ) dt ′ ≤
|GL L | (t, u, ϑ)

∫ t
t ′=0

∣∣/ Y N−1

∣∣ (t ′, u, ϑ) dt ′ +Cε

∫ t
t ′=0

∣∣P≤N+1

∣∣ (t ′, u, ϑ) dt ′. � 

12 Sobolev Embedding and Estimates for the Change of Variables Map

In this section, we provide some simple Sobolev embedding estimates adapted to the
�t,u . We use them in the proof of our main theorem, after deriving energy estimates,
in order to recover the fundamental L∞ bootstrap assumptions (BA
) for 
. We also
derive a basic regularity estimate for the change of variables map ϒ from Def. 2.20.

12.1 Estimates for Some �t,u-Tangent Vectorfields

We start with the following preliminary lemma.

Lemma 12.1 (Comparison ofY ,�, and�). Recall that Y is the commutation vector-
field (2.50) and that � is the geometric torus coordinate partial derivative vectorfield.
There exists a scalar function υ such that

Y = υ�. (12.1)
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Moreover, under the data-size and bootstrap assumptions of Subsects. 7.4–7.5 and
the smallness assumptions of Subsect. 7.7, the following pointwise estimates hold on
MT(Boot),U0 :

|υ− 1| � ε, |Lυ| , |Yυ| � ε,

∣∣∣X̆υ
∣∣∣ � 1. (12.2)

Similarly, the following estimate holds for the scalar-valued function ξ from (2.23):

∣∣∣Z ≤1ξ
∣∣∣ � 1. (12.3)

Proof The existence of υ is a trivial consequence of the fact that Y is �t,u-tangent.
To prove (12.2), we first note the data estimates ‖υ− 1‖L∞(�0,u) , ‖Yυ‖L∞(�0,u) � ε

and
∥∥∥X̆υ

∥∥∥
L∞(�0,u)

� 1. These data estimates are a simple consequence of the fact that

� = ∂2 when t = 0, equations (2.1)–(2.2), (2.26), (2.54a), and (2.55), Remark 2.6, the
data assumptions (7.3), and Lemma 7.3. A similar argument that also relies on the last

identity of (7.7) yields that ‖ξ‖L∞(�0,u) , ‖Yξ‖L∞(�0,u) � ε and
∥∥∥X̆ξ

∥∥∥
L∞(�0,u)

� 1.

See Subsect. 8.2 for some comments on the analysis. Next, we use (2.26), (2.54a),
(2.55), (2.72a), (2.78b), and Lemma 2.19 to deduce that υ satisfies the evolution
equation

L ln υ =
(Y )π/L · Y

|Y |2 = f(γ, g/−1, d/x1, d/x2)Pγ. (12.4)

In deriving (12.4), we used the identities L/L� = 0, L/L Y = [L ,Y ] = (Y )π/#
L and

L/Y g/ = (Y )π/ (see Lemma 2.9). Hence, from Lemmas 8.4 and 8.5 and the L∞ estimates
of Prop. 8.10, we deduce |L ln υ| � ε. Integrating along the integral curves of L as in
(8.38) and using the data estimates and the previous estimate, we conclude the desired
estimates (12.2) for υ and Lυ.

To derive the estimate for Yυ, we commute (12.4) with Y to obtain

LY ln υ = (Y )π/#
L · d/ ln υ+ Y

{
f(γ, g/−1, d/x1, d/x2)Pγ

}

= f(γ, g/−1, d/x1, d/x2)(Pγ)d/ ln υ+ Y
{

f(γ, g/−1, d/x1, d/x2)Pγ
}
. (12.5)

Using the same estimates as before, we deduce from (12.5) that |LY ln υ| �
ε |Y ln υ|+ε. Hence, integrating along the integral curves of L as before and using the
data estimates and Gronwall’s inequality, we conclude that |Y ln υ| � ε. Combining
this estimate with υ = 1 +O(ε), we conclude the desired estimate (12.2) for Yυ.

To derive the estimate for X̆υ, we commute (12.4) with X̆ and use above reasoning
as well as the formula (2.76b) to obtain

L X̆ ln υ = (X̆)π/#
L · d/ ln υ+ X̆

{
f(γ, g/−1, d/x1, d/x2)Pγ

}

= f(Z ≤1γ,P≤1γ, g/−1, d/x1, d/x2)d/ ln υ+ X̆
{

f(γ, g/−1, d/x1, d/x2)Pγ
}
.

(12.6)
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Using the same estimates as before and the already proven estimates for υ and Yυ

(which imply that |d/ ln υ| � ε), we deduce from (12.6) that
∣∣∣L X̆ ln υ

∣∣∣ � ε. Hence,

integrating along the integral curves of L as before and using the data estimates, we

conclude that
∣∣∣X̆ ln υ

∣∣∣ � 1. Combining this estimate with υ = 1+O(ε), we conclude

the desired estimate (12.2) for X̆υ.
Next, we use (2.23), (2.57), and the fact that [L , ∂

∂u ] = 0 to deduce that L/L� =
−L/L X̆ = −(X̆)π/L . Combining this identity with (2.76b) and (12.1) and arguing as in
the previous paragraph, we derive the evolution equation

Lξ = − 1

g(�,�)

(X̆)π/L ·� = υ

|Y |2
(X̆)π/L · Y = υf(Z ≤1γ,P≤1γ, g/−1, d/x1, d/x2).

(12.7)

Using the same estimates as in the previous paragraph and (12.2), we find that |Lξ| � 1
as desired. Moreover, integrating along the integral curves of L as before and using
the data estimates, we conclude that |ξ| � 1 as desired. It remains for us to derive
the desired estimates for Yξ and X̆ξ. To this end, we commute (12.7) with Y and
X̆ and use the same arguments as in the previous two paragraphs as well as the L∞

estimates of Prop. 9.2 and (12.2) to deduce that |LYξ| ,
∣∣∣L X̆ξ

∣∣∣ � 1. Integrating along

the integral curves of L as before and using the data estimates, we conclude the desired

bounds |Yξ| ,
∣∣∣X̆ξ

∣∣∣ � 1. � 

12.2 Comparison Estimates for Length Forms on �t,u

Before proving our Sobolev embedding result, we first establish a comparison result
for the length forms dλg/ and dϑ on �t,u . We start with a preliminary lemma in which
we derive simple pointwise estimates for the metric component υ defined in (2.41).

Lemma 12.2 (Pointwise estimates for υ). Let υ be the metric component from
Def. 2.19. Under the data-size and bootstrap assumptions of Subsects. 7.4–7.5 and the
smallness assumptions of Subsect. 7.7, the following estimate holds on MT(Boot),U0 :

υ = 1 +O(ε). (12.8)

Proof From (2.72c) and the estimate (8.34), we deduce that L ln υ = O(ε). Inte-
grating the previous estimate along the integral curves of L as in (8.38), we find that
ln υ(t, u, ϑ) = ln υ(0, u, ϑ) + O(ε). To complete the proof, we need only to show
that υ(0, u, ϑ) = 1+O(ε). To this end, we note that by construction of the geometric
coordinates, at t = 0 we have u = 1 − x1 and ϑ = x2, which implies that � = ∂2.
Therefore, υ2|t=0 = g(�,�)|t=0 = g22|t=0. Using (2.1)–(2.2) and the bootstrap
assumptions (BA
), we conclude that g22 = 1+O(
) = 1+O(ε), from which the
desired estimate υ(0, u, ϑ) = 1 +O(ε) easily follows. � 
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Lemma 12.3 (Comparison of the forms dλg/ and dϑ). Let p = p(ϑ) be a
non-negative function of ϑ . Under the data-size and bootstrap assumptions of Sub-
sects. 7.4–7.5 and the smallness assumptions of Subsect. 7.7, the following estimates
hold for (t, u) ∈ [0, T(Boot))× [0,U0]:
(1 − Cε)

∫

ϑ∈T
p(ϑ)dϑ ≤

∫

�t,u

p(ϑ)dλg/(t,u,ϑ) ≤ (1 + Cε)

∫

ϑ∈T
p(ϑ)dϑ, (12.9)

where dϑ denotes the standard integration measure on T.
Furthermore, let p = p(u′, ϑ) be a non-negative function of (u′, ϑ) ∈ [0, u] × T

that does not depend on t . Then for s, t ∈ [0, T(Boot)) and u ∈ [0,U0], we have:

(1 − Cε)

∫

�u
s

p d� ≤
∫

�u
t

p d� ≤ (1 + Cε)

∫

�u
s

p d�. (12.10)

Finally, we have

‖1‖L2(�u
t )
≤ C. (12.11)

Proof From (3.6) and inequality (12.8), we deduce that dλg/ = (1+O(ε)) dϑ , which
yields (12.9). (12.10) then follows as a simple consequence of (12.9) and the fact that
along �u

t , we have d� = dλg/(t,u,ϑ)du′. Finally, to derive (12.11), we use (12.9) and
(12.10) to deduce that ‖1‖2

L2(�u
t )
≤ C

∫ u
u′=0

∫
ϑ∈T 1 dϑ du′ ≤ C as desired. � 

12.3 Sobolev Embedding Along �t,u

We now state and prove our main Sobolev embedding result of interest.

Lemma 12.4 (Sobolev embedding along �t,u). Under the data-size and bootstrap
assumptions of Subsects. 7.4–7.5 and the smallness assumptions of Subsect. 7.7, the
following estimate holds for scalar-valued functions f defined on �t,u for (t, u) ∈
[0, T(Boot))× [0,U0]:

‖ f ‖L∞(�t,u)
≤ C

∥∥∥Y≤1 f
∥∥∥

L2(�t,u)
. (12.12)

Proof Standard Sobolev embedding yields that ‖ f ‖L∞(T) ≤ C
∥∥�≤1 f

∥∥
L2(T)

, where
the integration measure defining ‖ · ‖L2(T) is dϑ . Thus, in view of Lemma 12.3, the
desired estimate (12.12) follows from (12.1)–(12.2). � 

12.4 Basic Estimates Connected to the Change of Variables Map

Lemma 12.5 (Basic estimates for the rectangular components�i and�i ). Under
the data-size and bootstrap assumptions of Subsects. 7.4–7.5 and the smallness
assumptions of Subsect. 7.7, the following estimates hold onMT(Boot),U0 (for i = 1, 2):

∥∥∥Z ≤1�i
∥∥∥

L∞(�u
t )

� 1, (12.13)
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∥∥∥Z ≤1�i
∥∥∥

L∞(�u
t )

� 1, (12.14)

where � is the �t,u-tangent vectorfield from (2.23).

Proof The estimate (12.13) follows from (12.1), (12.2), and the bounds∥∥∥Z ≤1Y i
∥∥∥

L∞(�u
t )

� 1 +
∥∥∥Z ≤1Y i

(Small)

∥∥∥
L∞(�u

t )
� 1, which follow from (2.53),

(8.12c), and the L∞ estimates of Prop. 8.10. Similarly, to prove (12.14), we use
(2.23) to express �i = ξ�i . The desired bounds then follow from (12.3) and (12.13).

� 
Lemma 12.6 (Uniform C1,1 bounds for ϒ). Under the data-size and bootstrap
assumptions of Subsects. 7.4–7.5 and the smallness assumptions of Subsect. 7.7, the
change of variables map ϒ from Def. 2.20 is a C1,1 function of the geometric coordi-
nates57 that verifies the following estimates on MT(Boot),U0 :

∑
i1+i2+i3≤2

2∑
α=0

∥∥∥∥∥
(
∂

∂t

)i1 ( ∂

∂u

)i2 ( ∂

∂ϑ

)i3
ϒα

∥∥∥∥∥
L∞(�u

t )

≤ C, (12.15a)

∑
i1+i2+i3≤1

2∑
α=0

∣∣∣∣∣
(
∂

∂t

)i1 ( ∂

∂u

)i2 ( ∂

∂ϑ

)i3
ϒα(t2, u2, ϑ2)−

(
∂

∂t

)i1 ( ∂

∂u

)i2 ( ∂

∂ϑ

)i3
ϒα(t1, u1, ϑ1)

∣∣∣∣∣

≤ C {|t2 − t1| + |u2 − u1| + |ϑ2 − ϑ1|} . (12.15b)

On RHS (12.15b), |ϑ2 − ϑ1| denotes the flat distance between ϑ2 and ϑ1 on T.

Proof Recall that ϒα = xα (we view these quantities as a function of the geomet-
ric coordinates). It is a standard embedding result relative to geometric coordinates
(Morrey’s inequality) that (12.15b) follows once we prove (12.15a). Clearly t = x0

is uniformly bounded in the norm ‖ · ‖L∞(�u
t )

, while the xi were bounded in (8.11a).
The first derivatives of the xα are the terms on RHS (2.47). They were bounded in
the norm ‖ · ‖L∞(�u

t )
in Lemmas 8.4 and 12.5. To bound the second derivatives of

the xα , we first note that ∂
∂t = L , ∂

∂ϑ
= � = (1 + O(ε))Y (see Lemma 12.1), and

∂
∂u = X̆ +O(1)Y (see (2.23) and Lemma 12.5). Hence, it suffices to bound the norm

‖ · ‖L∞(�u
t )

of the L , Y , and X̆ derivatives of the scalar functions on RHS (2.47). The
desired bounds were derived in Lemmas 8.4 and 12.5. We have thus proved (12.15a).

� 

13 The Fundamental L2-Controlling Quantities

In this section, we define the controlling quantities that we use in our L2 analysis of
solutions and exhibit their coercivity.

Definition 13.1 (The main coercive quantities used for controlling the solution
and its derivatives in L2). In terms of the energy-flux quantities of Def. 3.3, we
define

57 The notation “C1,1” means that the up-to-first order geometric coordinate partial derivatives of the ϒα

are Lipschitz continuous.
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QN (t, u) := max
| 	I |=N

sup
(t ′,u′)∈[0,t]×[0,u]

{
E[P 	I
](t ′, u′)+ F[P 	I
](t ′, u′)

}
,

(13.1a)

Q[1,N ](t, u) := max
1≤M≤N

QM (t, u). (13.1b)

We use the following coercive spacetime integrals to control non−μ-weighted error
integrals involving geometric torus derivatives.

Definition 13.2 (Key coercive spacetime integrals). We associate the following inte-
grals to 
, where [Lμ]− = |Lμ| when Lμ < 0 and [Lμ]− = 0 when Lμ ≥ 0:

K[
](t, u) := 1

2

∫

Mt,u

[Lμ]−|d/
|2 d�, (13.2a)

KN (t, u) := max
| 	I |=N

K[P 	I
](t, u), (13.2b)

K[1,N ](t, u) := max
1≤M≤N

KM (t, u). (13.2c)

Remark 13.1 (We derive energy estimates only for the P-commuted wave equa-
tion with P ∈ P). We stress that definitions (13.1b) and (13.2c) provide L2-type
quantities that correspond to commuting the wave equation only with the elements
of the set P , which are Pu-tangent. As we described in Subsubsect. 1.5.4, we rely
on the special null structure of the equations and the special properties of the vector-
fields in P to close our energy estimates without deriving energy estimates for the
X̆ -commuted wave equation.

In the next lemma, we quantify the coercive nature of the spacetime integrals from
Def. 13.2.

Lemma 13.1 (Strength of the coercive spacetime integral). Let 1{μ≤1/4} denote
the characteristic function of the spacetime subset {(t, u, ϑ) ∈ [0,∞) × [0, 1] ×
T |μ(t, u, ϑ) ≤ 1/4}. Under the data-size and bootstrap assumptions of Subsects. 7.4–
7.5 and the smallness assumptions of Subsect. 7.7, the following lower bound holds
for (t, u) ∈ [0, T(Boot))× [0,U0]:

K[
](t, u) ≥ 1

8
δ̊∗
∫

Mt,u

1{μ≤1/4} |d/
|2 d�. (13.3)

Proof The lemma follows easily from definition (13.2a) and the estimate (10.12). � 
We now provide a simple technical lemma, based on Minkowski’s integral inequal-

ity, that we will use throughout our L2 analysis.

Lemma 13.2 (Estimate for the norm ‖ · ‖L2(�u
t )
of time-integrated functions). Let

f be a scalar function on MT(Boot),U0 and let

F(t, u, ϑ) :=
∫ t

t ′=0
f (t ′, u, ϑ) dt ′. (13.4)
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Under the data-size and bootstrap assumptions of Subsects. 7.4–7.5 and the smallness
assumptions of Subsect. 7.7, the following estimate holds for (t, u) ∈ [0, T(Boot)) ×
[0,U0]:

‖F‖L2(�u
t )
≤ (1 + Cε)

∫ t

t ′=0
‖ f ‖L2(�u

t ′ )
dt ′. (13.5)

Proof Recall that ‖F‖L2(�u
t )
:=
{∫ u

u′=0

∫
�t,u′

F2(t, u′, ϑ) dλg/ du′
}1/2

. Using the esti-

mate (12.9), we may replace dλg/ in the previous formula with the standard integration
measure dϑ on the torus T up to an overall multiplicative error factor of 1+O(ε). The
desired estimate (13.5) follows from this estimate and from applying Minkowski’s
inequality for integrals to equation (13.4). � 

In the next lemma, we quantify the coercive nature of the controlling quantities
from Def. 13.1.

Remark 13.2 The sharp constants 1 and 1
2 in front of the quantities

∥∥∥X̆P [1,N ]

∥∥∥

2

L2(�u
t )

and 1
2

∥∥√μd/P [1,N ]

∥∥2

L2(�u
t )

in the estimate (13.6) influence the blowup-rate of our
top-order energy estimates. In turn, this affects the number of derivatives that we need
to close our estimates.

Lemma 13.3 (The coercivity of Q[1,N ]). Let 1 ≤ M ≤ N ≤ 18, and let PM be an
Mth-order Pu-tangent vectorfield operator. Under the assumptions of Lemma 13.1,
the following lower bounds hold for (t, u) ∈ [0, T(Boot))× [0,U0]:

Q[1,N ](t, u) ≥ max

{
1

2

∥∥∥√μLPM


∥∥∥
2

L2(�u
t )
,

∥∥∥X̆PM


∥∥∥
2

L2(�u
t )
,

1

2

∥∥∥√μd/PM


∥∥∥
2

L2(�u
t )
,

C−1
∥∥∥PM


∥∥∥
2

L2(�u
t )
,

∥∥∥LPM


∥∥∥
2

L2(P t
u )
,

∥∥∥√μd/PM


∥∥∥
2

L2(P t
u )
,

C−1
∥∥∥PM


∥∥∥
2

L2(�t,u )

}
. (13.6)

Moreover,

‖
‖L2(�u
t )
≤ C ε̊+ CQ

1/2
1 (t, u), (13.7a)∥∥∥X̆


∥∥∥
L2(�u

t )
≤ C

∥∥∥X̆

∥∥∥

L2(�u
0 )
+ C ε̊+ CQ

1/2
1 (t, u). (13.7b)

Proof We first prove (13.6). We prove the estimates for
∥∥∥PM


∥∥∥
2

L2(�u
t )

and
∥∥∥PM


∥∥∥
2

L2(�t,u)
in detail; the other estimates in (13.6) follow easily from Lemma 3.4

and we omit those details. To derive the estimate (13.6) for
∥∥∥PM


∥∥∥
2

L2(�t,u)
and

∥∥∥PM


∥∥∥
2

L2(�t,u)
, we first note that the estimates for the former quantities follow eas-

ily from integrating the estimates for the latter quantities with respect to u. Hence, it
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suffices to prove the estimates for
∥∥∥PM


∥∥∥
2

L2(�t,u)
, and for this, we rely on the iden-

tity (3.19b). Using (8.13c) and the L∞ estimates of Prop. 8.10, we bound the factor

(1/2)trg/(X̆)π/ in (3.19b) as follows: (1/2)
∣∣∣trg/(X̆)π/

∣∣∣ = ∣∣L/X̆ g/
∣∣ � 1. Using the previous

estimate, (3.19b) with f = (PM
)2, Young’s inequality, and the fact that the solution
is trivial when u = 0, we deduce that

∥∥∥PM


∥∥∥
2

L2(�t,u)
≤
∫ u

u′=0

∥∥∥X̆PM


∥∥∥
2

L2(�t,u′ )
du′ + c

∫ u

u′=0

∥∥∥PM


∥∥∥
2

L2(�t,u′ )
du′.

(13.8)

From (13.8) and Gronwall’s inequality, we find that

∥∥∥PM


∥∥∥
2

L2(�t,u)
≤ Cecu

∫ u

u′=0

∥∥∥X̆PM


∥∥∥
2

L2(�t,u′ )
du′ = Cecu

∥∥∥X̆PM


∥∥∥
2

L2(�u
t )

≤ C
∥∥∥X̆PM


∥∥∥
2

L2(�u
t )
. (13.9)

The desired bound for
∥∥PM


∥∥2
L2(�t,u)

now follows from (13.9) and the already proven

estimate (13.6) for
∥∥∥X̆PM


∥∥∥
2

L2(�u
t )

.

To derive (13.7b), we use (13.5) with f = L
 and F(t, u, ϑ) = 
(t, u, ϑ) −

̊(u, ϑ), where 
̊(u, ϑ) = 
(0, u, ϑ). Also using the data bound

∥∥∥
̊
∥∥∥

L∞(�u
0 )
≤ C ε̊

(see (7.3)), we find that ‖
‖L2(�u
t )
≤ C ε̊ ‖1‖L2(�u

t )
+ C

∫ t

s=0
‖L
‖L2(�u

s )
ds. The

desired estimate now follows easily from this inequality, (12.11), and the estimate
(13.6) for ‖L
‖L2(�u

s )
.

To prove (13.7b), we first use the commutator estimate (8.19a) and the L∞ estimates
of Prop. 8.10 to deduce that L X̆
 = X̆ L
 +O(P≤1
). Taking the norm ‖·‖L2(�u

t )

of this inequality, we find that
∥∥∥L X̆


∥∥∥
L2(�u

t )
≤
∥∥∥X̆ L


∥∥∥
L2(�u

t )
+C

∥∥∥P≤1


∥∥∥
L2(�u

t )
.

We have already bounded all terms on the RHS of this inequality by � ε̊+CQ
1/2
1 (t, u).

Hence, much like in the previous paragraph, the desired estimate (13.7b) follows from
(13.5) with F(t, u, ϑ) = X̆
(t, u, ϑ)− X̆
(0, u, ϑ) and f (t, u, ϑ) = L X̆
(t, u, ϑ)
and the estimate (12.9), which ensures that the norms ‖·‖L2(�u

t )
and ‖·‖L2(�u

0 )
are

uniformly comparable when applied to the t-independent function X̆
(0, u, ϑ). � 
Corollary 13.4 (L∞ bounds for
 in terms of the fundamental controlling quan-
tities). Under the assumptions of Lemma 12.4, the following estimates hold for
(t, u) ∈ [0, T(Boot))× [0,U0]:

∥∥∥P≤11


∥∥∥
L∞(�u

t )
� Q

1/2
[1,12](t, u)+ ε̊. (13.10)
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Proof The bound
∥∥P [1,11]


∥∥
L∞(�u

t )
� Q

1/2
[1,12](t, u) follows from Lemma 13.3 and

Lemma 12.4. In particular, we have ‖L
‖L∞(�u
t )

� Q
1/2
[1,12](t, u). Integrating along

the integral curves of L as in (8.38) and using this bound and the small-data assumption
‖
‖L∞(�u

0 )
≤ ε̊ (see (7.3)), we deduce that ‖
‖L∞(�u

t )
≤ CQ

1/2
[1,12](t, u) + C ε̊. We

have thus proved the corollary. � 

14 Energy Estimates

This section contains the most important technical estimates in the article: a priori esti-
mates for the controlling quantities Q[1,N ] from Def. 13.1 and the coercive spacetime
integrals K[1,N ] from Def. 13.2. The main result is Prop. 14.1. To obtain the proposi-
tion, we use the pointwise estimates of Sect. 11 to establish suitable estimates for the
error integrals on RHS (3.12), wherePN
 is in the role of
 and the factorF in (3.12)
is the inhomogeneous term in the commuted wave equation μ�g(
)(P

N
) = F. We
have divided the error integrals into various classes that we separately treat in the
ensuing sections.

14.1 Statement of the Main a Priori Energy Estimates

We start by stating the proposition featuring our main a priori energy estimates, the
proof of which is located in Subsect. 14.9.

Proposition 14.1 (The main a priori energy estimates). Consider the fundamen-
tal L2-controlling quantities {Q[1,N ](t, u)}N=1,··· ,18 from Def. 13.1. There exists a
constant C > 0 such that under the data-size and bootstrap assumptions of Sub-
sects. 7.4–7.5 and the smallness assumptions of Subsect. 7.7, the following estimates
hold for (t, u) ∈ [0, T(Boot))× [0,U0]:

Q
1/2
[1,13+M](t, u)+K

1/2
[1,13+M](t, u) ≤ C ε̊μ−(M+.9)

� (t, u), (0 ≤ M ≤ 5), (14.1a)

Q
1/2
[1,1+M](t, u)+K

1/2
[1,1+M](t, u) ≤ C ε̊, (0 ≤ M ≤ 11). (14.1b)

We prove Prop. 14.1 through a long Gronwall argument that relies on the sharp
estimates for μ derived in Sect. 10 as well as the energy inequalities provided by the
following result, Prop. 14.2. The proof of the proposition is located in Subsect. 14.8.
See Remark 11.1 regarding the boxed constants on RHS (14.2a).

