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Abstract We give a new, simpler, but also and most importantly more general and
robust, proof of nonlinear Landau damping on T

d in Gevrey− 1
s regularity (s > 1/3)

which matches the regularity requirement predicted by the formal analysis of Mouhot
and Villani [67]. Our proof combines in a novel way ideas from the original proof
of Landau damping Mouhot and Villani [67] and the proof of inviscid damping in
2D Euler Bedrossian and Masmoudi [10]. As in Bedrossian and Masmoudi [10], we
use paraproduct decompositions and controlled regularity loss along time to replace
the Newton iteration scheme of Mouhot and Villani [67]. We perform time-response
estimates adapted from Mouhot and Villani [67] to control the plasma echoes and
couple them to energy estimates on the distribution function in the style of the work
Bedrossian and Masmoudi [10]. We believe the work is an important step forward in
developing a systematic theory of phase mixing in infinite dimensional Hamiltonian
systems.
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1 Introduction

Landau damping is a collisionless relaxation mechanism discovered by Landau [46]
(after preliminary works of Vlasov [86]) predicting the decay of spatial oscillations in
a plasma when perturbed around certain stable spatially homogeneous distributions.
This effect is now considered fundamental to modern plasma physics (see e.g. [17,67,
77,80]). It was later “exported” to galactic dynamics by Lynden-Bell [55,56] where
it is thought to play a key role in the stability of galaxies. Moreover, Landau damping
is one example of a more general effect usually referred to as “phase mixing”, which
arises in many physical settings; see [9,10,67] and the references therein. See also
[10,20,23,67] for a discussion about the differences and similarities with dispersive
phenomena.

The physical model we will be focusing on is the nonlinear Vlasov equations, which
is posed in the periodic box x ∈ T

d
L := [−L , L]d with size L > 0:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂t f + v · ∇x f + F(t, x) · ∇v f = 0,

F(t, x) = −∇x W ∗x

(

ρ f (t, x) − L−d
∫

y
ρ f (t, y) dy

)

,

ρ f (t, x) =
∫

Rd
f (t, x, v) dv,

f (t = 0, x, v) = fin(x, v),

(1.1)

with f (t, x, v) : R × T
d
L × R

d → [0,∞), the distribution function in phase space,
and W the non-local interaction potential. We are interested in solutions of the form
f (t, x, v) = f 0(v)+ h(t, x, v), where f 0(v) is a spatially homogeneous background
distribution and h is a mean-zero perturbation. If we denote simply the (perturbation)
density ρ(t, x), then the Vlasov equations can be written as

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂t h + v · ∇x h + F(t, x) · ∇vh + F(t, x) · ∇v f 0 = 0,

F(t, x) = −∇x W ∗x ρ(t, x),

ρ(t, x) =
∫

Rd
h(t, x, v) dv,

h(t = 0, x, v) = hin(x, v).

(1.2)

The potential W (x) describes the mean-field interaction between particles; the cases
of most physical interest are (1) Coulomb repulsive interactions F = e∇x�

−1
x ρ

between electrons in plasmas (where e > 0 is the electron charge-to-mass ratio) and
Newtonian attractive interactions F = −mG∇x�

−1
x ρ between stars in galaxies (where

m > 0 is the mass of the identical stars and G is the gravitational constant). In Fourier
variables (see later for the notation) these two cases correspond respectively to Ŵ (k) =
(2π)−2eL2 |k|−2 and Ŵ (k) = −(2π)−2mGL2 |k|−2. The former arises in plasma
physics where (1.1) describes the distribution of electrons in a plasma interacting with
a spatially homogeneous background of ions ensuring global electrical neutrality, after
neglecting magnetic effects and ion acceleration. The latter arises in galactic dynamics
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where (1.1) describes a distribution of stars interacting via Newtonian gravitation,
neglecting smaller planetary objects as well as relativistic effects, and assuming Jean’s
swindle (see [67] and the references therein).

By re-scaling t, x and W , we may normalize the size of the box to L = 2π

without loss of generality and write T
d = T

d
2π (see Remark 2). For simplicity

of notation and mathematical generality, we consider a general class of potentials
with Coulomb/Newton representing the most singular examples. Specifically, we only
require that there exists CW < ∞ and γ ≥ 1 such that

∀ k ∈ Z
d \ {0}, |Ŵ (k)| ≤ CW

|k|1+γ
. (1.3)

This paper is concerned with the mathematically rigorous treatment of Landau
damping for the full nonlinear mean-field dynamics, as initiated in [20,42,67].

1.1 Historical Context

The foundation of classical mechanics are the Newton’s laws and one of the most
fundamental issues is the understanding of irreversibility at a macroscopical level
based on these (reversible) laws. Landau damping is, as we shall see, part of the quest
for the understanding of irreversibility at a statistical level, despite the fact that it is a
reversible process. Consider the N particle system governed by binary interactions,

ṗ j = − ∂H
∂q j

, q̇ j = ∂H
∂p j

, H(q, p) :=
N∑

j=1

∣
∣p j
∣
∣2

2
+
∑

j1 
= j2

φ
(
q j1 − q j2

)
(1.4)

with some radially symmetric interaction potential φ (note we are taking an electro-
static approximation by neglecting magnetic effects). Consider now indistinguishable
particles with identical mass, (say normalized to 1), and reduce the canonical Hamil-
tonian variables to simply q j = x j and p j = v j (position and velocity of the j-th
particle, both belonging to R

3). Denote X = (x1, . . . , xN ) and V = (v1, . . . , vN ).
Liouville’s theorem states that the distribution function F N (t, X, V ) is constant along
any trajectory in phase space. This translates into Liouville equation

0 = ∂ F N

∂t
+
{

F N ,H
}

= ∂ F N

∂t
+V ·∇X F N −

N∑

j1=1

⎛

⎝
∑

j2 
= j1

∇φ(x j2 − x j1) · ∇v j1
F N

⎞

⎠ .

(1.5)
Observe that this evolution equation preserves the symmetry of the distribution function
(i.e. the fact that it is invariant under permutation of the particles). Liouville’s theorem
also implies in particular that along this microscopic evolution the Boltzmann entropy
is preserved:

d

dt

∫

R6N
F N log F N dX dV = 0. (1.6)
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This highlights the fact that the microscopic evolution is reversible and that no loss of
information occurs along time.

In the many-particle limit N → +∞, one tries to close an equation on the reduced
one-particle distribution function

f (t, x1, v1) :=
∫

R6(N−1)

F N (t, X, V ) dx2 · · · dxN dv2 · · · dvN . (1.7)

Maxwell proposed in [61] the so-called Boltzmann equation for the statistical evolution
of f . In the case of short-range interactions (e.g. φ has compact support), Boltzmann
[14] then suggested a formal derivation in the limit N → +∞, with the so-called
Boltzmann-Grad scaling: Nr2 = O(1), and discovered the celebrated H-theorem,
which shows that this collisional equation is irreversible and thus quite different from
(1.2).

In 1936, Landau [47] proposed a modification of the Boltzmann equation in order
to model collisional gases of charged particles, such as electrons in a plasma. However,
it was noted by Vlasov [85] that collisions are relatively weak in plasmas (see also
[17]) and hence, for many phenomena, it makes sense to consider only mean-field
electromagnetic fields. Assuming a mean-field scale Nφ = O(1) where φ is the
interaction potential between particles, he derived the Vlasov-Poisson equations (1.2).

Observe that in both cases (Coulomb or Newton forces) Vlasov-Poisson is time-
reversible: it is invariant under the change of variable (t, x, v) → (−t, x,−v). This of
course reflects the time-reversibility of the Newton equations at a microscopic level,
which unlike collisional kinetic models, has been preserved in the mean-field limit.
Hence, it follows that the entropy is constant.

A few years later, Landau [47] discovered a (then) mysterious “damping” effect: the
exponential decay of longitudinal electrostatic waves, predicted by linearizing (1.2)
around a homogeneous Maxwellian steady state. This provides a certain “asymptotic
stability” for the spatially homogeneous steady state in the sense of the asymptotic
stability of the spatial density. It was later argued by Lynden-Bell [55] that a similar
phenomenon was occurring in galactic dynamics, where the gas of electrons interacting
by electro-static forces is replaced by a “gas of stars” interacting by gravitation forces.
See §2.1 below for review for how to derive this on the linear level. In the case of
plasmas, it was confirmed experimentally in [57].

Landau damping at first appears at odds with the reversibility of (1.2). It was van
Kampen in [81] who pointed out that Landau damping is actually a phase-mixing
effect, that is, the streaming of particles creates rapid oscillations (in v) of the distrib-
ution function which are averaged away by the v integral in the non-local law for F .
Information is not lost, but is simply transferred to the small scales in v, and hence
while the behavior appears to be irreversible, in fact, it is completely reversible, as
demonstrated by the weakly nonlinear plasma echoes [58]. Mixing as a reversible
relaxation mechanism had already been discovered in the context of 2D Euler by Orr
in 1907 [71] (where the linear problem is much easier), which is now known as inviscid
damping (see also [10]). This effect was also demonstrated to be reversible by ‘Euler
echo’ experiments [88,89].
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The original works in physics neglected nonlinear effects, which lead to some spec-
ulation, and Landau himself was seemingly very prudent about the exact validity of
his analysis for the nonlinear equation and remained silent on this point. The math-
ematically rigorous theory of the linear damping was pioneered by Backus [4] and
Penrose [73] as discussed above, and further clarified by many mathematicians, see
e.g. [23,59]. Penrose seemed optimistic that Landau damping should occur in the
nonlinear equations, and highlighted the fact that near equilibrium, the linear evolu-
tion would cause the nonlinear electric field to decay and that the nonlinear equations
would be asymptotically linear. Such a situation is very reminiscent of scattering
in dispersive equations, as discussed in more detail in e.g. [10,20,23,67]. However,
Backus [4] made the important point that while the electric field may decay, the gra-
dients ∇v f will grow, and hence perhaps the linearization will cease to make good
predictions.

The first nonlinear results were obtained by [20,42] which showed that Landau
damping was at least possible in (1.2) for analytic data (see also [52] for a negative
result). However, Landau damping was not shown to hold for all small data until [67].
The results therein hold in analytic spaces or in close to analytic Gevrey spaces [29]
and the authors made heuristic conjectures about the minimal regularity required. The
proof involved an intricate use of Eulerian and Lagrangian coordinates combined with
a global-in-time Newton iteration reminiscent of the proof of the KAM theorem (see
therein for a discussion about broader analogies with KAM theory). A key step in the
analysis of [67] was controlling the potentially destabilizing influence of the plasma
echoes, a weakly nonlinear effect discovered by Malmberg et. al. in [58]. The basic
mechanism of the plasma echo is as follows. The force field is damped due to mixing
in phase space transferring information from large spatial scales to small scales in
the velocity distribution, however, as mixing is time-reversible, un-mixing will then
create growth in the force field by transferring information back from the velocity
distribution to the large spatial scales. Therefore, any nonlinear effect which transfers
information to modes which are un-mixing will lead to a large force field in the future
when that information un-mixes (hence ‘echo’). These can potentially chain into a
cascade of echoes, as demonstrated experimentally in plasmas [58] and 2D Euler
[88,89], hence we cannot expect to rule them, or the potential cascade, out. See [67]
and below for more discussion of the role this resonance plays in the nonlinear theory.
In fluid mechanics, the growth caused by un-mixing was noticed earlier by Orr [71]
and is known there as the Orr mechanism; see [10] for more discussion.

1.2 Objective of New Work

In this work, we provide a new proof of Landau damping for (1.2) that nearly obtains
the “critical” Gevrey regularity predicted in [67]. Obviously, both works have common
themes (as these are coming from the physics), namely,

(1) the abstract linear stability condition is the same,
(2) the physical mechanism of phase mixing transferring regularity to decay is the

same,
(3) the isolation and control of the plasma echoes is still the main challenge.
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However, on a mathematical level, the two proofs are quite different; see §2 for a full
discussion.

Our proof is shorter, and arguably simpler—assuming some knowledge in parad-
ifferential calculus—than that of [67]. More importantly, this new approach is more
robust for developing a general theory. The paper [67] was a breakthrough that poten-
tially opens the way for mathematical studies on phase mixing for nonlinear PDEs,
but the main drawback was that the conceptual and technical construction of the proof
was so long and mixed so many different abstract viewpoints that it has proved hard
to use in a wider context. Our new approach, by avoiding the mixture of Lagrangian
and Eulerian viewpoints, avoiding the Newton scheme, and using paradifferential
energy estimates which take full advantage of time varying multipliers, makes the
proof significantly less “rigid”. There is a pressing need for more flexible and power-
ful analytical tools as the ‘basic’ situation studied in [67] is only a tiny part of what
remains to be understood and we believe that our work is a key step to addressing many
interesting and qualitatively different questions ahead. Indeed, the tools developed in
this paper have already been adapted to prove a nonlinear Landau damping result in
relativistic plasmas [87]. Other examples where our methods may prove useful are
damping in un-confined geometries by separating scales in frequencies, geometries
and cyclotron effects imposed by external magnetic fields or more subtle self-created
magnetic effects, damping in weakly collisional plasmas and finally the stability of
self-created gravitational geometries [49,66] or nonlinear BGK waves [13].

Our proof combines the viewpoint in the original work [67] with the recent work
on the 2D Euler equations in [10]. This latter work proves the asymptotic stability (in
a suitable sense) of sufficiently smooth shear flows near Couette flow in T × R via
inviscid damping (the hydrodynamic analogue of Landau damping). The proof in [10]
uses a number of ideas specific to the structure of 2D Euler, however, some aspects of
the viewpoint taken therein will be useful here as well (when suitably combined with
ideas from [67]).

One of the main ingredients of our proof, employed also in [10], is the use of the
paradifferential calculus to split nonlinear terms into one that carries the transport
structure and another that is analogous to the nonlocal interaction term referred to
as ‘reaction’ in [67]. It has been long believed that Nash-Moser or similar Newton
iterations (see the classical work [64,65]) can generally be replaced by a more stan-
dard fixed point argument if one uses better all of the structure in the equation. This
has been the case in most examples in the literature (e.g. Nash’s isometric embedding
theorem [68] by Günther [34–36]), with maybe the only exception being KAM the-
ory. Other examples can be found in [40], where Hörmander specifically points out
paradifferential calculus as a useful tool in this context.

It is well known that one of the main physical barriers to Landau damping is
nonlinear particle trapping, whereby particles are trapped in the potential wells of
(say) electrostatic waves. Exact traveling wave solutions of this type exist in plasma
physics and are known as BGK waves [13]. They were used by Lin and Zeng in [52] to
show that one needs at least Hσ with σ > 3/2 regularity on the distribution function
to expect Landau damping in (1.2) in the neighborhood of Landau-stable stationary
solutions (see Definition 1.1 below). The plasma echoes provide a natural nonlinear
bootstrap mechanism by which the electrostatic waves can persist long enough to
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trap particles. After modding out by particle free streaming, the bootstrap appears
as a cascade of information to high frequencies and the regularity requirement of
Gevrey-(2 + γ )−1 comes from formal ‘worst-case’ calculations carried out in [67].
Mathematically, the same requirement arises here in §6. Lower regularity is an open
question: it seems plausible that Theorem 1 is false for all Gevrey- 1

s with s < (2+γ )−1,
however there might be additional cancellations that could allow it to hold in lower
regularities. Finally, in weakly collisional plasmas, the requirement could perhaps be
relaxed in some suitable sense (e.g. permitting data which is Gevrey plus a smaller
rough contribution that will be instantly regularized, as in the recent work on the
Navier-Stokes equations [11]).

It is well known that many areas in physics present striking analogies with each
other and many important developments have come from a good understanding of these
analogies. This work is an example where the analogy between 2D incompressible
Euler and Vlasov-Poisson proved fruitful. The connection between inviscid damping
and Landau damping has been acknowledged by a number of authors, for example
[6,16,19,32,51,79]. Both have similar weakly nonlinear echoes [82,83,88,89], more-
over, the work of Lin and Zeng [51,52] and [9] show that particle trapping and vortex
roll-up may in fact be essentially the same ‘universal’ over-turning instability. On a
more general level, both systems are conservative transport equations governed by
a single scalar quantity (the vorticity in the 2D Euler equation and the distribution
function in Vlasov-Poisson equations). Both equations have a large set of stationary
solutions: the shear flows for the Euler equation and spatially homogeneous dis-
tributions for Vlasov-Poisson equations being the simplest. Each can be viewed as
Hamiltonian systems and variational methods have been used for both to provide non-
linear stability results in low-regularity spaces (i.e. functional spaces invariant under
the free-streaming operator): we refer for instance, among a huge literature, to [3] in
the context of the Euler equation, and to the recent remarkable results [37,49] in the
context of the gravitational Vlasov-Poisson equation (see also the review paper [66]
and the references therein). One can also derive the incompressible Euler system from
the Vlasov-Poisson system in the quasi-neutral regime for cold electrons (vanishing
initial temperature) [18,60].

1.3 The Main Result

In what follows, we denote the Gevrey-ν−1 norms, ν ∈ (0, 1], with Sobolev corrections
σ ∈ R (see §3.1 for Fourier analysis conventions and §1.3.1 for other notations),

‖ f ‖2
Gλ,σ ;ν =

∑

k∈Zd

∫

η

∣
∣
∣ f̂k(η)

∣
∣
∣
2 〈k, η〉σ e2λ〈k,η〉ν dη, (1.8a)

‖ρ(t)‖2
Fλ,σ ;ν =

∑

k∈Zd

∣
∣ρ̂k(t)

∣
∣2 〈k, kt〉σ e2λ〈k,kt〉ν . (1.8b)

When σ = 0 or ν = s, (defined below) these parameters are usually omitted.
Recall the sufficient linear stability condition (L) introduced in [67] for analytic

background distributions, which we slightly adapt to the norms we are using.
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Definition 1.1 Given a homogeneous analytic distribution f 0(v) we say it satisfies
stability condition (L) if there exist constants C0, λ̄, κ > 0 and an integer M > d/2
such that

∑

α∈Nd :|α|≤M

∥
∥
∥v

α f 0
∥
∥
∥

2

Gλ̄;1 ≤ C0, (1.9)

and for all ξ ∈ C with Re ξ < λ̄,

inf
k∈Zd

|L(ξ, k) − 1| ≥ κ, (1.10)

where L is defined by the following (where ξ̄ denotes the complex conjugate of ξ ),

L(ξ, k) = −
∫ ∞

0
eξ̄ |k|t f̂ 0 (kt) Ŵ (k) |k|2 t dt. (1.11)

Remark 1 Note (1.9) implies the integral in (1.11) is absolutely convergent by the
Hd/2+ ↪→ C0 embedding theorem.

In [67], it is shown that (L) is practically equivalent to several well known stability
criteria in plasma and galactic dynamics (see §4.3 for a completion of the proof that
the Penrose condition [73] implies (L)).

We prove the following nonlinear Landau damping result, which for Coulomb/
Newton interaction nearly obtains the Gevrey-3 regularity predicted heuristically in
[67]. In §2 we give the outline of the proof and discuss the relationship with the original
proof in [67] and the proof of inviscid damping in 2D Euler [10].

Theorem 1 Let f 0 be given which satisfies stability condition (L) with constants M,λ̄,
C0 and κ . Let 1

(2+γ )
< s ≤ 1 and λ0 > λ′ > 0 be arbitrary (if s = 1 we require

λ̄ > λ0). Then there exists an ε0 = ε0(d, M, λ̄, C0, κ, λ0, λ
′, s) such that if hin is

mean zero (that is,
∫ ∫

hin(x, v)dxdv = 0) and

∑

α∈Nd : |α|≤M

∥
∥vαhin

∥
∥2
Gλ0;s < ε2 ≤ ε2

0 ,

then there exists a mean zero h+∞ ∈ Gλ′;s satisfying,

‖h(t, x + vt, v) − h+∞(x, v)‖Gλ′;s � εe− 1
2 (λ0−λ′)t s

, (1.12a)

‖ρ(t)‖Fλ′;s � εe− 1
2 (λ0−λ′)t s

, (1.12b)

for all t ≥ 0.

Remark 2 Through the rescaling on W , our estimate of ε0 in Theorem 1 is a decreasing
function of the side-length of the original torus, L . That is, the restriction for nonlinear
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stability becomes more stringent as the confinement is removed. Moreover, through the
rescaling on time, Theorem 1 predicts damping on a characteristic time-scale of O(L).
See [30,31,67,84] for more discussion about what can happen without confinement.

Remark 3 It is immediate to deduce estimates on the complete distribution f (t, x, v)

= f 0(v) + h(t, x, v) of the original equation (1.1). In particular, Theorem 1 shows
that all solutions to (1.1) with non-trivial spatial dependence close to f 0 satisfy
‖ f (t)‖H N ≈ 〈t〉N (the same as free transport).

Remark 4 From (1.12a) we have the homogenization h(t, x, v) ⇀< h+∞(·, v) >x

and the exponential decay of the electrical or gravitational field F[h](t, x). Note
however that the estimates on h and ρ are more precise as they show decay rates
which increase with k (the spatial frequency).

Remark 5 The theorem also holds backwards in time for some h−∞ ∈ Gλ′;s .

Remark 6 The asymptotic distribution function f+∞(x, v) := f 0(v) + h+∞(x, v)

depends on the entire nonlinear evolution, however, at least one can show f+∞ is
within O(ε2) of the distribution predicted by the linear theory in Gλ′′;s for any λ′′ < λ′
(similar to [67]). See §7 for a sketch.

Remark 7 Though f 0 is analytic, the statement shows the asymptotic stability of
homogeneous distributions within a small neighborhood of f 0 in Gevrey-s−1 since
we are really making a perturbation of f 0(v)+ < hin(·, v) >x . However, the size of
that neighborhood depends on the parameters in Definition 1.1, so it still must be close
to an analytic distribution satisfying (L).

Remark 8 Requiring hin to be average zero does not lose any generality. Indeed, if hin
were not mean zero we may apply Theorem 1 to f̃ 0(v) = f 0(v)+ (< hin(·, v) >x )<1
and h̃in = hin − (< hin(·, v) >x )<1, where g<1 denotes projection onto frequencies
less than one. Since (L) is open, for ε0 sufficiently small, f̃ 0 still satisfies (L) with
slightly adjusted parameters C0 and κ .

Remark 9 If W is in the Schwartz space, then Theorem 1 holds for all 0 < s < 1
(although ε0 goes to zero as s ↘ 0). The heuristics of [67] suggest that even in the
case of analytic W , we cannot hope to work in the Sobolev scale without major new
ideas, if such a result holds at all.