Proposition 14.2 (Inequalities derived from energy identities). Assume that 1 ≤
N ≤ 18 and ς > 0. There exists a constant C > 0, independent of ς , such
that under the data-size and bootstrap assumptions of Subsects. 7.4–7.5 and the
smallness assumptions of Subsect. 7.7, the following pointwise estimates hold for
(t, u) ∈ [0, T(Boot))× [0,U0] (where 2 ≤ N ≤ 18 in (14.2b)):

max
{
Q[1,N ](t, u),K[1,N ](t, u)

}

≤ C(1 + ς−1)ε̊2μ
−3/2
� (t, u)+ 6

∫ t

t ′=0

‖[Lμ]−‖L∞(�u
t ′ )

μ�(t ′, u)
Q[1,N ](t ′, u) dt ′
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+ 8.1
∫ t

t ′=0

‖[Lμ]−‖L∞(�u
t ′ )

μ�(t ′, u)
Q

1/2
[1,N ](t

′, u)
∫ t ′

s=0

‖[Lμ]−‖L∞(�u
s )

μ�(s, u)
Q

1/2
[1,N ](s, u) ds dt ′

+ 2
1

μ
1/2
� (t, u)

Q
1/2
[1,N ](t, u) ‖Lμ‖L∞((−)�u

t;t )

∫ t

t ′=0

1

μ
1/2
� (t ′, u)

Q
1/2
[1,N ](t

′, u) dt ′

+ Cε

∫ t

t ′=0

1

μ�(t ′, u)
Q

1/2
[1,N ](t

′, u)
∫ t ′

s=0

1

μ�(s, u)
Q

1/2
[1,N ](s, u) ds dt ′

+ Cε

∫ t

t ′=0

1

μ�(t ′, u)
Q[1,N ](t ′, u) dt ′

+ Cε
1

μ
1/2
� (t, u)

Q
1/2
[1,N ](t, u)

∫ t

t ′=0

1

μ
1/2
� (t ′, u)

Q
1/2
[1,N ](t

′, u) dt ′

+ CQ
1/2
[1,N ](t, u)

∫ t

t ′=0

1

μ
1/2
� (t ′, u)

Q
1/2
[1,N ](t

′, u) dt ′

+ C
∫ t

t ′=0

1√
T(Boot) − t ′

Q[1,N ](t ′, u) dt ′

+ C(1 + ς−1)

∫ t

t ′=0

1

μ
1/2
� (t ′, u)

Q[1,N ](t ′, u) dt ′

+ C
∫ t

t ′=0

1

μ�(t ′, u)
Q

1/2
[1,N ](t

′, u)
∫ t ′

s=0

1

μ
1/2
� (s, u)

Q
1/2
[1,N ](s, u) ds dt ′

+ C
∫ t

t ′=0

1

μ�(t ′, u)
Q

1/2
[1,N ](t

′, u)
∫ t ′

s=0

1

μ�(s, u)

∫ s

s′=0

1

μ
1/2
� (s′, u)

Q
1/2
[1,N ](s

′, u) ds′ ds dt ′

+ C(1 + ς−1)

∫ u

u′=0
Q[1,N ](t, u′) du′

+ CεQ[1,N ](t, u)+ CςQ[1,N ](t, u)+ CςK[1,N ](t, u)

+ C
∫ t

t ′=0

1

μ
5/2
� (t ′, u)

Q[1,N−1](t ′, u) dt ′, (14.2a)

max
{
Q[1,N−1](t, u),K[1,N−1](t, u)

}

≤ C ε̊2 + C
∫ t

t ′=0

1

μ
1/2
� (t ′, u)

Q
1/2
[1,N−1](t

′, u)
∫ t ′

s=0

1

μ
1/2
� (s, u)

Q
1/2
[1,N ](s, u) ds dt ′

+ C
∫ t

t ′=0

1√
T(Boot) − t ′

Q[1,N−1](t ′, u) dt ′

+ C(1 + ς−1)

∫ t

t ′=0

1

μ
1/2
� (t ′, u)

Q[1,N−1](t ′, u) dt ′

+ C ε̊

∫ t

t ′=0

1

μ
1/2
� (t ′, u)

Q
1/2
[1,N−1](t

′, u) dt ′

+ C(1 + ς−1)

∫ u

u′=0
Q[1,N−1](t, u′) du′

+ CςK[1,N−1](t, u). (14.2b)
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Remark 14.1 (Less degeneracy at the cost of one derivative). Note that the estimate
(14.2b) does not involve any of the difficult “boxed-constant” error integrals appearing
on RHS (14.2a). The price paid is that the term Q

1/2
[1,N ] on RHS (14.2b) corresponds

to one derivative above the level of LHS (14.2b) (that is, the estimate (14.2b) loses
one derivative).

14.2 Preliminary L2 Estimates for the Eikonal Function Quantities that Do Not
Require Modified Quantities

In this subsection, we provide preliminary L2 estimates for some error term factors.
The main result is Lemma 14.3, in which we bound the below-top-order derivatives
of μ, Li

(Small), and trg/χ in terms of the fundamental controlling quantities of Def. 13.1.
These estimates are not difficult to obtain because we allow them to lose one derivative
relative to 
. We also derive estimates for the top-order derivatives involving at least
one L differentiation. These estimates are also not difficult because to obtain them,
we do not need to rely on the modified quantities of Sect. 6.

To derive the desired estimates, we will integrate the transport equations of
Lemma 2.12 and their higher-order analogs with respect to t at fixed (u, ϑ) and apply
Lemma 13.2.

Lemma 14.3 (L2 bounds for the eikonal function quantities that do not require
modified quantities). Assume that N ≤ 18. Under the data-size and bootstrap
assumptions of Subsects. 7.4–7.5 and the smallness assumptions of Subsect. 7.7, the
following L2 estimates hold for (t, u) ∈ [0, T(Boot))×[0,U0] (see Subsect. 7.2 regard-
ing the vectorfield operator notation):

∥∥∥LP [1,N ]∗ μ
∥∥∥

L2(�u
t )
,

∥∥∥LP≤N Li
(Small)

∥∥∥
L2(�u

t )
,

∥∥∥LP≤N−1trg/χ
∥∥∥

L2(�u
t )

� ε̊+ Q
1/2
[1,N ](t, u)

μ
1/2
� (t, u)

, (14.3a)

∥∥∥LZ ≤N ;1Li
(Small)

∥∥∥
L2(�u

t )
,

∥∥∥LZ ≤N−1;1trg/χ
∥∥∥

L2(�u
t )

� ε̊+ Q
1/2
[1,N ](t, u)

μ
1/2
� (t, u)

, (14.3b)

∥∥∥P [1,N ]∗ μ
∥∥∥

L2(�u
t )
,

∥∥∥P≤N Li
(Small)

∥∥∥
L2(�u

t )
,

∥∥∥P≤N−1trg/χ
∥∥∥

L2(�u
t )

� ε̊+
∫ t

s=0

Q
1/2
[1,N ](s, u)

μ
1/2
� (s, u)

ds, (14.3c)

∥∥∥Z ≤N ;1∗ Li
(Small)

∥∥∥
L2(�u

t )
,

∥∥∥Z ≤N−1;1trg/χ
∥∥∥

L2(�u
t )

� ε̊+
∫ t

s=0

Q
1/2
[1,N ](s, u)

μ
1/2
� (s, u)

ds.

(14.3d)
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Proof See Subsect. 8.2 for some comments on the analysis. We set

qN (t) :=
2∑

a=1

∥∥∥P≤N La
(Small)

∥∥∥
L2(�u

t )
+
∥∥∥P≤N−1trg/χ

∥∥∥
L2(�u

t )
. (14.4)

From (8.29a), Lemma 13.3, (12.10), and Lemma 13.2, we deduce that

qN (t) ≤ CqN (0)+ Cε

∫ t

t ′=0
qN (t

′) dt ′ + C
∫ t

s=0

Q
1/2
[1,N ](s, u)

μ
1/2
� (s, u)

ds. (14.5)

Next, we note that qN (0) � ε̊, an estimate that follows from the estimate (8.13a)
for trg/χ and Lemma 7.3. We now apply Gronwall’s inequality to (14.5) to conclude
that qN (t) � RHS (14.3c) as desired. We have thus proved the desired estimates for
P≤N Li

(Small) and P≤N−1trg/χ.
Next, we consider the first term on RHS (8.28b). We use the commutation estimate

(8.24) with f = 
, the L∞ estimates of Prop. 8.10, and Cor. 8.11 to commute the (at
most one) factor of X̆ in the operator Z N+1;1∗ to the front, which allows us to write
|Z ≤N+1;1∗ 
| � |X̆P [1,N ]
| + |P≤N+1
| + ε|Z ≤N ;1∗ γ| + ε|P [1,N ]∗ γ|. Thanks to
the previous estimate and inequality (8.28b), we can use an argument similar to the
one that we used to derive (14.5) in order to deduce

∥∥∥P [1,N ]∗ μ
∥∥∥

L2(�u
t )
≤
∥∥∥P [1,N ]∗ μ

∥∥∥
L2(�u

0 )
+ C ε̊+ C

∫ t

t ′=0
qN (t

′) dt ′

+ Cε

∫ t

t ′=0

∥∥∥P [1,N ]∗ μ
∥∥∥

L2(�u
t ′ )

dt ′ + C
∫ t

s=0

Q
1/2
[1,N ](s, u)

μ
1/2
� (s, u)

ds.

(14.6)

We clarify that the term C ε̊ on RHS (14.6) comes from the first term on RHS (13.7a).

Moreover, Lemma 7.3 yields that
∥∥∥P [1,N ]∗ μ

∥∥∥
L2(�u

0 )
� ε̊, while the estimates

we have already derived for P≤N Li
(Small) imply that C

∫ t

t ′=0
qN (t

′) dt � ε̊ +
∫ t

s=0

Q
1/2
[1,N ](s, u)

μ
1/2
� (s, u)

ds. Also using Gronwall’s inequality, we conclude the desired esti-

mate for
∥∥∥P [1,N ]∗ μ

∥∥∥
L2(�u

t )
.

To obtain the estimates (14.3a), we take the norm ‖·‖L2(�u
t )

of the inequalities
(8.28b) and (8.29a) and argue as above using the already proven estimates (14.3c). In

these estimates, we encounter the integrals
∫ t

s=0

Q
1/2
[1,N ](s, u)

μ
1/2
� (s, u)

ds, which we bound by

� Q
1/2
[1,N ](t, u) ≤ μ

−1/2
� (t, u)Q1/2

[1,N ](t, u) with the help of inequality (10.39).
The proofs of (14.3b) and (14.3d) are similar and are based on inequality (8.29b)

and the already proven estimates (14.3c); we omit the details. � 
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In the next corollary, we obtain L2 estimates for 
 with a right-hand side that
involves no explicit degenerate factor involving a power of μ−1

� . The price we pay is
that the estimates lose one derivative, that is, the left-hand side features N derivatives
of 
 but the right-hand side features a quantity that is capable of controlling up to
N + 1 derivatives of 
.

Corollary 14.4 (Non-degenerate L2 estimates for 
 that lose one derivative).
Assume that N ≤ 18. Under the data-size and bootstrap assumptions of Subsects. 7.4–
7.5 and the smallness assumptions of Subsect. 7.7, the following L2 estimates hold
for (t, u) ∈ [0, T(Boot))× [0,U0] (see Subsect. 7.2 regarding the vectorfield operator
notation):

∥∥∥Z N ;1∗ 


∥∥∥
L2(�u

t )
� Q

1/2
[1,N ](t, u)+ ε̊. (14.7)

Proof In the second paragraph of the proof of Lemma 14.3, we obtained the fol-
lowing estimate (except that here we have N in the role of N + 1): |Z N ;1∗ 
| �
|X̆P [1,N−1]
| + |P≤N
| + ε|Z ≤N−1;1∗ γ| + ε|P [1,N−1]∗ γ|, where only the second
term is present when N = 0, 1. The desired bound (14.7) follows from this estimate,
Lemma 13.3, the estimates (14.3c) and (14.3d) (with N − 1 in the role of N there),
the fact that Q[1,N ] is increasing in its arguments, and inequality (10.39) (which we
use to annihilate the factors of μ

1/2
� (s, u) in the denominators of the integrands on

RHS (14.3c) and RHS (14.3c)). � 

14.3 Estimates for the Easiest Error Integrals

In this subsection, we derive estimates for the simplest error integrals that appear in
our energy estimates, that is, for the simplest integrals on RHS (3.12).

We start with the following simple lemma, which shows that the fundamental con-
trolling quantities from Def. 13.1 are size O(ε̊2) at time 0.

Lemma 14.5 (The fundamental controlling quantities are initially small). Assume
that 1 ≤ N ≤ 18. Under the data-size assumptions of Subsect. 7.4, the following
estimates hold for u ∈ [0,U0]:

QN (0, u) � ε̊2. (14.8)

Proof From Def. 13.1, Lemma 3.4, and Lemma 7.3 (which in particular implies that

μ ≈ 1 along �1
0), we see that QN (0, u) �

∥∥∥Z ≤N+1;1∗ 


∥∥∥
2

L2(�u
0 )

. The estimate (14.8)

now follows from the initial data assumptions (7.3). � 
The next lemma provides control over the error integrals corresponding to the

deformation tensor of the multiplier vectorfield (3.4), that is, for the last integral on
RHS (3.12). We stress that one of these error integrals is coercive in the geometric
torus derivatives and was treated separately in Lemma 13.1.
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Lemma 14.6 (Error integrals involving the deformation tensor of the multiplier
vectorfield). Assume that 1 ≤ N ≤ 18 and ς > 0. Let (T )P(i)[PN
] be the quan-
tities defined by (3.14a)–(3.14e) (with PN
 in the role of 
). Under the data-size
and bootstrap assumptions of Subsects. 7.4–7.5 and the smallness assumptions of
Subsect. 7.7, the following integral estimates hold for (t, u) ∈ [0, T(Boot))× [0,U0],
where the implicit constants are independent of ς (and without any absolute value
taken on the left):

∫

Mt,u

5∑
i=1

(T )P(i)[PN
] d� �
∫ t

t ′=0

1√
T(Boot) − t ′

Q[1,N ](t ′, u) dt ′

+ (1 + ς−1)

∫ t

t ′=0
Q[1,N ](t ′, u) dt ′

+ (1+ς−1)

∫ u

u′=0
Q[1,N ](t, u′) du′+ςK[1,N ](t, u).

(14.9)

Proof We integrate (11.38) (with PN
 in the role of 
) over Mt,u and use Lem-
mas 13.1 and 13.3. � 

The next lemma yields control over the simplest energy estimate error integrals
generated by the commutator terms. These terms appear in the first error integral on
RHS (3.12), where PN
 is in the role of 
 and F is the inhomogeneous term in the
wave equation μ�g(
)(P

N
) = F.

Lemma 14.7 (L2 bounds for error integrals involving Harmless≤N terms).
Assume that 1 ≤ N ≤ 18 and ς > 0. Recall that the terms Harmless≤N are defined
in Def. 11.1. Under the data-size and bootstrap assumptions of Subsects. 7.4–7.5 and
the smallness assumptions of Subsect. 7.7, the following integral estimates hold for
(t, u) ∈ [0, T(Boot))× [0,U0], where the implicit constants are independent of ς :

∫

Mt,u

∣∣∣∣
(
(1 + μ)LPN


X̆PN


)∣∣∣∣
∣∣∣Harmless≤N

∣∣∣ d�

� (1 + ς−1)

∫ t

t ′=0
Q[1,N ](t ′, u) dt ′ + (1 + ς−1)

∫ u

u′=0
Q[1,N ](t, u′) du′

+ ςK[1,N ](t, u)+ ε̊2, (14.10a)

∫

Mt,u

∣∣∣d/PN


∣∣∣
∣∣∣Harmless≤N

∣∣∣ d�

�
∫ t

t ′=0
Q[1,N ](t ′, u) dt ′ +

∫ u

u′=0
Q[1,N ](t, u′) du′ +K[1,N ](t, u)+ ε̊2. (14.10b)

Proof See Subsect. 8.2 for some comments on the analysis. To prove (14.10a) and
(14.10b), we must estimate the spacetime integrals of various quadratic terms. We
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derive the desired estimates for three representative quadratic terms. The remaining
terms can be similarly bounded and we omit those details. We first bound the integral
of
∣∣LPN


∣∣ ∣∣YP≤N

∣∣. Using spacetime Cauchy-Schwarz, Lemmas 13.1 and 13.3,

and simple estimates of the form ab � a2 + b2, and separately treating the regions

{μ ≥ 1/4} and {μ < 1/4} when bounding the integral of
∣∣YP≤N


∣∣2, we derive the
desired estimate as follows:

∫

Mt,u

∣∣∣LPN


∣∣∣
∣∣∣YP≤N


∣∣∣ d�

�
{∫

Mt,u

∣∣∣LPN


∣∣∣
2

d�

}1/2 {∫

Mt,u

∣∣∣YP≤N


∣∣∣
2

d�

}1/2

� (1 + ς−1)

∫ u

u′=0

∫

P t
u′

∣∣∣LPN


∣∣∣
2

d� du′

+
∫ u

u′=0

∫

P t
u′

μ
∣∣∣d/P≤N


∣∣∣
2

d� du′ + ς δ̊∗
∫

Mt,u

1{μ<1/4}
∣∣∣d/P≤N


∣∣∣
2

d�

� (1 + ς−1)

∫ u

u′=0
Q[1,N ](t, u′) du′ + ςK[1,N ](t, u), (14.11)

which is � RHS (14.10a) as desired.

As our second example, we bound the integral of
∣∣LPN


∣∣ ∣∣∣P [1,N ]∗ μ
∣∣∣. Using space-

time Cauchy-Schwarz, Lemmas 13.1 and 13.3, inequalities (10.39) and (14.3c), simple
estimates of the form ab � a2 + b2, and the fact that Q[1,N ] is increasing in its argu-
ments, we derive the desired estimate as follows:

∫

Mt,u

∣∣∣LPN


∣∣∣
∣∣∣P [1,N ]∗ μ

∣∣∣ d�

�
∫ u

u′=0

∫

P t
u′

∣∣∣LPN


∣∣∣
2

d� du′ +
∫ t

t ′=0

∫

�u
t ′

∣∣∣P [1,N ]∗ μ
∣∣∣
2

d� dt ′

�
∫ u

u′=0
Q[1,N ](t, u′) du′ +

∫ t

t ′=0

{∫ t ′

s=0

Q
1/2
[1,N ](s, u)

μ
1/2
� (s, u)

ds

}2

+ ε̊2 dt ′

�
∫ u

u′=0
Q[1,N ](t, u′) du′ +

∫ t

t ′=0
Q[1,N ](t ′, u) dt ′ + ε̊2, (14.12)

which is � RHS (14.10a) as desired.
As our final example, we bound the integral of the product

∣∣LPN

∣∣ ∣∣Z N+1;1


∣∣.
We first recall the following estimate obtained in the second paragraph of the proof of
Lemma 14.3: |Z N+1;1
| � |X̆P [1,N ]
|+|P≤N+1
|+ε|Z ≤N ;1∗ γ|+ε|P [1,N ]∗ γ|.
Thus, we must bound the integral of the four corresponding products generated by the
RHS of the previous inequality. To bound the integral of the first product, we argue as
in the proof of (14.11) to deduce that
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∫

Mt,u

∣∣∣LPN


∣∣∣
∣∣∣X̆P [1,N ]


∣∣∣ d�

�
∫ u

u′=0

∫

P t
u′

∣∣∣LPN


∣∣∣
2

d� du′ +
∫ t

t ′=0

∫

�u
t ′

∣∣∣X̆P [1,N ]

∣∣∣
2

d� dt ′

�
∫ u

u′=0
Q[1,N ](t, u′) du′ +

∫ t

t ′=0
Q[1,N ](t ′, u) dt ′, (14.13)

which is � RHS (14.10a) as desired. Similar reasoning yields that the integral of
the second product |LPN
||P≤N+1
| is � RHS (14.11) plus RHS (14.12) as
desired. We clarify that the factor ε̊2 is generated by the square of RHS (13.7a).
Similar reasoning, together with inequalities (14.3c) and (14.3d), yields that the inte-
gral of the third product ε|LPN
||Z ≤N ;1∗ γ| and the integral of the fourth product
ε|LPN
||P [1,N ]∗ γ| are � RHS (14.11) plus RHS (14.12) as desired. We clarify that
we have used the fact thatQ[1,N ] is increasing in its arguments and the estimate (10.39)
to bound the time integrals on RHSs (14.3c) and (14.3d) by � Q[1,N ](t, u), as we did
in passing to the last line of (14.12). � 

14.4 L2 Bounds for the Difficult Top-Order Error Integrals in Terms of Q[1,N]

In the next lemma, we estimate, in the norm ‖ · ‖L2(�u
t )

, the most difficult product that
appears in our energy estimates.

Lemma 14.8 (L2 bound for the most difficult product). Assume that 1 ≤ N ≤ 18.
There exists a constant C > 0 such that under the data-size and bootstrap assumptions
of Subsects. 7.4–7.5 and the smallness assumptions of Subsect. 7.7, the following
L2 estimate holds for the difficult product (X̆
)Y N trg/χ from Prop. 11.10 whenever
(t, u) ∈ [0, T(Boot))× [0,U0]:
∥∥∥(X̆
)Y N trg/χ

∥∥∥
L2(�u

t )
≤ 2

‖[Lμ]−‖L∞(�u
t )

μ�(t, u)
Q

1/2
[1,N ](t, u)

+ 4.05
‖[Lμ]−‖L∞(�u

t )

μ�(t, u)

∫ t

s=0

‖[Lμ]−‖L∞(�u
s )

μ�(s, u)
Q

1/2
[1,N ](s, u) ds

+ Cε
1

μ�(t, u)

∫ t

s=0

1

μ�(s, u)
Q

1/2
[1,N ](s, u) ds

+ C
1

μ�(t, u)

∫ t

s′=0

1

μ�(s′, u)

∫ s′

s=0

1

μ
1/2
� (s, u)

Q
1/2
[1,N ](s, u) ds ds′

+ C
1

μ�(t, u)

∫ t

s=0

1

μ
1/2
� (s, u)

Q
1/2
[1,N ](s, u) ds

+ C
1

μ
1/2
� (t, u)

Q
1/2
[1,N ](t, u)+ C

1

μ
3/2
� (t, u)

Q
1/2
[1,N−1](t, u)

+ C
1

μ
3/2
� (t, u)

ε̊. (14.14)
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Furthermore, we have the following less precise estimate:

∥∥∥μY N trg/χ
∥∥∥

L2(�u
t )

� Q
1/2
[1,N ](t, u)+

∫ t

s=0

1

μ�(s, u)
Q

1/2
[1,N ](s, u) ds

+ ε̊
{

ln μ−1
� (t, u)+ 1

}
. (14.15)

Proof See Subsect. 8.2 for some comments on the analysis. We first prove (14.14). We
take the norm ‖·‖L2(�u

t )
of both sides of (11.32). Using (13.6), we see that the norm of

the first term on RHS (11.32) is≤ the first term on RHS (14.14) as desired. Also using
Lemma 13.2, we see that the norm of the second term on RHS (11.32) is≤ the second
term on RHS (14.14). We now explain why the norm ‖ · ‖L2(�u

t )
of the term |Error|

from (11.33) is≤ the sum of the terms on lines three to seven of RHS (14.14). With the

exception of the bound for the first term
1

μ�(t, u)

∣∣∣(Y N )X
∣∣∣ (0, u, ϑ) on RHS (11.33),

the desired bounds follow from the same estimates used above together with those of
Lemma 14.3, Cor. 14.4, inequalities (10.36), (10.38), and (10.39), the fact thatQ[1,N ] is
increasing in its arguments, and simple inequalities of the form ab � a2+b2. Finally,

we must bound

∥∥∥∥
1

μ�(t, ·)
∣∣∣(Y N )X

∣∣∣ (0, ·)
∥∥∥∥

L2(�u
t )

. We first use (12.10) with s = 0 to

deduce

∥∥∥∥
1

μ�(t, ·)
∣∣∣(Y N )X

∣∣∣ (0, ·)
∥∥∥∥

L2(�u
t )

� 1

μ�(t, u)

∥∥∥(Y N−1)X̃
∥∥∥

L2(�u
0 )

. We now use

definition (6.9a), the simple inequality |G(Frame)| = |f(γ, d/x1, d/x2)| � 1 (which
follows from Lemmas 2.19 and 8.4 and the L∞ estimates of Prop. 8.10), the estimates
of Lemma 7.3, the estimate (8.13a), and the assumptions on the data to deduce the

desired bound
1

μ�(t, u)

∥∥∥(Y N )X
∥∥∥

L2(�u
0 )

� 1

μ�(t, u)
ε̊. We have thus proved (14.14).