1.3.1 Notation and Conventions

We denote N = {0, 1, 2, . . . } (including zero) and Z∗ = Z \ {0}. For ξ ∈ C we use ξ̄

to denote the complex conjugate. We will denote the �1 vector norm |k, η| = |k|+ |η|,
which by convention is the norm taken in our work. We denote

〈v〉 =
(

1 + |v|2
)1/2

.
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We use the multi-index notation: given α = (α1, . . . , αd) ∈ N
d and v =

(v1, . . . , vd) ∈ R
d then

vα = v
α1
1 v

α2
2 . . . v

αd
d , Dα

η = (i∂η1)
α1 . . . (i∂ηd )

αd .

We denote Lebesgue norms for p, q ∈ [1,∞] and a, b either in R
d , Z

d or T
d as

‖ f ‖L p
a Lq

b
=
(∫

a

(∫

b
| f (a, b)|q db

)p/q

da

)1/p

and Sobolev norms (usually applied to Fourier transforms) as

∥
∥
∥ f̂
∥
∥
∥

2

H M
η

=
∑

α∈Nd ;|α|≤M

∥
∥
∥Dα

η f̂
∥
∥
∥

2

L2
η

.

We will often use the short-hand ‖·‖2 for ‖·‖L2
z,v

or ‖·‖L2
v

depending on the context.
See §3 for the Fourier analysis conventions we are taking. A convention we generally

use is to denote the discrete x (or z) frequencies as subscripts. We use Greek letters
such as η and ξ to denote frequencies in R

d and lowercase Latin characters such as k
and � to denote frequencies in Z

d . Another convention we use is to denote N , N ′ as
dyadic integers N ∈ D where

D =
{

1

2
, 1, 2, . . . , 2 j , . . .

}

.

When a sum is written with indices N or N ′ it will always be over a subset of D. This
will be useful when defining Littlewood-Paley projections and paraproduct decompo-
sitions, see §3. Given a function A = A(k, η) ∈ L∞, we define the Fourier multiplier
operator Ag = A(∇z,v)g by

(
̂A(∇z,v)g

)

k
(η) := A((ik, iη))ĝk(η),

and we also define the corresponding operator A|(ρ) = A(∇z,zt )ρ =: A|(∇z)ρ when
acting on functions of x only along the frequencies space (k, kt) given by the velocity
averages along the moving frame:

̂A(∇z,zt )ρk(t) = A((ik, ikt))ρ̂k(t), A|(∇z) = A(∇z,zt ). (1.13)

We use the notation f � g when there exists a constant C > 0 independent of the
parameters of interest such that f ≤ Cg (we analogously define f � g). Similarly,
we use the notation f ≈ g when there exists C > 0 such that C−1g ≤ f ≤ Cg. We
sometimes use the notation f �α g if we want to emphasize that the implicit constant
depends on some parameter α.
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2 Outline of the Proof

2.1 Linear Behavior

In [85], Vlasov sought to understand (1.2) for small h by first linearizing the equations

around the steady state f 0(v) = e− |v|2
2T /(2πT )3/2:

⎧
⎨

⎩

∂t h + v · ∇x h + F(t, x) · ∇v f 0 = 0,

F(t, x) = −∇x W ∗x ρ(t, x),

h(t = 0, x, v) = hin(x, v).

(2.1)

However, Vlasov searched for plane wave solutions via a normal mode method, and
in general the spectrum of (2.1) turns out to be purely continuous. Landau understood
that the normal mode method was bound to fail for (2.1) (indeed he described the
approach of Vlasov as being “without any foundation”) and instead argued for study-
ing and solving the Cauchy problem for given analytic initial data, i.e. the “vibrations
for a given initial distribution”. He then solved (2.1) via a Fourier-Laplace transform
method. Interestingly, a very similar exchange had already occurred in fluid mechan-
ics long before Vlasov and Landau: when studying the stability of shear flows, Lord
Rayleigh had also attempted to take a normal mode approach [76], but it was sub-
sequently understood by Lord Kelvin and Orr [43,71] that this would not work, for
reasons that are indeed the same. However, we do note that by properly dealing with
“singular eigenfunctions” for the continuous spectrum, one can actually solve (2.1)
with a spectral method, see e.g. [6–8,62,63,81] for more discussion.

Landau’s argument is subtle and strongly reminiscent of the by-now classical
Gearhart-Prüss-Greinier Theorem (see for instance [24, TheoremV.1.11,page302]; see
also below in §4). However, as pointed by Penrose [73], Backus [4] and others, it is
not completely rigorous. For our discussion of linear stability, let us follow a variant
of the approach of Penrose, whose method is the most straightforward and flexible.
By taking the Fourier transform of (2.1) in x and then integrating in v and time, one
derives the set of decoupled Volterra equations:

ρ̂(t, k) = ĥin(k, kt) −
∫ t

0
Ŵ (k)k · kt f̂ 0(kt)ρ̂(s, k) ds, (2.2)

where here ρ̂(t, k) denotes the Fourier transform in x , ˆhin(k, η) denotes the Fourier
transform in both x and v. Upon extending all the functions by zero for negative times
and (formally) taking the Fourier transform in time, we have

ρ̃(ω, k) = A(ω, k) + L
(

iω

|k| , k

)

ρ̃(ω, k), (2.3)

where L is given above in (1.11) and

A(ω, k) =
∫ ∞

0
e−iωt ĥin(k, kt) dt.

123



4 Page 12 of 71 J. Bedrossian et al.

Therefore, if (1.10) holds then we can write

ρ̃(ω, k) = A(ω, k)

1 − L
(

iω
|k| , k

) ,

then using that the Fourier transform is unitary on L2 we have, at least,

∫ ∞

0

∣
∣ρ̂(t, k

∣
∣2 dt � κ−1

∫ ∞

0

∣
∣
∣ĥin(k, kt)

∣
∣
∣
2

dt.

The RHS is finite as soon as |v| d−1
2 + hin ∈ L2 by taking the Sobolev space restriction

on the Fourier side; see Lemma 3.4 below. To obtain higher decay rates one can use
several methods. To obtain polynomial rates of decay, the simplest approach is to take
derivatives in ω of (2.3). For example, one derivative is enough to prove that ρ̂(t, k) is
integrable in time, allowing to prove that solutions to (2.1) are asymptotically ballistic,
i.e. h(t, x, v) ∼ h∞(x − tv, v) for some h∞ as t → ∞. Hence, by considering

̂h∞(x − tv, v)(k, η) = ĥ∞(k, η + kt), we see that the information in the distribution
function is being moved to higher frequencies/smaller scales in v. Moreover, we can
see that h(t) ⇀< h∞ >x , and so the evolution is weakly (but not strongly) returning
to a spatially homogeneous equilibrium. For analytic regularity, the approach taken in
[67] was to multiply (2.2) by e|k|t and deduce an estimate on �(t, k) = e|k|t ρ̂(t, k).
This inspires what is done below in §4 in Gevrey class.

Several comments are left to be made. First, the above argument is only formal, as
in order to take the Fourier transform in time to deduce (2.3), one already needed to
have some a priori decay estimate on ρ̂(t, k). This can be resolved in several ways, see
§4 below for a full discussion. Second, Penrose derived a reasonably practical way of
checking (1.10) for general background distributions, known as the Penrose condition,
which is also known to be essentially sharp [52]. See §4 below for a proof of this.

2.2 Summary, Weakly Nonlinear Heuristics, and Comparison with Original
Proof [68]

Next, let us consider how to prove Theorem 1 and extend the linear results to the
nonlinear level. Landau damping predicts that the solution evolves by kinetic free
transport as t → ∞:

h(t, x, v) ∼ h∞(x − vt, v).

We ‘mod out’ by the characteristics of free transport and work in the coordinates
z = x − vt by making the definition g(t, z, v) := h(t, z + tv, v). Then (1.12a)
becomes equivalent to g(t) → h∞ strongly in Gevrey− 1

s . This coordinate shift was
used in [20,42] and is related to the notion of ‘gliding regularity’ used in [67] (although
we will not have to use the time-shifting tricks employed therein). Moreover, it is also
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closely related to the notion of ‘profile’ used in nonlinear dispersive equations (see
e.g. [28]). A related coordinate change is also used in [10].

A straightforward computation gives the evolution equation:

{
∂t g + F(t, z + vt) · (∇v − t∇z)g + F(t, z + vt) · ∇v f 0 = 0,

g(t = 0, z, v) = hin(z, v).
(2.4)

Note that the density satisfies ρ̂k(t) = ĝk(t, kt); by the Hd/2+ ↪→ C0 embedding
theorem and the requirement M > d/2, this formula at least makes sense pointwise
in time provided

∑
α≤M ‖vαg‖2 is finite. Moreover, from this formula we see that a

uniform bound on the regularity of f translates directly into decay of the density: this
is precisely the phase mixing mechanism. Hence, to prove (1.12b), we are aiming for
a uniform-in-time bound on the regularity in a velocity polynomial-weighted space
(so that we may restrict the Fourier transform using Hd/2+ ↪→ C0).

All of our analysis is on the Fourier side; taking Fourier transforms and using
̂[F(t, z + vt)](t, k, η) = −(2π)d ikŴ (k)ρ̂k(t)δη = kt , (2.4) becomes

∂t ĝk(t, η) + ρ̂k(t)Ŵ (k)k · (η − tk) f̂ 0(η − kt)

+
∑

�∈Zd∗

ρ̂�(t)Ŵ (�)� · [η − tk] ĝk−�(t, η − t�) = 0. (2.5)

Note in the summation that η − tk = (η − t�) − t (k − �). By the formula ρ̂k(t) =
ĝk(t, kt), (2.5) is a closed equation for f , however, we will derive a separate integral
equation for ρ(t) and look at (g, ρ) as a coupled system (similar to [67]). Integrating
(2.5) in time and evaluating at η = kt gives

ρ̂k(t) = ĥin(k, kt) −
∫ t

0
ρ̂k(τ )Ŵ (k)k · k(t − τ) f 0 (k(t − τ)) dτ

−
∫ t

0

∑

�∈Zd∗

ρ̂�(τ )Ŵ (�)� · k (t − τ) ĝk−�(τ, kt − τ�) dτ. (2.6)

As in [67], our goal now is to use the system (2.5)–(2.6) to derive a uniform control
on the regularity of g in the moving frame (referred to as ‘gliding regularity’ in [67]).
The linear term in (2.6) is handled with the help of the abstract stability condition (L);
the difference here with [67] is that we must adapt this to the Gevrey norms we are
using, which is done using a slightly technical decomposition technique similar to one
which appeared in [67] to treat Gevrey data (carried out below in §4). The main point
of departure from [67] is our treatment of the nonlinear terms in (2.5)–(2.6). There are
schematically two mechanisms of potential loss of regularity in (2.5)–(2.6) and one
potential loss of localization in velocity space:

1. Equation (2.5) describes a transport structure in T
d × R

d , and hence we can
expect this to induce the loss of regularity usually associated with transport by
controlled coefficients. A different loss of regularity occurs in (2.6) due to the
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4 Page 14 of 71 J. Bedrossian et al.

k(t − τ)ĝk−�(τ, kt − �τ): here there is a derivative of g appearing but no transport
structure to take advantage of. However, we still refer to this effect as ‘transport’
and remark that it seems related to the beam instability [17].

2. We can see from (2.6) that ρ̂�(τ ) has a strong effect on ρ̂k(t) when kt ∼ �τ , which
is referred to as reaction. These nonlinear resonances are exactly the plasma echoes
of [58], and arise due to interaction with the oscillations in the velocity variable.
These effects can potentially amplify high frequencies (e.g. costing regularity) at
localized times of strong interaction. A related effect will appear in (2.5) when ρ

forces g via interaction with lower frequencies, and we will refer to this as reaction
as well. It was shown in [67] via formal heuristics that an infinite cascade of echoes
could lose Gevrey-(2 + γ )−1 regularity, and hence the restriction s > (2 + γ )−1.

3. The density ρ is a restriction of the Fourier transform of g and the nonlinear terms
in (2.5) and (2.6) each involve Fourier restrictions. This issue was treated in [67]
by adapting carefully the norms used in order to keep under control some L1-based
norms of regularity.

The proof of [67] employs a global-in-time Newton scheme which loses a decreas-
ing amount of analytic regularity at each step. The linearization of the Newton scheme
provides a natural way to isolate transport effects from reaction effects. The transport is
treated by Lagrangian methods to estimate analytic regularity along the characteristic
trajectories. The reaction effects are treated via time-integrated estimates on (2.6) that
account carefully for the localized, time-delayed effects of the plasma echoes. The
proof treats (2.5) and (2.6) as a coupled system in the sense that the main estimates
are two coupled but separate controls, one on g and one on ρ. To extend the results to
Gevrey regularity, a frequency decomposition of the initial data is employed so that
at each step in the scheme everything is analytic.

Here the two different mechanisms of transport and reaction are recovered by a
rather different approach, employed recently in the proof of inviscid damping [10].
We use a paraproduct decomposition in order to split the bilinear terms as

G1G2 = (G1)lower(G2)higher + (G1)higher(G2)lower + (G1G2)similar frequencies.

In a general sense, one of the first two terms on the RHS will capture the transport
effects and the other will capture the reaction effects. The last term is a remainder which
roughly corresponds to the quadratic error term in the Newton iteration. Indeed, the
paraproduct decomposition can be thought of formally linearizing the evolution of
higher frequencies around lower frequencies.

As in [10], the transport terms in (2.5) are treated via an adaptation of the Gevrey
energy methods of [25,50]. The essential content is a commutator estimate to take
advantage of the cancellations inherent in the natural transport structure. For this step
to work we need to use L2 based norms, and so to deal with the Fourier restrictions,
we use norms with polynomial weights in velocity.

The reaction effects in (2.6) are treated here by making use of a refinement of the
integral estimates on ρ of [67] but with some important conceptual changes inspired
from [10]: the loss of Gevrey regularity can occur along time rather than iteratively
in a Newton scheme. Together with the paraproduct decompositions, this allows us to
significantly shorten the proof.
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Since we do not use a Newton scheme, we have an additional new constraint: we are
not allowed to lose any derivatives in our coupled estimates on ρ and g, a problem due
to the derivative of g appearing in (2.5)–(2.6). However, since regularity can be traded
for decay, we solve this problem by propagating controls on both “high” and “low”
norms of regularity – the “high” ones being mildly growing in time, a general scheme
which is common in the study of wave and dispersive equations (see e.g. [28,44,53]
and the references therein).

2.3 Gevrey Functional Setting

As discussed in the previous section, our goal now is to use the system (2.5)–(2.6) to
derive a uniform control on the regularity of g. Unlike the norms used in [10] and [67]
we will only need the standard norm Gλ,σ ;s (and the variant Fλ,σ ;s) defined in (1.8)
with time-dependent λ(t). For future notational convenience, we define the Fourier
multiplier A(t) such that ‖A(t)g‖2 = ‖g‖Gλ(t),σ ;s :

Ak(t, η) = eλ(t)〈k,η〉s 〈k, η〉σ , (2.7)

where σ > d + 8 is fixed and λ(t) is an index (or ‘radius’) of regularity which is
decreasing in time. In the sequel, we also denote for σ ′ ∈ R:

A(σ ′)
k (t, η) = eλ(t)〈k,η〉s 〈k, η〉σ+σ ′

.

We will choose λ and s so as to absorb the potential loss of regularity due to the
plasma echoes. In particular, the choice s > (2+γ )−1 will be necessary to ensure that
the nonlinear plasma echoes do not destabilize the phase mixing mechanism. This
restriction is used only in equations (6.6) and (6.9) of §6. Additionally, in order to
absorb the loss of regularity from the echoes, we will need to choose λ(t) to decay
slowly in time; this restriction is also only used in (6.6) and (6.9) of §6. It will suffice
to make the following choices:

s > (2 + γ )−1, α0 = λ0

2
+ λ′

2
, a = (2 + γ )s − 1

(1 + γ )
,

(note 0 < a < s if s < 1) and

λ(t) = 1

8

(
λ0 − λ′) (1 − t)+ + α0 + 1

4

(
λ0 − λ′)min

(

1,
1

ta

)

. (2.8)

Then α0 ≤ λ(t) ≤ 7λ0/8 + λ′/ 8 and the derivative never vanishes:

λ̇(t) � −a(λ0 − λ′)
〈t〉1+a

. (2.9)
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Norms such as Gλ(t),σ ;s are common when dealing with analytic or Gevrey regularity,
for example, see the works [10,21,22,25,27,45,50,67]. The Sobolev correction σ is
included mostly for technical convenience. This correction allows to avoid needing to
pay Gevrey regularity where Sobolev regularity would suffice; for example, asλ(t) � 1
and s < 1, Gλ(t),0;s is an algebra, however it is simpler to use that Hσ (Td × R

d) is an
algebra for σ > d instead. In order to study the analytic case, s = 1, we would need
to add an additional Gevrey- 1

ζ
correction with (2 + γ )−1 < ζ < 1 as an intermediate

regularity (and define a in terms of ζ ) so that we may take advantage of beneficial
properties of Gevrey norms (see, for example, Lemma 3.3). For the duration of the
proof we assume s < 1 and do not address the additional technical minor issue in the
limit case s = 1.

The reason for using 〈·〉 in the definition of Ak and A(σ ′)
k in (2.7), as opposed to |·|,

is so that for all α ∈ N
d and σ ′ ∈ R,

∣
∣
∣Dα

η A(σ ′)
k (t, η)

∣
∣
∣ �|α|,λ0,σ ′

1

〈k, η〉|α|(1−s)
A(σ ′)

k (t, η), (2.10)

which is useful when estimating velocity moments.

2.4 Uniform in Time Regularity Estimates

In this section we set up the continuity argument we use to derive a uniform bound on
(ρ, g). In order to ensure the formal computations are rigorous, we first regularize the
initial data to be analytic. The following standard lemma provides local existence of
a unique analytic solution which remains analytic as long as a suitable Sobolev norm
remains finite. The local existence of analytic solutions can be proved with an abstract
Cauchy-Kovalevskaya theorem, see for example [69,70]. The propagation of analyt-
icity by Sobolev regularity can be proved by a variant of the arguments in [50] along
with the inequality ‖Bρ‖2 �

∑
α≤M ‖vα Bg‖2 for all Fourier multipliers B (with our

notation (1.13)) and all integers M > d/2. We omit the proof of Lemma 2.1 for brevity.

Lemma 2.1 (Local existence and propagation of analyticity) Let M > d/2 be an
integer and λ̃ > 0. Suppose hin is analytic such that

∑

α∈Nd :|α|≤M

∥
∥vαhin

∥
∥Gλ̃;1 < ∞.

Then there exists some T0 > 0 such that there exists a unique analytic solution g(t)
to (2.4) on [0, T ] for all T < T0 and for some index λ̃(t) with inf t∈[0,T ] λ̃(t) > 0 we
have,

sup
t∈[0,T ]

∑

α∈Nd :|α|≤M

∥
∥vαg(t)

∥
∥Gλ̃(t);1 < ∞.

Moreover, if for some T ≤ T0 and σ > d/2, lim supt↗T
∑

α∈Nd :|α|≤M ‖vαg(t)‖Hσ
x,v

<

∞, then T < T0.
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Remark 10 If d ≤ 3 and the solution has finite kinetic energy, then global analytic
solutions to (1.2) exist even for large data. See the classical results [12,41,54,74,78] for
the global existence of strong solutions (from which analyticity can be propagated by
a variant of e.g. [50]). We remark that in d ≥ 4, finite time blow-up is possible at least
for gravitational interactions [48], however, this case is still covered by Theorem 1.

Remark 11 To treat the case s = 1 in Theorem 1, we would need to be slightly more
careful in applying Lemma 2.1. In this case, we may regularize the data to a larger
radius of analyticity λ̃ > λ0, perform our a priori estimates until λ̃(t) = λ(t), at which
point we may stop, re-regularize and restart iteratively.

Lemma 2.1 implies that as long as we retain control on the moments and regularity
of the regularized solutions, they exist and remain analytic. We perform the a priori
estimates on these solutions, for which the computations are rigorous, and then we
may pass to the limit to show that the original solutions exist globally and satisfy the
same estimates as the regularized solutions. For the remainder of the paper, we omit
these details and discuss only the a priori estimates.

For constants Ki , 1 ≤ i ≤ 3 fixed in the proof depending only on C0, λ̄, κ , s, d, λ0
and λ′, let I ⊂ R+ be the largest interval of times such that 0 ∈ I and the following
controls hold for all t ∈ I :

∑

α∈Nd :|α|≤M

∥
∥〈∇z,v〉A(vαg)(t)

∥
∥2

2 =
∑

α∈Nd :|α|≤M

∥
∥
∥A(1)(vαg)(t)

∥
∥
∥

2

2
≤ 4K1〈t〉7ε2

(2.11a)
∑

α∈Nd :|α|≤M

∥
∥〈∇z,v〉−β A(vαg)(t)

∥
∥2

2 =
∑

α∈Nd :|α|≤M

∥
∥
∥A(−β)(vαg)(t)

∥
∥
∥

2

2
≤ 4K2ε

2

(2.11b)
∫ t

0
‖Aρ(τ)‖2

2 dτ ≤ 4K3ε
2, (2.11c)

where we may fix β > 2 arbitrary and ε satisfies a certain smallness assumption as
in Theorem 1. Recall the definition of A in (2.7). It is clear from the assumptions that
if Ki ≥ 1 then 0 ∈ I . The primary step in the proof of Theorem 1 is to show that
I = [0,∞).

For the regularized solutions it will be clear from the ensuing arguments that the
quantities on the LHS of (2.11) are continuous in time, from which it follows that I is
relatively closed in R+. Hence define T � ≤ ∞ such that I = [0, T �]. In order to prove
that T � = ∞ it suffices to establish that I is also relatively open, which is implied by
the following bootstrap.

Proposition 2.2 (Bootstrap) There exists ε0, Ki depending only on d, M, λ̄, C0, κ,

λ0, λ
′ and s such that if (2.11) holds on some time interval [0, T �) and ε < ε0, then

for t ≤ T �,
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∑

α∈Nd :|α|≤M

∥
∥〈∇z,v〉A(vαg)(t)

∥
∥2

2 =
∑

α∈Nd :|α|≤M

∥
∥
∥A(1)(vαg)(t)

∥
∥
∥

2

2
< 2K1〈t〉7ε2

(2.12a)
∑

α∈Nd :|α|≤M

∥
∥〈∇z,v〉−β A(vαg)(t)

∥
∥2

2 =
∑

α∈Nd :|α|≤M

∥
∥
∥A(−β)(vαg)(t)

∥
∥
∥

2

2
< 2K2ε

2

(2.12b)
∫ t

0
‖Aρ(τ)‖2

2 dτ < 2K3ε
2, (2.12c)

from which it follows that T � = ∞.

Once Proposition 2.2 is deduced, Theorem 1 follows quickly. This is carried out in §7.

Remark 12 In order to close the bootstrap in Proposition 2.2 we need to understand
how, or if, the constants Ki depend on each other so that we can be sure that they
can be chosen self-consistently. In fact, K3 is determined by the linearized evolution
(from CL D in Lemma 4.1) then K1 is fixed in §5.3 depending on K3 (and s,d,λ0,λ′)
and K2 is analogously fixed in §5.4 depending on K3 (and s, d, λ0, λ′ but not directly
K1). Finally, ε0 is chosen small with respect to everything.

Remark 13 The unbalance of a whole derivative between (2.12c) and (2.12a) uses the
regularization of the interaction potential and is the only aspect of the proof which
requires γ ≥ 1.

The purpose of the weights in velocity is to control derivatives of the Fourier
transform so that the trace Lemma 3.4 and the Hd/2+ ↪→ C0 embedding theorem
can be applied to restrict the Fourier transform along rays and pointwise. Both are
necessary to deduce the controls on the density in §5.1 and §5.2. Moreover, from
(2.11b) and (2.10) we have,

∥
∥
∥A(−β)ĝ

∥
∥
∥

L2
k H M

η

�
∑

α∈Nd :|α|≤M

∥
∥
∥Dα

η A(−β)ĝ
∥
∥
∥

L2
k L2

η

≤
∑

α∈Nd :|α|≤M

∑

j≤α

α!
j !(α − j)!

∥
∥
∥(Dα− j

η A(−β))(D j
η ĝ)

∥
∥
∥

L2
k L2

η

�M

√
K2ε. (2.13)

Similarly, (2.11a) implies

∥
∥
∥A(1)ĝ

∥
∥
∥

L2
k H M

η

�M

√
K1ε〈t〉7/2. (2.14)

Let us briefly summarize how Proposition 2.2 is proved. The main step is the time-
integral estimate on the L2 norm of the density in (2.12c), deduced in §5.1. This is done
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by analyzing (2.6). The linear term in (2.6) is treated using a Fourier-Laplace trans-
form and (L) as in [67] with a technical time decomposition in order to get an estimate
in Gevrey regularity using A(t). The nonlinear term (2.6) is decomposed using a para-
product into reaction, transport and remainder terms. As discussed above in §2.2, the
reaction term in (2.6) is connected to the plasma echoes. Once the paraproduct decom-
position and (2.11b) have allowed us to isolate this effect, it is treated with an adaptation
of §7 in [67], carried out in §6 (our treatment is in the same spirit but not quite the same).
The transport term describes the interaction of ρ with ‘higher’ frequencies of g; this
effect is controlled using (2.11a). Once the time-integral estimate has been established,
we also derive a relatively straightforward pointwise-in-time control in §5.2.

The estimate (2.12a) is deduced in §5.3 via an energy estimate in the spirit of [10].
A paraproduct is again used to decompose the nonlinearity into reaction, transport
and remainder terms. As in [10], the transport term is treated using an adaptation of the
methods of [25,45,50]. However, perhaps more like [67], the reaction term is treated
using (2.11c). The time growth is due to the fact that there is no regularity available to
transfer to decay; that the estimate is closable at all requires the regularization from
γ ≥ 1. The low norm estimate (2.12b) is proved in §5.4 in a fashion similar to that of
(2.12a) (the uniform bound is possible due to the regularity gap of β > 2 derivatives
between (2.11c) and (2.12b), which can be into time decay on ρ).

3 Toolbox

In this section we review some of the technical tools used in the proof of Theorem 1:
the Littlewood-Paley dyadic decomposition, paraproducts and useful inequalities for
working in Gevrey regularity.

3.1 Fourier Analysis Conventions

For a function g = g(z, v) we write its Fourier transform ĝk(η) where (k, η) ∈ Z
d ×R

d

with

ĝk(η) := 1

(2π)d

∫

Td×Rd
e−i zk−ivηg(z, v) dz dv,

g(z, v) := 1

(2π)d

∑

k∈Zd

∫

Rd
eizk+ivη ĝk(η) dη.

We use an analogous convention for Fourier transforms to functions of x or v alone.
With these conventions we have the following relations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∫

Td×Rd
g(z, v)g(z, v) dz dv =

∑

k∈Zd

∫

Rd
ĝk(η)ĝk(η) dη,

ĝ1g2 = 1

(2π)d
ĝ1 ∗ ĝ2,

(∇̂g)k(η) = (ik, iη)ĝk(η),

(̂vαg)k(η) = Dα
η ĝk(η).
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The following versions of Young’s inequality occur frequently in the proof.

Lemma 3.1 (a) Let g1
k (η), g1

k (η) ∈ L2(Zd × R
d) and 〈k〉σ rk(t) ∈ L2(Zd) for σ >

d/2. Then, for any t ∈ R,

∣
∣
∣
∣
∣
∣

∑

k,�

∫

η

g1
k (η)r�(t)g

1
k−�(η − t�) dη

∣
∣
∣
∣
∣
∣
�d,σ

∥
∥
∥g1

∥
∥
∥

L2
k,η

∥
∥
∥g1

∥
∥
∥

L2
k,η

∥
∥〈k〉σ r(t)

∥
∥

L2
k
.

(3.1)

(b) Let g1
k (η), 〈k〉σ g2

k (η) ∈ L2(Zd × R
d) and rk ∈ L2(Zd) for σ > d/2. Then, for

any t ∈ R,

∣
∣
∣
∣
∣
∣

∑

k,�

∫

η

g1
k (η)h�(t)g

2
k−�(η − t�) dη

∣
∣
∣
∣
∣
∣
�d,σ

∥
∥
∥g1

∥
∥
∥

L2
k,η

∥
∥
∥〈k〉σ g2

∥
∥
∥

L2
k,η

‖r(t)‖L2
k
.

(3.2)

Proof To prove (a):

∣
∣
∣
∣
∣
∣

∑

k,�

∫

η

g1
k (η)r�g2

k−�(η − t�) dη

∣
∣
∣
∣
∣
∣

≤
∑

k

(∫

η

∣
∣
∣g1

k (η)

∣
∣
∣
2

dη

)1/2∑

�

r�

(∫

η

∣
∣
∣g2

k−�(η − �t)
∣
∣
∣
2

dη

)1/2

=
∑

k

(∫

η

∣
∣
∣g1

k (η)

∣
∣
∣
2

dη

)1/2∑

�

r�

(∫

η

∣
∣
∣g2

k−�(η)

∣
∣
∣
2

dη

)1/2

≤
(
∑

k

∫

η

∣
∣
∣g1

k (η)

∣
∣
∣
2

dη

)1/2
⎡

⎣
∑

k

(
∑

�

r�

(∫

η

∣
∣
∣g2

k−�(η)

∣
∣
∣
2

dη

)1/2
)2
⎤

⎦

1/2

≤
∥
∥
∥g1

∥
∥
∥

L2
k,η

∥
∥
∥g2

∥
∥
∥

L2
k,η

∑

�

|r�|

�d,σ

∥
∥
∥g1

∥
∥
∥

L2
k,η

∥
∥
∥g2

∥
∥
∥

L2
k,η

∥
∥〈k〉σ rk

∥
∥

L2
k
,

where the penultimate line followed from the L2 × L1 �→ L2 Young’s inequality. The
proof of (b) is analogous, simply putting g2 rather than r in L1

k . ��

3.2 Littlewood-Paley Decomposition

This work makes use of the Littlewood-Paley dyadic decomposition. Here we fix
conventions and review the basic properties of this classical theory (see e.g. [5] for
more details).
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Define the joint variable � := (k, η) ∈ Z
d × R

d . Let ψ ∈ C∞
0 (Zd × R

d; R) be
a radially symmetric non-negative function such that ψ(�) = 1 for |�| ≤ 1/2 and
ψ(�) = 0 for |�| ≥ 3/4. Then we define φ(�) := ψ(�/2) − ψ(�), a non-negative,
radially symmetric function supported in the annulus {1/2 ≤ |�| ≤ 3/2}. Then we
define the rescaled functions φN (�) = φ(N−1�), which satisfy

supp φN (�) = {N/2 ≤ |�| ≤ 3N/2}

and we have classically the partition of unity,

1 = ψ(�) +
∑

N∈2N

φN (�),

(observe that there are always at most two non-zero terms in this sum), where we mean
that the sum runs over the dyadic numbers N = 1, 2, 4, 8, . . . , 2 j , . . . .

For g ∈ L2(Td × R
d) we define

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

gN := φN
(∇z,v

)
g,

g 1
2

:= ψ
(∇z,v

)
g,

g<N := g 1
2

+
∑

N ′∈2N : N ′<N

gN ′,

and we have the natural decomposition,

g =
∑

N∈D
gN = g 1

2
+
∑

N∈2N

gN , D :=
{

1

2
, 1, 2, . . . , 2 j , . . .

}

.

Normally one would use g0 or g−1 rather than the slightly inconsistent g1/2, however
here g0 is reserved for the much more commonly used projection onto the zero mode
only in z or x .

There holds the almost orthogonality and the approximate projection property

⎧
⎨

⎩

∑

N∈D
‖gN ‖2

2 ≤ ‖g‖2
2 ≤ 2

∑

N∈D
‖gN ‖2

2

‖(gN )N ‖2 ≤ ‖gN ‖2 .

(3.3)

Similarly to (3.3) but more generally, if g = ∑
D

gN with supp gN ⊂ {C−1 N ≤ |�| ≤
C N } for N ≥ 1 and supp g 1

2
⊂ {|�| ≤ C} then we have

‖g‖2
2 ≈C

∑

N∈D
‖gN ‖2

2 . (3.4)

Moreover, the dyadic decomposition behaves nicely with respect to differentiation:

∥
∥〈∇z,v〉gN

∥
∥

2 ≈ N ‖gN ‖2 . (3.5)
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We also define the notation

g∼N =
∑

N ′∈D : C−1 N≤N ′≤C N

gN ′,

for some constant C which is independent of N . Generally the exact value of C which
is being used is not important; what is important is that it is finite and independent of N .

In some steps of the proof, we will apply the Littlewood-Paley decomposition to
the spatial density ρ(t, x). In this case it will be more convenient to use the following
definition that uses kt in place of the frequency in v, a natural convention when one
recalls that ρ̂k(t) = ĝk(t, kt):

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ρ̂(t)N = φN (|k, kt |)ρ̂k(t),

ρ̂(t) 1
2

= ψ(|k, kt |)ρ̂k(t),

ρ̂(t)<N = ρ(t) 1
2

+
∑

N ′∈2N:N ′<N

ρ(t)N ′ .

Remark 14 We have opted to use the compact notation above, rather than the com-
monly used alternatives � j g = g2 j and S j g = g<2 j , in order to reduce the number
of characters in long formulas.

3.3 The Paraproduct Decomposition

Another key Fourier analysis tool employed in this work is the paraproduct decom-
position, introduced by Bony [15] (see also [5]). Given suitable functions g1, g2 we
may define the paraproduct decomposition (in either (z, v) or just v),

g1g2 =
∑

N≥8

g1
<N/8g2

N +
∑

N≥8

g1
N g2

<N/8 +
∑

N∈D

∑

N/8≤N ′≤8N

g1
N g2

N ′

:= Tg1 g2 + Tg2 g1 + R
(

g1, g2
)

(3.6)

where all the sums are understood to run over D.
The advantage of this decomposition in the energy estimates is that the first term

Tg1 g2 contains the highest derivatives on g2 but allows to take advantage of the fre-
quency cutoff on the first function g1, whereas the second term Tg2 g1 contains the
highest derivatives on g1 but allows to take advantage of the frequency cutoff on the
second function g2. Finally the last “remainder” term contains the contribution from
comparable frequencies which allows to split regularity evenly between the factors.

3.4 Elementary Inequalities for Gevrey Regularity

In this section we discuss a set of elementary, but crucial, inequalities for working in
Gevrey regularity spaces. First we point out that Gevrey and Sobolev regularities can
be related with the following two inequalities.
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(i) For x ≥ 0, α > β ≥ 0, C, δ > 0,

eCxβ ≤ e
C
(

α−β
α

)(
C
δ

) β
α−β

eδxα

. (3.7)

(ii) For x ≥ 0, α > 0, σ, δ > 0,

e−δxα �σ,α

1

δ
σ
α 〈x〉σ . (3.8)

Next, we state several useful inequalities regarding the weight 〈x〉 = (1 + |x |2)1/2.
In particular, the improvements to the triangle inequality for s < 1 given in (3.10),
(3.11) and (3.12) are important for getting useful bilinear (and trilinear) estimates.
The proof is straightforward and is omitted.

Lemma 3.2 Let 0 < s < 1 and x, y ≥ 0.

(i) We have the triangle inequalities (which hold also for s = 1),

〈x + y〉s ≤ 〈x〉s + 〈y〉s (3.9a)
∣
∣〈x〉s − 〈y〉s

∣
∣ ≤ 〈x − y〉s (3.9b)

Cs
(〈x〉s + 〈y〉s) ≤ 〈x + y〉s, (3.9c)

for some Cs > 0 depending only on s.
(ii) In general,

∣
∣〈x〉s − 〈y〉s

∣
∣ �s

1

〈x〉1−s + 〈y〉1−s
〈x − y〉. (3.10)

(iii) If |x − y| ≤ x/K for some K > 1, then we have the improved triangle inequality

∣
∣〈x〉s − 〈y〉s

∣
∣ ≤ s

(K − 1)1−s
〈x − y〉s . (3.11)

(iv) We have the improved triangle inequality for x ≥ y,

〈x + y〉s ≤
( 〈x〉

〈x + y〉
)1−s (〈x〉s + 〈y〉s) . (3.12)

The following product lemma will be used several times in the sequel. Notice that
c̃ < 1 for s < 1, which shows that we gain something by working in Gevrey spaces
with s < 1; indeed this important gain is used many times in the nonlinear estimates.
We sketch the proof as it provides a representative example of arguments used several
times in §5.
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Lemma 3.3 (Product Lemma) For all 0 < s < 1, and σ ≥ 0 there exists a c̃ =
c̃(s, σ ) ∈ (0, 1) such that the following holds for all λ > 0, g1, g2 ∈ Gλ,σ ;s(Td ×R

d)

and r(t) ∈ Fλ,σ ;s(Td):

∑

k∈Zd

∑

�∈Zd

∫

Rd
〈k, η〉2σ e2λ〈k,η〉s

∣
∣
∣ĝ1

k(η)r̂�(t)ĝ2
k−�(η − �t)

∣
∣
∣ dη

�λ,σ,s,d

∥
∥
∥g1

∥
∥
∥Gλ,σ ;s

∥
∥
∥g2

∥
∥
∥G c̃λ,0;s ‖r(t)‖Fλ,σ ;s +

∥
∥
∥g1

∥
∥
∥Gλ,σ ;s

∥
∥
∥g2

∥
∥
∥Gλ,σ ;s ‖r(t)‖F c̃λ,0;s .

(3.13)

Moreover, we have the algebra property, for g ∈ Gλ,σ ;s(Td × R
d) and r(t) ∈

Fλ,σ ;s(Td),

∑

k∈Zd

∫

Rd

∣
∣
∣
∣
∣
∣

∑

�∈Zd

eλ〈k,η〉s 〈k, η〉σ r̂�(t)ĝk−�(η − �t)

∣
∣
∣
∣
∣
∣

2

dη � ‖r(t)‖2
Fλ,σ ;s ‖g‖2

Gλ,σ ;s .

(3.14)

Proof We only prove (3.13), which is slightly harder. Denote Bk(η) = 〈k, η〉σ eλ〈k,η〉s
.

The proof proceeds by decomposing with a paraproduct:

∑

k,�∈Zd

∫

η

∣
∣
∣Bĝ1

k(η)Bk(η)r̂�(t)ĝ2
k−�(η − �t)

∣
∣
∣ dη

≤
∑

N≥8

∑

k,�∈Zd∗

∫

η

∣
∣
∣Bĝ1

k(η)Bk(η)r̂�(t)N ĝ2
k−�(η − �t)<N/8

∣
∣
∣ dη

+
∑

N≥8

∑

k,�∈Zd∗

∫

η

∣
∣
∣Bĝ1

k(η)Bk(η)r̂�(t)<N/8ĝ2
k−l(η − �t)N

∣
∣
∣ dη

+
∑

N∈D

∑

N/8≤N ′≤8N

∑

k,�∈Zd∗

∫

η

∣
∣
∣Bĝ1

k(η)Bk(η)r̂�(t)N ′ ĝ2
k−�(η − �t)N

∣
∣
∣ dη

= R + T + R.

Note that the R and T term are almost, but not quite, symmetric. Consider first the R
term. On the support of the integrand we have the frequency localizations

N

2
≤ |�, �t | ≤ 3N

2
, (3.15a)

|k − �, η − �t | ≤ 3N

32
, (3.15b)

13

16
≤ |k, η|

|�, t�| ≤ 19

16
. (3.15c)

123



Landau Damping: Paraproducts and Gevrey Regularity Page 25 of 71 4

Therefore, by (3.11), there exists some c = c(s) ∈ (0, 1) such that

Bk(η) ≤ 〈k, η〉σ eλ〈�,�t〉s
ecλ〈k−�,η−�t〉s �σ 〈�, t�〉σ eλ〈�,�t〉s

ecλ〈k−�,η−�t〉s

�λ 〈�, t�〉σ eλ〈�,�t〉s 〈k − �, η − �t〉− d
2 −1e

1
2 (c+1)λ〈k−�,η−�t〉s

,

where in the last inequality we applied (3.8). Adding a frequency localization with
(3.15), denoting c̃ = 1

2 (c + 1), and using (3.2) we have

R �
∑

N≥8

∑

k,�∈Zd∗

∫

η

∣
∣
∣Bĝ1

k(η)∼N B�(�t)r̂�(t)N ec̃λ〈k−�,η−�t〉s

〈k − �, η − �t〉− d
2 −1ĝ2

k−l(η − lt)<N/8

∣
∣
∣ dη

�
∑

N≥8

∥
∥
∥g1∼N

∥
∥
∥Gλ,σ ;s ‖r(t)N ‖Fλ,σ ;s

∥
∥
∥g2

∥
∥
∥F c̃λ,0;s .

By Cauchy-Schwarz and (3.4) we have

R �
∥
∥
∥g1

∥
∥
∥Gλ,σ ;s ‖r(t)‖Fλ,σ ;s

∥
∥
∥g2

∥
∥
∥F c̃λ,0;s ,

which appears on the RHS of (3.13). Treating the T term is essentially the same except
reversing the role of (�, t�) and (k − �, η − t�) and applying (3.1) as opposed to (3.2).

To treat the R term we use a simple variant. We claim that there exists some
c′ = c′(s) ∈ (0, 1) such that on the support of the integrand we have

Bk(η) �σ ec′λ〈k−�,η−t�〉s
ec′λ〈�,t�〉s

. (3.16)

To see this, consider separately the cases (say) N ≥ 128 and N < 128. On the latter,
Bk(η) is simply bounded by a constant. In the case N ≥ 128 we have the frequency
localizations

N

2
≤ |k − �, η − �t | ≤ 3N

2
, (3.17a)

N ′

2
≤ |�, �t | ≤ 3N ′

2
, (3.17b)

1

24
≤ |k − �, η − kt |

|�, �t | ≤ 24, (3.17c)

and hence we may apply (3.12) since in this case 64 ≤ |k − �, η − �τ | ≈ |�, �τ |.
Further, we can use (3.8) to absorb the Sobolev corrections and, indeed, we have
(3.16) on the support of the integrand in R. Hence,

R�
∑

N∈D

∑

N ′≈N

∑

k,�∈Zd∗

∫

η

∣
∣
∣Bĝ1

k(η)ec′λ〈�,�t〉s
r̂�(t)N ′ec′λ〈k−�,η−�t〉s

ĝ2
k−l(η − lt)N

∣
∣
∣ dη.
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Applying (3.2) followed by (3.5) and (3.8) (since c′ < 1) implies,

R �
∑

N∈D

∑

N ′≈N

∥
∥
∥g1

∥
∥
∥Gλ,σ ;s ‖rN ′ ‖F c′λ, d

2 +1;s

∥
∥
∥g2

N

∥
∥
∥Gc′λ,0;s

�
∑

N∈D

1

N

∥
∥
∥g1

∥
∥
∥Gλ,σ ;s ‖r∼N ‖F c′λ, d

2 +2;s

∥
∥
∥g2

N

∥
∥
∥Gc′λ,0;s

�λ,σ

∥
∥
∥g1

∥
∥
∥Gλ,σ ;s ‖r‖Fλ,σ ;s

∥
∥
∥g2

∥
∥
∥Gc′λ,0;s .

Hence (after possibly adjusting c̃) this term appears on the RHS of (3.13). ��
We also need the standard Sobolev space trace lemma, which we will apply on the

Fourier side.

Lemma 3.4 (L2 Trace) Let u be smooth on R
d and C ⊂ R

d be an arbitrary straight
line. Then for all σ ∈ R+ with σ > (d − 1)/2,

‖u‖L2(C) � ‖u‖Hσ (Rd ) .

Proof It follows by induction on co-dimension with the standard H1/2 restriction
theorem [1]. ��

4 Linear Damping in Gevrey Regularity

The first step to proving (2.12c) is understanding (forced) linear Landau damping in
the L2 Gevrey norms we are using. This is provided by the following lemma, which
also shows that (L) implies linear damping in all Gevrey regularities (s > 1/3 is not
relevant to the proof). It is crucial that the same norm appears on both sides of (4.2)
so that we may use it in the nonlinear estimate on ρ(t). The main idea of the proof
of Lemma 4.1 appears in [67] to treat damping in Gevrey regularity and is based on
decomposing the solution into analytic/exponentially decaying sub-components. We
note that Lin and Zeng in [52] have linear damping results at much lower regularities
(similarly, we believe the following proof can be adapted also to Sobolev spaces). We
will first give a formal proof of Lemma 4.1 as an a priori estimate in §4.1 and then
explain the rigorous justification in §4.2. In §4.3, we discuss the proof that the Penrose
condition [73] implies (L).

Lemma 4.1 (Linear integral-in-time control) Let f 0 satisfy the condition (L) with
constants M > d/2 and C0, λ̄, κ > 0. Let Ak(t, η) be the multiplier defined in (2.7)
for s ∈ (0, 1), and λ = λ(t) ∈ (0, λ0) as defined in (2.8). Let F(t) and T � > 0 be
given such that, if we denote I = [0, T �),

∫ T∗

0
‖F(t)‖2

Fλ(t),σ ;s dt =
∑

k∈Zd∗

‖Ak(t, kt)Fk(t)‖2
L2

t (I )
< ∞.
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Then there exists a constant CL D = CL D(C0, λ̄, κ, s, d, λ0, λ
′) such that for all k ∈

Z
d∗ , the solution φk(t) to the system

φk(t) = Fk(t) +
∫ t

0
K 0(t − τ, k)φk(τ ) dτ (4.1)

in t ∈ R+ with K 0(t, k) := − f̃ 0 (kt) Ŵ (k) |k|2 t satisfies the mode-by-mode estimate

∀ k ∈ Z
d∗,

∫ T∗

0
Ak(t, kt)2|φk(t)|2 dt ≤ C2

L D

∫ T∗

0
Ak(t, kt)|Fk(t))|2 dt (4.2)

which is equivalent to
∫ T∗

0 ‖φ‖2
Fλ(t),σ ;s dt ≤ C2

L D

∫ T∗
0 ‖F‖2

Fλ(t),σ ;s dt .