The proof of (14.15) is based on inequality (11.34) and is similar but much simpler;
we omit the details, noting only that we use (14.7) to bound the order≤ N derivatives
of 
 on RHS (11.34) and that inequality (10.38) leads to the presence of the factor
ln μ−1

� (t, u)+ 1. � 

14.5 L2 Bounds for Less Degenerate Top-Order Error Integrals in Terms
ofQ[1,N]

In the next lemma, we bound some top-order error integrals that appear in our energy
estimates. As in the proof of Lemma 14.8, we need to use the modified quantities to
avoid losing a derivative. However, the estimates of the lemma are much less degenerate
than those of Lemma 14.8 because of the availability of a helpful factor of μ in the
integrands.

Lemma 14.9 (Bounds for less degenerate top-order error integrals). Assume that
1 ≤ N ≤ 18. Under the data-size and bootstrap assumptions of Subsects. 7.4–7.5
and the smallness assumptions of Subsect. 7.7, the following integral estimates hold
for (t, u) ∈ [0, T(Boot))× [0,U0]:
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∣∣∣∣∣
∫

Mt,u

ρ(X̆Y N
)(X̆
)(d/#
) · (μd/Y N−1trg/χ) d�

∣∣∣∣∣

�
∫ t

t ′=0

{
ln μ−1

� (t ′, u)+ 1
}2

Q[1,N ](t ′, u) dt ′ + ε̊2, (14.16a)

∣∣∣∣∣
∫

Mt,u

(1 + 2μ)ρ(LY N
)(X̆
)(d/#
) · (μd/Y N−1trg/χ) d�

∣∣∣∣∣

�
∫ t

t ′=0

{
ln μ−1

� (t ′, u)+ 1
}2

Q[1,N ](t ′, u) dt ′ +
∫ u

u′=0
Q[1,N ](t, u′) du′ + ε̊2.

(14.16b)

Proof See Subsect. 8.2 for some comments on the analysis. To prove (14.16b), we use
the fact that ρ = f(γ)γ (see (2.89c)), the L∞ estimates of Prop. 8.10, Cauchy-Schwarz,
and (13.6) to deduce

LHS(14.16b) �
∫

Mt,u

∣∣∣LY N


∣∣∣
2

d� +
∫

Mt,u

∣∣∣μY N trg/χ
∣∣∣
2

d�

�
∫ u

u′=0

∥∥∥LY N


∥∥∥
2

L2(P t
u′ )

du′ +
∫ t

t ′=0

∥∥∥μY N trg/χ
∥∥∥

2

L2(�u
t ′ )

dt ′

�
∫ u

u′=0
Q[1,N ](t, u′) du′ +

∫ t

t ′=0

∥∥∥μY N trg/χ
∥∥∥

2

L2(�u
t ′ )

dt ′. (14.17)

To complete the proof of (14.16b), we must handle the final integral on RHS (14.17).
To bound the integral by ≤ RHS (14.16b) we use inequality (14.15) (with t ′ in place
of t), simple estimates of the form ab � a2 + b2, and we in addition use (10.38)
and the fact that Q[1,N ] is increasing in its arguments to bound the time integral on
RHS (14.15) as follows:

∫ t ′

s=0

1

μ�(s, u)
Q

1/2
[1,N ](s, u) ds �

{
ln μ−1

� (t ′, u)+ 1
}
Q

1/2
[1,N ](t

′, u).

In carrying out this procedure, we encounter the following integral generated by the
next-to-last term on RHS (14.15):

ε̊2
∫ t

t ′=0

{
ln μ−1

� (t ′, u)+ 1
}2

dt ′.

Using (10.39), we deduce that the above term is � ε̊2 as desired. We have thus proved
(14.16b).

The proof of (14.16a) starts with the following analog of (14.17), which can proved
in the same way:

LHS (14.16a) �
∫ t

t ′=0

∥∥∥X̆Y N


∥∥∥
2

L2(�u
t ′ )

dt ′ +
∫ t

t ′=0

∥∥∥μY N trg/χ
∥∥∥

2

L2(�u
t ′ )

dt ′.
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The remaining details are similar to those given in the proof of (14.16b); we therefore
omit them. � 

14.6 Error Integrals Requiring Integration by Parts with Respect to L

In deriving top-order energy estimates, we encounter the error integral

−
∫

Mt,u

(1 + 2μ)(LY N
)(X̆
)Y N trg/χ d�.

It turns out that to suitably bound it, we must rely on the partially modified quantity
(Y N−1)X̃ defined in (6.9a), and we must also integrate by parts via the identity (3.22).
We derive the main estimate of interest for the above error integral in Lemma 14.12.
Before proving the lemma, we first establish some preliminary estimates for various
error integrals that arise from the integration by parts procedure. We bound the most
difficult of these integrals, which is a �u

t boundary integral, in Lemma 14.10.
We start by deriving ‖ ·‖L2(�u

t )
estimates for the two second most difficult products

that appear in our energy estimates.

Lemma 14.10 (A difficult hypersurface L2 estimate). Assume that 1 ≤ N ≤ 18.
Let (Y

N−1)X̃ be the partially modified quantity defined by (6.9a). Under the data-size
and bootstrap assumptions of Subsects. 7.4–7.5 and the smallness assumptions of
Subsect. 7.7, the following L2 estimate holds for (t, u) ∈ [0, T(Boot))× [0,U0]:
∥∥∥∥

1√
μ
(X̆
)L(Y N−1)X̃

∥∥∥∥
L2(�u

t )

≤ √
2
‖[Lμ]−‖C0(�u

t )

μ�(t, u)
Q

1/2
[1,N ](t, u)

+ C
1

μ
1/2
� (t, u)

Q
1/2
[1,N ](t, u)+ Cε

1

μ�(t, u)
Q

1/2
[1,N ](t, u)

+ C ε̊
1

μ
1/2
� (t, u)

, (14.18a)

∥∥∥∥
1√
μ
(X̆
)(Y

N−1)X̃

∥∥∥∥
L2(�u

t )

≤ √
2 ‖Lμ‖L∞((−)�u

t;t )
1

μ
1/2
� (t, u)

∫ t

t ′=0

1

μ
1/2
� (t ′, u)

Q
1/2
[1,N ](t

′, u) dt ′

+ C
∫ t

t ′=0

1

μ
1/2
� (t ′, u)

Q
1/2
[1,N ](t

′, u) dt ′

+ Cε
1

μ
1/2
� (t, u)

∫ t

t ′=0

1

μ
1/2
� (t ′, u)

Q
1/2
[1,N ](t

′, u) dt ′ + C ε̊
1

μ
1/2
� (t, u)

. (14.18b)
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Moreover, we have the following less precise estimates:

∥∥∥L(Y N−1)X̃
∥∥∥

L2(�u
t )

� 1

μ
1/2
� (t, u)

Q
1/2
[1,N ](t, u)+ ε̊, (14.19a)

∥∥∥(Y N−1)X̃
∥∥∥

L2(�u
t )

�
∫ t

t ′=0

1

μ
1/2
� (t ′, u)

Q
1/2
[1,N ](t

′, u) dt ′ + ε̊. (14.19b)

Proof See Subsect. 8.2 for some comments on the analysis. We first prove (14.18b). We

take the norm ‖·‖L2(�u
t )

of
1√
μ
(X̆
) times (11.39b). We bound the terms arising from

the third line of RHS (11.39b) by≤ the sum of the last two terms on RHS (14.18b) with
the help of Lemma 13.2, Lemma 13.3, Lemma 14.3, and the estimate ‖X̆
‖L∞(�u

t )
�

1 (that is, (8.30a)).
To bound the norm‖·‖L2(�u

t )
of the product 1

2
1√
μ (X̆
) |GL L |

∫ t
t ′=0

∣∣/ Y N−1

∣∣ dt ′,

we first use equation (2.62), the relations GL L ,GL X = f(γ) (see Lemma 2.19),
inequality (8.2), the L∞ estimates of Prop. 8.10, and Cor. 8.11 to pointwise bound

the product by ≤ (1 + Cε)

{ |Lμ(t, u, ϑ)|√
μ(t, u, ϑ)

+ Cε

}∫ t

t ′=0

∣∣∣d/Y≤N


∣∣∣ (t ′, u, ϑ) dt ′. As

above, we can bound the product involving the factor Cε by ≤ the next-to-last
term on RHS (14.18b) by using Lemmas 13.2 and 13.3. To bound the remain-

ing (difficult) term (1 + Cε)

∥∥∥∥
∣∣∣∣

Lμ√
μ

∣∣∣∣
∫ t

t ′=0

∣∣∣d/Y≤N


∣∣∣ dt ′
∥∥∥∥

L2(�u
t )

, we first decompose

�u
t = (+)�u

t;t ∪ (−)�u
t;t as in Def. 10.3 and use Lemmas 13.2 and 13.3 to bound it by

≤ (1 + Cε) times

√
2

∥∥∥∥
Lμ√

μ

∥∥∥∥
L∞((−)�u

t;t )

∫ t

t ′=0

1

μ
1/2
� (t ′, u)

Q
1/2
[1,N ](t

′, u) dt ′

+ C

∥∥∥∥
Lμ√

μ

∥∥∥∥
L∞((+)�u

t;t )

∫ t

t ′=0

1

μ
1/2
� (t ′, u)

Q
1/2
[1,N ](t

′, u) dt ′. (14.20)

The fact that (1 + Cε) × RHS (14.20) ≤ RHS (14.18b) follows from using

(8.31a), (8.32a), (10.11), and (10.19) to deduce that (1 + Cε)

∥∥∥∥
Lμ√

μ

∥∥∥∥
L∞((−)�u

t;t )
≤

‖Lμ‖L∞((−)�u
t;t ) μ

−1/2
� (t, u)+ Cεμ

−1/2
� (t, u) and

∥∥∥∥
Lμ√

μ

∥∥∥∥
L∞((+)�u

t;t )
≤ C .

Finally, we must bound the norm ‖ · ‖L2(�u
t )

of the product arising from the first

term
∣∣∣(Y N−1)X̃

∣∣∣ (0, ·) on RHS (11.39b). We first use (8.30a) and (12.10) with s = 0

to deduce

∥∥∥∥
1√
μ
(X̆
)

∣∣∣(Y N−1)X̃
∣∣∣ (0, ·)

∥∥∥∥
L2(�u

t )

� 1

μ
1/2
� (t, u)

∥∥∥(Y N−1)X̃
∥∥∥

L2(�u
0 )

. Next,

from definition (6.9a), the simple inequality |G(Frame)| = |f(γ, d/x1, d/x2)| � 1 (which
follows from Lemmas 2.19 and 8.4 and the L∞ estimates of Prop. 8.10), the estimates
of Lemma 7.3, the estimate (8.13a), and the assumptions on the data, we find that
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∥∥∥(Y N−1)X̃
∥∥∥

L2(�u
0 )

� ε̊. In total, we conclude that the product under consideration is

� the last term on RHS (14.18b) as desired. We have thus proved (14.18b).

To prove (14.18a), we take the norm ‖ · ‖L2(�u
t )

of
1√
μ
(X̆
) times (11.39a).

We bound the terms arising from the last two terms on RHS (11.39a) by ≤ the
last two terms on RHS (14.18b) with the help of Lemma 13.3, and the esti-
mates ‖X̆
‖L∞(�u

t )
� 1, (10.39), (14.3c), and (14.3d). Note that we have used

(10.39) and the fact that the Q[1,N ] are increasing in their arguments to bound
the time integrals on RHS (14.3c)–(14.3d) by � Q[1,N ](t, u). To bound the norm

‖ · ‖L2(�u
t )

of the product
1

2

1√
μ
(X̆
) |GL L |

∣∣∣/ Y N−1


∣∣∣, we first use the rea-

soning from the second paragraph of this proof to pointwise bound the product

by ≤ 1

μ�(t, u)
‖[Lμ]−‖L∞(�u

t )

∣∣∣√μd/Y≤N


∣∣∣ + C

∥∥∥∥
[Lμ]+

μ

∥∥∥∥
L∞(�u

t )

∣∣∣√μd/Y≤N


∣∣∣ +
Cε

μ�(t, u)

∣∣∣√μd/Y≤N


∣∣∣. Thus, using inequality (10.11) and Lemma 13.3, we bound

the norm ‖·‖L2(�u
t )

of these products by≤ the sum of the first, second, and third terms
on RHS (14.18a).

The proofs of (14.19a) and (14.19b) are based on a strict subset of the above
arguments and are much simpler; we omit the details. � 

We now derive estimates for some error integrals that are much easier to estimate
than the ones treated in Lemma 14.10.

Lemma 14.11 (Bounds connected to easy top-order error integrals requiring
integration by parts with respect to L). Assume that 1 ≤ N ≤ 18 and ς > 0. Let
Errori [Y N
; (Y N−1)X̃ ] be the error integrands defined in (3.23a) and (3.23b), where
Y N
 is in the role of PN
 and the partially modified quantity (Y N−1)X̃ defined in
(6.9a) is in role of η. Under the data-size and bootstrap assumptions of Subsects. 7.4–
7.5 and the smallness assumptions of Subsect. 7.7, the following estimates hold for
(t, u) ∈ [0, T(Boot))× [0,U0], where the implicit constants are independent of ς :

∫

Mt,u

∣∣∣Error1[Y N
; (Y N−1)X̃ ]
∣∣∣ d�

� (1 + ς−1)

∫ t

s=0

1

μ
1/2
� (s, u)

Q[1,N ](s, u) ds +
∫ t

s=0

1

μ
3/2
� (s, u)

Q[1,N−1](s, u) ds

+ ςK[1,N ](t, u)+ (1 + ς−1)ε̊2, (14.21a)

∫

�u
t

∣∣∣Error2[Y N
; (Y N−1)X̃ ]
∣∣∣ d� � ε̊2 + εQ[1,N ](t, u), (14.21b)

∫

�u
0

∣∣∣Error2[Y N
; (Y N−1)X̃ ]
∣∣∣ d� � ε̊2, (14.21c)

∫

�u
0

∣∣∣(1 + 2μ)(X̆
)(YPN
)(Y
N−1)X̃

∣∣∣ d� � ε̊2. (14.21d)
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Proof See Subsect. 8.2 for some comments on the analysis. We first prove (14.21a).
All products on RHS (3.23a) contain a quadratic factor of (d/Y N
)(Y

N−1)X̃ ,
(Y N+1
)(Y

N−1)X̃ , (Y N
)(Y
N−1)X̃ , or (Y N
)L(Y N−1)X̃ . With the help of the esti-

mates (8.15a) and (8.18a) and the L∞ estimates of Prop. 8.10, it is easy to see that the
remaining factors are bounded in L∞ by � 1. Hence it suffices to bound the spacetime
integrals of the magnitude of the four quadratic terms by � RHS (14.21a). To bound

the spacetime integral of
∣∣∣(Y N+1
)(Y

N−1)X̃
∣∣∣, we use spacetime Cauchy-Schwarz,

Lemmas 13.1 and 13.3, inequalities (10.39) and (14.19b), simple estimates of the
form ab � a2 + b2, and the fact that Q[1,N ] is increasing in its arguments to deduce

∫

Mt,u

∣∣∣(Y N+1
)(Y
N−1)X̃

∣∣∣ d�

� ς δ̊∗
∫

Mt,u

∣∣∣d/Y N


∣∣∣
2

d� + ς−1δ̊−1∗
∫ t

s=0

∥∥∥(Y N−1)X̃
∥∥∥

2

L2(�u
s )

ds

� ςK[1,N ](t, u)+ ς−1
∫ t

s=0

{∫ s

t ′=0

1

μ
1/2
� (t ′, u)

Q
1/2
[1,N ](t

′, u) dt ′
}2

+ ς−1ε̊2 ds

� ςK[1,N ](t, u)+ ς−1
∫ t

s=0
Q[1,N ](s, u) ds + ς−1ε̊2, (14.22)

which is ≤ RHS (14.21a) as desired. We clarify that in passing to the last inequality
in (14.22), we have used the fact that Q[1,N ] is increasing in its arguments and the

estimate (10.39) to deduce that
∫ s

t ′=0

1

μ
1/2
� (t ′, u)

Q
1/2
[1,N ](t

′, u) dt ′ � Q
1/2
[1,N ](s, u), as

we did in passing to the last line of (14.12).

The spacetime integral of
∣∣∣(d/Y N
)(Y

N−1)X̃
∣∣∣ can be bounded in the same way.

The spacetime integral of
∣∣∣(Y N
)(Y

N−1)X̃
∣∣∣ can be bounded by ≤ RHS (14.21a)

by using essentially the same arguments; we omit the details.

To bound the spacetime integral of
∣∣∣(Y N
)L(Y N−1)X̃

∣∣∣, by ≤ RHS (14.21a), we

first use Cauchy-Schwarz, Lemmas 13.1 and 13.3, and inequality (14.19a) to deduce

∫

Mt,u

∣∣∣(Y N
)L(Y N−1)X̃
∣∣∣ d� �

∫ t

s=0

∥∥∥Y N


∥∥∥
L2(�u

s )

∥∥∥L(Y N−1)X̃
∥∥∥

L2(�u
s )

ds

�
∫ t

s=0

1

μ�(s, u)
Q

1/2
[1,N−1](s, u)Q1/2

[1,N ](s, u) ds

+ ε̊

∫ t

s=0

1

μ
1/2
� (s, u)

Q
1/2
[1,N−1](s, u) ds. (14.23)

Finally, using simple estimates of the form ab � a2 + b2, the estimate (10.39), and
the fact that Q[1,N ] is increasing in its arguments, we bound RHS (14.23) by � RHS
(14.21a) as desired. This concludes the proof of (14.21a).
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We now prove (14.21b) and (14.21c). We first note that RHS (3.23b) is in magnitude

� ε
∣∣Y N


∣∣ ∣∣∣(Y N−1)X̃
∣∣∣, an estimate that can easily be verified with the help of the

estimate (8.18a) and the L∞ estimates of Prop. 8.10. Next, using Cauchy-Schwarz on
�u

t , Lemma 13.3, (14.19b), and the estimate (10.39), we deduce that

ε

∫

�u
t

∣∣∣Y N


∣∣∣
∣∣∣(Y N−1)X̃

∣∣∣ d� � ε

∥∥∥Y N


∥∥∥
L2(�u

t )

∥∥∥(Y N−1)X̃
∥∥∥

L2(�u
t )

� εQ
1/2
[1,N ](t, u)

{
Q

1/2
[1,N ](t, u)+ ε̊

}

� RHS (14.21b), (14.24)

as desired. We clarify that in passing to the second line of (14.24), we have used (10.39)
and the fact that Q[1,N ] is increasing in its arguments to bound the time integral on
RHS (14.19b) by � Q

1/2
[1,N ](t, u). (14.21c) then follows from (14.21b) with t = 0 and

Lemma 14.5.
The proof of (14.21d) is similar. The main difference is that the L∞ estimates of

Prop. 8.10 imply only that LHS (14.21d) is �
∫
�u

0

∣∣Y N+1

∣∣ ∣∣∣(Y N−1)X̃

∣∣∣ d� , without

a gain of a factor ε. However, this integral is quadratically small in the data parameter
ε̊, as is easy to verify using Lemma 14.5 and the arguments given in the previous
paragraph. We have thus proved (14.21d) and established the lemma. � 

We now combine the previous results to prove the main lemma of Subsect. 14.6.

Lemma 14.12 (Bounds for difficult top-order error integrals connected to inte-
gration by parts involving L). Assume that 1 ≤ N ≤ 18 and ς > 0. Let (Y N−1)X̃
be the partially modified quantity defined in (6.9a). There exists a constant C > 0,
independent of ς , such that under the data-size and bootstrap assumptions of Sub-
sects. 7.4–7.5 and the smallness assumptions of Subsect. 7.7, the following estimates
hold for (t, u) ∈ [0, T(Boot))× [0,U0]:
∣∣∣∣∣
∫

Mt,u

(1 + 2μ)(X̆
)(Y N+1
)L(Y N−1)X̃ d�

∣∣∣∣∣

≤ 2
∫ t

t ′=0

‖[Lμ]−‖L∞(�u
t ′ )

μ�(t ′, u)
Q[1,N ](t ′, u) dt ′

+ Cε

∫ t

t ′=0

1

μ�(t ′, u)
Q[1,N ](t ′, u) dt ′ + C

∫ t

t ′=0

1

μ
1/2
� (t ′, u)

Q[1,N ](t ′, u) dt ′

+ C ε̊2, (14.25)

∣∣∣∣∣
∫

�u
t

(1 + 2μ)(X̆
)(Y N+1
)(Y
N−1)X̃ d�

∣∣∣∣∣

≤ 2
1

μ
1/2
� (t, u)

Q
1/2
[1,N ](t, u) ‖Lμ‖L∞((−)�u

t;t )

∫ t

t ′=0

1

μ
1/2
� (t ′, u)

Q
1/2
[1,N ](t

′, u) dt ′
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+ Cε
1

μ
1/2
� (t, u)

Q
1/2
[1,N ](t, u)

∫ t

t ′=0

1

μ
1/2
� (t ′, u)

Q
1/2
[1,N ](t

′, u) dt ′

+ CQ
1/2
[1,N ](t, u)

∫ t

t ′=0

1

μ
1/2
� (t ′, u)

Q
1/2
[1,N ](t

′, u) dt ′

+ CςQ[1,N ](t, u)+ Cς−1ε̊2 1

μ�(t, u)
. (14.26)

Proof See Subsect. 8.2 for some comments on the analysis. To prove (14.25), we first
use Cauchy-Schwarz and the estimate |Y | ≤ 1+Cε (which follows from (8.14a) and

the L∞ estimates of Prop. 8.10) and in particular the estimates
∥∥∥X̆


∥∥∥
L∞(�u

t )
� 1 and

‖μ‖L∞(�u
t )

� 1 to bound the LHS by

≤ (1 + Cε)

∫ t

t ′=0

∥∥∥√μd/Y N


∥∥∥
L2(�u

t ′ )

∥∥∥∥
1√
μ
(X̆
)L(Y N−1)X̃

∥∥∥∥
L2(�u

t ′ )
dt ′

+ C
∫ t

t ′=0

∥∥∥√μd/Y N


∥∥∥
L2(�u

t ′ )

∥∥∥L(Y N−1)X̃
∥∥∥

L2(�u
t ′ )

dt ′. (14.27)

The desired estimate (14.25) now follows from (14.27), Lemma 13.3,
and inequalities (14.18a) and (14.19a). Note that to bound the integral

C
∫ t

t ′=0
ε̊

1

μ
1/2
� (t ′, u)

Q
1/2
[1,N ](t

′, u)dt ′, which is generated by the last term on

RHS (14.18a), we first use Young’s inequality to bound the integrand by �
ε̊2

μ
1/2
� (t ′, u)

+ Q[1,N ](t ′, u)

μ
1/2
� (t ′, u)

. We then bound the time integral of the first term in the

previous expression by � ε̊2 with the help of the estimate (10.39) and the time integral
of the second by ≤ the third term on RHS (14.25).

The proof of (14.26) is similar but relies on (14.18b) and (14.19b) in place
of (14.18a) and (14.19a); we omit the details, noting only that we encounter the

term C ε̊
1

μ
1/2
� (t, u)

Q
1/2
[1,N ](t, u) generated by the last term on RHS (14.18b). We

bound this term by using Young’s inequality as follows: C ε̊
1

μ
1/2
� (t, u)

Q
1/2
[1,N ](t, u) ≤

Cς−1ε̊2 1

μ�(t, u)
+ CςQ[1,N ](t, u). � 

14.7 Estimates for Error Integrals Involving a Loss of One Derivative

The following lemma plays a central role in our proof that the energy estimates become
successively less degenerate with respect to powers of μ−1

� as we descend below top
order. In the lemma, we consider the two most difficult error integrals that we encounter
in our proof of Prop. 14.2. Here, we bound them in a much simpler way that incurs a loss
of one derivative (which is permissible below top order). The main advantage of these
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estimates compared to the ones that do not lose derivatives is: the derivative-losing
estimates are much less degenerate with respect to μ−1

� .

Lemma 14.13 (Estimates for error integrals involving a loss of one derivative).
Assume that 2 ≤ N ≤ 18. Under the data-size and bootstrap assumptions of Sub-
sects. 7.4–7.5 and the smallness assumptions of Subsect. 7.7, the following estimates
hold for (t, u) ∈ [0, T(Boot))× [0,U0]:
∣∣∣∣∣
∫

Mt,u

(X̆PN−1
)(X̆
)Y N−1trg/χ d�

∣∣∣∣∣

�
∫ t

t ′=0
Q

1/2
[1,N−1](t

′, u)

{∫ t ′

s=0

Q
1/2
[1,N ](s, u)

μ
1/2
� (s, u)

ds

}
dt ′ + ε̊

∫ t

t ′=0

Q
1/2
[1,N−1](t ′, u)

μ
1/2
� (t ′, u)

dt ′,

(14.28a)

∣∣∣∣∣
∫

Mt,u

(1 + 2μ)(LPN−1
)(X̆
)Y N−1trg/χ d�

∣∣∣∣∣

�
∫ t

t ′=0

Q
1/2
[1,N−1](t ′, u)

μ
1/2
� (t ′, u)

{∫ t ′

s=0

Q
1/2
[1,N ](s, u)

μ
1/2
� (s, u)

ds

}
dt ′ + ε̊

∫ t

t ′=0

Q
1/2
[1,N−1](t ′, u)

μ
1/2
� (t ′, u)

dt ′.

(14.28b)

Proof See Subsect. 8.2 for some comments on the analysis. We first prove (14.28b).
We begin by using the L∞ estimates of Prop. 8.10 to bound two of the factors in

the integrand on the LHS as follows:
∥∥∥(1 + 2μ)(X̆
)

∥∥∥
L∞(�u

t )
� 1. Using the pre-

vious estimate, Cauchy-Schwarz, Lemma 13.3, and the estimate (14.3c), we bound
LHS (14.28b) by

�
∫ t

t ′=0

1

μ
1/2
� (t, u)

∥∥∥√μLPN−1


∥∥∥
L2(�u

t ′ )

∥∥∥Y N−1trg/χ
∥∥∥

L2(�u
t ′ )

dt ′

�
∫ t

t ′=0

Q
1/2
[1,N−1](t ′, u)

μ
1/2
� (t ′, u)

{
ε̊+

∫ t ′

s=0

Q
1/2
[1,N ](s, u)

μ
1/2
� (s, u)

ds

}
dt ′

�
∫ t

t ′=0

Q
1/2
[1,N−1](t ′, u)

μ
1/2
� (t ′, u)

{∫ t ′

s=0

Q
1/2
[1,N ](s, u)

μ
1/2
� (s, u)

ds

}
dt ′ + ε̊

∫ t

t ′=0

Q
1/2
[1,N−1](t ′, u)

μ
1/2
� (t ′, u)

dt ′

(14.29)

as desired.
The proof of (14.28a) is similar, the only difference being that we start by bounding

LHS (14.28a) by �
∫ t

t ′=0

∥∥∥X̆PN−1


∥∥∥
L2(�u

t ′ )

∥∥∥Y N−1trg/χ
∥∥∥

L2(�u
t ′ )

dt ′. � 
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14.8 Proof of Prop. 14.2

Proof of (14.2a): Assume that 1 ≤ N ≤ 18 and let PN be an N th-order Pu-tangent
vectorfield operator. From (3.12) with PN
 in the role of 
, the decomposition
(3.13) with PN
 in the role of 
, and definition (13.2a), we have

E[PN
](t, u)+ F[PN
](t, u)+K[PN
](t, u)

= E[PN
](0, u)−
∫

Mt,u

{
(1 + 2μ)(LPN
)+ 2X̆PN


}
μ�g(P

N
) d�

+
5∑

i=1

∫

Mt,u

(T )P(i)[PN
] d�. (14.30)

We will show that RHS (14.30)≤RHS (14.2a). Then, taking the max over that estimate
for all such operators of order in between 1 and N and appealing to Defs. 13.1 and
13.2, we conclude (14.2a).

To show that RHS (14.30) ≤ RHS (14.2a), we first use Lemma 14.5 to deduce that
E[PN
](0, u) � ε̊2, which is ≤ the first term on RHS (14.2a) as desired.

To bound the last integral
∑5

i=1

∫
Mt,u

· · · on RHS (14.30) by ≤ RHS (14.2a), we
use Lemma 14.6.

We now address the first integral − ∫Mt,u
· · · on RHS (14.30). If N ≥ 2 and PN

is not of the form Y N−1L or Y N , then the desired bound follows from (11.3c) and
(14.10a), which together allow us to bound error integrals involving Harmless≤N

factors. Note that these bounds do not produce any of the difficult “boxed-constant-
involving” terms on RHS (14.2a).

We now consider the case PN = Y N . The case PN = Y N−1L can be treated in
an identical fashion and we omit those details. We start by substituting RHS (11.3b)
for the term μ�g(PN
) on RHS (14.30). It suffices for us to bound the integrals cor-
responding to the terms (X̆
)Y N trg/χ and ρ(d/#
) · (μd/Y N−1trg/χ) from RHS (11.3b),
for the above argument has already addressed how to bound the integrals generated
by Harmless≤N terms. To bound the difficult integral

−2
∫

Mt,u

(X̆Y N
)(X̆
)Y N trg/χ d� (14.31)

by ≤ RHS (14.2a), we first use Cauchy-Schwarz and (13.6) to bound it by

≤ 2
∫ t

t ′=0
Q

1/2
[1,N ](t

′, u)
∥∥∥(X̆
)Y N trg/χ

∥∥∥
L2(�u

t ′ )
dt ′. (14.32)

We now substitute the estimate (14.14) (with t in (14.14) replaced by t ′) for the second
factor in the integrand of (14.32). Following this substitution, the desired bound of
(14.32) by ≤ RHS (14.2a) follows easily with the help of simple estimates of the
form ab � a2 + b2. Note that these estimates account for the portion 4 · · · of the
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first boxed constant integral 6 · · · on RHS (14.2a) and the full portion of the boxed

constant integral 8.1 · · · on RHS (14.2a).
We now bound the error integral

−
∫

Mt,u

(1 + 2μ)(LY N
)(X̆
)Y N trg/χ d�. (14.33)

To proceed, we use (6.9a)–(6.9b) to decompose Y N trg/χ = Y (Y N−1)X̃ − Y (Y N−1 )̃X.
Since RHS (11.23d) = Harmless≤N , we have already suitably bounded the error
integrals generated by Y (Y N−1 )̃X. We therefore must bound

−
∫

Mt,u

(1 + 2μ)(LY N
)(X̆
)Y (Y N−1)X̃ d� (14.34)

by ≤ RHS (14.2a). To this end, we integrate by parts using (3.22) with η := (Y N−1)X̃ .
We bound the error integrals on the last line of RHS (3.22) and the

∫
�u

0
· · · integral on

the second line using Lemma 14.11. It remains for us to bound the first two (difficult)
integrals on RHS (3.22) by ≤ RHS (14.2a). The desired bounds have been derived
in Lemma 14.12. Note that these estimates account for the remaining portion 2 · · ·
of the first boxed constant integral 6 · · · on RHS (14.2a) and the full portion of the

boxed constant integral 2 · · · on RHS (14.2a).
To complete the proof of (14.2a), it remains for us to bound the two error integrals

generated by the term ρ(d/#
) · (μd/Y N−1trg/χ) from RHS (11.3b). These two integrals
were suitably bounded by ≤ RHS (14.2a) in Lemma 14.9 (note that we are using
the simple bound

{
ln μ−1

� (t ′, u)+ 1
}2 � μ

−1/2
� (t ′, u) in order to bound the integrand

factors in the first integrals on RHS (14.16a) and RHS (14.16b)). Note that these
estimates do not contribute to the difficult boxed constant terms on RHS (14.2a). We
have thus proved (14.2a).

Proof of (14.2b): We repeat the proof of (14.2a) with N − 1 in the role of N and with
one critically important change: we bound the difficult error integrals

−2
∫

Mt,u

(X̆PN−1
)(X̆
)Y N−1trg/χ d�

and

−
∫

Mt,u

(1 + 2μ)(LPN−1
)(X̆
)Y N−1trg/χ d�

using the derivative-losing Lemma 14.13 in place of the arguments used in bounding
(14.31) and (14.33). Note that in the proof of (14.2a), the error integrals (14.31) and
(14.33) were the only ones that resulted in the presence of very degenerate terms
on RHS (14.2a), such as the “boxed-constant-involving” terms. This explains why
RHS (14.2b) features fewer (and less degenerate/simpler) terms and why it features the
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one new factor that represents the loss of a derivative (namely, the factor Q1/2
[1,N ](s, u)

on RHS (14.2b)). � 

14.9 Proof of Prop. 14.1

Estimates forQ[1,18],K[1,18],Q[1,17], andK[1,17]: We first derive the estimates (14.1a)
for Q[1,18], K[1,18], Q[1,17], and K[1,17], which are highly coupled and must be treated
as a system. To this end, we set

F(t, u) := sup
(t̂,û)∈[0,t]×[0,u]

ι−1
F (t̂, û)max

{
Q[1,18](t̂, û),K[1,18](t̂, û)

}
, (14.35)

G(t, u) := sup
(t̂,û)∈[0,t]×[0,u]

ι−1
G (t̂, û)max

{
Q[1,17](t̂, û),K[1,17](t̂, û)

}
, (14.36)

where for t ′ ≤ t̂ ≤ t and u′ ≤ û ≤ U0, we define

ι1(t
′) := exp

(∫ t ′

s=0

1√
T(Boot) − s

ds

)
= exp

(
2
√

T(Boot) − 2
√

T(Boot) − t ′
)
,

(14.37)

ι2(t
′, u′) := exp

(∫ t ′

s=0

1

μ
9/10
� (s, u′)

ds

)
, (14.38)

ιF (t
′, u′) := μ−11.8

� (t ′, u′)ιc1(t ′)ιc2(t ′, u′)ect ′ecu′ , (14.39)

ιG(t
′, u′) := μ−9.8

� (t ′, u′)ιc1(t ′)ιc2(t ′, u′)ect ′ecu′ , (14.40)

and c is a sufficiently large positive constant that we choose below. The functions
(14.37)–(14.40) are approximate integrating factors that will allow us to absorb all
of the error integrals on the RHSs of the inequalities of Prop. 14.2. We claim that to
obtain the desired estimates for Q[1,18], K[1,18], Q[1,17], and K[1,17], it suffices to show
that

F(t, u) ≤ C ε̊2, G(t, u) ≤ C ε̊2, (14.41)

where C in (14.41) is allowed to depend on c. To justify the claim, we use the fact
that for a fixed c, the functions ιc1(t), ι

c
2(t, u), ect , and ecu are uniformly bounded from

above by a positive constant for (t, u) ∈ [0, T(Boot))× [0,U0]; all of these estimates
are simple to derive, except for (14.38), which relies on (10.39).

To prove (14.41), it suffices to show that there exist positive constants α1, α2, β1,
and β2 with

α1 + α2β1

1 − β2
< 1, β2 < 1 (14.42)
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such that if c is sufficiently large, then

F(t, u) ≤ C ε̊2 + α1 F(t, u)+ α2G(t, u), (14.43)

G(t, u) ≤ C ε̊2 + β1 F(t, u)+ β2G(t, u). (14.44)

Once we have obtained (14.43)–(14.44), we easily deduce from those estimates that

G(t, u) ≤ C ε̊2 + β1

1 − β2
F(t, u), (14.45)

F(t, u) ≤ C ε̊2 +
{
α1 + α2β1

1 − β2

}
F(t, u). (14.46)

The desired bounds (14.41) now follow easily from (14.42) and (14.45)–(14.46).
It remains for us to derive (14.43)–(14.44). To this end, we will use the critically

important estimates of Prop. 10.3 as well as the following simple estimates, which are
easy to derive:

∫ t̂

t ′=0
ιc1(t

′) 1√
T(Boot) − t ′

dt ′ = 1

c

∫ t̂

t ′=0

d

dt ′
{
ιc1(t

′)
}

dt ′ ≤ 1

c
ιc1(t̂), (14.47)

∫ t̂

t ′=0
ιc2(t

′, û)
1

μ
9/10
� (t ′, û)

dt ′ = 1

c

∫ t̂

t ′=0

d

dt ′
{
ιc2(t

′, û)
}

dt ′ ≤ 1

c
ιc2(t̂, û), (14.48)

∫ t̂

t ′=0
ect ′ dt ′ ≤ 1

c
ect̂ , (14.49)

∫ û

u′=0
ecu′ du′ ≤ 1

c
ecû . (14.50)

The smallness needed to close our estimates will come from taking c to be large and
ε to be small.

We stress that from now through inequality (14.65), the constants C can be chosen
to be independent of c.

We also use the fact that ιc1(·), ιc2(·) ec·, and ec· are non-decreasing in their arguments,
and the estimate (10.23), which implies that for t ′ ≤ t̂ and u′ ≤ û, we have the
approximate monotonicity inequality

(1 + Cε)μ�(t
′, u′) ≥ μ�(t̂, û). (14.51)

In our arguments below, we do not explicitly mention these monotonicity properties
every time we use them.

We now set N = 18, multiply both sides of inequality (14.2a) by ι−1
F (t, u) and

then set (t, u) = (t̂, û). Similarly, we multiply both sides of inequality (14.2b) by
ι−1
G (t, u) and then set (t, u) = (t̂, û). To deduce (14.43)–(14.44), the difficult step is

to obtain suitable bounds for the terms generated by the integrals on RHSs (14.2a)–
(14.2b). Once we have such bounds, we can then take sup(t̂,û)∈[0,t]×[0,u] of both sides

123



Stable Shock Formation For Nearly Simple... Page 165 of 198 10

of the resulting inequalities, and by virtue of definitions (14.35)–(14.36), we will easily
conclude (14.43)–(14.44).

We now show how to obtain suitable bounds for the terms generated by the “border-

line” terms 6
∫ · · · , 8.1

∫ · · · , and 2
1

μ
1/2
� (t, u)

Q
1/2
[1,N ](t, u) ‖Lμ‖L∞((−)�u

t;t )

∫
· · ·

on RHS (14.2a). The terms generated by the remaining “non-borderline” terms on

RHS (14.2a) are easier to treat. We start with the term 6 ι−1
F (t̂, û)

∫ t̂
t ′=0 · · · . Multiply-

ing and dividing by μ11.8
� (t ′, û) in the integrand, taking supt ′∈[0,t̂] μ11.8

� (t ′, û)Q[1,18]
(t ′, û), pulling the sup−ed quantity out of the integral, and using the critically impor-
tant integral estimate (10.34) with B = 12.8, we find that

6 ι−1
F (t̂, û)

∫ t̂

t ′=0

‖[Lμ]−‖L∞(�û
t ′ )

μ�(t ′, û)
Q[1,18](t ′, û) dt ′

≤ 6 ι−1
F (t̂, û) sup

t ′∈[0,t̂]

{
μ11.8
� (t ′, û)Q[1,18](t ′, û)

} ∫ t̂

t ′=0
‖[Lμ]−‖L∞(�û

t ′ )
μ−12.8
� (t ′, û) dt ′

≤ 6 μ11.8
� (t̂, û) sup

t ′∈[0,t̂]

{
ι−c
1 (t ′)ι−c

2 (t ′, û)e−ct ′e−cûμ11.8
� (t ′, û)Q[1,18](t ′, û)

}

×
∫ t̂

t ′=0
‖[Lμ]−‖L∞(�û

t ′ )
μ−12.8
� (t ′, û) dt ′

≤ 6 + C
√
ε

11.8
F(t̂, û) ≤ 6 + C

√
ε

11.8
F(t, u). (14.52)

To handle the integral 8.1 ι−1
F (t̂, û)

∫ · · · , we use a similar argument, but this time
taking into account that there are two time integrations. We find that

8.1 ι−1
F (t̂, û)

∫ t̂

t ′=0

‖[Lμ]−‖L∞(�û
t ′ )

μ�(t ′, û)
Q

1/2
[1,18](t

′, û)
∫ t ′

s=0

‖[Lμ]−‖L∞(�û
s )

μ�(s, û)
Q

1/2
[1,18](s, û) ds dt ′

≤ 8.1 + C
√
ε

5.9 × 11.8
F(t, u). (14.53)

To handle the integral 2 ι−1
F (t̂, û)

1

μ
1/2
� (t, u)

Q
1/2
[1,N ](t, u) ‖Lμ‖L∞((−)�u

t;t )

∫
· · · ,

we use a similar argument based on the critically important estimate (10.35). We
find that

2 ι−1
F (t̂, û)

1

μ
1/2
� (t̂, û)

Q
1/2
[1,18](t̂, û) ‖Lμ‖L∞((−)�û

t̂;t̂ )

∫ t

t ′=0

1

μ
1/2
� (t ′, û)

Q
1/2
[1,18](t

′, û) dt ′

≤ 2 + C
√
ε

5.4
F(t, u). (14.54)

The important point is that for small ε, the factors
6 + C

√
ε

11.8
on RHS (14.52),

8.1 + C
√
ε

5.9 × 11.8
on RHS (14.53), and

2 + C
√
ε

5.4
on RHS (14.54) sum to

6

11.8
+
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8.1

5.9 × 11.8
+ 2

5.4
+ C

√
ε < 1. This sum is the main contributor to the constant

α1 on RHS (14.43).
The remaining integrals are easier to treat. We now show how to bound the term

arising from the integral on the 11th line of RHS (14.2a), which involves three time inte-
grations. The term arising from the integrals on the 9th and 10th lines of RHS (14.2a)
can be handled using similar arguments, so we do not provide those details. We claim
that the following sequence of inequalities holds for the term of interest, which yields
the desired bound:

Cι−1
F (t̂, û)

∫ t̂

t ′=0

1

μ�(t ′, û)
Q

1/2
[1,18](t

′, û)
∫ t ′

s=0

1

μ�(s, û)

×
∫ s

s′=0

1

μ
1/2
� (s′, û)

Q
1/2
[1,18](s

′, û) ds′ ds dt ′

≤ C

c
ι−1
F (t̂, û)ιc/2

2 (t̂, û)
∫ t̂

t ′=0

1

μ�(t ′, û)
Q

1/2
[1,18](t

′, û)

×
∫ t ′

s=0

1

μ�(s, û)
sup

(s′,u′)∈[0,s]×[0,û]

{
ι
−c/2
2 (s′, u′)Q1/2

[1,18](s
′, u′)

}
ds dt ′

≤ C

c
ι−1
F (t̂, û)ιc/2

2 (t̂, û)
∫ t̂

t ′=0

1

μ�(t ′, û)
Q

1/2
[1,18](t

′, û)

× sup
(s′,u′)∈[0,t ′]×[0,û]

{
μ�(s

′, u′)ι−c/2
2 (s′, u′)Q1/2

[1,18](s
′, u′)

} ∫ t ′

s=0

1

μ2
�(s, û)

ds dt ′

≤ C

c
ι−1
F (t̂, û)ιc/2

2 (t̂, û) sup
(s′,u′)∈[0,t̂]×[0,û]

{
μ�(s

′, u′)ι−c/2
2 (s′, u′)Q1/2

[1,18](s
′, u′)

}

× sup
(s′,u′)∈[0,t̂]×[0,û]

{
Q

1/2
[1,18](s

′, u′)
} ∫ t̂

t ′=0

1

μ�(t ′, û)

∫ t ′

s=0

1

μ2
�(s, û)

ds dt ′

≤ C

c
μ�(t̂, û) sup

(s′,u′)∈[0,t̂]×[0,û]

{
ι−1
F (s′, u′)Q[1,18](s′, u′)

}

×
∫ t̂

t ′=0

1

μ�(t ′, û)

∫ t ′

s=0

1

μ2
�(s, û)

ds dt ′

≤ C

c
F(t̂, û) ≤ C

c
F(t, u), (14.55)

which yields the desired smallness factor
1

c
. We now explain how to derive

(14.55). To deduce the first inequality, we multiplied and divided by ι
c/2
2 (t ′, û)

in the integral
∫ · · · ds′, then pulled sup

(s′,u′)∈[0,s]×[0,û]

{
ι
−c/2
2 (s′, u′)Q1/2

[1,18](s
′, u′)

}

out of the integral, and finally used (14.48) to gain the smallness factor
1

c

from the remaining terms
∫ s

s′=0

1

μ
1/2
� (s′, û)

ι
c/2
2 (s′, û) ds′. To derive the second
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inequality in (14.55), we multiplied and divided by μ�(s, û) in the integral∫ · · · ds, and used the approximate monotonicity property (14.51) to pull the factor

sup
(s′,u′)∈[0,t ′]×[0,û]

{
μ�(s

′, u′)ι−c/2
2 (s′, u′)Q1/2

[1,18](s
′, u′)

}
out of the ds integral, which

costs us a harmless multiplicative factor of 1 + Cε. The third inequality in (14.55)
follows easily. To derive the fourth inequality, we use the monotonicity of ιc1(·), ιc2(·)
ec·, and ec·, and (14.51). To derive the fifth inequality, we use inequality (10.36) twice.
The final inequality follows easily.

Similarly, we claim that we can bound the terms on the 4th through 7th lines of
RHS (14.2a) as follows:

ι−1
F (t̂, û)Cε

∫ t̂

t ′=0

1

μ�(t ′, û)
Q

1/2
[1,N ](t

′, û)
∫ t ′

s=0

1

μ�(s, û)
Q

1/2
[1,N ](s, û) ds dt ′

≤ CεF(t̂, û) ≤ CεF(t, u), (14.56)

ι−1
F (t̂, û)Cε

∫ t̂

t ′=0

1

μ�(t ′, û)
Q[1,18](t ′, û) dt ′

≤ CεF(t̂, û) ≤ CεF(t, u), (14.57)

ι−1
F (t̂, û)Cε

1

μ
1/2
� (t̂, û)

Q
1/2
[1,18](t̂, û)

∫ t̂

t ′=0

1

μ
1/2
� (t ′, û)

Q
1/2
[1,18](t

′, û) dt ′

≤ CεF(t̂, û) ≤ CεF(t, u), (14.58)

ι−1
F (t̂, û)CQ

1/2
[1,18](t̂, û)

∫ t̂

t ′=0

1

μ
1/2
� (t ′, û)

Q
1/2
[1,18](t

′, û) dt ′

≤ C

c
F(t̂, û) ≤ C

c
F(t, u). (14.59)

To derive (14.56), we use arguments similar to the ones we used in deriving (14.53),
but in place of the delicate estimate (10.34), we use the estimate (10.36), whose large
constant C is compensated for by the availability of the smallness factor ε. Similarly,
to derive (14.57), we use arguments similar to the ones we used in deriving (14.52),
using (10.36) in place of (10.34). To derive (14.58), we use arguments similar to the
ones we used above, but we now multiply and divide by μ5.9

� (t ′, û) in the time integral
on LHS (14.58) and use (10.36). To derive (14.59), we use similar arguments based
on multiplying and dividing by ι

c/2
2 (t ′, û) in the time integral and using (14.48).

Similarly, we derive the bound

Cι−1
F (t̂, û)

∫ t̂

t ′=0

1√
T(Boot) − t ′

Q[1,18](t ′, û) dt ′ ≤ C

c
F(t̂, û) ≤ C

c
F(t, u) (14.60)

for the term on the 8th line of RHS (14.2a) by multiplying and dividing by ιc1(t
′) in

the integrand and using (14.47) to gain the smallness factor
1

c
.

123



10 Page 168 of 198 J. Speck et al.

Similarly, we derive the bound

C(1 + ς−1)ι−1
F (t̂, û)

∫ û

u′=0
Q[1,18](t̂, u′) du′ ≤ C

c
F(t̂, û) ≤ C

c
F(t, u) (14.61)

for the term on the 12th line of RHS (14.2a) by multiplying and dividing by ecu′ in

the integrand and using (14.50) to gain the smallness factor
1

c
.

It is easy to see that the terms arising from the first term on RHS (14.2a) and
the terms on the next-to-last line of RHS (14.2a), namely C(1 + ς−1)ε̊2μ

−3/2
� (t, u),

CεQ[1,N ](t, u), CςQ[1,N ](t, u), and CςK[1,N ](t, u), are respectively bounded (after
multiplying by ι−1

F and taking the relevant sup) by ≤ C(1 + ς−1)ε̊2, ≤ CεF(t, u),
≤ CςF(t, u), and ≤ CςF(t, u).

To bound the term arising from the last integral on RHS (14.2a), we argue as follows
with the help of (14.48) and (14.51) (recall that N = 18):

Cι−1
F (t̂, û)

∫ t̂

t ′=0

1

μ
5/2
� (t ′, û)

Q[1,17](t ′, û) dt ′

≤ Cμ9.8
� (t̂, û)ι−c

1 (t̂)ι−c
2 (t̂, û)e−ct̂ e−cû sup

t ′∈[0,t̂]

(
μ�(t̂, û)

μ�(t ′, û)

)2

× sup
t ′∈[0,t̂]

{
ι−c
2 (t ′)Q[1,17](t ′, û)

}×
∫ t̂

t ′=0

ιc2(t
′)

μ
1/2
� (t ′, û)

dt ′

≤ Cι−c
2 (t̂) sup

t ′∈[0,t̂]

{
ι−1
G (t ′, û)Q[1,17](t ′, û)

}
×
∫ t̂

t ′=0

ιc2(t
′)

μ
1/2
� (t ′, û)

dt ′

≤ C

c
G(t̂, û) ≤ C

c
G(t, u). (14.62)

We now bound the terms ι−1
G (t̂, û) × · · · arising from the terms on RHS (14.2b).