Remark 15 The proof proceeds slightly differently in the case s = 1 where the addi-
tional requirement λ̄ > λ(0) occurs naturally (and the constant badly depends in the
parameter λ̄ − λ(0)).

4.1 Proof of the A Priori Estimate

We only consider the s < 1 case; the analytic case is only a slight variation. As the
hypothesis on F is known a priori only to hold on [0, T∗), we simply extend Fk(t) to
be zero for all t ≥ T∗.

Step 1. Rough Grönwall bound. First we deduce a rough bound using Grönwall’s
inequality with no attempt to be optimal. This bound shows in particular that the
integral equation (4.1) is globally well-posed (for each frequency k ∈ Z

d∗) in the norm
associated with the multiplier A. By (3.9), the definition of K 0, (1.3) and that λ(t) is
non-increasing in time,

Ak(t, kt) |φk(t)| ≤ Ak(t, kt) |Fk(t)| +
∫ t

0
Ak(t, kt)

∣
∣
∣K 0(t − τ, k)

∣
∣
∣ |φk(τ )| dτ

� Ak(t, kt) |Fk(t)| +
∫ t

0
〈k(t − τ)〉σ eλ(t)〈k(t−τ)〉s

×
∣
∣
∣∇̂v f 0(k(t − τ))

∣
∣
∣ Ak(τ, kτ) |φk(τ )| dτ.

Then by (3.8), the Hd/2+ ↪→ C0 embedding theorem and (1.9),

Ak(t, kt) |φk(t)| � Ak(t, kt) |Fk(t)| +
(

sup
η∈Rd

〈η〉σ eλ(0)〈η〉s
∣
∣
∣ f̂ 0(η)

∣
∣
∣

)

×
∫ t

0
Ak(τ, kτ) |φk(τ )| dτ

� Ak(t, kt) |Fk(t)| +
∥
∥
∥〈η〉σ eλ(0)〈η〉s

f̂ 0(η)

∥
∥
∥

H M
η

×
∫ t

0
Ak(τ, kτ) |φk(τ )| dτ.
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By (1.9) with (3.8), it follows by Grönwall’s inequality that for some C > 0 we have
the following (using also Cauchy-Schwarz and (3.8) in the last inequality),

Ak(t, kt) |φk(t)| � eCt
∫ t

0
|Ak(τ, kτ)Fk(τ )| dτ � e2Ct ‖AFk‖L2

t (I ) . (4.3)

Step 2. Frequency localization. We would like to use the Fourier-Laplace transform as
in [67], but Fk(t) does not decay exponentially in time. Instead, we deduce the esti-
mate by decomposing the problem into a countable number of exponentially decaying
contributions. Let R ≥ e to be a constant fixed later depending only on λ̄, λ(0)−1 and
s, let Fn

k (t) = Fk(t)1Rn≤|kt |s≤R(n+1), and define φn
k as solutions to

φn
k (t) = Fn

k (t) +
∫ t

0
K 0(t − τ, k)φn

k (τ ) dτ. (4.4)

Then φk(t) = ∑∞
n=0 φn

k (t) by linearity of the equation, and by the definition of Fn
k (t),

φn
k (t) is supported for |kt |s ≥ Rn. Moreover, obviously (4.3) holds for each φn

k . Now
we will use the Fourier-Laplace transform in time to get an L2

t estimate on φn
k as in

[67], but with a contour which gets progressively closer to the imaginary axis as n
increases. Define the indices μn as

μ0 = μ1,

μn = 1

(Rn)1/s

[

λ

(
(Rn)1/s

|k|
)

〈(Rn)1/s〉s + σ log〈(Rn)1/s〉
]

, n ≥ 1.

We will have the requirement that μn < λ̄ so that our integration contour always lies
in the half plane defined in (L). As long as s < 1 this only requires us to choose
R large relative to λ̄(λ(0))−1, so to fix ideas suppose that R is large enough so that
sup μn < λ̄/2. Define the amplitude corrections

Nk,0 = 〈k〉σ exp

[

λ

(
(R)1/s

|k|
)

〈k〉σ
]

,

Nk,n = 〈k, (Rn)1/s〉σ
〈(Rn)1/s〉σ exp

[

λ

(
(Rn)1/s

|k|
)[

〈k, (Rn)1/s〉s − 〈(Rn)1/s〉s
]]

n ≥ 1.

The role of this correction is highlighted by the fact that when |kt | = (Rn)1/s and
n ≥ 1, then ⎧

⎪⎪⎨

⎪⎪⎩

eμn |kt | = 〈kt〉σ eλ(t)〈kt〉s

Nn,k = 〈k, kt〉σ
〈kt〉σ eλ(t)(〈k,kt〉s−〈kt〉s )

eμn |kt |Nn,k = 〈k, kt〉σ eλ(t)〈k,kt〉s = Ak(t, kt).

Hence the index μn is related to the radius of analyticity in the velocity variable,
whereas the correction Nk,n measures the ratio of what is lost by not taking into
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account the regularity in the space variable. A further error is introduced by the fact
that these regularity weights only exactly fit the multiplier A at the left endpoint of
the interval of the decomposition.

Step 3. The one-block estimate via the Fourier-Laplace transform. Now multiply (4.4)
by eμn |k|t Nk,n , and denoting

{
Rn

k (t) = eμn |k|t Nk,n Fn
k (t)

�n
k (t) = eμn |k|t Nk,nφn

k (t),

we have

�n
k (t) = Rn

k (t) +
∫ t

0
eμn |k|(t−τ)K 0(t − τ, k)�n

k (τ ) dτ. (4.5)

Taking the Fourier transform in time Ĝ(ω) = (1/
√

2π)
∫

R
e−i tωG(t) dt (extending

Rn
k and �n

k and K 0 as zero for negative times)1 we obtain

�̂n
k (ω) = R̂n

k (ω) + L
(

k, μn + i
ω

|k|
)

�̂n
k (ω),

(where L(ξ, k) := ∫ +∞
0 eξ̄ |k|t K 0(t, k) dt), which is formally solved as

�n
k (ω) = R̂n

k (ω)

1 − L
(

k, μn + i ω
|k|
) .

Applying the stability condition (L) and Plancherel’s theorem implies

∥
∥�n

k (t)
∥
∥

L2
t (R)

� 1

κ

∥
∥Rn

k (t)
∥
∥

L2
t (R)

. (4.6)

Step 4. Coming back to the original multiplier A. Consider Rn ≤ |kt |s ≤ R(n + 1)

for n ≥ 1. From the definition (2.8) of λ(t) we see that if R is chosen sufficiently large
then for t ≥ R1/s we have

d

dt

(
λ(t)〈k, kt〉s) =

(

λ̇(t) + sλ(t)
|k| |k, kt |
〈k, kt〉2

)

〈k, kt〉s

=
(

−a(λ0 − λ′)
4〈t〉1+a

+ s |k| λ(t)
|k, kt |
〈k, kt〉2

)

〈k, kt〉s > 0,

1 The tacit assumption that the Fourier transform of �n
k (t) exists is where the a priori estimate is not

rigorous. We justify that the transform exists and that this computation can be made rigorous in §4.2 below.
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and hence λ(t)〈k, kt〉s is increasing since |k| ≥ 1. Applying this gives,

Nk,neμn |kt | = exp

[

λ

(
(Rn)1/s

|k|
)[

〈k, (Rn)1/s〉s − 〈(Rn)1/s〉s
]] 〈k, (Rn)1/s〉σ

〈(Rn)1/s〉σ

× exp

[ |kt |
(Rn)1/s

(

λ

(
(Rn)1/s

|k|
)

〈(Rn)1/s〉s + σ log〈(Rn)1/s〉
)]

≤ exp
[
λ (t) 〈k, kt〉s] 〈k, kt〉σ 〈(Rn)1/s〉σ

(
(n+1)1/s

n1/s −1

)

× exp

[

λ

(
(Rn)1/s

|k|
)(

(n + 1)1/s

(n)1/s
− 1

)

〈(Rn)1/s〉s
]

�R,λ0,s Ak(t, kt). (4.7)

A similar result holds for n = 0 when |kt |s ≤ R using that λ(t) is non-increasing,

Nk,0eμ0|kt | = exp

[

λ

(
R1/s

|k|
)

〈k〉s
]

〈k〉σ

× exp

[ |kt |
R1/s

(

λ

(
R1/s

|k|
)

〈R1/s〉s + σ log〈R1/s〉
)]

�R Ak(t, kt).

Hence it follows from (4.6) that

∥
∥�n

k (t)
∥
∥

L2
t (R)

� 1

κ

∥
∥AFk(t)1Rn≤|kt |s≤R(n+1)

∥
∥

L2
t (R)

. (4.8)

Step 5. Summation of the different frequency blocks. Now we want to estimate Aφk

by summing over n which will require some almost orthogonality. This is possible
as each φn

k is exponentially localized near |kt |s ≈ Rn. Computing, noting that by
construction φn

k is only supported on |kt |s ≥ Rn,

‖Aφk‖2
L2

t
=
∫ +∞

0

∣
∣
∣
∣
∣

+∞∑

n=0

Ak(t, kt)φn
k (t)

∣
∣
∣
∣
∣

2

dt

�
∫ ∞

0

∣
∣
∣Ak(t, kt)φ0

k (t)
∣
∣
∣
2

dt +
∫ ∞

0

∣
∣
∣
∣
∣

∞∑

n=1

Ak(t, kt)e−μn |kt |N−1
k,n 1|kt |s≥Rn�n

k (t)

∣
∣
∣
∣
∣

2

dt

=
∫ ∞

0

∣
∣
∣Ak(t, kt)φ0

k (t)
∣
∣
∣
2

dt +
∫ ∞

0

∑

n,n′≥1

Ak(t, kt)2e−μn |kt |

× N−1
k,n e−μn′ |kt |N−1

k,n′1|kt |s≥Rn1|kt |s≥Rn′�n
k (t)�n′

k (t) dt. (4.9)

First we will approach the infinite sum, which is the more challenging term. For this
we use Schur’s test. Indeed, if we denote the interaction kernel

Kn,n′(t, k) := Ak(t, kt)2e−μn |kt |N−1
k,ne−μn′ |kt |N−1

k,n′1|kt |s≥Rn1|kt |s≥Rn′ ,
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then Schur’s test (or Cauchy-Schwarz three times) implies

∫ +∞

0

∑

n,n′≥1

Kn,n′(t, k)�n′
k (t)�n

k (t) dt ≤
(

sup
t∈[0,∞)

sup
n≥1

∞∑

n′=1

Kn,n′(t, k)

)1/2

×
(

sup
t∈[0,∞)

sup
n′≥1

∞∑

n=1

Kn,n′(t, k)

)1/2

×
∞∑

n=1

∥
∥�n

k (t)
∥
∥2

L2
t (R)

. (4.10)

It remains to see that the row and column sums of the interaction kernel are uniformly
bounded in time. Since the kernel is symmetric in n and n′ it suffices to consider only
one of the sums. The computations above to deduce (4.7) can be adapted to show at
least that

Ak(t, kt)e−μn′ |kt |N−1
k,n′1|kt |s≥Rn′ �R 1,

and hence, since λ(t) is decreasing,

+∞∑

n=1

Kn,n′(t, k) �R

+∞∑

n=1

Ak(t, kt)e−μn |kt |N−1
k,n 1|kt |s≥Rn

=
+∞∑

n=1

1|kt |s≥Rne
λ(t)〈k,kt〉s−λ

(
(Rn)1/s

|k|
)
(〈k,(Rn)1/s 〉s−〈(Rn)1/s 〉s

) 〈k, kt〉σ 〈(Rn)1/s〉σ
〈k, (Rn)1/s〉σ e−μn |kt |

�
+∞∑

n=1

1|kt |s≥Rneλ(t)〈k,kt〉s−λ(t)
(〈k,(Rn)1/s 〉s−〈(Rn)1/s 〉s

) 〈k, kt〉σ 〈(Rn)1/s〉σ
〈k, (Rn)1/s〉σ

× e
− |kt |

(Rn)1/s

[
λ(t)〈(Rn)1/s 〉s+σ log〈(Rn)1/s 〉]

.

Since e ≤ (Rn)1/s ≤ |kt |, we have −〈k, (Rn)1/s〉s + 〈(Rn)1/s〉s ≤ 〈kt〉s − 〈k, kt〉s

since the LHS is increasing as a function of n and therefore,

+∞∑

n=1

Kn,n′(t, k)

�
+∞∑

n=1

1|kt |s≥Rne
λ(t)〈kt〉s

[

1− |kt |〈(Rn)1/s 〉s
(Rn)1/s 〈kt〉s

]

e
σ log

[
〈k,kt〉〈(Rn)1/s 〉

〈k,(Rn)1/s 〉

]

−σ
|kt |

(Rn)1/s log〈(Rn)1/s 〉
.

Since 〈x〉〈k, x〉−1 is increasing in x for |k| ≥ 1 and x ≥ 0, we have

+∞∑

n=1

Kn,n′(t, k) �
+∞∑

n=1

1|kt |s≥Rne
λ(t)〈kt〉s

[

1− |kt |〈(Rn)1/s 〉s
(Rn)1/s 〈kt〉s

]

e
σ log〈kt〉

(

1− |kt | log〈(Rn)1/s 〉
(Rn)1/s log〈kt〉

)

.
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Finally using that x/ log〈x〉 is increasing for x ≥ e we get

+∞∑

n=1

Kn,n′(t, k) �
+∞∑

n=1

1|kt |s≥Rne
λ(t)〈kt〉s

[

1− |kt |〈(Rn)1/s 〉s
(Rn)1/s 〈kt〉s

]

.

Using that 〈x1/s〉s ≥ x , the sum can be bounded by

∞∑

n=1

Kn,n′(t, k) �R eλ(t)〈kt〉s
∫ |kt |s

R
e
−λ(t)|kt | 〈x1/s 〉s

x1/s dx

� eλ(t)〈kt〉s
∫ |kt |s

R
e−λ(t)|kt |x1−1/s

dx

� eλ(t)〈kt〉s
∫ R1−1/s

|kt |s−1
e−λ(t)|kt |τ τ

1
s−1 dτ � 1.

This shows that the row sums of Kn,n′(t, k) are uniformly bounded; by symmetry
the column sums are also bounded and by (4.10), this completes the treatment of the
summation in (4.9).

Now we turn our attention to the n = 0 term in (4.9). By (4.3),

∫ +∞

0

∣
∣
∣Ak(t, kt)φ0

k (t)
∣
∣
∣
2

dt =
∫ R1/s

0

∣
∣
∣Ak(t, kt)φ0

k (t)
∣
∣
∣
2

dt +
∫ +∞

R1/s

∣
∣
∣Ak(t, kt)φ0

k (t)
∣
∣
∣
2

dt

�R ‖AFk‖2
L2

t (R)
+
∫ +∞

R1/s

∣
∣
∣Ak(t, kt)φ0

k (t)
∣
∣
∣
2

dt. (4.11)

However, for |t | ≥ R1/s , we have by (3.9), that λ(t) is non-increasing and (3.7),

Ak(t, kt) ≤ eλ(t)〈k〉s+λ(t)〈kt〉s 〈k〉σ 〈kt〉σ �R e
λ
(

R1/s
|k|

)
〈k〉s 〈k〉σ eμ0|kt | � Nk,0eμ0|kt |,

which implies with (4.11) and (4.8) that

∫ ∞

0

∣
∣
∣Ak(t, kt)φ0

k (t)
∣
∣
∣
2

dt �
(

1 + 1

κ2

)

‖AFk‖L2
t (R) . (4.12)

Combining (4.9), (4.12), (4.10) with (4.8) we have

‖Aφk‖2
L2

t (I )
�R

(

1 + 1

κ2

)

‖AFk‖2
L2

t (R)
+

∞∑

n=1

∥
∥�n

k (t)
∥
∥2

L2
t (I )

�
(

1 + 1

κ2

) ∞∑

n=0

∥
∥AFk(t)1Rn≤|kt |s≤R(n+1)

∥
∥2

L2
t (R)

,

which completes the proof of the lemma.
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4.2 Rigorous Justification of the A Priori Estimate

The reader may have noticed that in the previous subsection it seems that we only
used the bound from below |1 − L(k, ξ)| ≥ κ with ξ = μn + iω/|k|, i.e. in the strip
�e ξ ∈ (0, λ̄/2). The subtlety is that the Fourier-Laplace transform of �n

k (t) is only
granted to exist when some L2 integrability as t → ∞ is known.

To be more specific, consider (4.5). From the Grönwall bound (4.3) established
in step 1, it is clear that the Fourier-Laplace transform would exist if one chooses
μn < −2C , however it is not clear that we can perform the computation as μn

approaches the imaginary axis. In order to avoid a circular argument –establishing
some time decay by assuming the existence of a Fourier-Laplace transform which
already requires some time decay–, we can appeal to several arguments:

1. We can use as a black box the Paley-Wiener theory (see [72, Chap. 18] or [33,
Chap. 2]): for every f ∈ L1

loc(R+) there exists a unique solution u ∈ L1
loc(R+) to

the integral equation u = f +k∗u with k ∈ L1
t and with k ≤ eCt for some constant

C > 0 (where the convolution over t ∈ R+ is defined as before by extending
functions to zero on R−), given by u = f − f ∗ r where r ∈ L1

loc(R+) is the
so-called resolvent kernel of k. The latter is the unique solution to r = k +r ∗k and
the key result of the theory is that r ∈ L1(R+) iff the Fourier-Laplace transform
of k satisfies L[k](ξ) 
= 1 for any �e ξ ≤ 0. As soon as r, f ∈ L1(R+) we have
u ∈ L1(R+). Then step 3 of Lemma 4.1 can be justified by applying this theory
to u(t) := �n

k (t), f (t) := Rn
k (t) and k(t) := eμn |k|t K 0(t, k).

2. A second method is to use an approximation argument, in the spirit of energy
methods in PDEs, which was discussed in [84, Section3]. Define �n

k,δ(t) :=
�n

k (t)e−δt2/2. Now we have the existence of Fourier-Laplace transform of �n
k (t)

for any μn thanks to the Gaussian decay in time and (4.3). Using the Fourier-
Laplace transform on (4.5) and (L), we may deduce that for μn < −2C (where
2C comes from the estimate (4.3)) that the following formula holds:

�̂n
k,δ(ω) =

⎛

⎝
R̂n

k (ω)

1 − L
(

k, μn + i ω
|k|
)

⎞

⎠ ∗ γδ, γδ(ω) := e− |ω|2
2δ√

2πδ
.

Since this is an analytic function in μn and ω as long as we do not approach
a singularity, by analytic continuation we may deduce that this formula remains
valid for all μn < λ̄ by (L). Therefore by Plancherel’s theorem

∥
∥�n

k,δ(t)
∥
∥

L2
t (R)

� 1

κ

∥
∥Rn

k (t)
∥
∥

L2
t (R)

‖γδ‖L1(R) � 1

κ

∥
∥Rn

k (t)
∥
∥

L2
t (R)

which is an estimate independent of δ > 0. We then let δ go to zero and deduce
by Fatou’s lemma the desired bound (4.6):

∥
∥�n

k (t)
∥
∥

L2
t (R)

� 1

κ

∥
∥Rn

k (t)
∥
∥

L2
t (R)

(which also justifies the existence of the Fourier-Laplace transform).
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Remark 16 Let us mention to finish with that the present discussion is related to the
Gerhart-Herbst-Prüss-Greiner theorem [2,26,39,75] (see also [24]) for semigroups in
Hilbert spaces. The latter asserts that the semigroup decay is given by the spectral
bound, under a sole pointwise control on the resolvent. While the constants seem
to be non-constructive in the first versions of this theorem, Engel and Nagel gave a
comprehensive and elementary proof with constructive constant in [24, Theorem 1.10;
chapter V]. Let us also mention on the same subject subsequent more recent works like
[38]. The main idea in the proof of [24, Theorem1.10,chapterV], which is also used in
[38], is to use a Plancherel identity on the resolvent in Hilbert spaces in order to obtain
explicit rates of decay on the semigroup in terms of bounds on the resolvent. However
in the Volterra integral equation we study here, there is no semigroup structure on the
unknown φk(t), and we cannot appeal directly to these classical results.

4.3 The Penrose Criterion

A generalized form of the Penrose criterion [73] was given in [67] as follows:

(P) ∀ k ∈ Z
d∗ and r ∈ R s.t. ( f 0

k )′(r) = 0, Ŵ (k)

(

p.v.
∫

R

( f 0
k )′(r)

r − w
dr

)

< 1,

(4.13)

where f 0
k denotes the marginals of the background f 0 along arbitrary wave vector

k ∈ Z
d∗ :

f 0
k (r) :=

∫

kr/|k|+k⊥
f 0(w) dw, r ∈ R.

The proof that condition (P) implies the condition (L) was not quite complete in [67]
as it was proved only that (P) implies the lower bound |1 − L(k, ξ)| ≥ κ in a strip
and not in a half-plane. The complete proof due to Penrose relies on the argument
principle. The starting point is to observe that L(k, ξ) = ∫ +∞

0 eξ̄ |k|t K 0(t, k) dt with

ξ = λ + iζ and K 0(t, k) := − f̂ 0 (kt) Ŵ (k) |k|2 t is well-defined for λ < λ̄ by the
analyticity of f 0 and is small for large ζ by integration by parts. We therefore restrict
ourselves to a compact interval |ζ | ≤ C in ζ , and we compute by the Plemelj formula
(see [67] for more details) that

L(k, iζ ) = Ŵ (k)

[(

p.v.
∫

R

( f 0
k )′(r)

r − ζ
dr

)

− iπ( f 0
k )′(ζ )

]

. (4.14)

Therefore, the condition (P) implies that |1 − L(k, ξ)| ≥ 2κ for some κ > 0 at
λ = 0 and for |ζ | ≤ C . Combined with smallness for large ζ and continuity, we
deduce the lower bound |1 − L(k, ξ)| ≥ κ in a strip �e ξ ∈ [0, λ′] for some λ′ > 0.
Since the function ξ �→ L(k, ξ) is holomorphic on �e ξ < λ̄ and the value 1 is not
taken on iR, by the argument principle, the value 1 can only be taken on �e ξ < 0

123



Landau Damping: Paraproducts and Gevrey Regularity Page 35 of 71 4

if � : ζ �→ L(k, iζ ) has a positive winding number around this value. However, this
would imply that the curve � crosses the real axis above 1, which is prohibited again
by (4.14) and (P), which concludes the proof.

5 Energy Estimates on the (ρ, g) System

In this section we perform the necessary energy estimates to prove Proposition 2.2,
that is, we deduce the multi-tier controls stated in (2.12) from (2.11) for suitable Ki

and sufficiently small ε.

5.1 L2
t (I) Estimates on the Density (Equation (2.12c))

The most fundamental estimate we need to make is the L2
t (I ) control (2.12c), which

requires the linear damping Lemma 4.1 and the crucial plasma echo analysis carried
out in §6 (which we apply as a black box in this section). The controls (2.11b) and
(2.11a) were chosen specifically for this.

To highlight its primary importance, we state the inequality as a separate proposi-
tion.

Proposition 5.1 (Nonlinear control of ρ) For suitable Ki and ε0 sufficiently small,
the estimate (2.12c) holds under the bootstrap hypotheses (2.11).

Proof Proposition 5.1 requires two main controls, which follow from (2.11b) and
(2.11a) respectively.

(a) Define the time-response kernel K̄k,�(t, τ ) for some c = c(s) ∈ (0, 1) (deter-
mined by the proof):

K̄k,�(t, τ ) = 1

|�|γ e(λ(t)−λ(τ))〈k,kt〉s
ecλ(τ)〈k−�,kt−�τ 〉s

× ∣
∣k(t − τ)ĝk−�(τ, kt − �τ)

∣
∣ 1� 
=0. (5.1)

Proposition 5.1 will depend on the estimate
⎛

⎝sup
t≥0

sup
k∈Zd∗

∫ t

0

∑

�∈Zd∗

K̄k,�(t, τ ) dτ

⎞

⎠

⎛

⎝sup
τ≥0

sup
�∈Zd∗

∑

k∈Zd∗

∫ ∞

τ

K̄k,�(t, τ ) dt

⎞

⎠ � K2ε
2.

(5.2)

(b) Proposition 5.1 will also depend on the estimate

sup
τ≥0

e(c−1)α0〈τ 〉s ∑

k∈Zd

sup
ω∈Zd∗

sup
x∈Rd

∫ ∞

−∞

∣
∣
∣
∣(A∇̂g)k

(

τ,
ω

|ω|ζ − x

)∣
∣
∣
∣

2

dζ � K1ε
2.

(5.3)

The condition (5.2) controls reaction: the interaction of the density with the lower
frequencies of g; condition (5.3) controls transport: the interaction with higher fre-
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quencies of g. The latter, condition (5.3), follows from (2.11a): by Lemma 3.4 followed
by (2.14),

∑

k∈Zd

sup
ω∈Zd∗

sup
x∈Rd

∫ ∞

−∞

∣
∣
∣
∣(A∇̂g)k

(

τ,
ω

|ω|ζ − x

)∣
∣
∣
∣

2

dζ �M
∥
∥A∇̂g(τ )

∥
∥2

L2
k H M

η
� K1ε

2〈τ 〉7,

from which (5.3) follows by (3.8) and c < 1. Since condition (5.2) is much harder to
verify and contains the physical mechanism of the plasma echoes, we prove Proposition
5.1 assuming (5.2). In §6 below, we prove that (5.2) follows from (2.11b).

Expanding the integral equation (2.6) using the paraproduct decomposition:

ρ̂k(t) = ĥin(k, kt) −
∫ t

0
ρ̂k(τ ) |k|2 Ŵ (k)(t − τ) f̂ 0(k(t − τ)) dτ

−
∫ t

0

∑

�∈Zd∗

∑

N≥8

ρ̂�(τ )<N/8Ŵ (�)� · k(t − τ)ĝk−�(τ, kt − �τ)N dτ

−
∫ t

0

∑

�∈Zd∗

∑

N≥8

ρ̂�(τ )N Ŵ (�)� · k(t − τ)ĝk−�(τ, kt − �τ)<N/8 dτ

−
∫ t

0

∑

�∈Zd∗

∑

N∈D

∑

N/8≤N ′≤8N

ρ̂�(τ )N ′ Ŵ (�)� · k(t − τ)ĝk−�(τ, kt − �τ)N dτ,

= ĥin(k, kt) −
∫ t

0
ρ̂k(τ ) |k|2 Ŵ (k)(t − τ) f̂ 0(k(t − τ)) dτ

− Tk(t) − Rk(t) − Rk(t). (5.4)

Recall our convention that the Littlewood-Paley projection of ρ̂�(τ ) treats �τ in place
of the v frequency. We begin by applying Lemma 4.1 to (5.4), which implies for each
k ∈ Z

d∗ ,

∥
∥Aρ̂k

∥
∥2

L2
t (I ) � CL D

∥
∥
∥Ak(·, k·)ĥin(k, k·)

∥
∥
∥

2

L2
t (I )

+ CL D ‖ATk‖2
L2

t (I )

+ CL D ‖ARk‖2
L2

t (I )
+ CL D ‖ARk‖2

L2
t (I )

. (5.5)

First, Lemma 3.4 and a version of the argument applied in (2.13) (using also that λ(t)
is decreasing (2.8)) imply

∑

k∈Zd∗

∥
∥
∥Ak(·, k·)ĥin(k, k·)

∥
∥
∥

2

L2
t (I )

=
∑

k∈Zd∗

∫ T �

0

∣
∣
∣Ak(t, kt)ĥin(k, kt)

∣
∣
∣
2

dt

�
∑

k∈Zd∗

∥
∥
∥Ak(0, ·)ĥin(k, ·)

∥
∥
∥

2

H M (Rd
η)

� ε2. (5.6)

��
Now we turn to the nonlinear contributions in (5.4).
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Landau Damping: Paraproducts and Gevrey Regularity Page 37 of 71 4

5.1.1 Reaction

Our goal is to show

‖AR‖2
L2

k L2
t (I )

� K2ε
2
∥
∥Aρ̂

∥
∥2

L2
k L2

t (I ) , (5.7)

since for ε chosen sufficiently small, this contribution can then be absorbed on the
LHS of (5.5).

First, by applying (1.3),

‖AR‖2
L2

k L2
t (I )

�
∑

k∈Zd∗

∫ T �

0

⎡

⎣Ak(t, kt)
∫ t

0

∑

�∈Zd∗

∑

N≥8

∣
∣
∣
∣ĝk−�(τ, kt − �τ)<N/8

|k(t − τ)|
|�|γ ρ̂�(τ )N

∣
∣
∣
∣ dτ

⎤

⎦

2

dt.

By definition, the Littlewood-Paley projections imply the frequency localizations (as
in (3.15)):

N

2
≤ |�| + |�τ | ≤ 3N

2
, (5.8a)

|k − �| + |kt − �τ | ≤ 3N

32
, (5.8b)

13

16
≤ |k, kt |

|�, τ�| ≤ 19

16
. (5.8c)

From (5.8), on the support of the integrand, (3.11) implies that for some c = c(s) ∈
(0, 1):

Ak(t, kt) = e(λ(t)−λ(τ))〈k,kt〉s
Ak(τ, kt) � e(λ(t)−λ(τ))〈k,kt〉s

ecλ(τ)〈k−�,kt−�τ 〉s
A�(τ, �τ ).

(5.9)

Therefore, by definition of K̄ we have (dropping the Littlewood-Paley projection on
g),

‖AR‖2
L2

k L2
t (I )

�
∑

k∈Zd∗

∫ T �

0

⎡

⎣

∫ t

0

∑

�∈Zd∗

K̄k,�(t, τ )A�(τ, �τ )
∑

N≥8

∣
∣ρ̂�(τ )N

∣
∣ dτ

⎤

⎦

2

dt.

Since the Littlewood-Paley projections define a partition of unity,

‖AR‖2
L2

k L2
t (I )

�
∑

k∈Zd∗

∫ T �

0

⎡

⎣

∫ t

0

∑

�∈Zd∗

K̄k,�(t, τ )A�(τ, �τ )
∣
∣ρ̂�(τ )

∣
∣ dτ

⎤

⎦

2

dt.
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From here we may proceed analogous to §7 in [67], for which we apply Schur’s test
in L2

k L2
t . Indeed,

‖AR‖2
L2

k L2
t (I )

�
∑

k∈Zd∗

∫ T �

0

⎛

⎝

∫ t

0

∑

�∈Zd∗

K̄k,�(t, τ ) dτ

⎞

⎠

×
⎛

⎝

∫ t

0

∑

�∈Zd∗

K̄k,�(t, τ )
∣
∣A�(τ, �τ )ρ̂�(τ )

∣
∣2 dτ

⎞

⎠ dt

≤
⎛

⎝sup
t≥0

sup
k∈Zd∗

∫ t

0

∑

�∈Zd∗

K̄k,�(t, τ ) dτ

⎞

⎠

×
∑

k∈Zd∗

∫ T �

0

⎛

⎝

∫ t

0

∑

�∈Zd∗

K̄k,�(t, τ )
∣
∣A�(τ, �τ )ρ̂�(τ )

∣
∣2 dτ

⎞

⎠ dt.

By Fubini’s theorem,

‖AR‖2
L2

k L2
t (I )

�

⎛

⎝sup
t≥0

sup
k∈Zd∗

∫ t

0

∑

�∈Zd∗

K̄k,�(t, τ ) dτ

⎞

⎠

×
∑

�∈Zd∗

∫ T �

0

⎛

⎝

∫ T �

τ

∑

k∈Zd∗

K̄k,�(t, τ ) dt

⎞

⎠
∣
∣A�(τ, �τ )ρ̂�(τ )

∣
∣2 dτ

�

⎛

⎝sup
t≥0

sup
k∈Zd∗

∫ t

0

∑

�∈Zd∗

K̄k,�(t, τ ) dτ

⎞

⎠

×
⎛

⎝sup
τ≥0

sup
�∈Zd∗

∑

k∈Zd∗

∫ T �

τ

K̄k,�(t, τ ) dt

⎞

⎠
∥
∥Aρ̂

∥
∥2

L2
k L2

t (I ) .

Hence, condition (5.2) implies (5.7).

5.1.2 Transport

As above, first apply (1.3),

‖AT ‖2
L2

k L2
t (I )

�
∑

k∈Zd∗

∫ T �

0

⎡

⎣Ak(t, kt)
∫ t

0

∑

�∈Zd∗

∑

N≥8

∣
∣
∣
∣ĝk−�(τ, kt − �τ)N

|k(t − τ)|
|�|γ ρ̂�(τ )<N/8

∣
∣
∣
∣ dτ

⎤

⎦

2

dt.
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By the Littlewood-Paley projections, on the support of the integrand there holds,

N

2
≤ |k − �| + |kt − �τ | ≤ 3N

2
(5.10a)

|�| + |�τ | ≤ 3N

32
(5.10b)

13

16
≤ |k, kt |

|k − �, kt − τ�| ≤ 19

16
. (5.10c)

By (5.10), on the support of the integrand, (3.11) implies that for some c = c(s) ∈
(0, 1):

Ak(t, kt) = e(λ(t)−λ(τ))〈k,kt〉s
Ak(τ, kt)

� e(λ(t)−λ(τ))〈k,kt〉s
ecλ(τ)〈�,�τ 〉s

Ak−�(τ, kt − �τ).

Using that

|k(t − τ)| ≤ |kt − �τ | + τ |k − �| ≤ 〈τ 〉 |k − �, kt − �τ | , (5.11)

we have (ignoring the Littlewood-Paley projection on ρ and the |�|−γ which are not
helpful),

‖AT ‖L2
k L2

t (I ) �
∑

k∈Zd∗

∫ T �

0

⎡

⎣
∑

�∈Zd∗

∫ t

0

∑

N≥8

∣
∣(A∇̂g)k−�(τ, kt − �τ)N

∣
∣

ecλ(τ)〈�,�τ 〉s 〈τ 〉 ∣∣ρ̂�(τ )
∣
∣ dτ

⎤

⎦

2

dt.

Since the Littlewood-Paley projections define a partition of unity (and using also the
Cauchy-Schwarz inequality),

‖AT ‖2
L2

k L2
t (I )

�
∑

k∈Zd∗

∫ T �

0

⎡

⎣
∑

�∈Zd∗

∫ t

0
ecλ(τ)〈�,�τ 〉s 〈τ 〉 ∣∣ρ̂�(τ )

∣
∣ dτ

⎤

⎦

×
⎡

⎣
∑

l∈Zd∗

∫ t

0

∣
∣(A∇̂g)k−�(τ, kt − �τ)

∣
∣2 ecλ(τ)〈�,�τ 〉s 〈τ 〉 ∣∣ρ̂�(τ )

∣
∣ dτ

⎤

⎦ dt.

By Cauchy-Schwarz and σ > d
2 + 2,

∑

�∈Zd∗

∫ t

0
ecλ(τ)〈�,�τ 〉s 〈τ 〉 ∣∣ρ̂�(τ )

∣
∣ dτ ≤

⎛

⎜
⎝

∫ t

0

∑

�∈Zd∗

e2(c−1)λ(τ)〈�,�τ 〉s 〈τ 〉2〈�, �τ 〉−2σ dτ

⎞

⎟
⎠

1/2
∥
∥Aρ̂

∥
∥

L2
k L2

t (I )

�
∥
∥Aρ̂

∥
∥

L2
k L2

t (I ) . (5.12)
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Then (5.12) and Fubini’s theorem imply

‖AT ‖L2
k L2

t (I )

�
∥
∥Aρ̂

∥
∥

L2
k L2

t (I )

∑

k∈Zd∗

∫ T �

0

∑

�∈Zd∗

∫ t

0

∣
∣(A∇̂g)k−�(τ, kt − �τ)

∣
∣2 ecλ(τ)〈�,�τ 〉s 〈τ 〉 ∣∣ρ̂�(τ )

∣
∣ dτ dt

�
∥
∥Aρ̂

∥
∥

L2
k L2

t (I )

∑

�∈Zd∗

∫ T �

0

⎛

⎝
∑

k∈Zd∗

∫ T �

τ

∣
∣(A∇̂g)k−�(τ, kt − �τ)

∣
∣2 dt

⎞

⎠ ecλ(τ)〈�,�τ 〉s 〈τ 〉 ∣∣ρ̂�(τ )
∣
∣ dτ

≤ ∥
∥Aρ̂

∥
∥

L2
k L2

t (I )

∑

�∈Zd∗

∫ T �

0

⎛

⎝
∑

k∈Zd∗

∫ ∞

−∞
∣
∣(A∇̂g)k−�(τ, kt − �τ)

∣
∣2 dt

⎞

⎠ ecλ(τ)〈�,�τ 〉s 〈τ 〉 ∣∣ρ̂�(τ )
∣
∣ dτ

≤ ∥
∥Aρ̂

∥
∥

L2
k L2

t (I )

⎛

⎝sup
τ≥0

e(c−1)α0〈τ 〉s ∑

k∈Zd

sup
ω∈Zd∗

sup
x∈Rd

∫ ∞

−∞

∣
∣
∣
∣(A∇̂g)k

(

τ,
ω

|ω| ζ − x

)∣
∣
∣
∣

2

dζ

⎞

⎠

×
∑

� 
=0

∫ T �

0
eλ(τ)〈l,lτ 〉s 〈τ 〉 ∣∣ρ̂�(τ )

∣
∣ dτ.

Proceeding as in (5.12) then gives

‖AT ‖L2
k L2

t (I ) �
∥
∥Aρ̂

∥
∥2

L2
k L2

t (I )

×
⎛

⎝sup
τ≥0

e(c−1)α0〈τ 〉s ∑

k∈Zd

sup
ω∈Zd∗

sup
x∈Rd

∫ ∞

−∞

∣
∣
∣
∣(A∇̂g)k

(

τ,
ω

|ω|ζ − x

)∣
∣
∣
∣

2

dζ

⎞

⎠ .

Using condition (5.3), we derive

‖AT ‖L2
k L2

t (I ) �α0 K1ε
2
∥
∥Aρ̂

∥
∥2

L2
k L2

t (I ) , (5.13)

which suffices to treat transport.

5.1.3 Remainders

We treat the remainder with a variant of the method used to treat transport. First, by
(1.3):

‖AR‖2
L2

k L2
t (I )

�
∑

k∈Zd∗

∫ T ∗

0

⎡

⎣Ak(t, kt)
∫ t

0

∑

�∈Zd∗

∑

N∈D

∑

N/8≤N ′≤8N

∣
∣ρ̂�(τ )N ′

∣
∣ |k(t − τ)|

∣
∣ĝk−�(τ, kt − �τ)N

∣
∣ dτ

⎤

⎦

2

dt.
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Next we claim that on the integrand there holds for some c′ = c′(s) ∈ (0, 1),

Ak(t, kt) �λ0,α0 ec′λ(τ)〈k−�,kt−�τ 〉s
ec′λ(τ)〈�,�τ 〉s

. (5.14)

Indeed, this follows simply by following the argument used to deduce (3.16), with kt
replace η. Therefore by (5.14), Cauchy-Schwarz,

‖AR‖2
L2

k L2
t (I )

�
∑

k∈Zd∗

∫ T ∗

0

⎡

⎣

∫ t

0

∑

�∈Zd∗

(
∑

N∈D
e2λ(τ)〈�,�τ 〉s 〈τ 〉2

∣
∣ρ̂�(τ )∼N

∣
∣2

)

dτ

⎤

⎦

×
⎡

⎣

∫ t

0

∑

�∈Zd∗

⎛

⎝
∑

N∈D
e2(c′−1)λ(τ )〈�,�τ 〉s

e2c′λ(τ)〈k−�,kt−�τ 〉s

∣
∣∇̂gk−�(τ, kt − �τ)N

∣
∣2

⎞

⎠ dτ

⎤

⎦ dt.

By the almost orthogonality of the Littlewood-Paley decomposition (3.4) and σ > 1,

‖AR‖2
L2

k L2
t (I )

�
∥
∥Aρ̂

∥
∥2

L2
k L2

t (I )

∑

k∈Zd∗

∫ T ∗

0

∫ t

0

∑

�∈Zd∗

(
∑

N∈D
e2(c′−1)λ(τ )〈�,�τ 〉s

× e2c′λ(τ)〈k−�,kt−�τ 〉s ∣∣ĝk−�(τ, kt − �τ)N
∣
∣2

)

dτ dt.

By Fubini’s theorem and Lemma 3.4,

‖AR‖2
L2

k L2
t (I )

�
∥
∥Aρ̂

∥
∥2

L2
k L2

t (I )

∫ T �

0

∑

�∈Zd∗

e2(c′−1)λ(τ )〈�,�τ 〉s

×
⎛

⎝
∑

N∈D

∑

k∈Zd∗

∫ T �

τ

∣
∣A∇̂gk−�(τ, kt − �τ)N

∣
∣2 dt

⎞

⎠ dτ

�
∥
∥Aρ̂

∥
∥2

L2
k L2

t (I )

∫ T �

0

∑

�∈Zd∗

e2(c′−1)λ(τ )〈�,�τ 〉s

×
⎛

⎝
∑

N∈D

∑

k∈Zd

sup
ω∈Zd∗

sup
x∈Rd

∫ ∞

−∞

∣
∣
∣
∣A∇̂gk

(

τ,
ω

|ω|ζ − x

)

N

∣
∣
∣
∣

2

dζ

⎞

⎠ dτ
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�
∥
∥Aρ̂

∥
∥2

L2
k L2

t (I )

∫ T �

0

∑

�∈Zd∗

e2(c′−1)λ(τ )〈�,�τ 〉s

×
⎛

⎝
∑

N∈D

∑

k∈Zd

∥
∥
∥A(1)ĝk(τ )N

∥
∥
∥

2

H M (Rd
η)

⎞

⎠ dτ.

The Littlewood-Paley projections do not commute with derivatives in frequency space,
however since the projections have bounded derivatives we still have (see §3),

‖AR‖2
L2

k L2
t (I )

�M
∥
∥Aρ̂

∥
∥2

L2
k L2

t (I )

∫ T �

0

∑

�∈Zd∗

e2(c′−1)λ(τ )〈�,�τ 〉s

×
⎛

⎝
∑

N∈D

∑

|α|≤M

∥
∥
∥(Dα

η A(1)ĝk)(τ )∼N

∥
∥
∥

2

L2
k L2

η

⎞

⎠ dτ.

Then by the almost orthogonality (3.4) with (2.14), (3.8) and c′ < 1, we have

‖AR‖2
L2

k L2
t (I )

� K1ε
2
∥
∥Aρ̂

∥
∥2

L2
k L2

t (I )

∫ T �

0

∑

�∈Zd∗

e2(c′−1)λ(τ )〈�,�τ 〉s 〈τ 〉7 dτ

� K1ε
2
∥
∥Aρ̂

∥
∥2

L2
k L2

t (I ) , (5.15)

which suffices to treat remainder contributions.

5.1.4 Conclusion of L2 Bound

Putting (5.6), (5.7), (5.13) and (5.15) together with (5.5) we have for some K̃ =
K̃ (s, d, M, λ0, α0),

∥
∥Aρ̂

∥
∥2

L2
k L2

t (I ) ≤ K̃ CL Dε2 + K̃ CL D(K1 + K2)ε
2
∥
∥Aρ̂(t)

∥
∥2

L2
k L2

t (I ) .

Therefore for ε2 < 1
2 (K̃ CL D(K1 + K2))

−1 we have

∥
∥Aρ̂(t)

∥
∥2

L2
k L2

t (I ) < 2K̃ CL Dε2.

Hence, Proposition 5.1 follows provided we fix K3 = K̃ CL D .