All terms except the one arising from the integral involving the top-order factor
Q

1/2
[1,18] (featured in the ds integral on RHS (14.2b)) can be bounded by

≤ C ε̊2+ C

c
(1+ς−1)G(t, u)+CςG(t, u) by using essentially the same arguments

given above. To handle the remaining term involving the top-order factor Q1/2
[1,18], we

use arguments similar to the ones we used to prove (14.55) (in particular, we use
inequality (10.36) twice) to bound it as follows:

Cι−1
G (t̂, û)

∫ t̂

t ′=0

1

μ
1/2
� (t ′, û)

Q
1/2
[1,17](t

′, û)
∫ t ′

s=0

1

μ
1/2
� (s, û)

Q
1/2
[1,18](s, û) ds dt ′

≤ Cι−1
G (t̂, û) sup

(t ′,u′)∈[0,t̂]×[0,û]

{
μ4.9
� (t ′, û)Q1/2

[1,17](t
′, u′)

}

× sup
(t ′,u′)∈[0,t̂]×[0,û]

{
μ5.9
� (t ′, û)Q1/2

[1,18](t
′, u′)

}
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×
∫ t̂

t ′=0

1

μ5.4
� (t ′, û)

∫ t ′

s=0

1

μ6.4
� (s, û)

ds dt ′

≤ C F1/2(t̂, û)G1/2(t̂, û) ≤ C F(t, u)+ 1

2
G(t, u). (14.63)

Inserting all of these estimates into the RHSs of ι−1
F (t̂, û)× (14.2a)(t̂, û) and

ι−1
G (t̂, û)× (14.2b)(t̂, û) and taking sup(t̂,û)∈[0,t]×[0,u] of both sides, we deduce that

F(t, u) ≤C(1 + ς−1)ε̊2 +
{

6

11.8
+ 8.1

5.9 × 11.8
+ 2

5.4
+ C

√
ε

}
F(t, u) (14.64)

+ C

c
(1 + ς−1)F(t, u)+ C

c
G(t, u)+ CςF(t, u),

G(t, u) ≤C ε̊2 + C

c
F(t, u)+ C F(t, u)+ C

c
(1 + ς−1)G(t, u)

+ CςG(t, u)+ 1

2
G(t, u). (14.65)

We remind the reader that the constants C in (14.64)–(14.65) can be chosen to be inde-
pendent of c. The desired estimates (14.43)–(14.44) now follow from first choosing ς

to be sufficiently small, then choosing c to be sufficiently large, then choosing ε to be

sufficiently small, and using the aforementioned fact that
6

11.8
+ 8.1

5.9 × 11.8
+ 2

5.4
+

C
√
ε < 1.

Estimates for Q[1,≤16] and K[1,≤16] via a descent scheme: We now explain how to
use inequality (14.2b) to derive the estimates for Q[1,≤16] and K[1,≤16] by downward
induction. Unlike our analysis of the strongly coupled pair max

{
Q[1,18],K[1,18]

}
and

max
{
Q[1,17],K[1,17]

}
, we can derive the desired estimates for max

{
Q[1,16],K[1,16]

}
by using only inequality (14.2b) and the already derived estimates for max

{
Q[1,17],

K[1,17]
}
. At the end of the proof, we will describe the minor changes needed to

derive the desired estimates for max
{
Q[1,15],K[1,15]

}
, max

{
Q[1,14],K[1,14]

}
, · · · ,

max {Q1,K1}.
To begin, we define the following analogs of (14.40) and (14.36):

ιH (t
′, u′) := μ−7.8

� (t ′, u′)ιc1(t ′)ιc2(t ′, u′)ect ′ecu′ , (14.66)

H(t, u) := sup
(t̂,û)∈[0,t]×[0,u]

ι−1
H (t̂, û)max

{
Q[1,16](t̂, û),K[1,16](t̂, û)

}
. (14.67)

Note that the power of μ−1
� in the factor μ−7.8

� has been reduced by two in (14.66) com-
pared to (14.40), which corresponds to less singular behavior of max

{
Q[1,16],K[1,16]

}
near the shock. As before, to prove the desired estimate (14.1a) (now with M = 3), it
suffices to prove

H(t, u) ≤ C ε̊2. (14.68)

We now set N = 17, multiply both sides of inequality (14.2b) by ι−1
H (t, u), and

then set (t, u) = (t̂, û) (note that N = 17 in (14.2b) corresponds to estimating
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max
{
Q[1,16],K[1,16]

}
). With one exception, we can bound all terms arising from the

integrals on RHS (14.2b) by ≤ C ε̊2 + C

c
(1 + ς−1)H(t, u) + ςH(t, u) (where C is

independent of c) by using the same arguments that we used in deriving the estimate
for max

{
Q[1,17],K[1,17]

}
. The exceptional term is the one arising from the integral

involving the above-present-order factor Q1/2
[1,17]. We bound the exceptional term as

follows by using inequality (10.36), the approximate monotonicity of ιH , and the
estimate Q

1/2
[1,17] ≤ Ccε̊μ−4.9

� (t, u) (which follows from the already proven estimate
(14.41) for G(t, u)):

Cι−1
H (t̂, û)

∫ t̂

t ′=0

1

μ
1/2
� (t ′, û)

Q
1/2
[1,16](t

′, û)
∫ t ′

s=0

1

μ
1/2
� (s, û)

Q
1/2
[1,17](s, û) ds dt ′

≤ Ccε̊ι
−1/2
H (t̂, û) sup

(t ′,u′)∈[0,t̂]×[0,û]

{
ι
−1/2
H (t ′, u′)Q1/2

[1,16](t
′, u′)

}

×
∫ t̂

t ′=0

1

μ
1/2
� (t ′, û)

∫ t ′

s=0

1

μ5.4
� (s, û)

ds dt ′

≤ Ccε̊ι
−1/2
H (t̂, û)μ−3.9

� (t̂, û) sup
(t ′,u′)∈[0,t̂]×[0,û]

{
ι
−1/2
H (t ′, u′)Q1/2

[1,16](t
′, u′)

}

≤ Ccε̊H1/2(t̂, û) ≤ Ccε̊
2 + 1

2
H(t, u). (14.69)

In total, we have obtained the following analog of (14.65):

H(t, u) ≤ Ccε̊
2 + C

c
(1 + ς−1)H(t, u)+ 1

2
H(t, u)+ CςH(t, u), (14.70)

where Cc is the only constant that depends on c. The desired bound (14.68) easily
follows from (14.70) by first choosing ς to be sufficiently small and then c to be
sufficiently large so that we can absorb all factors of H on RHS (14.70) into the LHS.

The desired bounds (14.1b) for max
{
Q[1,15],K[1,15]

}
, max

{
Q[1,14],K[1,14]

}
, · · ·

can be (downward) inductively derived by using an argument similar to the one
we used to bound max

{
Q[1,16],K[1,16]

}
, which relied on the already available

bounds for max
{
Q[1,17],K[1,17]

}
. The only difference is that we define the analog

of the approximating integrating factor (14.66) to be μ
−p
� ιc1(t

′)ιc2(t ′, u′)ect ′ecu′ , where
p = 5.8 for the max

{
Q[1,15],K[1,15]

}
estimate, p = 3.8 for the max

{
Q[1,14],K[1,14]

}
estimate, p = 1.8 for the max

{
Q[1,13],K[1,13]

}
estimate, and p = 0 for the

max
{
Q[1,≤12],K[1,≤12]

}
estimates; these latter estimates do not involve any singular

factor of μ−1
� . There is one important new detail that is relevant for these estimates: in

deriving the analog of the inequalities (14.69) for max
{
Q[1,≤12],K[1,≤12]

}
, we use the

estimate (10.39) in place of the estimate (10.36); the estimate (10.39) is what allows
us to break the μ−1

� degeneracy.
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15 The Stable Shock Formation Theorem

In this section, we state and prove our main stable shock formation theorem.

15.1 The Diffeomorphic Nature of ϒ and Continuation Criteria

We first provide a technical lemma concerning the change of variables map ϒ and a
lemma providing continuation criteria.

Lemma 15.1 (Sufficient conditions forϒ to be a global diffeomorphism). Assume
the data-size and bootstrap assumptions of Subsects. 7.4–7.5 and the smallness
assumptions of Subsect. 7.7. Assume in addition that

inf
(t,u)∈[0,T(Boot))×[0,U0]

μ�(t, u) > 0. (15.1)

Then the change of variables map ϒ extends to a global C1,1 diffeomorphism from
[0, T(Boot)] × [0,U0] × T onto its image.

Proof First, from Lemma 12.6, we see that ϒ extends as a C1,1 function defined on
[0, T(Boot)]×[0,U0]×T. Hence, to prove the lemma, it remains for us to show that ϒ
is a diffeomorphism from [0, T(Boot)]×[0,U0]×T onto its image. To this end, we first
use (2.48), (12.8), the bootstrap assumptions (BA
), the fact that g

i j
= δi j +O(
),

(8.32a), and the assumption inf(t,u)∈[0,T(Boot))×[0,U0] μ�(t, u) > 0 to deduce that the
Jacobian determinant of ϒ is uniformly bounded from above and from below strictly
away from 0. Hence, from the inverse function theorem, we deduce that ϒ extends as
a C1,1 local diffeomorphism from [0, T(Boot)] × [0,U0] × T onto its image.

To show that ϒ is a global diffeomorphism on the domain under considera-
tion, it suffices to show that for u1, u2 ∈ [0,U0] with u1 < u2, the distinct
curves �T(Boot),u1 , �T(Boot),u2 ⊂ �

U0
T(Boot)

do not intersect each other and that for each
u ∈ [0,U0], ϒ(T(Boot), u, ·) is an injection from T onto its image.

To rule out the intersection of two distinct curves, we use (7.5), (8.32a), the assump-
tion inf(t,u)∈[0,T(Boot))×[0,U0] μ�(t, u) > 0, the bootstrap assumptions (BA
), and the

fact that g
i j
= δi j + O(
) to deduce that

∑2
a=1 |∂au| is uniformly bounded from

above and strictly from below away from 0. It follows that the (closed) null plane

portions PT(Boot)
u corresponding to two distinct values of u ∈ [0,U0] cannot intersect,

which yields the desired result. It remains for us to show that when u ∈ [0,U0],
ϒ(T(Boot), u, ·) is a diffeomorphism from T onto its image. To this end, we note that
for each fixed u ∈ [0,U0], the rectangular component ϒ2(T(Boot), u, ·) (which can be
identified with the local rectangular coordinate x2), viewed as a T-valued function of
ϑ ∈ T, is homotopic to the degree-one map ϒ2(0, u, ·) by the homotopy ϒ2(·, u, ·) :
[0, T(Boot)]×T→ T. Hence, it is a basic result of degree theory (see, for example, the
Hopf Degree Theorem in [22]) thatϒ2(T(Boot), u, ·) is also a degree-one map. Next, we
note that (2.53), (8.12a) with N = 0, the L∞ estimates of Prop. 8.10, and Lemma 12.1
together imply that �ϒ2(T(Boot), u, ϑ) = [υ−1Y 2](T(Boot), u, ϑ) = 1 + O(ε) for
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ϑ ∈ T. From this estimate and the degree-one property of ϒ2(T(Boot), u, ·), we
deduce58 that (for sufficiently small ε), ϒ2(T(Boot), u, ·) is a bijection59 from T to
T. Hence, ϒ(T(Boot), u, ·) is injective, which is the desired result. � 

We now provide some continuation criteria, which we will use to ensure that the
solution survives until the shock forms.

Lemma 15.2 (Continuationcriteria). Let (
̊, 
̊0) := (
|�0 , ∂t
|�0) ∈ H19
e (�1

0)×
H18

e (�1
0) be initial data for the covariant wave equation �g(
)
 = 0 that are com-

pactly supported in �1
0 (see Remark 1.1 regarding the Sobolev spaces H N

e (�1
0)). Let

T(Local) > 0 and U0 ∈ (0, 1], and assume that the corresponding classical solution

 exists on an (“open at the top”) spacetime region MT(Local),U0 (see Def. 2.1) that is

completely determined by the non-trivial data lying in�U0
0 and the trivial data lying to

the right of the line {x1 = 0} in�0 (see Figure 1 on pg. 8). Let u be the eikonal function
that verifies the eikonal equation (1.4) with the initial data (1.5). Assume that μ > 0
on MT(Local),U0 and that the change of variables map ϒ from geometric to rectangular
coordinates (see Def. 2.20) is a C1 diffeomorphism from [0, T(Local)) × [0,U0] × T

ontoMT(Local),U0 . LetH be the set of real numbers b such that the following conditions
hold:

• The rectangular components gμν(·), (μ, ν = 0, 1, 2), are smooth on a neighbor-
hood of b.

• g00(b) < 0.
• The eigenvalues of the 2 × 2 matrix g

i j
(b) (see Def. 2.15), (i, j = 1, 2), are

positive.

Assume that none of the following 4 breakdown scenarios occur:

(1) infMT(Local),U0
μ = 0.

(2) supMT(Local),U0
μ = ∞.

(3) There exists a sequence pn ∈MT(Local),U0 such that
(pn) escapes every compact
subset of H as n →∞.

(4) supMT,U0
maxκ=0,1,2,3 |∂κ
| = ∞.

In addition, assume that the following condition is verified:

(5) The change of variables mapϒ extends to the compact set [0, T(Local)]×[0,U0]×T

as a (global) C1 diffeomorphism onto its image.

Then there exists a  > 0 such that 
, u, and all of the other geometric quantities
defined throughout the article can be uniquely extended (where 
 and u are classi-
cal solutions) to a strictly larger region of the form MT(Local)+,U0 into which their

58 Recall that if f : T → T is a C1 surjective map without critical points, then f is degree-one if for
p, q ∈ T, 1 = ∑

p∈ f −1(q) sign (dp f ), where dp f denotes the differential of f at p and the dp f are
computed relative to an atlas corresponding to the smooth orientation on T chosen at the beginning of the
article. It is a basic fact of degree theory that the sum is independent of q. Note that in the context of the
present argument, the role of d f (·) is effectively played by �ϒ2(T(Boot), u, ·).
59 The surjective property of this map is easy to deduce.
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Sobolev regularity relative to both geometric and rectangular coordinates is propa-
gated. Moreover, if  is sufficiently small, then none of the four breakdown scenarios
occur in the larger region, and ϒ extends to [0, T(Local) + ] × [0,U0] × T as a
(global) C1 diffeomorphism onto its image.

Sketch of a proof Lemma 15.2 is mostly standard. A sketch of the proof was provided
in [60, Proposition 21.1.1], to which we refer the reader for more details. Here, we
only mention the main ideas. Criterion (3) is connected to avoiding a breakdown
in hyperbolicity of the equation. Criterion (4) is a standard criterion used to locally
continue the solution relative to the rectangular coordinates. Criteria (1) and (2) and
the assumption on ϒ are connected to ruling out the blowup of u, degeneracy of
the change of variables map, and degeneracy of the region MT(Local),U0 . In particular,

criteria (1) and (2) play a role in a proving that
∑2

a=1 |∂au| is uniformly bounded from
above and strictly from below away from 0 on MT(Local),U0 (the proof was essentially
given in the proof of Lemma 15.1). � 

15.2 The Main Stable Shock Formation Theorem

We now state and prove the main result of the article.

Theorem 15.1 (Stable shock formation). Let (
̊, 
̊0) := (
|�0 , ∂t
|�0) ∈
H19

e (�1
0)×H18

e (�1
0) (see Remark 1.1) be initial data for the covariant wave equation

�g(
)
 = 0 that are compactly supported in�1
0 and that verify the data-size assump-

tions60 of Subsect. 7.3. In particular, let ε̊, δ̊, and δ̊∗ be the data-size parameters from
(7.3) and (7.4). Assume that the rectangular metric component functions verify the
structural assumptions (2.7) and (2.9). For each U0 ∈ [0, 1], let T(Li f espan);U0 be
the classical lifespan of the solution in the region that is completely determined by
the non-trivial data lying in �

U0
0 and the trivial data lying to the right of the line

{x1 = 0} in �0 (see Figure 1 on pg. 8). If ε̊ is sufficiently small relative to δ̊−1 and δ̊∗
(in the sense explained in Subsect. 7.7), then the following conclusions hold, where
all constants can be chosen to be independent of U0.
Dichotomy of possibilities. One of the following mutually disjoint possibilities must
occur, where μ�(t, u) is defined in (10.2).

I) T(Li f espan);U0 > 2δ̊−1∗ . In particular, the solution exists classically on the
spacetime region clM2δ̊−1∗ ,U0

, where cl denotes closure. Furthermore,

inf{μ�(s,U0) | s ∈ [0, 2δ̊−1∗ ]} > 0.
II) T(Li f espan);U0 ≤ 2δ̊−1∗ , and

T(Li f espan);U0 = sup
{

t ∈ [0, 2δ̊−1∗ ) | inf{μ�(s,U0) | s ∈ [0, t)} > 0
}
. (15.2)

In addition, case II) occurs when U0 = 1. In this case, we have

T(Li f espan);1 =
{
1 +O(ε̊)

}
δ̊−1∗ . (15.3)

60 Recall that in Remark 7.6, we outlined a proof that such data exist.
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What happens in Case I). In case I), all bootstrap assumptions, the estimates of
Props. 8.10 and 9.2, and the energy estimates of Prop. 14.1 hold on clM2δ̊−1∗ ,U0

with the factors of ε on the RHS replaced by C ε̊. Moreover, for 0 ≤ M ≤ 5, the
following estimates hold for (t, u) ∈ [0, 2δ̊−1∗ ] × [0,U0]:

∥∥∥P [1,12]∗ μ
∥∥∥

L2(�u
t )
,

∥∥∥P≤12 Li
(Small)

∥∥∥
L2(�u

t )
,
∥∥P≤11trg/χ

∥∥
L2(�u

t )
≤ C ε̊, (15.4a)

∥∥∥P13+M∗ μ
∥∥∥

L2(�u
t )
,

∥∥∥P13+M Li
(Small)

∥∥∥
L2(�u

t )
,

∥∥∥P12+M trg/χ
∥∥∥

L2(�u
t )
≤ C ε̊μ−(M+.4)

� (t, u),

(15.4b)

∥∥LP18μ
∥∥

L2(�u
t )
,

∥∥∥LZ 18;1 Li
(Small)

∥∥∥
L2(�u

t )
,

∥∥∥LZ 17;1trg/χ
∥∥∥

L2(�u
t )
≤ C ε̊μ−6.4

� (t, u),

(15.4c)

∥∥μY 18trg/χ
∥∥

L2(�u
t )
≤ C ε̊μ−5.9

� (t, u).

(15.4d)

What happens in Case II). In case II), all bootstrap assumptions, the estimates of
Props. 8.10 and 9.2, and the energy estimates of Prop. 14.1 hold on MT(Li f espan);U0 ,U0

with the factors of ε on the RHS replaced by C ε̊. Moreover, for 0 ≤ M ≤ 5, the
estimates (15.4a)–(15.4d) hold for (t, u) ∈ [0, T(Li f espan);U0)× [0,U0]. In addition,
the scalar functions Z ≤9;1
, Z ≤4;2
, X̆ X̆ X̆
, Z ≤9;1Li , X̆ X̆ Li , P≤9μ, Z ≤2;1μ,
and X̆ X̆μ extend to �

U0
T(Li f espan);U0

as functions of the geometric coordinates (t, u, ϑ)

that are uniformly bounded in L∞. Furthermore, the rectangular component functions
gαβ(
) verify the estimate gαβ = mαβ + O(ε̊) (where mαβ = diag(−1, 1, 1) is the
standard Minkowski metric) and have the same extension properties as 
 and its
derivatives with respect to the vectorfields mentioned above.

Moreover, let �U0;(Blowup)
T(Li f espan);U0

be the (non-empty) subset of �U0
T(Li f espan);U0

defined by

�
U0;(Blowup)
T(Li f espan);U0

:= {
(T(Li f espan);U0 , u, ϑ) | μ(T(Li f espan);U0 , u, ϑ) = 0

}
. (15.5)

Then for each point (T(Li f espan);U0 , u, ϑ) ∈ �
U0;(Blowup)
T(Li f espan);U0

, there exists a past neigh-

borhood containing it such that the following lower bound holds in the neighborhood:

|X
(t, u, ϑ)| ≥ δ̊∗
4|GL(Flat)L(Flat) (
 = 0)|

1

μ(t, u, ϑ)
. (15.6)

In (15.6),
δ̊∗

4
∣∣GL(Flat)L(Flat) (
 = 0)

∣∣ is a positive data-dependent constant (see (2.7)),

and the �t,u-transversal vectorfield X is near-Euclidean-unit length: δab Xa Xb =
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1+O(ε̊). In particular, X
 blows up like 1/μ at all points in�U0;(Blowup)
T(Li f espan);U0

. Conversely,

at all points in (T(Li f espan);U0 , u, ϑ) ∈ �
U0
T(Li f espan);U0

\�U0;(Blowup)
T(Li f espan);U0

, we have

∣∣X
(T(Li f espan);U0 , u, ϑ)
∣∣ <∞. (15.7)

Proof Let C∗ > 1 be a constant (we will adjust C∗ throughout the proof). We define

T(Max);U0 := The supremum of the set of times T(Boot) ∈ [0, 2δ̊−1∗ ] such that:
(15.8)

•
, u,μ, Li
(Small), ϒ, and all of the other quantities

defined throughout the article exist classically on MT(Boot),U0 .

• The change of variables mapϒ is a (global)C1,1 diffeomorphism from

[0, T(Boot))× [0,U0] × T onto its image MT(Boot),U0 .

• inf
{
μ�(t,U0) | t ∈ [0, T(Boot))

}
> 0.

• The fundamental L∞ bootstrap assumptions (BA
)

hold with ε := C∗ε̊ for (t, u) ∈ ×[0, T(Boot))× [0,U0].
• The L2−type energy bounds

Q
1/2
[1,13+M](t, u)+K

1/2
[1,13+M](t, u) ≤ C∗ε̊μ−(M+.9)

� (t, u), (0 ≤ M ≤ 5),
(15.9)

Q
1/2
[1,1+M](t, u)+K

1/2
[1,1+M](t, u) ≤ C∗ε̊, (0 ≤ M ≤ 11)

hold for (t, u) ∈ ×[0, T(Boot))× [0,U0]. (15.10)

It is a standard result that if ε̊ is sufficiently small and C∗ is sufficiently large, then
T(Max);U0 > 0 (this is a standard local well-posedness result combined with the initial
smallness of the L2-controlling quantities shown in Lemma 14.5).

We now show that the energy bounds (15.9)–(15.10) and the fundamental L∞
bootstrap assumption (BA
) are not saturated for (t, u) ∈ [0, T(Max);U0) × [0,U0].
The non-saturation of the energy bounds (for C∗ sufficiently large) is provided by
Prop. 14.1. The non-saturation of the fundamental L∞ bootstrap assumptions (BA
)
then follows from Cor. 13.4. Consequently, we conclude that all of the estimates proved
throughout the article hold on MT(Boot),U0 with the smallness parameter ε replaced by
C ε̊. We use this fact throughout the remainder of the proof without further remark.

Next, we show that (15.4a)–(15.4d) hold for (t, u) ∈ [0, T(Max);U0) × [0,U0]. To
obtain (15.4a)–(15.4c), we insert the energy estimates of Prop. 14.1 into the RHS of the
inequalities of Lemma 14.3 and use inequalities (10.36) and (10.39) as well as the fact
that Q[1,M] is increasing in its arguments. Similarly, to obtain inequality (15.4d), we
insert the energy estimates of Prop. 14.1 into RHS (14.15) and use inequality (10.36).

We now establish the dichotomy of possibilities. We first show that if

inf
{
μ�(t,U0) | t ∈ [0, T(Max);U0)

}
> 0,
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then T(Max);U0 = 2δ̊−1∗ . To proceed, we assume for the sake of contradiction that the
previous bound for μ� holds but that T(Max);U0 < 2δ̊−1∗ . To reach a contradiction, we
will use Lemmas 15.1 and 15.2 to deduce that we can classically extend the solution to a
region of the formMT(Max);U0+,U0 , with > 0 and T(Max);U0+ < 2δ̊−1∗ , such that
all of the properties defining T(Max);U0 hold for the larger time T(Max);U0 +. Since
we have already shown that the energy bounds (15.9)–(15.10) are not saturated and
that the fundamental L∞ bootstrap assumption (BA
) are not saturated for (t, u) ∈
[0, T(Max);U0)× [0,U0], the contradiction will follow once we show that the change
of variables map ϒ extends as a global C1,1 diffeomorphism from [0, T(Max);U0 ] ×[0,U0]×Tonto its image and that none of the four breakdown scenarios of Lemma 15.2
occur on MT(Max);U0 ,U0 . Breakdown scenario (1) from Lemma 15.2 is ruled out by
assumption. Scenario (2) is ruled out by the estimate (8.32a). Scenario (3) is ruled out
by the bootstrap assumptions (BA
) and the fact that g

i j
= δi j +O(
), with δi j the

standard Kronecker delta. From Lemma 15.1, we obtain that ϒ extends as a global
C1,1 diffeomorphism from [0, T(Max);U0 ]×[0,U0]×T onto its image. Hence, we can
rule out the scenario (4) once we show that

sup
(t,u,ϑ)∈[0,T(Max);U0 ]×[0,U0]×T

∑
i1+i2+i3≤1

∣∣∣∣∣
(
∂

∂t

)i1
(

∂

∂u

)i2
(

∂

∂ϑ

)i3


(t, u, ϑ)

∣∣∣∣∣ <∞.