5.2 Pointwise-in-time Estimate on the Density

The constant K3 basically only depends on the linearized Vlasov equation with homo-
geneous background f 0. The same is not true of the pointwise-in-time estimate we
deduce next.
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Lemma 5.2 (Pointwise estimate) For ε0 sufficiently small, under the bootstrap
hypotheses (2.11), there exists some K4 = K4(C0, λ̄, κ, M, s, d, λ0, λ

′, K1, K2, K3)

such that for t ∈ [0, T �],

‖Aρ(t)‖2
2 ≤ K4〈t〉ε2. (5.16)

Proof As in [67], we use the L2
t bound together with (2.6). Our starting point is again

the paraproduct decomposition (5.4):

∥
∥Aρ̂(t)

∥
∥

L2
k

�
∑

k∈Zd∗

∣
∣
∣Ak(t, kt)ĥin(k, kt)

∣
∣
∣
2

+
∑

k∈Zd∗

(

Ak(t, kt)
∫ t

0
ρ̂k(τ ) |k|2 Ŵ (k)(t − τ) f̂ 0(k(t − τ)) dτ

)2

+
∑

k∈Zd∗

|Ak(t, kt)Tk(t)|2 +
∑

k∈Zd∗

|Ak(t, kt)Rk(t)|2

+
∑

k∈Zd∗

|Ak(t, kt)Rk(t)|2 . (5.17)

To treat the initial data we use the Hd/2+ ↪→ C0 embedding and that λ(t) is decreasing
(2.8):

∑

k∈Zd∗

∣
∣
∣Ak(t, kt)ĥin(k, kt)

∣
∣
∣
2 ≤

∑

k∈Zd∗

sup
η∈Rd

|Ak(t, η)hin(k, η)|2 �
∥
∥
∥A(0)ĥin

∥
∥
∥

2

L2
k H M

η

�ε2,

(5.18)

where we used an argument analogous to (2.13) to deduce the last inequality. ��

5.2.1 Linear Contribution

Next consider the term in (5.17) coming from the homogeneous background. By (1.3),
(3.9), (3.8), and the Hd/2+ ↪→ C0 embedding with (3.7), (1.9) and (2.12c),

∑

k∈Zd∗

(

Ak(t, kt)
∫ t

0
ρ̂k(τ ) |k|2 Ŵ (k)(t − τ) f̂ 0(k(t − τ)) dτ

)2

�
∑

k∈Zd∗

(∫ t

0
Ak(τ, kτ)

∣
∣ρ̂k(τ )

∣
∣ 〈k(t − τ)〉σ+1eλ(t)〈k(t−τ)〉s

∣
∣
∣ f̂ 0(k(t − τ))

∣
∣
∣ dτ

)2

�
(

sup
η

eλ0〈η〉s
∣
∣
∣ f̂ 0(η)

∣
∣
∣

)2 ∑

k∈Zd∗

(∫ t

0
Ak(τ, kτ)

∣
∣ρ̂k(τ )

∣
∣ e

1
2 (λ(0)−λ0)〈t−τ 〉s

dτ

)2
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� C2
0

⎛

⎝
∑

k∈Zd∗

∫ t

0

∣
∣Ak(τ, kτ)ρ̂k(τ )

∣
∣2 dτ

⎞

⎠

(∫ t

0
e(λ(0)−λ0)〈t−τ 〉s

dτ

)

�
∑

k∈Zd∗

∥
∥Aρ̂k

∥
∥2

L2
t (I )

� K3ε
2. (5.19)

5.2.2 Reaction

Next we treat the reaction term in (5.17), which by (1.3),

∑

k∈Zd∗

|Ak(kt)Rk |2 �
∑

k∈Zd∗

⎡

⎣Ak(t, kt)
∫ t

0

∑

�∈Zd∗

∑

N≥8

∣
∣ĝk−�(τ, kt − �τ)<N/8

∣
∣

|k(t − τ)|
|�|γ

∣
∣ρ̂�(τ )N

∣
∣ dτ

⎤

⎦

2

.

As in the L2
t estimate we have by (5.9) and the definition (5.1) of K̄ :

∑

k∈Zd∗

|Ak(kt)Rk(t)|2 �
∑

k∈Zd∗

⎡

⎣

∫ t

0

∑

�∈Zd∗

K̄k,�(t, τ )
∣
∣A�(τ, �τ )ρ̂�(τ )

∣
∣ dτ

⎤

⎦

2

.

By the Cauchy-Schwarz inequality and Fubini’s theorem,

∑

k∈Zd∗

|Ak(kt)Rk |2 �
∑

k∈Zd∗

⎛

⎝

∫ t

0

∑

�∈Zd∗

K̄k,�(t, τ ) dτ

⎞

⎠

×
⎛

⎝
∑

�∈Zd∗

∫ t

0
K̄k,�(t, τ )

∣
∣A�(τ, �τ)ρ̂�(τ )

∣
∣2 dτ

⎞

⎠

�

⎛

⎝sup
t≥0

sup
k∈Zd∗

∫ t

0

∑

�∈Zd∗

K̄k,�(t, τ ) dτ

⎞

⎠
∑

�∈Zd∗

∫ t

0

⎛

⎝
∑

k∈Zd∗

K̄k,�(t, τ )

⎞

⎠
∣
∣A�(τ, �τ)ρ̂�(τ )

∣
∣2 dτ

�

⎛

⎝sup
t≥0

sup
k∈Zd∗

∫ t

0

∑

�∈Zd∗

K̄k,�(t, τ ) dτ

⎞

⎠

⎛

⎝ sup
0≤τ≤t

sup
�∈Zd∗

∑

k∈Zd∗

K̄k,�(t, τ )

⎞

⎠
∥
∥Aρ̂

∥
∥

L2
k L2

t (I ) .

The first factor appears in (5.2) and is controlled by Lemma 6.1. The second factor is
controlled by Lemma 6.3 and results in the power of 〈t〉 loss. Therefore by (2.12c),
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∑

k∈Zd∗

|Ak(t, kt)Rk(t)|2 � K2 K3〈t〉ε4, (5.20)

which suffices to treat the reaction term.

5.2.3 Transport

By (1.3) and |k(t − τ)| ≤ 〈τ 〉 |k − �, kt − �τ |, the transport term is bounded by

∑

k∈Zd∗

|Ak(t, kt)Tk(t)|2

�
∑

k∈Zd∗

⎡

⎣Ak(t, kt)
∫ t

0

∑

�∈Zd∗

∑

N≥8

∣
∣
∣∇̂z,vgk−�(τ, kt − �τ)N

∣
∣
∣ 〈τ 〉 ∣∣ρ̂�(τ )<N/8

∣
∣ dτ

⎤

⎦

2

.

We begin as in Proposition 5.1. By the frequency localizations (5.10) (which hold on
the support of the integrand), (3.11) implies that for some c = c(s) ∈ (0, 1) we have
(using also that the Littlewood-Paley projections define a partition of unity),

∑

k∈Zd∗

|Ak(t, kt)Tk(t)|2

�
∑

k∈Zd∗

⎡

⎣
∑

�∈Zd∗

∫ t

0

∣
∣(A∇̂g)k−�(τ, kt − �τ)

∣
∣ ecλ(τ)〈�,�τ 〉s 〈τ 〉 ∣∣ρ̂�(τ )

∣
∣ dτ

⎤

⎦

2

.

From Cauchy-Schwarz, (5.12) and (2.12c),

∑

k∈Zd∗

|Ak(t, kt)Tk(t)|2 �
√

K3ε
∑

k∈Zd∗

∑

�∈Zd∗

∫ t

0

∣
∣(A∇̂g)k−�(τ, kt − �τ)

∣
∣2

× ecλ(τ)〈�,�τ 〉s 〈τ 〉 ∣∣ρ̂�(τ )
∣
∣ dτ.

By Fubini’s theorem, (3.8), the Hd/2+ ↪→ C0 embedding theorem and (2.14) with
(3.8),

∑

k∈Zd∗

|Ak(t, kt)Tk(t)|2

�
√

K3ε
∑

�∈Zd∗

∫ t

0

⎛

⎝
∑

k∈Zd∗

∣
∣(A∇̂g)k−�(τ, kt − �τ)

∣
∣2 e

1
2 (c−1)α0〈τ 〉s

⎞

⎠ eλ(τ)〈�,�τ 〉s ∣∣ρ̂�(τ )
∣
∣ dτ

�
√

K3ε

⎛

⎝sup
τ≤t

e
1
2 (c−1)α0〈τ 〉s ∑

k∈Zd

sup
η∈Rd

∣
∣(A∇̂g)k(τ, η)

∣
∣2

⎞

⎠

⎛

⎝
∑

�∈Zd∗

∫ t

0
eλ(τ)〈�,�τ 〉s ∣∣ρ̂�(τ )

∣
∣ dτ

⎞

⎠
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�
√

K3ε

(

sup
τ≤t

e
1
2 (c−1)α0〈τ 〉s

∥
∥
∥A(1) ĝ

∥
∥
∥

2

L2
k H M

η

)
⎛

⎝
∑

�∈Zd∗

∫ t

0
eλ(τ)〈�,�τ 〉s ∣∣ρ̂�(τ )

∣
∣ dτ

⎞

⎠

� K1

√
K3ε

3

⎛

⎝
∑

�∈Zd∗

∫ t

0
eλ(τ)〈�,�τ 〉s ∣∣ρ̂�(τ )

∣
∣ dτ

⎞

⎠ .

Proceeding as in (5.12) and applying (2.12c), we get

∑

k∈Zd∗

|Ak(t, kt)Tk(t)|2 � K3 K1ε
4. (5.21)

5.2.4 Remainders

The remainder follows from a slight variant of the argument used to treat transport.
By (1.3),

‖AR(t)‖2
L2

k
�
∑

k∈Zd∗

⎡

⎣Ak(t, kt)
∫ t

0

∑

�∈Zd∗

∑

N∈D

∑

N/8≤N ′≤8N

∣
∣ρ̂�(τ )N ′

∣
∣ |k(t − τ)|

∣
∣ĝk−�(τ, kt − �τ)N

∣
∣ dτ

⎤

⎦

2

.

As in Proposition 5.1, (5.14) holds on the support of the integrand and hence, by (5.11)
and using the Cauchy-Schwarz inequality,

‖AR(t)‖2
L2

k
�
∑

k∈Zd∗

⎡

⎣

∫ t

0

∑

�∈Zd∗

(
∑

N∈D
e2λ(τ)〈�,�τ 〉s 〈τ 〉2

∣
∣ρ̂�(τ )∼N

∣
∣2

)

dτ

⎤

⎦

×
⎡

⎣

∫ t

0

∑

�∈Zd∗

(
∑

N∈D
e2(c′−1)λ(τ )〈�,�τ 〉s

e2c′λ(τ)〈k−�,kt−�τ 〉s ∣∣∇̂gk−�(τ, kt − �τ)N
∣
∣2
)

dτ

⎤

⎦ .

By the almost orthogonality of the Littlewood-Paley decomposition (3.4) and σ > 1,

‖AR(t)‖2
L2

k
�
∥
∥Aρ̂

∥
∥2

L2
k L2

t (I )

∑

k∈Zd∗

∫ t

0

∑

�∈Zd∗

(
∑

N∈D
e2(c′−1)λ(τ )〈�,�τ 〉s

e2c′λ(τ)〈k−�,kt−�τ 〉s

∣
∣∇̂gk−�(τ, kt − �τ)N

∣
∣2

⎞

⎠ dτ.
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By Fubini’s theorem, the Hd/2+ ↪→ C0 embedding theorem and (3.8),

‖AR(t)‖2
L2

k
�
∥
∥Aρ̂

∥
∥2

L2
k L2

t (I )

∑

�∈Zd∗

∫ t

0
e2(c′−1)λ(τ )〈�,�τ 〉s

⎛

⎝
∑

k∈Zd∗

∑

N∈D
e2c′λ(τ)〈k−�,kt−�τ 〉s

∣
∣∇̂gk−�(τ, kt − �τ)N

∣
∣2

⎞

⎠ dτ

�
∥
∥Aρ̂

∥
∥2

L2
k L2

t (I )

∑

�∈Zd∗

∫ t

0
e2(c′−1)λ(τ )〈�,�τ 〉s

×
⎛

⎝
∑

k∈Zd

∑

N∈D

∥
∥
∥(A(−β)ĝk)(τ )N

∥
∥
∥

2

H M
η

⎞

⎠ dτ.

The Littlewood-Paley projections do not commute with derivatives in frequency space,
however since the projections have bounded derivatives we still have (see §3),

‖AR(t)‖2
L2

k
�M

∥
∥Aρ̂

∥
∥2

L2
k L2

t (I )

∑

�∈Zd∗

∫ t

0
e2(c′−1)λ(τ )〈�,�τ 〉s

×
⎛

⎝
∑

N∈D

∑

|α|≤M

∥
∥
∥(Dα

η A(−β)ĝk)(τ )∼N

∥
∥
∥

2

L2
k L2

η

⎞

⎠ dτ.

Hence by (3.4), (2.13), (2.12c) and (3.8),

‖AR(t)‖2
L2

k
� K3 K2ε

4. (5.22)

Summing (5.18), (5.19), (5.20), (5.21) and (5.22) implies the result with K4 ≈
1 + K3 + K2 K3 + K3 K1 (in fact we are rather sub-optimal).

5.3 Proof of High Norm Estimate (2.12a)

In this section we derive the high norm estimate on the full distribution, (2.12a). For
some multi-index α ∈ N

d with |α| ≤ M , compute the time-derivative

1

2

d

dt

∥
∥
∥A(1)Dα

η ĝ
∥
∥
∥

2

2
=
∑

k∈Zd

∫

η

λ̇(t)〈k, η〉s
∣
∣
∣A(1) Dα

η ĝk(η)

∣
∣
∣
2

dη

+
∑

k∈Zd

∫

η

A(1)Dα
η ĝk(η)A(1) Dα

η ∂t ĝk(η) dη

= C K + E . (5.23)
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Like similar terms appearing in [10,45,50], the C K term (for ‘Cauchy-Kovalevskaya’)
is used to absorb the highest order terms coming from E .

Turning to E , we separate into the linear and nonlinear contributions

E = −
∑

k∈Zd∗

∫

η

A(1) Dα
η ĝk(η)A(1)

k (t, η)Dα
η

[
ρ̂k(t)Ŵ (k)k · (η − tk) f̂ 0(η − kt)

]
dη

−
∑

k∈Zd

∫

η

A(1) Dα
η ĝk(η)A(1)

k (t, η)Dα
η

⎡

⎣
∑

�∈Zd∗

ρ̂�(t)Ŵ (�)� · (η − tk)ĝk−�(t, η − t�)

⎤

⎦ dη

= −EL − EN L . (5.24)

5.3.1 Linear Contribution

The linear contribution EL is easier from a regularity standpoint than EN L since we
may lose regularity when estimating f 0. However, EL has one less power of ε which
requires some care to handle and is the reason we cannot just take K1 in (2.12a) to be
O(1). The treatment of EL begins with the product lemma (3.13):

|EL | �
∥
∥
∥A(1) Dα

η ĝ
∥
∥
∥

2

∥
∥
∥A(1) Dα

η (η f̂ 0(η))

∥
∥
∥

L2
η

‖∇x W ∗x ρ‖F c̃λ(t);s

+
∥
∥
∥A(1) Dα

η ĝ
∥
∥
∥

2

∥
∥
∥v

α(∇v f 0)

∥
∥
∥G c̃λ(t);s

∥
∥
∥A(1)∇x W ∗x ρ(t)

∥
∥
∥

2
.

By (1.9), (3.8) and (3.7),

∥
∥
∥A(1) Dα

η (η f̂ 0(η))

∥
∥
∥

2
≤
∥
∥
∥A(1)

(
ηDα

η f̂ 0(η)
)∥
∥
∥

2
+

∑

| j |=1; j≤α

∥
∥
∥A(1)

(
ηDα− j

η f̂ 0(η)
)∥
∥
∥

2

� C0. (5.25)

Next we use γ ≥ 1 to deduce from (1.3),

A(1)
k (t, kt)

∣
∣Ŵ (k)k

∣
∣ = 〈k, kt〉 ∣∣Ŵ (k)k

∣
∣ Ak(t, kt) � 〈t〉Ak(t, kt),

which implies (also using c̃ < 1 and (3.8)),

|EL | � e(c̃−1)α0〈t〉s
∥
∥
∥A(1) Dα

η ĝ
∥
∥
∥

2
‖Aρ(t)‖2 + 〈t〉

∥
∥
∥A(1) Dα

η ĝ
∥
∥
∥

2
‖Aρ(t)‖2

� 〈t〉
∥
∥
∥A(1) Dα

η ĝ
∥
∥
∥

2
‖Aρ(t)‖2 . (5.26)
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5.3.2 Commutator Trick for the Nonlinear Term

Turn now to the nonlinear term in (5.24), EN L . Here we cannot lose much regularity
on any of the factors involved, however we have additional powers of ε which will
eliminate the large constants. First, we expand the Dα

η derivative

EN L =
∑

k∈Zd

∫

η

A(1) Dα
η ĝk(η)

⎛

⎝A(1)
k (t, η)

⎡

⎣
∑

�∈Zd∗

ρ̂�(t)Ŵ (�)� · (η − tk)Dα
η ĝk−�(t, η − t�)

⎤

⎦

⎞

⎠ dη

+
∑

k∈Zd

∫

η

A(1) Dα
η ĝk(η)

⎛

⎝A(1)
k (t, η)

∑

| j |=1; j≤α

⎡

⎣
∑

�∈Zd∗

ρ̂�(t)Ŵ (�)� j Dα− j
η ĝk−�(t, η − t�)

⎤

⎦

⎞

⎠dη

= E1
N L + E2

N L .

Consider first E1
N L , as this contains an extra derivative which results in a loss of

regularity that must be balanced by the C K term in (5.23). To gain from the cancel-
lations inherent in transport we follow the commutator trick used in (for example)
[10,25,45,50] by applying the identity,

1

2

∫

Td×Rd
F(t, z + tv) · (∇v − t∇z)

[
A(1)(vαg)

]2
dz dv = 0, (5.27)

to write,

E1
N L =

∑

k∈Zd

∑

�∈Zd∗

∫

η

A(1) Dα
η ĝk(η)ρ̂�(t)Ŵ (�)� · (η − kt)

×
[

A(1)
k (t, η) − A(1)

k−�(t, η − t�)
] (

Dα
η ĝk−�(t, η − t�)

)
dη.

We divide further via paraproduct:

E1
N L =

∑

N≥8

T 1
N +

∑

N≥8

R1
N + R1, (5.28)

where the transport term is given by

T 1
N =

∑

k∈Zd

∑

�∈Zd∗

∫

η

A(1) Dα
η ĝk(η)ρ̂�(t)<N/8Ŵ (�)� · (η − kt)

×
[

A(1)
k (t, η) − A(1)

k−�(t, η − t�)
] (

Dα
η ĝk−�(t, η − t�)

)

N
dη, (5.29)
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and the reaction term by

R1
N =

∑

k∈Zd

∑

�∈Zd∗

∫

η

A(1) Dα
η ĝk(η)ρ̂�(t)N Ŵ (�)� · (η − kt)

×
[

A(1)
k (t, η) − A(1)

k−�(t, η − t�)
] (

Dα
η ĝk−�(t, η − t�)

)

<N/8
dη. (5.30)

The remainder, R1, is whatever is left over.

5.3.3 Transport

On the support of the integrand in (5.29) we have

N

2
≤ |k − �, η − t�| ≤ 3N

2
, (5.31a)

|�, �t | ≤ 3N

32
, (5.31b)

13

16
≤ |k, η|

|k − �, η − t�| ≤ 19

16
. (5.31c)

By (5.31a) we can gain from the multiplier:

∣
∣
∣
∣
∣

A(1)
k (η)

A(1)
k−l(η − �t)

− 1

∣
∣
∣
∣
∣
=
∣
∣
∣
∣
∣

eλ〈k,η〉s 〈k, η〉σ+1

eλ〈k−�,η−�t〉s 〈k − �, η − �t〉σ+1 − 1

∣
∣
∣
∣
∣

≤
∣
∣
∣eλ〈k,η〉s−λ〈k−�,η−�t〉s − 1

∣
∣
∣

+ eλ〈k,η〉s−λ〈k−�,η−�t〉s
∣
∣
∣
∣

〈k, η〉σ+1

〈k − �, η − t�〉σ+1 − 1

∣
∣
∣
∣ . (5.32)

By |ex − 1| ≤ xex , (3.10) and (3.11) (using (5.31a)), there is some c = c(s) ∈ (0, 1)

such that:

∣
∣
∣eλ〈k,η〉s−λ〈k−�,η−�t〉s − 1

∣
∣
∣ ≤ λ

∣
∣〈k, η〉s − 〈k − �, η − �t〉s

∣
∣ eλ〈k,η〉s−λ〈k−�,η−�t〉s

� 〈�, �t〉
〈k, η〉1−s + 〈k − �, η − �t〉1−s

ecλ〈�,�t〉s
. (5.33)

The other term in (5.32) can be treated with the mean-value theorem and (3.11),
resulting in a bound not worse than (5.33). Therefore, applying (1.3), (5.32), (5.33)
and adding a frequency localization by (5.31a) to T 1

N implies
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∣
∣T 1

N

∣
∣ �

∑

k∈Zd

∑

�∈Zd∗

∫

η

∣
∣
∣A(1) Dα

η ĝk(η)

∣
∣
∣
∣
∣ρ̂�(t)<N/8

∣
∣

|η − �t − t (k − �)| 〈�, �t〉
〈k, η〉1−s + 〈k − �, η − �t〉1−s

ecλ〈�,�t〉s

× A(1)
k−�(t, η − t�)

∣
∣
∣

(
Dα

η ĝk−�(t, η − t�)
)

N

∣
∣
∣ dη

� 〈t〉2
∑

k∈Zd

∑

�∈Zd∗

∫

η

∣
∣
∣

(
A(1) Dα

η ĝk(η)
)

∼N

∣
∣
∣
∣
∣ρ̂�(t)

∣
∣ 〈�〉 |k − �, η − t�|s/2 |k, η|s/2 ecλ〈�,�t〉s

× A(1)
k−�(t, η − t�)

∣
∣
∣

(
Dα

η ĝk−�(t, η − t�)
)

N

∣
∣
∣ dη.

Applying (3.1) implies

∣
∣
∣T 1

N

∣
∣
∣ � 〈t〉2

∥
∥
∥
∣
∣∇z,v

∣
∣s/2

A(1)(vαg)∼N

∥
∥
∥

2

∥
∥
∥
∣
∣∇z,v

∣
∣s/2

A(1)(vαg)N

∥
∥
∥

2
‖ρ(t)‖F cλ(t), d

2 +2;s .

Using the regularity gap provided by c < 1 and (3.8) (also σ > d
2 + 2),

∣
∣T 1

N

∣
∣ � 〈t〉2e(c−1)λ(t)〈t〉s ‖Aρ(t)‖2

∥
∥
∥〈∇z,v〉s/2 A(1)(vαg)∼N

∥
∥
∥

2

∥
∥
∥〈∇z,v〉s/2 A(1)(vαg)N

∥
∥
∥

2

�α0 e
1
2 (c−1)α0〈t〉s ‖Aρ(t)‖2

∥
∥
∥〈∇z,v〉s/2 A(1)(vαg)∼N

∥
∥
∥

2

2
. (5.34)

We will find that this term is eventually absorbed by the C K term in (5.23).

5.3.4 Reaction

Next we consider the reaction contribution, where the commutator introduced by the
identity (5.27) to deal with transport will not be useful. Hence, write R1

N = R1;1
N +R1;2

N
where

R1;1
N =

∑

k∈Zd

∑

�∈Zd∗

∫

η

A(1) Dα
η ĝk(η)A(1)

k (t, η)ρ̂�(t)N Ŵ (�)� · (η − kt)

×
(

Dα
η ĝk−�(t, η − t�)

)

<N/8
dη.

We focus on R1;1
N first; R1;2

N is easier as the norm is landing on the ‘low frequency’
factor. On the support of the integrand, we have the frequency localizations (3.15),
from which it follows by (3.11) that there exists some c = c(s) ∈ (0, 1) such that

∣
∣
∣R1;1

N

∣
∣
∣ �

∑

k∈Zd

∑

�∈Zd∗

∫

η

∣
∣
∣A(1) Dα

η ĝk(η)

∣
∣
∣ A(1)

� (t, �t)
∣
∣Ŵ (�)�ρ̂�(t)N

∣
∣

× ecλ〈k−�,η−t�〉s
∣
∣
∣
∣[η − tk]

(
Dα

η ĝk−�(t, η − t�)
)

<N/8

∣
∣
∣
∣ dη. (5.35)
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Now again we have the crucial use of the assumption γ ≥ 1 as in E1
L :

A(1)
� (t, �t)

∣
∣Ŵ (�)�

∣
∣ � 〈�, �t〉

|�| A�(t, �t) � 〈t〉A�(t, �t).

Therefore (adding a frequency localization by (3.15)), by |η − kt | ≤ 〈t〉 |k − �, η − t�|
and (3.8)

∣
∣
∣R1;1

N

∣
∣
∣ � 〈t〉

∑

k∈Zd

∑

�∈Zd∗

∫

η

∣
∣
∣A(1)

(
Dα

η ĝk(η)
)

∼N

∣
∣
∣
∣
∣A�(t, t�)ρ̂�(t)N

∣
∣ ecλ〈k−�,η−t�〉s

∣
∣
∣(η − tk)

(
Dα

η ĝk−�(t, η − t�)
)∣
∣
∣ dη

� 〈t〉2
∑

k∈Zd

∑

�∈Zd∗

∫

η

∣
∣
∣A(1)

(
Dα

η ĝk(η)
)

∼N

∣
∣
∣
∣
∣A�(t, t�)ρ̂�(t)N

∣
∣ eλ〈k−�,η−t�〉s

∣
∣
∣

(
Dα

η ĝk−�(t, η − t�)
)∣
∣
∣ dη.

Applying (3.2) and σ − β > d
2 + 1,

∣
∣
∣R1;1

N

∣
∣
∣ � 〈t〉2

∥
∥
∥A(1)

(
vαg

)

∼N

∥
∥
∥

2
‖AρN ‖2

∥
∥
∥A(−β)vαg

∥
∥
∥

2

�
∥
∥A(−β)vαg

∥
∥

2

〈t〉2

∥
∥
∥A(1)

(
vαg

)

∼N

∥
∥
∥

2

2
+
∥
∥
∥A(−β)vαg

∥
∥
∥

2
〈t〉6 ‖AρN ‖2

2 , (5.36)

which will suffice to treat this term.
Next turn to R1;2

N , which is easier. By (1.3),

∣
∣
∣R1;2

N

∣
∣
∣ �

∑

k∈Zd

∑

�∈Zd∗

∫

η

∣
∣
∣A(1) Dα

η ĝk(η)

∣
∣
∣
∣
∣ρ̂�(t)N

∣
∣ |η − kt |

∣
∣
∣
∣A

(1)
k−�(t, η − t�)

(
Dα

η ĝk−�(t, η − t�)
)

<N/8

∣
∣
∣
∣ dη.

Since the frequency localizations (3.15) hold also on the support of the integrand of
R1;2

N (in particular |η − kt | ≤ 〈t〉 |k − �, η − t�| � 〈t〉 |�, �t |),

∣
∣
∣R1;2

N

∣
∣
∣ � 〈t〉

∑

k∈Zd

∑

�∈Zd∗

∫

η

∣
∣
∣A(1)Dα

η ĝk(η)∼N

∣
∣
∣ 〈�, t�〉 ∣∣ρ̂�(t)N

∣
∣ A(1)

k−�(t, η − t�)

∣
∣
∣
∣

(
Dα

η ĝk−�(t, η − t�)
)

<N/8

∣
∣
∣
∣ dη.
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Therefore, by (3.1), (3.5), (3.8), (3.15) and σ > d
2 + 3,

∣
∣
∣R1;2

N

∣
∣
∣ � 〈t〉

∥
∥
∥A(1)(vαg)∼N

∥
∥
∥

2
‖ρ(t)N ‖F0, d

2 +2

∥
∥
∥A(1)(vαg)

∥
∥
∥

2

� 〈t〉
N

∥
∥
∥A(1)(vαg)∼N

∥
∥
∥

2
‖ρ(t)N ‖F0, d

2 +3

∥
∥
∥A(1)(vαg)

∥
∥
∥

2

� e−α0〈t〉s

N

∥
∥
∥A(1)(vαg)

∥
∥
∥

2

2
‖Aρ(t)‖2 , (5.37)

which suffices to treat this term.

5.3.5 Remainders

In order to complete the treatment of E1
N L it remains to estimate the remainderR. Like

R1
N , the commutator introduced by (5.27) is not helpful, so divide into two pieces:

R1 =
∑

N∈D

∑

N/8≤N ′≤8N

∑

k∈Zd

∑

�∈Zd∗

∫

η

A(1) Dα
η ĝk(η)ρ̂�(t)N ′ Ŵ (�)� · (η − kt)

×
[

A(1)
k (t, η) − A(1)

k−�(t, η − t�)
] (

Dα
η ĝk−�(t, η − t�)

)

N
dη

= R1;1 + R1;2.

Analogous to (5.14), we claim that on the integrand there holds for some c′ = c′(s) ∈
(0, 1),

A(1)
k (t, η) �λ0,α0 ec′λ(t)〈k−�,η−t�〉s

ec′λ(t)〈�,�t〉s
, (5.38)

which again follows by the argument used to deduce (3.16). Therefore, (5.38) implies
(using also (1.3) and |η − kt | ≤ 〈t〉〈k − �, η − t�〉),

∣
∣
∣R1;1

∣
∣
∣ � 〈t〉

∑

N∈D

∑

N ′≈N

∑

k∈Zd

∑

�∈Zd∗

∫

η

∣
∣
∣A(1) Dα

η ĝk(η)

∣
∣
∣ ec′λ(t)〈�,�t〉s ∣∣ρ̂�(t)N ′

∣
∣

× 〈k − �, η − t�〉ec′λ(t)〈k−�,η−t�〉s
∣
∣
∣

(
Dα

η ĝk−�(t, η − t�)
)

N

∣
∣
∣ dη.

Applying (3.2), σ > d
2 + 2, (3.5) and (3.3), we have

∣
∣
∣R1;1

∣
∣
∣ � e

1
2 (c′−1)α0〈t〉s ∑

N∈D

∑

N ′≈N

∥
∥
∥A(1)(vαg)

∥
∥
∥

2

1

N ′ ‖Aρ(t)N ′ ‖2

∥
∥(vαg)N

∥
∥
Gc′λ(t); d

2 +2;s

� ‖Aρ(t)‖2 e
1
2 (c′−1)α0〈t〉s ∑

N∈D

∥
∥
∥A(1)(vαg)

∥
∥
∥

2

1

N

∥
∥
∥A(1)(vαg)N

∥
∥
∥

2

� ‖Aρ(t)‖2 〈t〉−1e
1
4 (c′−1)α0〈t〉s

∥
∥
∥A(1)(vαg)

∥
∥
∥

2

2
, (5.39)
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which will suffice to treat this term.
Treating R1;2 is very similar to R1;1. Indeed, on the support of the integrand

〈k − �, η − t�〉 � 〈�, t�〉 by the same logic used to deduce (5.38) and hence (1.3) and
(3.8) imply

∣
∣
∣R1;2

∣
∣
∣ � 〈t〉

∑

N∈D

∑

N ′≈N

∑

k∈Zd

∑

�∈Zd∗

∫

η

∣
∣
∣A(1) Dα

η ĝk(η)

∣
∣
∣
∣
∣ρ̂�(t)N ′

∣
∣

× 〈k − �, η − t�〉A(1)
k−�(t, η − �t)

∣
∣
∣

(
Dα

η ĝk−�(t, η − t�)
)

N

∣
∣
∣ dη

� 〈t〉
∑

N∈D

∑

N ′≈N

∑

k∈Zd

∑

�∈Zd∗

∫

η

∣
∣
∣A(1) Dα

η ĝk(η)

∣
∣
∣ e

1
2 λ(t)〈�,�t〉s ∣∣ρ̂�(t)N ′

∣
∣

× A(1)
k−�(t, η − �t)

∣
∣
∣

(
Dα

η ĝk−�(t, η − t�)
)

N

∣
∣
∣ dη,

which implies by (3.1), (3.8), (3.3) and σ > d/2 + 2,

∣
∣
∣R1;2

∣
∣
∣ � 〈t〉e− 1

2 α0〈t〉s ∑

N∈D

∑

N ′≈N

∥
∥
∥A(1)(vαg)

∥
∥
∥

2

1

N ′
∥
∥Aρ̂(t)N ′

∥
∥

2

∥
∥
∥A(1)(vαg)N

∥
∥
∥

2

� 〈t〉e− 1
2 α0〈t〉s ‖Aρ(t)‖2

∑

N∈D

∥
∥
∥A(1)(vαg)

∥
∥
∥

2

1

N

∥
∥
∥A(1)(vαg)N

∥
∥
∥

2

� 〈t〉−1 ‖Aρ(t)‖2 e− 1
4 α0〈t〉s

∥
∥
∥A(1)(vαg)

∥
∥
∥

2

2
, (5.40)

which suffices to treat R1;2.

5.3.6 Treatment of Lower Moments

Next we turn to the treatment of E2
N L . First apply (1.3) (using γ ≥ 1),

∣
∣
∣E2

N L

∣
∣
∣ �

∑

| j |=1; j≤α

∑

k∈Zd

∑

�∈Zd∗

∫

η

∣
∣
∣A(1) Dα

η ĝk(η)

∣
∣
∣

A(1)
k (t, η)

∣
∣
∣〈�〉−1ρ̂�(t)Dα− j

η ĝk−�(t, η − t�)
∣
∣
∣ dη.

Then we apply (3.13)

∣
∣
∣E2

N L

∣
∣
∣ �

∑

| j |=1; j≤α

∥
∥
∥A(1)vαg

∥
∥
∥

2

∥
∥
∥A(1)vα− j g

∥
∥
∥

2
‖ρ(t)‖F c̃λ(t),0;s

+
∑

| j |=1; j≤α

∥
∥
∥A(1)vαg

∥
∥
∥

2

∥
∥
∥v

α− j g
∥
∥
∥G c̃λ,0;s

∥
∥
∥〈k〉−1 A(1)

k ρ̂k(t)
∥
∥
∥

L2
k

.
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From here, we take advantage of the regularity gap and 〈k〉−1 A(1)
k (k, kt) �

〈t〉Ak(t, kt) to deduce

∣
∣
∣E2

N L

∣
∣
∣ �

∑

| j |=1; j≤α

e(c̃−1)α0〈t〉s
∥
∥
∥A(1)vαg

∥
∥
∥

2

∥
∥
∥A(1)vα− j g

∥
∥
∥

2
‖Aρ(t)‖2

+
∑

| j |=1; j≤α

〈t〉
∥
∥
∥A(1)vαg

∥
∥
∥

2

∥
∥
∥A(−β)vα− j g

∥
∥
∥

2
‖Aρ(t)‖2 , (5.41)

which suffices to treat this contribution.

5.3.7 Conclusion of High Norm Estimate

Denote δ = − 1
4 min

(
c − 1, c̃ − 1, c′ − 1

)
α0. Collecting the contributions of (5.23),

(5.26) (5.34), (5.36), (5.37), (5.39), (5.40) and (5.41) then summing in N with (3.4)
(note we used 1 � 〈k, η〉s/2 to group (5.37), (5.39) and (5.40) with (5.34)), we have
the following for some K̃ = K̃ (s, M, σ, λ0, λ

′, C0, d),

1

2

d

dt

∥
∥
∥A(1)vαg

∥
∥
∥

2

2
≤
(

K̃ 〈t〉−1e−δ〈t〉s ‖Aρ(t)‖2 + λ̇(t)
) ∥
∥
∥〈∇z,v〉s/2 A(1)(vαg)

∥
∥
∥

2

2

+ K̃ 〈t〉
∥
∥
∥A(1)vαg

∥
∥
∥

2
‖Aρ(t)‖2

+ K̃

∥
∥A(−β)vαg

∥
∥

2

〈t〉2

∥
∥
∥A(1)vαg

∥
∥
∥

2

2
+ K̃ 〈t〉6

∥
∥
∥A(−β)vαg

∥
∥
∥

2
‖Aρ‖2

2

+ K̃
∑

| j |=1; j≤α

e−δ〈t〉s
∥
∥
∥A(1)vαg

∥
∥
∥

2

∥
∥
∥A(1)vα− j g

∥
∥
∥

2
‖Aρ(t)‖2

+ K̃
∑

| j |=1; j≤α

〈t〉
∥
∥
∥A(1)vαg

∥
∥
∥

2

∥
∥
∥A(−β)vα− j g

∥
∥
∥ ‖Aρ(t)‖2 .

Introducing a small parameter b to be fixed depending only on K̃ and λ(t),

1

2

d

dt

∥
∥
∥A(1)vαg

∥
∥
∥

2

2
≤
(

K̃ e−δ〈t〉s 〈t〉−1 ‖Aρ(t)‖2 + bK̃

〈t〉2 + λ̇(t)

)
∥
∥
∥〈∇〉s/2 A(1)(vαg)

∥
∥
∥

2

2

+ K̃

b
〈t〉4 ‖Aρ(t)‖2

2

+ K̃

∥
∥A(−β)vαg

∥
∥

2

〈t〉2

∥
∥
∥A(1)vαg

∥
∥
∥

2

2
+ K̃ 〈t〉6

∥
∥
∥A(−β)vαg

∥
∥
∥

2
‖Aρ‖2

2

+ K̃
∑

| j |=1; j≤α

e−δ〈t〉s
∥
∥
∥A(1)vαg

∥
∥
∥

2

∥
∥
∥A(1)vα− j g

∥
∥
∥

2
‖Aρ(t)‖2

+ K̃
∑

| j |=1; j≤α

〈t〉
∥
∥
∥A(1)vαg

∥
∥
∥

2

∥
∥
∥A(−β)vα− j g

∥
∥
∥ ‖Aρ(t)‖2 . (5.42)
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By (3.8) and (2.9) we may fix b and ε small such that

K̃ e−δ〈t〉s√
K4ε + bK̃

〈t〉2 ≤ 1

2

∣
∣λ̇(t)

∣
∣ .

Note this requires fixing ε small relative to K4 but not b. Then by (5.16) we deduce that
the first term in (5.42) is negative. Therefore, summing in α, integrating and applying
the bootstrap hypotheses (2.11) and (5.16) implies (adjusting K̃ to K̃ ′)

∑

|α|≤M

∥
∥
∥A(1)vαg

∥
∥
∥

2

2
≤ ε2 + K̃ ′〈t〉5 K3ε

2 + K̃ ′K1

√
K2〈t〉6ε3 + K̃ ′√K2〈t〉7 K3ε

3

+ K̃ ′K1

√
K4ε

3 + K̃ ′√K1 K2 K4〈t〉6ε3.

Hence we may take K1 = K̃ ′K3 + 1 and we have (2.12a) by choosing

ε < K1

(
4K̃ ′)−1 (

K1

√
K2 +√

K2 K3 + K1

√
K4 +√

K1 K2 K4

)−1
.

5.4 Proof of Low Norm Estimate (Equation (2.12b))

This proof proceeds analogously to (2.12a) replacing A(1) with A(−β). First compute
the derivative as in (5.23),

1

2

d

dt

∥
∥
∥A(−β) Dα

η ĝ
∥
∥
∥

2

2
=
∑

k∈Zd

∫

η

λ̇(t)〈k, η〉s
∣
∣
∣A(−β) Dα

η ĝk(η)

∣
∣
∣
2

dη

+
∑

k∈Zd

∫

η

A(−β) Dα
η ĝk(η)A(−β) Dα

η ∂t ĝk(η) dη

= C KL + EL, (5.43)

where

EL = −
∑

k∈Zd

∫

η

A(−β) Dα
η ĝk(η)A(−β)

k (t, η)ρ̂k(t)Ŵ (k)

× Dα
η

[
k · (η − tk) f̂ 0(η − kt)

]
dη

−
∑

k∈Zd

∑

�∈Zd∗

∫

η

A(−β) Dα
η ĝk(η)A(−β)

k (t, η)ρ̂�(t)Ŵ (�)

× Dα
η

[
� · (η − tk)ĝk−�(t, η − t�)

]
dη

= −EL;L − EL;N L . (5.44)
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As in the treatment of EL in §5.3.1, we may use the product lemma (3.13) and (1.3)
to deduce

∣
∣EL;L

∣
∣ �

∥
∥
∥A(−β) Dα

η ĝ
∥
∥
∥

2

∥
∥
∥A(−β) Dα

η (η f̂ 0(η))

∥
∥
∥

L2
η

‖ρ(t)‖F c̃λ(t),0;s

+
∥
∥
∥A(−β) Dα

η ĝ
∥
∥
∥

2

∥
∥
∥A(−β) Dα

η (η f̂ 0(η))

∥
∥
∥

L2
η

∥
∥
∥A(−β)ρ(t)

∥
∥
∥

2
.

By the analogue of (5.25), c̃ < 1 and the regularity gap between A(−β) and A and
(3.8)

∣
∣EL;L

∣
∣ � e(c̃−1)α0〈t〉s

∥
∥
∥A(−β) Dα

η ĝ
∥
∥
∥

2
‖Aρ(t)‖2 + 〈t〉−β

∥
∥
∥A(−β) Dα

η ĝ
∥
∥
∥

2
‖Aρ(t)‖2

� 〈t〉−β
∥
∥
∥A(−β)vαg

∥
∥
∥

2
‖Aρ(t)‖2 , (5.45)

which suffices to treat this term.
We now turn to the treatment of EL;N L , which as in §5.3.2 is expanded by

EL;N L =
∑

k∈Zd

∫

η

A(−β) Dα
η ĝk(η)

×
⎛

⎝A(−β)
k (t, η)

⎡

⎣
∑

�∈Zd∗

ρ̂�(t)Ŵ (�)� · (η − tk)Dα
η ĝk−�(t, η − t�)

⎤

⎦

⎞

⎠ dη

+
∑

k∈Zd

∫

η

A(−β) Dα
η ĝk(η)

×
⎛

⎝A(−β)
k (t, η)

∑

| j |=1; j≤α

⎡

⎣
∑

�∈Zd∗

ρ̂�(t)Ŵ (�)� j Dα− j
η ĝk−�(t, η − t�)

⎤

⎦

⎞

⎠ dη

= E1
L;N L + E2

L;N L .

First consider E1
L;N L , to which we apply (5.27) (with A(−β) instead of A(1)) and then

decompose via paraproduct as in (5.28):

E1
L;N L =

∑

N≥8

T 1
L;N +

∑

N≥8

R1
L;N + R1

L, (5.46)

where the transport term is given by

T 1
L;N =

∑

k∈Zd

∑

�∈Zd∗

∫

η

A(−β) Dα
η ĝk(η)ρ̂�(t)<N/8Ŵ (�)� · (η − kt)

×
[

A(−β)
k (t, η) − A(−β)

k−� (t, η − t�)
] (

Dα
η ĝk−�(t, η − t�)

)

N
dη, (5.47)
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and the reaction term by

R1
L;N =

∑

k∈Zd

∑

�∈Zd∗

∫

η

A(−β) Dα
η ĝk(η)ρ̂�(t)N Ŵ (�)� · (η − kt)

×
[

A(−β)
k (t, η) − A(−β)

k−� (t, η − t�)
] (

Dα
η ĝk−�(t, η − t�)

)

<N/8
dη, (5.48)

and as before the remainder is whatever is left over. The treatment of the transport
term T 1

L;N and the remainder R1
L is unchanged from the corresponding treatments of

T 1
N and R1 in §5.3.3 and §5.3.5 respectively. Hence, we omit it and simply conclude

as in (5.34), (5.39) and (5.40):

∣
∣
∣T 1

L;N

∣
∣
∣ � 〈t〉−1e

1
2 (c−1)α0〈t〉s ‖Aρ(t)‖2

∥
∥
∥〈∇z,v〉s/2 A(−β)(vαg)∼N

∥
∥
∥

2

2
, (5.49)

∣
∣
∣R1

L
∣
∣
∣ � ‖Aρ(t)‖2 〈t〉−1e

1
4 (c′−1)α0〈t〉s

∥
∥
∥A(−β)(vαg)

∥
∥
∥

2

2
. (5.50)

The reaction term is slightly altered to gain from the regularity gap and get a uniform
bound (as in the linear contribution EL;L ). As in the treatment of reaction in E1

N L in

§5.3.4, we separate into R1
L;N = R1;1

L;N + R1;2
L;N where the leading order reaction term

is given by

R1;1
L;N = −

∑

k∈Zd

∑

�∈Zd∗

∫

η

A(−β) Dα
η ĝk(η)A(−β)

k (t, η)ρ̂�(t)N Ŵ (�)� · [η − tk]

×
(

Dα
η ĝk−�(t, η − t�)

)

<N/8
dη.

By the frequency localizations (3.15), (3.11) implies for some c = c(s) ∈ (0, 1) (using
also (1.3) and |η − kt | ≤ 〈t〉〈k − �, η − t�〉),

∣
∣
∣R1;1

L;N

∣
∣
∣ � 〈t〉

∑

k∈Zd∗

∑

�∈Zd∗

∫

η

∣
∣
∣A(−β)

(
Dα

η ĝk(η)
)

∼N

∣
∣
∣ A(−β)

� (t, t�)
∣
∣ρ̂�(t)N

∣
∣

× ecλ(t)〈k−�,η−�t〉s 〈k − �, η − �t〉
∣
∣
∣
∣

(
Dα

η ĝk−�(t, η − t�)
)

<N/8

∣
∣
∣
∣ dη.