This desired bound is a simple consequence of the estimates (8.30a)–(8.30b) (which
hold for (t, u) ∈ [0, T(Max);U0 ]× [0,U0]) and the fact that, as we showed in the proof
of Lemma 12.6, we have L = ∂

∂t , Y = (1 + O(ε̊))� (recall that � := ∂
∂ϑ

) and
∂
∂u = X̆ +O(1)Y . We have thus reached a contradiction and established that either I)

T(Max);U0 = 2δ̊−1∗ or II) inf
{
μ�(t,U0) | t ∈ [0, T(Max);U0)

} = 0.
We now show that case II) corresponds to a singularity and that the classical lifespan

is characterized by (15.2). To this end, we first use (9.9), (10.12), and the identity X̆ =
μX to deduce that inequality (15.6) holds. Furthermore, from (2.1), (2.26), and the L∞
estimates of Prop. 8.10, we deduce that |X | := √

gab Xa Xb = 1+ f(γ)γ = 1+O(ε̊).
From this estimate and (15.6), we deduce that at points in �T(Max);U0 ,U0 where μ

vanishes, |X
| must blow up like 1/μ. Hence, T(Max);U0 is the classical lifespan.
That is, we have T(Max);U0 = T(Li f espan);U0 as well as the characterization (15.2) of
the classical lifespan. The estimate (15.7) is an immediate consequence of the estimate
(8.30a) and the identity X̆ = μX .

To obtain (15.3), we use (10.15a) and (10.16b) to deduce that μ�(t, 1) vanishes for
the first time when t = {

1 +O(ε̊)
}
δ̊−1∗ .

We now derive the statements regarding the quantities that extend to �
U0
T(Li f espan);U0

as L∞ functions. Let q denote any of the quantities Z ≤9;1
, · · · , X̆ X̆μ that are
stated in the theorem to extend to �

U0
T(Li f espan);U0

as an L∞ function of the geometric

coordinates. The L∞ estimates of Props. 8.10 and 9.2 imply that ‖Lq‖
L∞(�

U0
t )

is

uniformly bounded for 0 ≤ t < T(Li f espan);U0 . Recalling that L = ∂
∂t , we conclude

that q extends to �
U0
T(Li f espan);U0

as an element of L∞(�
U0
T(Li f espan);U0

) as desired. The

estimate gαβ = mαβ +O(ε̊) and the extension properties of the Z -derivatives of the
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scalar functions gαβ then follow from (2.1), the already proven bound ‖
‖
L∞(�

U0
t )

�
ε̊, and the above extension properties of the Z -derivatives of 
. � 
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Appendix A: Extending the Results to the Equations
(g−1)αβ(∂	)∂α∂β	 = 0

In this appendix, we sketch how to extend our shock formation results to the Cauchy
problem

(g−1)αβ(∂	)∂α∂β	 = 0, (A.1a)

(	|�0 , ∂t	|�0) = (	̊, 	̊0), (A.1b)

where equation (A.1a) is written relative to the rectangular coordinates {xα}α=0,1,2,
and

gαβ(∂	) = mαβ + g(Small)
αβ (∂	), g(Small)

αβ (0) = 0. (A.1c)

Dividing the wave equation by −(g−1)00 if necessary, we may assume as before that

(g−1)00 ≡ −1. (A.1d)

A.1. Basic Setup

We start by defining 
ν , (ν = 0, 1, 2), and 	
 as follows:


ν := ∂ν	, 	
 := (
0, 
1, 
2). (A.2)

The main strategy behind extending our results is to take rectangular derivatives
of the equation (A.1a) to form a system of wave equations in the unknowns 	
; see
Lemma A.1. The system has a special null structure that plays an important role in
the analysis; see Lemma A.3. The vast majority of the proof of shock formation for
the system is the same as it is in the case of the scalar equation (1.1a), but now with
	
 in the role of 
. We can treat the system using essentially the same methods that
we used to treat the scalar equation (1.1a) because the coupling between the 
ν is not
very difficult to handle and because the tensorial structure of the equations matters
only in a few key places. We devote the remainder of this appendix to highlighting
those key places and to describing the handful of new ingredients that are needed.
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We first note that the analogs of the scalar functions (2.5) for equation (A.1a) are

Gλ
μν = Gλ

μν(
	
) := ∂g(Small)

μν ( 	
)

∂
λ

, (A.3a)

Gμαβ( 	
) := (g−1)αα
′
(g−1)ββ

′
Gμ

α′β ′ . (A.3b)

For our proof to work, we assume an analog of (2.7), specifically that there exist coor-
dinates such that mαβ = diag(−1, 1, 1) (that is, Minkowski-rectangular coordinates)
and such that with L(Flat) := ∂t + ∂1, we have

mκλGκ
μν(

	
 = 0)Lα
(Flat)L

β

(Flat)L
λ
(Flat) �= 0. (A.4)

The assumption ensures that in the regime under study, the term ω(T rans− 	
) on
RHS (A.15) is sufficiently strong to drive μ to 0 in finite time.

We now provide the system of covariant wave equations implied by equation (A.1a).
The proof is a straightforward but tedious computation that relies on the identity
∂α
β = ∂β
α; we omit the details.

Lemma A.1 (The system of covariant wave equations). As a consequence of equa-
tion (A.1a), the quantities 
ν := ∂ν	 verify the following system of covariant wave
equations (where 
ν is viewed to be a scalar-valued function under covariant differ-
entiation):

�g( 	
)
ν = Q(∂ 	
, ∂
ν), (ν = 0, 1, 2), (A.5)

where �g( 	
)
 := 1√
|detg|∂α

(√|detg|(g−1)αβ∂β

)

is the covariant wave operator

of g applied to 
,

Q(∂ 	
, ∂
) := Gμαβ
{
∂β
α∂μ
 − ∂μ
α∂β


}+ (g−1)αβ�λ∂α
λ∂β
, (A.6)

Gμαβ is defined in (A.3b), and �ν( 	
) := 1√
|detg|( 	
)

∂

√
|detg|( 	
)

∂
ν

.

� 
The quadratic term Q on RHS (A.5) has a special null structure that is of critical

importance for our proof. We describe this structure in Lemma A.3 below. We first
recall the definitions of the standard null (relative to g) forms Q(0) and Q(αβ):

Q(0)(∂φ, ∂φ̃) := (g−1)αβ∂αφ∂βφ̃, (A.7a)

Q(αβ)(∂φ, ∂φ̃) := ∂αφ∂βφ̃ − ∂αφ̃∂βφ. (A.7b)

In the next lemma, we decompose the standard null forms relative to the non-
rescaled frame (2.19b) and exhibit their good geometric properties from the point
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of view of the shock formation problem. The main point is that there is no term
proportional to (Xφ)X φ̃ on RHS (A.8).

Lemma A.2 (Good properties of the standard null forms). If Q is a standard null
form, then we can decompose it as follows relative to the non-rescaled frame (2.19b):

Q(∂φ, ∂φ̃) = f1(Lφ)Lφ̃ + f2(Lφ)X φ̃ + f3(Xφ)Lφ̃

+ ( f4 · d/φ)Lφ̃ + ( f5 · d/φ)X φ̃ + (Lφ) f6 · d/φ̃ + (Xφ) f7 · d/φ̃

+ f8 · d/φ ⊗ d/φ̃, (A.8)

where f1, f2 and f3 are scalar functions, f4, f5, f6, f7 are �t,u-tangent vectorfields,
and f8 is a symmetric type

(2
0

)
�t,u-tangent tensorfield with the following properties:

f1, f2 and f3 and the rectangular components f α4 , f α5 , f α6 , f α7 , and f αβ8 are smooth
scalar-valued functions of 	
 and the rectangular components of the vectorfields L
and X.

Proof When Q = Q(0), (A.8) follows from Lemma 2.4. When Q = Q(αβ), we view
Q(αβ) to be the rectangular components of an anti-symmetric type

(0
2

)
spacetime ten-

sor which we decompose relative to the non-rescaled frame: Q(αβ) = FL X (LαXβ −
XαLβ) + FL�(Lα�β − �αLβ) + FX�(Xα�β − �αXβ), where the F··· are scalar
functions. To compute the F···, we contract both sides of the identity against pairs of
elements of the non-rescaled frame {L , X,�}. For example, contracting against Lα�β

and using (2.41), we find that (Lφ)�φ̃−(Lφ̃)�φ = −FX�υ
2. This leads to a decom-

position of the form Q(αβ) = · · · − υ−2
{
(Lφ)�φ̃ − (Lφ̃)�φ

} {
Xα�β −�αXβ

}
.

Using (2.41), we can rewrite terms involving � as in the following example:
υ−2(Lφ)(�φ̃)Xα�β = (Lφ)(�/ #

β · d/φ̃)Xα , where �/ λ
β is defined in (2.27b). The

desired decomposition (A.8) thus follows. � 
In the next lemma, we characterize the good structure of the quadratic term Q on

RHS (A.5). The proof follows from observation.

Lemma A.3 (Special null structure of the inhomogeneous terms). The quadratic
term Q(∂ 	
, ∂
) on the right-hand side of (A.5) is a linear combination of the stan-
dard null forms in ∂ 	
 with coefficients depending on 	
.

� 

A.2. Additional Smallness Assumptions in the Present Context

To close the proof of shock formation for solutions to the system (A.5), we assume
that each scalar function 
ν has data verifying the same size assumptions as the
data for the scalar function 
, as described in Subsects. 7.3 and 7.7. Similarly, to
derive estimates, we make the same L∞ bootstrap assumptions for each 
ν that we
did for 
. As we show below in (A.18) and the discussion surrounding (A.20a)–
(A.20b), these assumptions impose some subtle smallness restrictions on the data
(A.1b) in the sense that they imply the O(ε̊) smallness of special combinations of
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the elements of {X̆
0, X̆
1, X̆
2}. These smallness restrictions are consequences
of our size assumptions on the 
ν and their derivatives and the symmetry property
∂α
β = ∂β
α . As we will see in Subsect. A.3, we especially rely on the following
small-data estimates:

∥∥∥L X̆	
∥∥∥

L∞(�1
0 )
,

∥∥∥Y X̆	
∥∥∥

L∞(�1
0 )

� ε̊. (A.9)

We note that the O(ε̊) smallness of
∥∥∥L X̆	

∥∥∥
L∞(�1

0 )
is a simple consequence of the

identity

L X̆	 = L(μXa
a) = (Lμ)Xa
a + μ(L Xa
(Small))
a + μXa L
a (A.10)

and the O(ε̊) smallness of ‖
a‖L∞(�1
0 )

and ‖L
a‖L∞(�1
0 )

.

Similar remarks apply to the term
∥∥∥Y X̆	

∥∥∥
L∞(�1

0 )
on LHS (A.9).

It is of course important that the smallness conditions (A.9) are propagated by the
nonlinear flow. Specifically, in the analog of the proof of Prop. 8.10, we could derive
the estimates

∥∥∥L X̆	
∥∥∥

L∞(�u
t )
,

∥∥∥Y X̆	
∥∥∥

L∞(�u
t )

� ε (A.11)

at the end of the proof. For example, the estimate (A.11) for
∥∥∥L X̆	

∥∥∥
L∞(�u

t )
would

follow from the identity (A.10) and L∞ estimates for all of the terms on RHS (A.10),
which would already have been obtained in the proof of the proposition.

A.3. The Main New Estimate Needed at the Top Order

We now explain how to extend Theorem 15.1 to the system (A.5). As we have sug-
gested above, we can derive energy identities for each scalar function 
ν by using
essentially the same arguments that we used to treat the scalar equation (1.1a). To derive
inequalities that control 	
, we replace the controlling quantityQN from Def. 13.1 with

QN (t, u) := max
| 	I |=N

max
ν=0,1,2

sup
(t ′,u′)∈[0,t]×[0,u]

{
E[P 	I
ν](t ′, u′)+ F[P 	I
ν](t ′, u′)

}
,

(A.12)

and similarly for the other controlling quantities of Sect. 13.
Thanks to Lemma A.3, the terms on RHS (A.5) are easy to treat without invoking

any new ideas. In the remainder of this appendix, we explain the one new ingredient
that we need to close the estimates. It is needed for the top-order L2 estimates for
the 
ν . To motivate the discussion, we first recall a critically important aspect of our
analysis of the scalar equation (1.1a). At several points in our argument for deriving
top-order L2 estimates for solutions to (1.1a), we had to use equation (2.62), the fact
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that GL L ,GL X = f(γ) (see Lemma 2.19), and the L∞ estimates of Prop. 8.10 to
obtain ∣∣∣GL L X̆


∣∣∣ ≤ 2|Lμ| + μO(ε). (A.13)

For example, (A.13) was used to derive61 equation (1.21). Since we are treating the
coupled system 	
 by separately deriving energy identities for each scalar function

ν , our energy estimates rely on the following analog of (A.13) for each of the three

ν : ∣∣∣GL

L L X̆
ν

∣∣∣ ≤ 2 |Lμ| + μO(ε), (A.14)

where GL
L L := Gκ

αβLαLβLκ . The estimate (A.14) is the main new ingredient that we
need at the top order. As we will see, it does not follow directly from the evolution
equation Lμ = · · · and instead relies on a few new tensorial observations and the
estimate (A.11). Thus, we dedicate the remainder of this appendix to sketching a
proof of (A.14).

We start by providing the evolution equation for μ in the present context.

Lemma A.4 (The transport equation verified by μ). In the case of equation (A.1a),
the inverse foliation density μ defined in (2.14) verifies the following transport equa-
tion:

Lμ = ω(T rans− 	
) + μω(T an− 	
) := ω, (A.15)

where

ω(T rans− 	
) := −1

2
GL

L L Xa X̆
a, (A.16a)

ω(T an− 	
) := −1

2
GL

L L Xa L
a − 1

2
G X

L L Xa L
a + 1

2
G/ #

L L · Xad/
a − 1

2
Gλ

L L L
λ

− Gλ
L X L
λ. (A.16b)

The scalar-valued function Gλ
μν above is defined in (A.3a), GL

L L := Gκ
αβLαLβLκ ,

G/ λ
L L := Gκ

αβLαLβ�/ λ
κ , etc.

Proof The proof is very similar to the proof of (2.62). The main difference is that we
use the identity ∂α
β = ∂β
α to rewrite

Gλ
L L X̆
λ = μGλ

L L Xa∂λ
a

= −GL
L L Xa X̆
a − μGL

L L Xa L
a − μG X
L L Xa L
a + μG/ #

L L · Xad/
a .

(A.17)

� 
61 Actually, in deriving (1.21), we used a version of (A.13) in which the absolute value signs are missing
and “≤” is replaced with “=.” However, (A.13) would have been sufficient for all of the arguments to go
through.
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The L∞ estimates provided by the analogs of the estimate |G#
(Frame)| =

|f(γ, g/−1, d/x1, d/x2)| � 1 (see Lemmas 2.19 and 8.4 and the L∞ estimates of
Prop. 8.10) and Prop. 8.10 allow us to obtain the following bound for the term (A.16a):
|ω(T an− 	
)| = O(ε). Also using (A.15)–(A.16b), we see that the desired estimate
(A.14) will follow once we show that

∥∥∥X̆
0 − Xa X̆
a

∥∥∥
L∞(�u

t )
,

∥∥∥X̆
1 + Xa X̆
a

∥∥∥
L∞(�u

t )
,

∥∥∥X̆
2

∥∥∥
L∞(�u

t )
� ε.

(A.18)

The proof of (A.18) is not difficult. Inequality (A.18) for the second term on the LHS
follows from the identity (see (2.53))

X̆
1 + Xa X̆
a = X1
(Small) X̆
1 + X2

(Small) X̆
2 (A.19)

and the bound ‖Xi
(Small)‖L∞(�u

t )
� ε provided by the relation (2.89c), the estimate

(8.33a), and the bootstrap assumptions (BA
) (the version for 	
). The main idea of
the proof of the other two estimates in (A.18) is to exploit the smallness (A.11) and
the following identities, which yield expressions for X̆
0 − Xa X̆
a and X̆
2:

L X̆	 = X̆
0 − Xa X̆
a − (g−1)0a X̆
a + (Lμ)Xa
a + μ(L Xa
(Small))
a,

(A.20a)

Y X̆	 = X̆
2 + Y a
(Small) X̆
a + (Yμ)Xa
a + μ(Y Xa

(Small))
a . (A.20b)

The identities (A.20a)–(A.20b) follow from the identity ∂α
β = ∂β
α , (2.26),
Def. 2.23, and the fact that L0 = 1. From (2.89c), the L∞ estimates of the ana-
log of Prop. 8.10 in the present context, and the estimate (A.11), we find that
‖X̆
0 − Xa X̆
a‖L∞(�u

t )
, ‖X̆
2‖L∞(�u

t )
� ε. Also using the already proven esti-

mate (A.18) for the second term on the LHS, we conclude the remaining two estimates
stated in (A.18).

Appendix B: Extending the Results to the Irrotational Euler Equations

In this appendix, we sketch the minor changes needed to extend the shock formation
results outlined in Appendix A to the irrotational Euler equations of fluid mechanics
in two spatial dimensions; this is the content of Subsect. B.1. Then, in Subsect. B.2,
we show that there exist initial data for the irrotational Euler equations that verify the
smallness-largeness hierarchy used in our proof of shock formation.

B.1. Massaging the Equations into the Form of Appendix A

The necessary changes are all connected to normalization. Under the assumption
of irrotationality, the Euler equations reduce to a quasilinear wave equation for a
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potential function62 	 on the spacetime manifold R × �. The wave equation is the
Euler-Lagrange equation (in particular it can be expressed in divergence form) for a
Lagrangian depending on ∂	 that must satisfy various physical assumptions allowing
for a fluid interpretation; see [13] for the details in the case of the non-relativistic Euler
equations and [15] in the case of the (special) relativistic Euler equations. A represen-
tative wave equation in the special relativistic case, derivable from the Lagrangian63

L := [−(m−1)κλ∂κ	∂λ	]s+1, is (see [55] for more details):

∂α

{
[−(m−1)κλ∂κ	∂λ	]s(m−1)αβ∂β	

}
= 0, (B.1)

where s ∈ (0,∞) is a constant and mαβ = diag(−1, 1, 1) is the standard Minkowski
metric. The background solutions with perturbations that we are able to treat corre-
spond to constant solutions with non-zero energy density.64 In terms of the potential,
these solutions are 	 = kt , where k > 0 is a constant. For some fluid wave equations,
the values of k that correspond to a physical fluid solution are restricted to a subset of
R; this is not the case for equation (B.1).

Note that the spacetime metric corresponding to the background solution is flat but
typically not equal to diag(−1, 1, 1). We can remedy this by rescaling time. That is,
we can rescale the Minkowski time coordinate by t → αt (where the constant α > 0
generally depends on k and the Lagrangian) so that the metric corresponding to the
quasilinear wave equation is equal to diag(−1, 1, 1) for the background solution. This
is equivalent to choosing rescaled rectangular coordinates such that the speed of sound
(that is, the propagation speed) corresponding to the background solution is 1. Note
that after this rescaling, the 00 component of the tensorfield called “m” in (B.1) is no
longer −1. The rescaling also changes k to αk, but we will ignore that minor change
here. Moreover, in a slight abuse of notation, we also refer to the rescaled time variable
as x0 and/or t . Having normalized the rectangular coordinates, we may now divide
the wave equation by−(g−1)00, which allows us to assume that (A.1d) holds. In total,
we obtain a wave equation of the form (A.1a) verifying (A.1d). For the rest of this
appendix, we assume that this is the case.

We now define 
ν and 	
 as in (A.2), except that we change the definition of 
0 to

0 := ∂t	− k. This is a good definition because for the kinds of perturbations of the
background solutions that we consider, the (undifferentiated) 
ν are small quantities.
The condition (A.1c) concerning the functional dependence of the metric on the wave
variables takes the following form in the present context:

gαβ( 	
) = mαβ + g(Small)
αβ ( 	
), g(Small)

αβ ( 	
 = 0) = 0, (B.2)

where mαβ = diag(−1, 1, 1) in (B.2).

62 In general, the potential function 	 can only be locally defined because R×� is not simply connected.
However, the quasilinear wave equation for irrotational Euler flows is of the form (g−1)αβ(∂	)∂α∂β	 = 0.
In particular, the equation depends only on the gradient of 	, which is “globally” defined throughout the
maximal development of the data.
63 This Lagrangian corresponds to the fluid equation of state p = ρ/(2s + 1), where p is the pressure and
ρ is the proper energy density.
64 When the energy density vanishes, the wave equation becomes degenerate.
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To derive our main shock formation results, we again assume that (A.4) holds. For
all fluid Lagrangians in the regime of physically relevant k, aside from one excep-
tional Lagrangian (mentioned in Footnote 14 on pg. 9), it is possible to construct
Minkowski-rectangular coordinates such that (A.4) holds. One can compute that the

ν verify the system (A.5). We have thus massaged the wave equations of irrotational
fluid mechanics into a form such that we can apply the shock formation proof outlined
in Appendix A. We note in passing that for these wave equations, the first product
Gμαβ{· · · } on RHS (A.6) vanishes. The vanishing is a consequence of the symmetry
property Gμαβ = Gβαμ, which holds for Euler-Lagrange equations since Gμαβ is pro-
portional to the third partial derivative of the Lagrangian with respect to its arguments
∂μ	, ∂α	, ∂β	.

B.2. The Existence of Data Verifying the Smallness Assumptions

In Subsect. A.2, we explained that in order to prove shock formation for wave equa-
tions of the form (g−1)αβ(∂	)∂α∂β	 = 0 using the framework of the present paper,
we have to propagate the smallness of various derivatives of	 even though other deriv-
atives are allowed to be large. In this subsection, we study this smallness-largeness
hierarchy at the level of the initial data in the case of the irrotational (special) relativis-
tic Euler equations. In particular, we show that there exist physically relevant initial
data exhibiting the desired size estimates. The point is that the desired smallness for
the appropriate higher derivatives of 	 is not immediate because some directional
derivatives can be large. By Cauchy stability,65 it suffices to exhibit plane symmetric
data (explained in the next paragraph) verifying the desired smallness-largeness hier-
archy. It turns out that in plane symmetry, the existence of such data is not difficult to
see using Riemann invariants. In fact, the data-size assumptions of Subsect. A.2 can
be realized at time 0 by perturbations of plane symmetric data in which one Riemann
invariant, denoted by R− below, completely vanishes, while the other one, denoted
by R+ below, is small with sufficiently large spatial derivatives. The case of R− ≡ 0
corresponds to a simple outgoing (that is, right-moving) plane wave solution. In most
of this subsection, we describe how to construct the Riemann invariants and how they
are related to other variables; at the end, we return to the issue of constructing data
verifying the desired smallness-largeness hierarchy.

In the analysis of this subsection, for simplicity, we restrict our attention to plane
symmetric solutions to the relativistic Euler equations on R × �, where (as in the
rest of the article) � = R × T. Plane symmetric irrotational solutions are such that
the fluid potential function66 	 is, relative to the rectangular coordinates, a function
of only t and x1. Plane symmetric solutions can of course be viewed as solutions on
R× R.

We start by recalling some basic facts about irrotational special relativistic fluid
mechanics. The discussion in this paragraph is valid in all spatial dimensions. Here
we make many assertions without providing proofs; readers may consult [15] for

65 Here we are referring to the continuous dependence of the solution on the initial data.
66 In irrotational relativistic fluid mechanics, all physical fluid variables are functions of ∂	.
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more details. The wave equations of irrotational fluid mechanics are Euler-Lagrange
equations of the form

(g−1)αβ(∂	)∂α∂β	 = 0.

The Lagrangian L may be identified with the fluid pressure p and can be expressed
as a function of σ:

p = L := L (σ), (B.3)

where

σ := −(m−1)αβ∂α	∂β	 > 0, (B.4)

m is the Minkowski metric, and
√

σ is the enthalpy per particle. The positivity assump-
tion in (B.4) is a consequence of the timelike character of the fluid velocity.67 Physically
relevant Lagrangians satisfy various positivity assumptions ensuring, for example, that
the pressure is positive, the energy density is positive, and that the speed of sound is
real, positive, and less than the speed of light; the following conditions ensure that the
Lagrangian is physically relevant:

L (σ),
dL

dσ
,

d

dσ

(
L /

√
σ
)
,

d2L

dσ2 > 0. (B.5)

The acoustical metric g and its inverse g−1 can be expressed as

gαβ(∂	) = mαβ + H∂α	∂β	, (B.6)

(g−1)αβ(∂	) = (m−1)αβ − F(m−1)ακ(m−1)βλ∂κ	∂λ	, (B.7)

F = F(σ) := 2

G

dG

dσ
, (B.8)

G = G(σ) := 2
dL
dσ

, (B.9)

H = H(σ) := F

1 + σF
. (B.10)

The (generally non-constant) speed of sound is

cs = cs(σ) =
√

1 − σH =
√

1

1 + σF
. (B.11)

The assumptions in (B.5) ensure in particular that 0 < cs < 1, where the speed of
light is 1.

67 The fluid velocity uα is equal to − (m−1)αβ∂β	√
σ

.
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In the remainder of this appendix, we will consider plane symmetric perturbations
of the constant state solution 	 = kt , where k > 0 is a constant. As in Subsect. B.1,
we denote 
0 := ∂t	 − k and 
1 = ∂1	. We denote with a “bar” the value of a
∂	-dependent variable evaluated at the constant state solution. For example, c̄s is
the speed of sound evaluated at the solution 	 = kt . We now make the change of
coordinates68

t ′ := c̄s t, (x ′)i := xi , i = 1, 2. (B.12)

We refer to (t ′, (x ′)1, (x ′)2) as the “rescaled coordinates” and we denote the corre-
sponding partial derivative vectorfields by ∂t ′ and ∂i ′ , i = 1, 2. We set


0′ := 
0

c̄s
, 
1′ = 
1. (B.13)

The rescaled coordinates are the exact analog of the rectangular coordinates used in
the bulk of the paper. The quantities 
0′ and 
1′ are the exact analogs of the quantities
{
α} appearing in Appendix A. Note that the metric denoted by m in (B.6) and (B.7)
is equal to diag(−c̄−2

s , 1, · · · , 1) in the rescaled coordinates. Note also that in the

rescaled coordinates, the constant state solution is 	 = k
t ′

c̄s
= k′t ′, where

k′ := k

c̄s
. (B.14)

We also set

c′s =
cs

c̄s
. (B.15)

Note that c̄′s = 1. As is evident from the formulas (B.16), this condition implies that in
the rescaled coordinates, the speed of sound of the constant state solution is precisely
1; in fact, this is the reason that we introduce the rescaled coordinates. We may also
rescale g so that (A.1d) holds in the rescaled coordinates.

In plane symmetry, we can analyze solutions using the method of Riemann invari-
ants. The method is tied to the following vectorfields:

L = ∂t ′ +
⎛
⎝−


1′
c̄2

s (
0′+k′) + c′s
1 − 
1′


0′+k′ c
′
s

⎞
⎠ ∂1′ , L = ∂t ′ −

⎛
⎝


1′
c̄2

s (
0′+k′) + c′s
1 + 
1′


0′+k′ c
′
s

⎞
⎠ ∂1′ . (B.16)

One may check that L and L are null: g(L , L) = g(L, L) = 0. Having made the
changes of variables and normalizations described above, we see that the restriction
of g to the (t ′, (x ′)1) plane, denoted by g̃, verifies g̃−1 = − 1

2 L ⊗ L − 1
2 L ⊗ L .

68 In plane symmetry, the variable (x ′)2 does not play a role in the analysis.
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The vectorfield L is the analog of the vectorfield defined in (2.15). Moreover, the
vectorfield

X := 1

2

{
L − L

}
(B.17)

is the analog of the one from Def. 2.6. We also set

L̆ := μL, X̆ := μX, (B.18)

where μ is defined by (1.6), exactly as in the rest of the paper. Note that X̆ is the analog
of the vectorfield defined in (2.17). Note also that

L̆ = μL + 2X̆ . (B.19)

Making minor changes (including notational changes and normalization changes)
to the analysis presented in [12], one finds that in plane symmetry, the irrotational
relativistic Euler wave equation is equivalent to the following system:

L̆R− = 0, LR+ = 0, (B.20)

where R− and R+ are Riemann invariants, normalized so that

R̄− = R̄+ = 0. (B.21)

Specifically, we have

R− = 1

c̄s

∫
1

c′s
√

σ
d
√

σ+ 1

2
ln

⎛
⎝ c̄s + 
1′


0′+k′

c̄s − 
1′

0′+k′

⎞
⎠ , (B.22a)

R+ = 1

c̄s

∫
1

c′s
√

σ
d
√

σ− 1

2
ln

⎛
⎝ c̄s + 
1′


0′+k′

c̄s − 
1′

0′+k′

⎞
⎠ , (B.22b)

where c′s is viewed as a function of
√

σ in the integrations in (B.22a)–(B.22b) and the
constants of integration are chosen so that (B.21) holds. We can express 
0′ and 
1′
as follows:


0′ = 1

c̄s

√
σ cosh

(
1

2
(R+ −R−)

)
− k′, (B.23a)


1′ =
√

σ sinh

(
1

2
(R+ −R−)

)
, (B.23b)

where
√

σ can be viewed as a smooth function of R− +R+.
We now achieve the main goal of this subsection: explaining how to construct data

so that the data-size assumptions stated in Subsect. A.2 hold for 	. As in the rest of
the paper, we assume that the plane symmetric data (	|t ′=0, ∂t ′	|t ′=0) = (	̊, 	̊0)

are supported in the unit interval [0, 1] (which may be identified with �1
0). Note that
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the corresponding data (R−|t ′=0,R+|t ′=0) := (R̊−, R̊+) for the Riemann invariants
are also supported in [0, 1]. We start by phrasing the data-size assumptions in terms
of the Riemann invariants. Later, we briefly overview how those conditions translate
into the desired size assumptions for the data for 	. For brevity, we do not provide
complete details here.

To proceed, we let ε̊ and δ̊ be data-size parameters satisfying the size assumptions
described in Subsect. 7.7 (in particular, we assume that ε̊ is small relative to δ̊−1).
We now simply take smooth data such that R̊− ≡ 0, such that ‖R̊+‖L∞(�1

0 )
= O(ε̊),

and such that for69 M = 1, 2, 3, ‖∂M
1′ R̊+‖L∞(�1

0 )
is a relatively larger size O(δ̊).

The smallness of R̊− and R̊+ means that we are treating a perturbation of the data
corresponding to the constant state 	 = k′t ′. Moreover, with the help of equation
(B.20) and the commutation relation [L , X̆ ] = 0 (which may be seen to be valid for
the irrotational relativistic Euler equations in plane symmetry), we find that the higher
derivatives of R+ with respect to L and X̆ completely vanish as long as at least one L
differentiation is taken. In addition, using the estimate μ|t ′=0 = 1+O(ε̊), which can
be proved using arguments similar to the ones used in proving the first estimate stated
in (7.11a), and equations (B.16) and (B.19), we find that X̆ |t=0 = −(1 + O(ε̊))∂1′ .
Hence, we find that for M = 1, 2, 3, ‖X̆ MR̊+‖L∞(�1

0 )
is a relatively large size O(δ̊).

Then using equations (B.23a) and (B.23b), we may translate the ε̊ − δ̊ hierarchy for
the L and X̆ derivatives of R− and R+ into a similar ε̊− δ̊ hierarchy for the L and X̆
derivatives of 	, which yields the desired data-size assumptions of Subsect. A.2.

We close this subsection by giving one concrete example illustrating the transla-
tion mentioned at the end of the previous paragraph. Specifically, we will show that
‖X̆(
0′ +
1′)‖L∞(�1

0 )
= O(ε̊). As we will see, this estimate is an easy consequence

of our assumption70 that X̆R̊− = 0. The reason that this estimate is non-trivial is that
‖X̆
0′ ‖L∞(�1

0 )
and ‖X̆
1′ ‖L∞(�1

0 )
can be of a relatively large size O(δ̊). The point of

the estimate ‖X̆(
0′ + 
1′)‖L∞(�1
0 )
= O(ε̊) is that, in view of the formula (A.20a)

and the fact that X1 = −1 +O(ε̊), it may be seen as a preliminary step (relevant for
bounding the terms X̆
0− Xa X̆
a on RHS (A.20a)) in showing the desired data-size
assumption ‖L X̆	‖L∞(�1

0 )
= O(ε̊) stated in (A.9). To obtain the desired bound for

X̆(
0′ + 
1′), we start by Taylor expanding RHS (B.22a) to first order around the
constant state to obtain

R− = 1

c̄sk

(√
σ− k

)+ 
1′

k
+O(|R−,R+|2

) = 
0′

k
+ 
1′

k
+O(|R−,R+|2

)
.

(B.24)

Applying X̆ to both sides of (B.24) and using our smallness assumptions R− ≡ 0 and
‖R̊+‖L∞(�1

0 )
= O(ε̊), we conclude that ‖X̆(
0′ +
1′)‖L∞(�1

0 )
= O(ε̊) as desired.

69 M = 1, 2, 3 corresponds to our assumption that we control up to three X̆ derivatives of 
 in (7.3).
70 Actually, the O(ε̊)-smallness of X̆R̊− would suffice to obtain the desired bound.
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Appendix C: Notation

In Appendix C, we collect some important notation and conventions that we use
throughout the paper so that the reader can refer to it as needed.
C.1. Coordinates

• (x0, x1, x2) denote the rectangular spacetime coordinates.
• (x1, x2) denote the rectangular spatial coordinates.
• We often use the alternate notation t = x0.
• (t, u, ϑ) are the geometric coordinates (where t is the rectangular time coordinate,

u is the eikonal function, and ϑ is the geometric torus coordinate).

C.2. Indices

Lowercase Greek indices μ, ν, etc. correspond to components with respect to the
rectangular spacetime coordinates x0, x1, x2, and lowercase Latin indices i, j , etc.
correspond to components with respect to the rectangular spatial coordinates x1, x2.
That is, lowercase Greek indices vary over 0, 1, 2 and lowercase Latin indices vary over
1, 2. All lowercase Greek indices are lowered and raised with the spacetime metric g
and its inverse g−1, and not with the Minkowski metric. We use Einstein’s summation
convention in that repeated indices are summed over their respective ranges.
C.3. Constants

• δ̊ is the parameter corresponding to the initial size of thePu-transversal derivatives
of the solution; pg. 81.

• ε̊ is a relatively small parameter corresponding to the initial size of 
 and its
derivatives involving at least one Pu-tangential differentiation; pg. 81. We explain
the kind of smallness that we impose on ε̊ in Subsect. 7.7.

• δ̊∗ = 1
2 sup�1

0

[
GL L X̆


]
− is the key quantity that controls the blowup-time;

pg. 81.
• C denotes a uniform constant that is free to vary from line to line.
• The constants C are allowed to depend on the data-size parameters δ̊ and δ̊−1∗ .
• If we want to emphasize that the constant C depends on an a quantity Q, then we

use notation such as “CQ .”
• We use the notation

f1 � f2

to indicate that there exists a uniform constant C > 0 such that f1 ≤ C f2. We
sometimes use the alternate notation O( f2) to denote a quantity f1 that verifies
| f1| � | f2|.

• If we want to emphasize that the implicit constant C depends on an a quantity Q,
then we use the alternate notation

f1

Q
� f2.
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C.4. Spacetime Subsets

• �t ′ := {(t, x1, x2) ∈ R× R× T | t = t ′}; pg. 38.
• Pu = the outgoing null hypersurface equal to the corresponding level set of the

eikonal function; pg. 38.
• �u

t = the portion of �t in between P0 and Pu ; pg. 38.
• P t

u = the portion of Pu in between �0 and �t ; pg. 38.
• �t ′,u′ = a topological one-dimensional torus equal to P t ′

u′ ∩�u′
t ′ ; pg. 38.

• Mt,u = the spacetime region trapped in between �u
0 , �u

t , P t
u , and P t

0; pg. 38.

C.5. Metrics

• g = g(
) denotes the spacetime metric.
• Relative to rectangular coordinates, gμν(
) = mμν + g(Small)

μν (
), where mμν =
diag(−1, 1, 1); pg. 36.

• Relative to rectangular coordinates, Gμν(
) = d
d
 gμν(
) and G ′

μν(
) =
d

d
 Gμν(
); pg. 37.
• g denotes the first fundamental form of �t , that is, g

i j
= gi j ; pg. 44.

• g−1 denotes the inverse first fundamental form of �t ; pg. 45.
• g/ denotes the first fundamental form of �t,u ; pg. 44.
• g/−1 denotes the inverse first fundamental form of �t,u ; pg. 45.
• υ = √

g/(�,�) is a metric component; pg. 47.

C.6. Musical Notation, Contractions, and Inner Products

• We denote the g/−dual of an �t,u-tangent one-form ξ by ξ#. Similarly, if Y is
an �t,u-tangent vector, then Y� denotes the g/−dual of Y , which is an �t,u-tangent
covector. Similarly, if ξ is a symmetric type

(0
2

)
�t,u-tangent tensor, then ξ# denotes

the type
(1

1

)
tensor that is g/−dual to ξ , and ξ## denotes the type

(2
0

)
tensor that is

g/−dual to ξ . We use similar notation to denote the g/−duals of general type
(m

0

)
and type

(0
n

)
�t,u-tangent tensors; pg. 36.

• g(X,Y ) = gαβ XαY β denotes the inner product of the vectors X and Y with respect
to the metric g. Similarly, if X and Y are �t,u-tangent, then g/(X,Y ) = g/ab XaY b.

• · denotes the natural contraction between two tensors. For example, if ξ is a space-
time one-form and V is a spacetime vectorfield, then ξ · V := ξαV α . As a second
example, if T is a symmetric type

(2
0

)
�t,u-tangent tensorfield and ξ is an �t,u-

tangent one-form, then (div/ T ) · ξ = (∇/aT ab)ξb; pg. 35.
• If ξ is a one-form and V is a vectorfield, then ξV := ξαV α . Similarly, if W

is a vectorfield, then WV := WαV α = g(W, V ). We use similar notation when
contracting higher-order tensorfields against vectorfields. Similarly, if�ακβ are the
rectangular Christoffel symbols (2.61), then �U V W := UαV κWβ�ακβ ; pg. 36.

• If ξ is a symmetric type
(0

2

)
spacetime tensor and V is a vector, then ξV is the

one-form with rectangular components (ξV )ν = ξανV α; pg. 43.
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C.7. Tensor Products and the Trace of Tensors

• (ξ ⊗ ω)�� = ξ�ω� denotes the �� component of the tensor product of the
�t,u-tangent one-forms ξ and ω.

• trgπ = (g−1)αβπαβ denotes the g-trace of the type
(0

2

)
spacetime tensor πμν .

• trg/ξ = (g/−1)αβξαβ denotes the g/−trace of the type
(0

2

)
�t,u-tangent tensor ξ .

C.8. Eikonal Function Quantities

• The eikonal function u verifies the eikonal equation (g−1)αβ∂αu∂βu = 0 and has
the initial condition u|t=0 = 1 − x1; pg. 12.

• μ = − {(g−1)αβ∂αu∂β t
}−1

denotes the inverse foliation density; pg. 39.
• Lν

(Geo) = −(g−1)να∂αu denotes the Pu-tangent outgoing null geodesic vector-
field; pg. 40.

• Lν = μLν
(Geo) denotes a rescaled outgoing null vectorfield; pg. 39.

• Li
(Small) = Li − δi

1 is the perturbed part of Li ; pg. 50.

• Xi
(Small) = Xi + δi

1 is the perturbed part of Xi ; pg. 50.

• χ = 1
2L/L g/ is the null second fundamental form of Pu relative to g; pg. 45.

C.9. Additional �t,u Tensorfields Related to the Frame Connection Coefficients

• ω = Lμ; pg. 52.
• k = 1

2LN g is the second fundamental form of �t relative to g; pg. 45.
• ζ� = k/X� = g(D�L , X); pg. 53.
• ζ = μ−1ζ(T rans−
) + ζ(T an−
) is a splitting of ζ; pg. 53.
• k/ = μ−1k/ (T rans−
) + k/ (T an−
) is a splitting of k/ ; pg. 54.

C.10. Vectorfields

• L is Pu-tangent, outward pointing, and verifies g(L , L) = 0 and Lt = 1.
• L = ∂

∂t relative to the geometric coordinates; pg. 41.

• X̆ is �t -tangent, �t,u-orthogonal, and verifies g(X̆ , X̆) = μ2, X̆u = 1; pg. 41.
• X̆ = ∂

∂u −� relative to the geometric coordinates, where � is �t,u-tangent; pg. 41.

• X = μ−1 X̆ ; pg. 40.

• � = ∂

∂ϑ
is the geometric torus coordinate partial derivative vectorfield; pg. 40.

• N = L + X is the future-directed unit normal to �t ; pg. 40.
• {L , X̆ ,�} denotes the rescaled frame; pg. 40.
• {L , X,�} denotes the non-rescaled frame; pg. 40.

C.11. Projection Operators and Frame Components

• � denotes the type
(1

1

)
tensorfield that projects onto �t ; pg. 42.

• �/ denotes the type
(1

1

)
tensorfield that projects onto �t,u ; pg. 42.

• If ξ is a spacetime tensor, then ξ/ = �/ ξ is the projection of ξ onto �t,u ; pg. 42.
• If ξ is a symmetric type

(0
2

)
spacetime tensor, then ξ/V = �/ (ξV ); pg. 43.
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• G(Frame) =
(
GL L ,GL X ,G X X ,G/L ,G/X ,G/

)
is the array of components of Gμν

relative to the non-rescaled frame {L , X,�}; pg. 43.
• G ′

(Frame) =
(
G ′

L L ,G ′
L X ,G ′

X X ,G ′/L ,G ′/X ,G ′/
)

is the array of components of G ′
μν

relative to the non-rescaled frame {L , X,�}; pg. 43.

C.12. Arrays of Solution Variables and Schematic Functional Dependence

• γ =
(

, L1

(Small), L2
(Small)

)
; pg. 61.

• γ =
(

,μ− 1, L1

(Small), L2
(Small)

)
; pg. 61.

• f(ξ(1), ξ(2), · · · , ξ(m)) schematically denotes an expression depending smoothly
on the �t,u-tangent tensorfields ξ(1), ξ(2), · · · , ξ(m); pg. 61.

C.13. Rescaled Frame Components of a Vector

• If J is a spacetime vector, then μJ = −μJL L−JX̆ L−JL X̆+μJ/ denotes
its decomposition relative to the rescaled frame {L , X̆ ,�}, where JL =J αLα ,
JX̆ =J α X̆α , and J/ = �/J ; pg. 70.

C.14. Energy-Momentum Tensorfield and Multiplier Vectorfields

• Qμν[
] = Dμ
Dν
 − 1
2 gμν(g−1)αβDα
Dβ
 denotes the energy-momentum

tensorfield associated to 
; pg. 62.
• T = (1 + 2μ)L + 2X̆ denotes the timelike multiplier vectorfield; pg. 63.

C.15. Commutation Vectorfields

• Y(Flat) denotes the �t -tangent vectorfield with rectangular spatial components
Y i
(Flat) = δi

2; pg. 49.
• Y = �/ Y(Flat) denotes the �t,u-tangent commutation vectorfield; pg. 49.
• Y i = δi

2 + Y i
(Small) is a splitting of Y into Y(Flat) and a perturbation; pg. 50.

• Z = {L , X̆ ,Y } denotes the full set of commutation vectorfields; pg. 49.
• P = {L ,Y } are the Pu-tangent commutation vectorfields; pg. 49.

C.16. Differential Operators and Commutator Notation

• ∂μ denotes the rectangular coordinate partial derivative vectorfield
∂

∂xμ
.

• ∂

∂t
,
∂

∂u
,� = ∂

∂ϑ
denote the geometric coordinate partial derivative vectorfields.

• V f = V α∂α f denotes the V -directional derivative of a function f .
• d f denotes the standard differential of a function f on spacetime.
• d/ f = �/ d f , where f is a function on spacetime and�/ denotes projection onto �t,u ;

pg. 44. Alternatively, d/ f can be viewed as the inherent differential of a function
f defined on �t,u .

• D = Levi-Civita connection of g.
• ∇/ = Levi-Civita connection of g/.
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• ∇ = Levi-Civita connection of the Minkowski metric m.
• D2

XY = XαY βDαDβ and similarly for other connections (contractions against X
and Y are taken after the two covariant differentiations).

• ∇/ 2 denotes the second �t,u covariant derivative corresponding to g/.
• / = trg/∇/ 2 f denotes the covariant Laplacian on �t,u corresponding to g/.
• If ξ is an �t,u-tangent one-form, then div/ ξ is the scalar-valued function div/ ξ :=

g/−1 · ∇/ ξ . Similarly, if V is an �t,u-tangent vectorfield, then div/ V := g/−1 · ∇/ V�,
where V� is the one-form g/−dual to V . If ξ is a symmetric type

(0
2

)
�t,u-tangent

tensorfield, then div/ ξ is the �t,u-tangent one-form div/ ξ := g/−1 · ∇/ ξ , where the
two contraction indices in ∇/ ξ correspond to the operator ∇/ and the first index of
ξ .

• LV ξ denotes the Lie derivative of ξ with respect to V ; pg. 43.
• [V,W ] = LV W when V and W are vectorfields; pg. 43.
• More generally, if P and Q are two operators, then [P, Q] = P Q − Q P denotes

their commutator.
• LV ξ = �LV ξ is the �t -projected Lie derivative of ξ with respect to V ; pg. 44.
• L/V ξ = �/LV ξ is the �t,u-projected Lie derivative of ξ with respect to V ; pg. 44.

C.17. Floor and Ceiling Functions and Repeated Differentiation

• If M is a non-negative integer, then �M/2� = M/2 for M even and �M/2� =
(M −1)/2 for M odd, while �M/2� = M/2 for M even and �M/2� = (M +1)/2
for M odd.

• We label the three vectorfields in Z as follows: Z(1) = L , Z(2) = Y, Z(3) = X̆ .
Note that P = {Z(1), Z(2)}.

• If 	I = (ι1, ι2, · · · , ιN ) is a multi-index of order | 	I | := N with ι1, ι2, · · · , ιN ∈
{1, 2, 3}, then Z

	I := Z(ι1)Z(ι2) · · · Z(ιN ) denotes the corresponding N th order

differential operator. We write Z N rather than Z
	I when we are not concerned

with the structure of 	I .
• Similarly, L/ 	IZ := L/Z(ι1)

L/Z(ι2 )
· · ·L/Z(ιN ) denotes an N th order �t,u-projected Lie

derivative operator (see Def. 2.13), and we write L/N
Z when we are not concerned

with the structure of 	I .
• If 	I = (ι1, ι2, · · · , ιN ), then 	I1 + 	I2 = 	I means that 	I1 = (ιk1 , ιk2 , · · · , ιkm )

and 	I2 = (ιkm+1 , ιkm+2 , · · · , ιkN ), where 1 ≤ m ≤ N and k1, k2, · · · , kN is a
permutation of 1, 2, · · · , N .

• Sums such as 	I1 + 	I2 + · · · + 	IM = 	I have an analogous meaning.
• Pu-tangent operators such as P 	I are defined analogously, except in this case we

clearly have ι1, ι2, · · · , ιN ∈ {1, 2}.
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• Z N ;M f denotes an arbitrary string of N commutation vectorfields in Z (see
(2.51)) applied to f , where the string contains at most M factors of the Pu-
transversal vectorfield X̆ .

• PN f denotes an arbitrary string of N commutation vectorfields in P (see (2.52))
applied to f .

• For N ≥ 1, Z N ;M∗ f denotes an arbitrary string of N commutation vectorfields in
Z applied to f , where the string contains at least one Pu-tangent factor and at
most M factors of X̆ . We also set Z 0;0∗ f := f .

• For N ≥ 1, PN∗ f denotes an arbitrary string of N commutation vectorfields in
P applied to f , where the string contains at least one factor of Y or at least two
factors of L .

• For �t,u-tangent tensorfields ξ , we similarly define strings of �t,u-projected Lie
derivatives such as L/N ;M

Z ξ .

• |Z ≤N ;M f | is the sum over all terms of the form |Z N ′;M f | with N ′ ≤ N and
Z N ′;M f as defined above. When N = M = 1, we sometimes write |Z ≤1 f |
instead of |Z ≤1;1 f |.

• |Z [1,N ];M f | is the sum over all terms of the form |Z N ′;M f | with 1 ≤ N ′ ≤ N
and Z N ′;M f as defined above.