Proceeding as in the proof of (5.36), applying (3.2) (along with σ > d/2 + 2) and
using the regularity gap between A(−β) and A implies

∣
∣
∣R1;1

L;N

∣
∣
∣ � 〈t〉

∥
∥
∥A(−β)

(
vαg

)

∼N

∥
∥
∥

2

∥
∥
∥A(−β)ρN

∥
∥
∥

2

∥
∥
∥A(−β)vαg

∥
∥
∥

2

� 〈t〉1−β
∥
∥
∥A(−β)

(
vαg

)

∼N

∥
∥
∥

2
‖AρN ‖2

∥
∥
∥A(−β)vαg

∥
∥
∥

2

� 〈t〉1−β
∥
∥
∥A(−β)vαg

∥
∥
∥

2

∥
∥
∥A(−β)

(
vαg

)

∼N

∥
∥
∥

2

2
+ 〈t〉1−β

∥
∥
∥A(−β)vαg

∥
∥
∥

2
‖AρN ‖2

2 ,

(5.51)
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which will be sufficient for the proof of (2.12b). The term R1;2
L;N can be treated exactly

as R1;2
N and hence we omit and simply conclude

∣
∣
∣R1;2

L;N

∣
∣
∣ � e−α0〈t〉s

N

∥
∥
∥A(−β)(vαg)

∥
∥
∥

2

2
‖Aρ(t)‖2 . (5.52)

The term E2
L;N L is treated as in §5.3.6. By (1.3), (3.13) and the regularity gap

between A(−β) and A (also (3.8) in the last line),

∣
∣
∣E2

L;N L

∣
∣
∣ �

∑

| j |=1; j≤α

∥
∥
∥A(−β)vαg

∥
∥
∥

2

∥
∥
∥A(−β)vα− j g

∥
∥
∥

2
‖ρ(t)‖F c̃λ(t),0;s

+
∑

| j |=1; j≤α

∥
∥
∥A(−β)vαg

∥
∥
∥

2

∥
∥
∥v

α− j g
∥
∥
∥G c̃λ,σ ;s

∥
∥
∥A(−β)ρ(t)

∥
∥
∥

2

� e(c̃−1)α0〈t〉s ∑

| j |=1; j≤α

∥
∥
∥A(−β)vαg

∥
∥
∥

2

∥
∥
∥A(−β)vα− j g

∥
∥
∥

2
‖Aρ(t)‖2

+ 〈t〉−β
∑

| j |=1; j≤α

∥
∥
∥A(−β)vαg

∥
∥
∥

2

∥
∥
∥A(−β)vα− j g

∥
∥
∥

2
‖Aρ(t)‖2

� 〈t〉−β
∑

| j |=1; j≤α

∥
∥
∥A(−β)vαg

∥
∥
∥

2

∥
∥
∥A(−β)vα− j g

∥
∥
∥

2
‖Aρ(t)‖2 . (5.53)

Denote δ = − 1
4 min

(
c − 1, c̃ − 1, c′ − 1

)
α0. Collecting (5.45) (5.49), (5.50), (5.51),

(5.52) and (5.53) and summing in N , splitting the linear terms with a small parameter
b and combining (5.50) and (5.52) with (5.49) as in (5.42) (using also (3.8)), we have
the following for some K̃ = K̃ (s, σ, α0, C0, d) (not the same as the K̃ in (5.42) but
this is irrelevant),

1

2

d

dt

∥
∥
∥A(−β)vαg

∥
∥
∥

2

2
≤
(

K̃ 〈t〉−1e−δ〈t〉s ‖Aρ(t)‖2 + K̃ 〈t〉−βb + λ̇(t)
)

×
∥
∥
∥〈∇z,v〉s/2 A(−β)(vαg)

∥
∥
∥

2

2
+ K̃

b
〈t〉−β ‖Aρ(t)‖2

2

+ K̃ 〈t〉1−β
∥
∥
∥A(−β)(vαg)

∥
∥
∥

2

(∥
∥
∥A(−β)(vαg)

∥
∥
∥

2

2
+ ‖Aρ(t)‖2

2

)

+ K̃ 〈t〉−β
∑

| j |=1; j≤α

∥
∥
∥A(−β)vαg

∥
∥
∥

2

∥
∥
∥A(−β)vα− j g

∥
∥
∥ ‖Aρ(t)‖2 .

(5.54)

By (3.8) and (2.9) we may fix b and ε small such that

K̃
√

K4εe−δ〈t〉s + K̃ 〈t〉−βb ≤ 1

2

∣
∣λ̇(t)

∣
∣ ,
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which by (5.16), implies that the first term in (5.54) is non-positive. Therefore, sum-
ming in α, integrating with β > 2 and applying the bootstrap hypotheses (2.11) and
(5.16) implies (adjusting K̃ to K̃ ′),

∑

|α|≤M

∥
∥
∥A(−β)vαg

∥
∥
∥

2

2
≤ ε2 + K̃ ′K3ε

2 + K̃ ′K 3/2
2 ε3 + K̃ ′√K2 K3ε

3 + K̃ ′K2

√
K4ε

3.

Hence, we take K2 =1+K̃ ′K3 and ε < K2

(
3K̃ ′

)−1 (
K 3/2

2 + √
K2 K3 + K2

√
K4

)−1

to deduce (2.12b).

6 Analysis of the Plasma Echoes

The most important step to pushing linear Landau damping to the nonlinear level
is analyzing and controlling the dominant weakly nonlinear effect: the plasma echo.
Mathematically, this comes down to verifying condition (5.2) on the time-response
kernels, crucial to the proof of (2.12c) in §5.1. Our choices of λ(t) for t � 1 (in
particular the choice of a) and s > 1/(2 + γ ) are both determined in this section.
The analysis in this section is similar to the moment estimates carried out on the time-
response kernels in §7 of [67] except with the regularity loss encoded by our choice of
λ(t) taking the place of amplitude growth. The distinction is arguably minor, but this
increased precision allows for a slightly cleaner treatment and highlights more clearly
the origin of the regularity requirement.

Lemma 6.1 (Time response estimate I) Under the bootstrap hypotheses (2.11), there
holds

sup
t∈[0,T �]

sup
k∈Zd∗

∫ t

0

∑

�∈Zd∗

K̄k,�(t, τ ) dτ �a,s,d,λ0,λ′
√

K2ε.

Proof Consider first the effect of g0, the homogeneous part of g, which corresponds
to K̄k,k(t, τ ):

Iinst (t) :=
∫ t

0
e(λ(t)−λ(τ))〈k,kt〉s

ecλ(τ)〈k(t−τ)〉s |k(t − τ)|
|k|γ |̂g0(τ, k(t − τ))| dτ

≤
∫ t

0
ecλ(τ)〈k(t−τ)〉s |k(t − τ)|

|k|γ |̂g0(τ, k(t − τ))| dτ.

Here inst stands for ‘instantaneous’ as this effect has no time delay (unlike k 
= �

below); this terminology was borrowed from [67]. Also note that this is only controlling
the effect of ‘low’ frequencies in g0. From the Hd/2+ ↪→ C0 embedding, σ > β + 1
and (2.13),
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Iinst (t) ≤
∫ t

0
e(c−1)λ(τ )〈k(t−τ)〉s

(

sup
η∈Rd

eλ(τ)〈η〉s |η| |̂g0(τ, η)|
)

dτ

�M

∫ t

0
e(c−1)λ(τ )〈k(t−τ)〉s

∥
∥
∥A(−β)g0(τ )

∥
∥
∥

H M
η

dτ

�α0

√
K2ε.

Next turn to the contributions from the case k 
= �, which is the origin of the plasma
echoes. Using |k(t − τ)| ≤ 〈τ 〉 |k − �, kt − �τ | and the definition of K̄ in (5.1),

1k 
=� K̄k,�(t, τ )�e(λ(t)−λ(τ))〈k,kt〉s
ecλ(τ)〈k−�,kt−�τ 〉s 〈τ 〉

|�|γ
∣
∣∇̂gk−�(τ, kt − �τ)

∣
∣ 1k 
=� 
=0.

In what follows denote

−ν(t, τ ) = λ(t) − λ(τ).

Then using that λ(t) ≥ α0 and c < 1, if we write δ = (1−c)α0 we are left to estimate,

I(t) :=
∫ t

0

∑

�∈Zd∗

e−ν(t,τ )〈k,kt〉s
ecλ(τ)〈k−�,kt−�τ 〉s 〈τ 〉

|�|γ
∣
∣∇̂gk−�(τ, kt − �τ)

∣
∣ 1k 
=� dτ

�
∫ t

0

∑

�∈Zd∗

e−ν(t,τ )〈k,kt〉s 〈τ 〉
|�|γ e−δ〈k−�,kt−�τ 〉s

∣
∣
∣eλ(τ)〈k−�,kt−�τ 〉s ∇̂gk−�(τ, kt − �τ)

∣
∣
∣ 1k 
=� dτ. (6.1)

By σ ≥ β + 1, the Hd/2+ ↪→ C0 embedding and (2.13),

∣
∣
∣eλ(τ)〈k−�,kt−�τ 〉s ∇̂gk−�(τ, kt − �τ)

∣
∣
∣ ≤ sup

η∈Rd
eλ(τ)〈k−�,η〉s 〈k − �, η〉 |̂gk−�(τ, η)|

≤
⎛

⎝
∑

k∈Zd

sup
η∈Rd

e2λ(τ)〈k,η〉s 〈k, η〉2 |̂gk(τ, η)|2
⎞

⎠

1/2

�
∥
∥
∥A(−β)g(τ )

∥
∥
∥

L2
k H M

η

�M

√
K2ε.

Applying this to (6.1) implies

I(t) �
√

K2ε

∫ t

0

∑

�∈Zd∗

e−ν(t,τ )〈k,kt〉s 〈τ 〉
|�|γ e−δ〈k−�,kt−�τ 〉s

1� 
=k dτ. (6.2)
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Following an argument similar to that in [67] we may reduce to the d = 1 case. By
(3.9c),

I(t) �
√

K2ε

∫ t

0

∑

�∈Zd∗

∑

j :� j 
=k j

e−ν(t,τ )〈k j ,k j t〉s 〈τ 〉
|�|γ e−Csδ〈k j −� j ,k j t−� j τ 〉s

d∏

i 
= j

e−Cd−1
s δ〈ki −�i 〉s

1� 
=k dτ

�
√

K2ε

δ
d−1

s

∑

1≤ j≤d

∫ t

0

∑

� j ∈Z
e−ν(t,τ )〈k j ,k j t〉s 〈τ 〉

〈� j 〉γ e−Csδ〈k j −� j ,k j t−� j τ 〉s
1� j 
=k j dτ.

Notice that we may not assert that both k j and � j are non-zero. However, if either k j

or � j is zero we have by (3.9c), (3.8) and τ ≤ t ,

〈τ 〉e−Csδ〈k j −� j ,k j t−� j τ 〉s ≤ 〈τ 〉e−C2
s δ〈k j −� j 〉s−C2

s δ〈k j t−� j τ 〉s

� δ−1/se−C2
s δ〈k j −� j 〉s− 1

2 C2
s δ〈τ 〉s

.

Hence, we see that such cases cannot contribute anything to the sum in k of I(t) which
is not bounded uniformly in time. Therefore, up to adjusting the definition of δ by a
constant, we may focus on the cases such that both k, � ∈ Z∗ and k 
= �. Let us now
focus on one such choice:

Ik,�(t) :=
∫ t

0
e−ν(t,τ )〈k,kt〉s 〈τ 〉

|�|γ e−δ〈k−�,kt−�τ 〉s
dτ.

This term isolates a single possible echo at τ = tk/�: notice how the integrand
is sharply localized near this time which accounts for the effect ρ�(τ�) has on the
behavior of ρk(kt). Summing them deals with the cumulative effect of all the echoes.
See [67] for more discussion. By symmetry we need only consider the case k ≥ 1.

Let us first eliminate the irrelevant early times; indeed by (3.9c),

∫ min(1,t)

0
e−ν(t,τ )〈k,kt〉s 〈τ 〉

|�|γ e−δ〈k−�,kt−�τ 〉s
dτ �

∫ min(1,t)

0

1

|�|γ e−δ〈k−�,kt−�τ 〉s
dτ

� e−Csδ〈k−�〉s

δ1/s |�|1+γ
. (6.3)

Now let us turn to the more interesting contributions of t ≥ τ ≥ 1. Given t ,k and �,
define the resonant interval as

IR =
{

τ ∈ [1, t] : |kt − �τ | <
t

2

}
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and divide Ik,� into three contributions (one from (6.3)):

Ik,�(t) � 1

δ1/s |�|1+γ
e−Cs 〈k−�〉s +

(∫

[1,t]∩IR

+
∫

[1,t]\IR

)

× 〈τ 〉
|�|γ e−δ〈k−�,kt−�τ 〉s

e−ν(t,τ )〈k,kt〉s
dτ

= 1

δ1/s |�|1+γ
e−Csδ〈k−�〉s + IR + IN R .

Here ‘NR’ stands for ‘non-resonant’. Note that if � ≤ k −1 then in fact [0, t]∩ IR = ∅.
Consider first the easier case of IN R . Since |kt − �t | ≥ t/2 on the support of the

integrand, by (3.9c) and (3.8) we have

IN R ≤ 〈t〉
|�|γ

∫

[1,t]\IR

e−Csδ〈k−�〉s−Csδ〈kt−�τ 〉s
e−ν(τ,t)〈k,kt〉s

dτ

≤ 〈t〉
|�|γ e−Csδ〈k−�〉s− 1

2 Csδ〈 t
2 〉s
∫ t

0
e− 1

2 Csδ〈kt−�τ 〉s
dτ

� 〈t〉
δ1/s |�|1+γ

e−Csδ〈k−�〉s− 1
2 Csδ〈 t

2 〉s

� 1

δ2/s |�|1+γ
e−Csδ〈k−�〉s

, (6.4)

which suffices to treat all of the non-resonant contributions.
Now focus on the resonant contribution IR , which as pointed out above, is only

present if � ≥ k + 1 due to the echo at τ = tk/� ∈ (0, t). Since we are interested in
t ≥ τ ≥ 1, by the definition of λ(t) in (2.8), there exists some constant δ′ (possibly
adjusted by the reduction to one dimension) which is proportional to λ0 −λ′ such that
on [1, t] ∩ IR ,

ν(t, τ ) = δ′ (τ−a − t−a) = δ′
(

ta − τ a

τ ata

)

.

For t and τ well separated, this provides a gap of regularity that helps us to control
IR . Hence, we see that the most dangerous echoes occur for � ≈ k as these echoes are
stacking up near t and the regularity gap provided by ν becomes very small. From the
formal analysis of [67] we expect to find the requirement s > 1/(2 +γ ) due precisely
to this effect. Indeed we will see that is the case, in fact, here is the only place in
the proof of Theorem 1 where this requirement is used (also at the analogous step in
the proof of Lemma 6.2 below). By the mean-value theorem and the restriction that
τ ∈ IR (also τ ≤ 3kt

2�
and � − k ≥ 1), we have

ν(t, τ ) ≥ aδ′ t − τ

τ at
= aδ′

τ at

[

t − kt

�

]

− aδ′

τ at

[

τ − kt

�

]

≥ aδ′

τ a

[

1 − k

�

]

− aδ′

2τ a�
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≥ aδ′

2τ a�

≥ aδ′

21−a3a(kt)a�1−a
. (6.5)

Let δ̃′ = aδ′
21−a3a . The lower bound (6.5) precisely measures the usefulness of ν. Indeed,

by (6.5), (3.9c), (3.8) and (2 + γ )(s − a) = 1 − a we have

IR �
∫

IR

kt

�1+γ
e−δ〈k−�,kt−�τ 〉s

e
− δ̃′

�1−a |kt |s−a

dτ

� kt

δ1/s�2+γ
e
− δ̃′

�1−a |kt |s−a

e−Csδ〈k−�〉s

� kt

δ1/s�2+γ

(
�

1−a
s−a

(δ̃′)
1

s−a kt

)

e−Csδ〈k−�〉s

�s,a e−Csδ〈k−�〉s 1

δ1/s(aδ′)
1

s−a

. (6.6)

The use of (2 + γ )(s − a) ≥ 1 − a above is exactly the mathematical origin of the
requirement s > (2 + γ )−1. Notice also that (6.6) can be summed in either k or l, but
not in both.

Assembling (6.3), (6.4) and (6.6) implies the lemma after summing in � and taking
the supremum in t and k. ��

The next estimate is in some sense the ‘dual’ of Lemma 6.1 and is proved in the
same way.

Lemma 6.2 (Time response estimate II) Under the bootstrap hypotheses (2.11) there
holds

sup
τ∈[0,T �]

sup
�∈Zd∗

∑

k∈Zd∗

∫ T �

τ

K̄k,�(t, τ ) dt �a,s,d,λ0,λ′
√

K2ε.

Proof First consider K̄k,k(t, τ ), which corresponds to the homogeneous part of g:

Iinst (τ ) :=
∫ T �

τ

e(λ(t)−λ(τ))〈k,kt〉s
ecλ(τ)〈k(t−τ)〉s |k(t − τ)|

|k|γ |̂g0(τ, k(t − τ))| dt.

By the same argument as used in Lemma 6.1, it is straightforward to show

Iinst (τ ) �
√

K2ε.
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Next consider the case k 
= �. By following the analysis of Lemma 6.1 the problem
reduces to analyzing the analogue of (6.2):

I(τ ) = √
K2ε

∫ T �

τ

∑

k∈Zd∗

e−ν(t,τ )〈k,kt〉s
e−δ〈k−�,kt−�τ 〉s 〈τ 〉

|�|γ 1� 
=k dt

where ν(t, τ ) = λ(τ) − λ(t) and δ are defined as in Lemma 6.1. As before we
may reduce to the one dimensional case at the cost of adjusting the constant and the
definition of δ. Hence consider the one dimensional integrals with k, � ∈ Z∗, k 
= �

and k ≥ 1 (by symmetry):

Ik,�(τ ) =
∫ T �

τ

e−ν(t,τ )〈k,kt〉s
e−δ〈k−�,kt−�τ 〉s 〈τ 〉

|�|γ dt. (6.7)

As in the proof of Lemma 6.1, we may eliminate early times; we omit the details
and conclude

∫ max(τ,min(1,T �))

τ

e−ν(t,τ )〈k,kt〉s
e−δ〈k−�,kt−�τ 〉s 〈τ 〉

|�|γ dt � 1

δ1/s |�|γ |k|e−Csδ〈k−�〉s
.

For the remainder of the proof, we will henceforth just assume T � > τ ≥ 1. Following
the proof of Lemma 6.1, define the resonant interval as

IR =
{

t ∈ [τ, T �] : |kt − �τ | <
τ

2

}

and divide the integral into two main contributions:

Ik,�(τ ) =
(∫

[τ,T �)∩IR

+
∫

[τ,T �)\IR

) 〈τ 〉
|�|γ e−δ〈k−�,kt−�τ 〉s

e−ν(t,τ )〈k,kt〉s
dt

= IR + IN R .

The non-resonant contribution follows essentially the same proof as (6.4) in Lemma
6.1; we omit the details and conclude

IN R � 1

δ2/s |�|γ k
e−Csδ〈k−�〉s

. (6.8)

Turn now to the resonant integral, in which case � ≥ k + 1, and there is an echo
at �τ/k = t ∈ (τ,∞). Since we are interested in t ≥ τ ≥ 1, by the definition of
λ(t) in (2.8), there exists some constant δ′ (possibly adjusted by the reduction to one
dimension) which is proportional to λ0 − λ′ such that by the mean-value theorem and
the restriction that t ∈ IR (also since kt

2�
≤ τ ),
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ν(t, τ ) ≥ aδ′ t − τ

τ at
≥ aδ′

ταt

[
�τ

k
− τ

]

− aδ′

ταt

[

t − �τ

k

]

≥ aδ′τ 1−a

2tk

≥ aδ′

22−a�1−a(kt)a
.

If we now let δ̃′ = aδ′
22−a and apply (3.9c), (3.8) and (2 + γ )(s − a) = 1 − a then we

have

IR �
∫

IR

kt

�1+γ
e−δ〈k−�,kt−�τ 〉s

e
− δ̃′

�1−a |kt |s−a

dt

�
∫

IR

�
1−a
s−a

�1+γ (δ̃′)
1

s−a

e−Csδ〈k−�〉s−Csδ〈kt−�τ 〉s
dt

� �
1−a
s−a

�2+γ δ1/s(δ̃′)
1

s−a

(
�e−Csδ〈k−�〉s

k

)

� 1

δ2/s(δ̃′)
1

s−a

e− 1
2 Csδ〈k−�〉s

, (6.9)

which is summable in k uniformly in l (the extra power of k in the denominator of the
penultimate line came from the time integration).

Assembling the contributions of (6.8) and (6.9), summing in k and taking the
supremum in � and τ ≤ ∞ completes the proof of Lemma 6.2. ��

The following simple lemma is used in §5.2 above to deduce the pointwise-in-time
control on ρ.

Lemma 6.3 Under the bootstrap hypotheses (2.11) we have

sup
0≤τ≤t

sup
�∈Zd∗

∑

k∈Zd∗

K̄k,�(t, τ ) �
√

K2ε〈t〉.

Proof As in the proof of Lemmas 6.1 and 6.2, we may control g by (2.11b) and reduce
to dimension one, leaving us to analyze the analogue of (6.7) except without the time
integral:

Ik,�(t, τ ) = e−ν(t,τ )〈k,kt〉s
e−δ〈k−�,kt−�τ 〉s 〈τ 〉

|�|γ .

By using (3.9c) we have,

Ik,�(t, τ ) � e−Csδ〈k−�〉s 〈τ 〉,

which after summing in k and taking the supremum in � and τ ≤ t gives the lemma. ��
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7 Final Steps of Proof

By Proposition 2.2, (2.12) holds uniformly in time. By (1.3) and the algebra property
(3.14),

∫ T

0

∥
∥
∥F(t, z + vt) · (∇v − t∇z)( f 0 + g)(t)

∥
∥
∥Gα0

dt

�
∫ T

0
‖ρ(t)‖Fα0

∥
∥
∥(∇v − t∇z)( f 0 + g)(t)

∥
∥
∥Gα0

dt.

Therefore, (2.12), (3.8), λ(t) ≥ α0, (1.9) and σ > β + 1 imply

∫ T

0

∥
∥
∥F(t, z + vt) · (∇v − t∇z)( f 0 + g)(t)

∥
∥
∥Gα0

dt

�
∫ T

0
〈t〉−σ+1 ‖Aρ(t)‖2

∥
∥
∥A(−β)( f 0 + g)(t)

∥
∥
∥

2
dt

�
(∫ T

0
‖Aρ(t)‖2

2 dt

)1/2 (∫ T

0
〈t〉−2σ+2

∥
∥
∥A(−β)( f 0 + g)(t)

∥
∥
∥

2

2
dt

)1/2

� ε.

Therefore, we may define g∞ satisfying ‖g∞‖Gα0 � ε by the absolutely convergent
integral

g∞ = hin −
∫ ∞

0
F(τ, z + vτ) · (∇v − τ∇z)g(τ ) dτ.

Moreover, again by (3.14), (2.12) and (3.8),

‖g(t) − g∞‖Gλ′ �
∫ ∞

t
e(λ′−α0)〈τ 〉s 〈τ 〉−σ+1 ‖Aρ(τ)‖2

∥
∥
∥A(−β)( f 0 + g)(τ )

∥
∥
∥

2
dτ

� εe
1
2 (λ′−λ0)〈t〉s

,

which implies (1.12a). Then