• Sums such as |P [1,N ]∗ f |, |L/≤N ;M
Z ξ |, etc., are defined analogously. We write |P∗ f |

instead of |P [1,1]∗ f |. We also use the notation |X̆ [1,N ] f | = |X̆ f |+|X̆ X̆ f |+· · ·+

|
N copies︷ ︸︸ ︷

X̆ X̆ · · · X̆ f |.

C.18. Length, Area, and Volume Forms

• dλg/ = dλg/(t,u,ϑ) = υ(t, u, ϑ)dϑ denotes the length form on �t,u induced by g;
pg. 63.

• d� = d�(t, u′, ϑ) = dλg/(t, u′, ϑ) du′ denotes an area form on �t ; μ d� is
the area form on �t induced by g; pg. 63.

• d� = d�(t ′, u, ϑ) = dλg/(t ′, u, ϑ) dt ′ denotes an area form on Pu ; pg. 63.
• d� = d�(t ′, u′, ϑ) = dλg/(t ′, u′, ϑ) du′ dt ′ denotes a volume form on Mt,u ;

μ d� is the volume form on Mt,u induced by g; pg. 63.

C.19. Norms

• |ξ |2 = g/μ1μ̃1 · · · g/μm μ̃m (g/
−1)ν1ν̃1 · · · (g/−1)νn ν̃nξ

μ1···μm
ν1···νn ξ

μ̃1···μ̃m
ν̃1···̃νn

denotes the square
of the norm of the type

(m
n

)
�t,u tensor ξ ; pg. 79.

• ‖ξ‖L∞(�t,u)
= ess supϑ∈T|ξ |(t, u, ϑ); pg. 79.

• ‖ξ‖L∞(�u
t )
= ess sup(u′,ϑ)∈[0,u]×T|ξ |(t, u′, ϑ); pg. 79.

• ‖ξ‖L∞(P t
u)
= ess sup(t ′,ϑ)∈[0,t]×T|ξ |(t ′, u, ϑ); pg. 79.

• ‖ f ‖2
H N

e (�0)
= ∑

| 	I |≤N

∫
�0
(∂ 	I f )2 d2x , where ∂ 	I is a multi-indexed differential

operator representing repeated differentiation with respect to the spatial coordinate
partial derivatives and d2x is the area form corresponding to the standard Euclidean
metric e on �0; pg. 7.
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• ‖ξ‖2
L2(�t,u)

= ∫
ϑ∈T |ξ |2(t, u, ϑ)dλg/ =

∫
�t,u

|ξ |2dλg/; pg. 79.

• ‖ξ‖2
L2(�u

t )
= ∫ u

u′=0

∫
ϑ∈T |ξ |2(t, u′, ϑ)dλg/ du′ = ∫

�u
t
|ξ |2 d� ; pg. 79.

• ‖ξ‖2
L2(P t

u)
= ∫ t

t ′=0

∫
ϑ∈T |ξ |2(t ′, u, ϑ)dλg/ dt ′ = ∫

P t
u
|ξ |2 d� ; pg. 79.

• We use similar notation for the norms ‖·‖L2(�) and ‖·‖L∞(�) of functions defined
on subsets � of �t,u , �u

t , or P t
u .

C.20. L2-Controlling Quantities

• E[
](t, u) denotes the energy of 
 along �u
t corresponding the multiplier T ;

pg. 64.
• F[
](t, u) denotes the null flux of 
 along P t

u corresponding the multiplier T ;
pg. 64.

• QN (t, u) = max| 	I |=N sup(t ′,u′)∈[0,t]×[0,u]
{
E[P 	I
](t ′, u′)+ F[P 	I
](t ′, u′)

}
;

pg. 141.
• Q[1,N ](t, u) = max1≤M≤N QM (t, u); pg. 141.
• K[
](t, u) = 1

2

∫
Mt,u

[Lμ]−|d/
|2 d� denotes the coercive spacetime integral
associated to 
; pg. 141.

• KN (t, u) = max| 	I |=N K[P 	I
](t, u); pg. 141.
• K[1,N ](t, u) = max1≤M≤N KM (t, u); pg. 141.

C.21. Modified Quantities

• (PN )X = μPN trg/χ+PNX is the fully modified version of PN trg/χ; pg. 77.

• (PN )X̃ =PN trg/χ+ (PN )̃X is the partially modified version of PN trg/χ; pg. 77.

C.22. Curvature Tensors

• Rμναβ is the Riemann curvature tensor of g; pg. 75.
• Ricαβ = (g−1)κλRακβλ is the Ricci curvature tensor of g; pg. 75.

C.23. Omission of the Independent Variables in Some Expressions

• Many of our pointwise estimates are stated in the form

| f1| � h(t, u)| f2|

for some function h. Unless we otherwise indicate, it is understood that both f1
and f2 are evaluated at the point with geometric coordinates (t, u, ϑ).

• Unless we otherwise indicate, in integrals
∫
�t,u

f dλg/, the integrand f and the
length form dλg/ are viewed as functions of (t, u, ϑ) and ϑ is the integration
variable.
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• Unless we otherwise indicate, in integrals
∫
�u

t
f d� , the integrand f and the

area form d� are viewed as functions of (t, u′, ϑ) and (u′, ϑ) are the integration
variables.

• Unless we otherwise indicate, in integrals
∫
P t

u
f d� , the integrand f and the

area form d� are viewed as functions of (t ′, u, ϑ) and (t ′, ϑ) are the integration
variables.

• Unless we otherwise indicate, in integrals
∫
Mt,u

f d� , the integrand f and the

volume form d� are viewed as functions of (t ′, u′, ϑ) and (t ′, u′, ϑ) are the
integration variables.

References

1. Alinhac, S.: Blowup of small data solutions for a quasilinear wave equation in two space dimensions.
Ann. Math. 149(1), 97–127 (1999)

2. Alinhac, S.: The null condition for quasilinear wave equations in two space dimensions I. Invent. Math.
145(3), 597–618 (2001)

3. An, X., Luk, J.: Trapped surfaces in vacuum arising dynamically from mild incoming radiation.
ArXiv e-prints; to appear in Advances in Theoretical and Mathematical Physics (September 2014).
arXiv:1409.6270 (2014)

4. Andréasson, H., Ringström, H.: Proof of the cosmic no-hair conjecture in the T3-Gowdy symmetric
Einstein–Vlasov setting. J. Eur. Math. Soc. 18(7), 1565–1650 (2016)

5. Bloom, F.: Mathematical Problems of Classical Nonlinear Electromagnetic Theory. Pitman Mono-
graphs and Surveys in Pure and Applied Mathematics, vol. 63. Longman Scientific & Technical,
Harlow; copublished in the United States with John Wiley & Sons, Inc., New York (1993)

6. Chemin, J.-Y., Gallagher, I., Paicu, M.: Global regularity for some classes of large solutions to the
Navier–Stokes equations. Ann. Math. 173(2), 983–1012 (2011)

7. Chemin, J.-Y., Gallagher, I.: Large, global solutions to the Navier–Stokes equations, slowly varying in
one direction. Trans. Am. Math. Soc. 362(6), 2859–2873 (2010)

8. Chemin, J.-Y., Paicu, M., Zhang, P.: Global large solutions to 3-D inhomogeneous Navier–Stokes
system with one slow variable. J. Differ. Equ. 256(1), 223–252 (2014)

9. Chemin, J.-Y., Zhang, P.: Remarks on the global solutions of 3-D Navier–Stokes system with one slow
variable. Commun. Partial Differ. Equ. 40(5), 878–896 (2015)

10. Chen, G., Young, R., Zhang, Q.: Shock formation in the compressible Euler equations and related
systems. J. Hyperbolic Differ. Equ. 10(1), 149–172 (2013)

11. Christodoulou, D., Klainerman, S.: The Global Nonlinear Stability of the Minkowski Space. Princeton
Mathematical Series, vol. 41. Princeton University Press, Princeton (1993)

12. Christodoulou, D., Lisibach, A.: Shock development in spherical symmetry. Ann. PDE 2(1), 1–246
(2016)

13. Christodoulou, D., Miao, S.: Compressible Flow and Euler’s Equations. Surveys of Modern Mathe-
matics, vol. 9. Higher Education Press, Beijing; International Press, Somerville (2014)

14. Christodoulou, D., Perez, D.R.: On the formation of shocks of electromagnetic plane waves in non-
linear crystals. J. Math. Phys. 57(8), 081506, 56 (2016)

15. Christodoulou, D.: The Formation of Shocks in 3-Dimensional Fluids. EMS Monographs in Mathe-
matics. European Mathematical Society (EMS), Zürich (2007)

16. Christodoulou, D.: The Formation of Black Holes in General Relativity. EMS Monographs in Mathe-
matics. European Mathematical Society (EMS), Zürich (2009)

17. Ding, B., Witt, I., Yin, H.: Blowup of smooth solutions for general 2-D quasilinear wave equations
with small initial data. ArXiv e-prints (July 2013). arXiv:1307.1978 (2013)

18. Ding, B., Witt, I., Yin, H.: Blowup of classical solutions for a class of 3-D quasilinear wave equations
with small initial data. Differ. Integr. Equ. 28(9–10), 941–970 (2015)

19. Ding, B., Witt, I., Yin, H.: On the lifespan and the blowup mechanism of smooth solutions to a class
of 2-D nonlinear wave equations with small initial data. Q. Appl. Math. 73(4), 773–796 (2015)

123

http://arxiv.org/abs/1409.6270
http://arxiv.org/abs/1307.1978


Stable Shock Formation For Nearly Simple... Page 197 of 198 10

20. Glassey, R.T., Schaeffer, J.: On symmetric solutions of the relativistic Vlasov–Poisson system. Com-
mun. Math. Phys. 101(4), 459–473 (1985)

21. Glassey, R.T.: On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger
equations. J. Math. Phys. 18(9), 1794–1797 (1977)

22. Guillemin, V., Pollack, A.: Differential Topology. AMS Chelsea Publishing, Providence (2010). Reprint
of the 1974 original

23. Holzegel, G., Klainerman, S., Speck, J., Wong, W.W.-Y.: Small-data shock formation in solutions to
3d quasilinear wave equations: an overview. J. Hyperbolic Differ. Equ. 13(01), 1–105 (2016)

24. Jeffrey, A., Korobeinikov, V.P.: Formation and decay of electromagnetic shock waves. Zeitschrift für
angewandte Mathematik und Physik ZAMP 20(4), 440–447 (1969)

25. Jeffrey, A., Teymur, M.: Formation of shock waves in hyperelastic solids. Acta Mech. 20, 133–149
(1974)

26. Jeffrey, A.: The formation of magnetoacoustic shocks. J. Math. Anal. Appl. 11, 139–150 (1965)
27. John, F., Klainerman, S.: Almost global existence to nonlinear wave equations in three space dimen-

sions. Commun. Pure Appl. Math. 37(4), 443–455 (1984)
28. John, F.: Formation of singularities in one-dimensional nonlinear wave propagation. Commun. Pure

Appl. Math. 27, 377–405 (1974)
29. John, F.: Blow-up for quasilinear wave equations in three space dimensions. Commun. Pure Appl.

Math. 34(1), 29–51 (1981)
30. John, F.: Formation of Singularities in Elastic Waves. Trends and Applications of Pure Mathematics

to Mechanics (Palaiseau, 1983), pp. 194–210. Springer, Berlin (1984)
31. John, F.: Existence for large times of strict solutions of nonlinear wave equations in three space

dimensions for small initial data. Commun. Pure Appl. Math. 40(1), 79–109 (1987)
32. Karageorgis, P., Strauss, W.A.: Instability of steady states for nonlinear wave and heat equations. J.

Differ. Equ. 241(1), 184–205 (2007)
33. Klainerman, S., Luk, J., Rodnianski, I.: A fully anisotropic mechanism for formation of trapped surfaces

in vacuum. Invent. Math. 198(1), 1–26 (2014)
34. Klainerman, S., Majda, A.: Formation of singularities for wave equations including the nonlinear

vibrating string. Commun. Pure Appl. Math. 33(3), 241–263 (1980)
35. Klainerman, S., Rodnianski, I., Szeftel, J.: The bounded L2 curvature conjecture. Invent. Math. 202(1),

91–216 (2015)
36. Klainerman, S., Rodnianski, I.: Improved local well-posedness for quasilinear wave equations in dimen-

sion three. Duke Math. J. 117(1), 1–124 (2003)
37. Klainerman, S., Rodnianski, I.: On emerging scarred surfaces for the Einstein vacuum equations.

Discret. Contin. Dyn. Syst. 28(3), 1007–1031 (2010)
38. Klainerman, S., Rodnianski, I.: On the formation of trapped surfaces. Acta Math. 208(2), 211–333

(2012)
39. Klainerman, S.: On “almost global” solutions to quasilinear wave equations in three space dimensions.

Commun. Pure Appl. Math. 36(3), 325–344 (1983)
40. Klainerman, S.: Long time behaviour of solutions to nonlinear wave equations, In: Proceedings of the

International Congress of Mathematicians, Vol. 1, 2 (Warsaw, 1983), pp. 1209–1215. PWN, Warsaw
(1984)

41. Klainerman, S.: Uniform decay estimates and the Lorentz invariance of the classical wave equation.
Commun. Pure Appl. Math. 38(3), 321–332 (1985)

42. Lax, P.D.: Development of singularities of solutions of nonlinear hyperbolic partial differential equa-
tions. J. Math. Phys. 5, 611–613 (1964)

43. Lax, P.D.: Hyperbolic systems of conservation laws and the mathematical theory of shock waves.
Conference Board of the Mathematical Sciences Regional Conference Series in Applied Mathematics,
No. 11. Society for Industrial and Applied Mathematics, Philadelphia, PA (1973)

44. Leray, J.: Étude de diverses équations intgrales non linéaires et de quelques problèmes que pose
l’Hydrodynamique. Journal de Mathmatiques Pures et Appliques 12, 1–82 (1933). (fre)

45. Lindblad, H.: A remark on global existence for small initial data of the minimal surface equation in
Minkowskian space time. Proc. Am. Math. Soc. 132(4), 1095–1102 (2004). (electronic)

46. Ping Liu, T.: Development of singularities in the nonlinear waves for quasilinear hyperbolic partial
differential equations. J. Differ. Equ. 33(1), 92–111 (1979)

47. Luk, J., Rodnianski, I.: Nonlinear interaction of impulsive gravitational waves for the vacuum Einstein
equations. ArXiv e-prints (January 2013). arXiv:1301.1072 (2013)

123

http://arxiv.org/abs/1301.1072


10 Page 198 of 198 J. Speck et al.

48. Luk, J., Rodnianski, I.: Local propagation of impulsive gravitational waves. Commun. Pure Appl.
Math. 68(4), 511–624 (2015)

49. Luk, J.: Weak null singularities in general relativity. ArXiv e-prints (November 2013). available at
arXiv:1311.4970 (2013)

50. Martel, Y., Merle, F., Raphaël, P., Szeftel, J.: Near soliton dynamics and singularity formation for L2

critical problems. Russ. Math. Surv. 69(2), 261 (2014)
51. Miao, S., Pei, L., Yu, P.: On classical global solutions of nonlinear wave equations with large data.

ArXiv e-prints (July 2014). arXiv:1407.4492 (2014)
52. Miao, S., Yu, P.: On the formation of shocks for quasilinear wave equations. ArXiv e-prints (December

2014). arXiv:1412.3058 (2014)
53. Raphaël, P.: On the singularity formation for the nonlinear Schrödinger equation. In: Evolution

equations, Clay Mathematics Proceedings, vol. 17, pp. 269–323. American Mathematical Society,
Providence, RI (2013)

54. Riemann, B.: Über die Fortpflanzung ebener Luftwellen von endlicher Schwingungsweite. Abhand-
lungen der Kniglichen Gesellschaft der Wissenschaften in Gttingen 8, 43–66 (1860)

55. Rodnianski, I., Speck, J.: The nonlinear future stability of the FLRW family of solutions to the irrota-
tional Euler–Einstein system with a positive cosmological constant. J. Eur. Math. Soc.15(6), 2369–2462
(2013)

56. Sbierski, J.: On the existence of a maximal Cauchy development for the Einstein equations: a dezorni-
fication. Ann. Henri Poincaré 17(2), 301–329 (2016)

57. Sideris, T.C.: Formation of singularities in three-dimensional compressible fluids. Commun. Math.
Phys. 101(4), 475–485 (1985)

58. Smith, H.F., Tataru, D.: Sharp local well-posedness results for the nonlinear wave equation. Ann. Math.
162(1), 291–366 (2005)

59. Smulevici, J.: On the area of the symmetry orbits of cosmological spacetimes with toroidal or hyperbolic
symmetry. Anal. PDE 4(2), 191–245 (2011)

60. Speck, J.: Small-data shock formation in solutions to 3d quasilinear wave equations. ArXiv e-prints,
Version 2 (to appear). http://arxiv.org/abs/1407.6320 (2014)

61. Wang, J., Yu, P.: Long time solutions for wave maps with large data. J. Hyperbolic Differ. Equ. 10(2),
371–414 (2013)

62. Wang, J., Yu, P.: A large data regime for nonlinear wave equations. J. Eur. Math. Soc. 18(3), 575–622
(2016)

63. Wang, Q.: A geometric approach for sharp local well-posedness of quasilinear wave equations. ArXiv
e-prints (August 2014). arXiv:1408.3780 (2014)

64. Wong, W.W.-Y.: A comment on the construction of the maximal globally hyperbolic Cauchy develop-
ment. J. Math. Phys. 54(11), 113511, 8 (2013)

65. Yang, S.: Global solutions of nonlinear wave equations with large data. Selecta Math. 21(4), 1405–1427
(2015)

123

http://arxiv.org/abs/1311.4970
http://arxiv.org/abs/1407.4492
http://arxiv.org/abs/1412.3058
http://arxiv.org/abs/1407.6320
http://arxiv.org/abs/1408.3780

	Stable Shock Formation for Nearly Simple Outgoing Plane Symmetric Waves
	Abstract
	1 Introduction
	1.1 Summary of the Main Results
	1.2 Overview of the Analysis
	1.3 A Short Proof of Blowup for Plane Symmetric Simple Waves
	1.4 Overview of the Main Steps in the Proof
	1.4.1 Outline of the Proof that the Shock Happens
	1.4.2 Energy Estimates at the Highest Order
	1.4.3 Less Degenerate Energy Estimates at the Lower Orders
	1.4.4 The Coercive Spacetime Integral

	1.5 Comparison with Previous Work
	1.5.1 Blowup-Results in One Spatial Dimension
	1.5.2 Proofs of Breakdown by a Contradiction Argument in More Than One Spatial Dimension
	1.5.3 Detailed Blowup-Results in More Than One Spatial Dimension
	1.5.4 Differences Between the Proof of Shock Formation in the Small-Data Dispersive Regime and in the Nearly Plane Symmetric Regime
	1.5.5 Blowup in a Large-Data Regime Featuring a One-Parameter Scaling of the Data


	2 Geometric Setup
	2.1 Notational Conventions and Shorthand Notation
	2.2 The Structure of the Equation in Rectangular Components
	2.3 Basic Constructions Involving the Eikonal Function
	2.4 Important Vectorfields, the Rescaled Frame, and the Non-rescaled Frame
	2.5 Projection Tensorfields, G(Frame), and Projected Lie Derivatives
	2.6 First and Second Fundamental Forms and Covariant Differential Operators
	2.7 Expressions for the Metrics
	2.8 Commutation Vectorfields
	2.9 Deformation Tensors and Basic Vectorfield Commutator Properties
	2.10 The Rectangular Christoffel Symbols
	2.11 Transport Equations for the Eikonal Function Quantities
	2.12 Connection Coefficients of the Rescaled Frame
	2.13 Useful Expressions for the Null Second Fundamental Form
	2.14 Frame Decomposition of the Wave Operator
	2.15 Frame Components of the Deformation Tensors of the Commutation Vectorfields
	2.16 Arrays of Fundamental Unknowns

	3 Energy Identities and Basic Ingredients in the L2 Analysis
	3.1 Fundamental Energy Identity

	4 The Structure of the Terms in the Commuted Wave Equation
	5 Differential Operator Commutation Identities
	6 Modified Quantities Needed for Top-Order Estimates
	6.1 Curvature Tensors and the Key Ricci Component Identity
	6.2 The Definitions of the Modified Quantities and Their Transport Equations

	7 Norms, Initial Data, Bootstrap Assumptions, and Smallness Assumptions
	7.1 Norms
	7.2 Strings of Commutation Vectorfields and Vectorfield Seminorms
	7.3 Assumptions on the Initial Data and the Behavior of Quantities Along Σ0
	7.4 T(Boot), the Positivity of , and the Diffeomorphism Property of Υ
	7.5 Fundamental Linfty Bootstrap Assumptions
	7.6 Auxiliary Linfty Bootstrap Assumptions
	7.7 Smallness Assumptions

	8 Preliminary Pointwise Estimates
	8.1 Differential Operator Comparison Estimates
	8.2 Basic Facts and Estimates that We Use Silently
	8.3 Pointwise Estimates for the Rectangular Coordinates and the Rectangular Components of Some Vectorfields
	8.4 Pointwise Estimates for Various ellt,u-Tensorfields
	8.5 Commutator Estimates
	8.6 Transport Inequalities and Improvements of the Auxiliary Bootstrap Assumptions

	9 Linfty Estimates Involving Higher Transversal Derivatives
	9.1 Auxiliary Bootstrap Assumptions
	9.2 Commutator Estimates Involving Two Transversal Derivatives
	9.3 The Main Estimates Involving Higher-Order Transversal Derivatives

	10 Sharp Estimates for 
	10.1 Auxiliary Quantities for Analyzing  and First Estimates
	10.2 Sharp Pointwise Estimates for  and Its Derivatives
	10.3 Sharp Time-Integral Estimates Involving 

	11 Pointwise Estimates for the Error Integrands
	11.1 Identification of the Key Difficult Error Term Factors
	11.2 Preliminary Lemmas Connected to Commutation
	11.3 The Important Terms in the Derivatives of (L) -1mu π and (Y) -1mu π
	11.4 Proof of Prop. 11.2
	11.5 Pointwise Estimates for the Fully Modified Quantities
	11.6 Pointwise Estimates for the Error Terms Generated by the Multiplier Vectorfield
	11.7 Pointwise Estimates for the Partially Modified Quantities

	12 Sobolev Embedding and Estimates for the Change of Variables Map
	12.1 Estimates for Some ellt,u-Tangent Vectorfields
	12.2 Comparison Estimates for Length Forms on ellt,u
	12.3 Sobolev Embedding Along ellt,u
	12.4 Basic Estimates Connected to the Change of Variables Map

	13 The Fundamental L2-Controlling Quantities
	14 Energy Estimates
	14.1 Statement of the Main a Priori Energy Estimates
	14.2 Preliminary L2 Estimates for the Eikonal Function Quantities that Do Not Require Modified Quantities
	14.3 Estimates for the Easiest Error Integrals
	14.4 L2 Bounds for the Difficult Top-Order Error Integrals in Terms of mathbbQ[1,N]
	14.5 L2 Bounds for Less Degenerate Top-Order Error Integrals in Terms ofmathbbQ[1,N]
	14.6 Error Integrals Requiring Integration by Parts with Respect to L
	14.7 Estimates for Error Integrals Involving a Loss of One Derivative
	14.8 Proof of Prop. 14.2
	14.9 Proof of Prop. 14.1

	15 The Stable Shock Formation Theorem
	15.1 The Diffeomorphic Nature of Υ and Continuation Criteria
	15.2 The Main Stable Shock Formation Theorem

	Acknowledgements
	Appendix A: Extending the Results to the Equations (g-1)αβ(Φ) α β Φ= 0
	A.1. Basic Setup
	A.2. Additional Smallness Assumptions in the Present Context
	A.3. The Main New Estimate Needed at the Top Order

	Appendix B: Extending the Results to the Irrotational Euler Equations
	B.1. Massaging the Equations into the Form of Appendix A
	B.2. The Existence of Data Verifying the Smallness Assumptions

	Appendix C: Notation
	C.1. Coordinates
	C.2. Indices
	C.3. Constants
	C.4. Spacetime Subsets
	C.5. Metrics
	C.6. Musical Notation, Contractions, and Inner Products
	C.7. Tensor Products and the Trace of Tensors
	C.8. Eikonal Function Quantities
	C.9. Additional ellt,u Tensorfields Related to the Frame Connection Coefficients
	C.10. Vectorfields
	C.11. Projection Operators and Frame Components
	C.12. Arrays of Solution Variables and Schematic Functional Dependence
	C.13. Rescaled Frame Components of a Vector
	C.14. Energy-Momentum Tensorfield and Multiplier Vectorfields
	C.15. Commutation Vectorfields
	C.16. Differential Operators and Commutator Notation
	C.17. Floor and Ceiling Functions and Repeated Differentiation
	C.18. Length, Area, and Volume Forms
	C.19. Norms
	C.20. L2-Controlling Quantities
	C.21. Modified Quantities
	C.22. Curvature Tensors
	C.23. Omission of the Independent Variables in Some Expressions

	References




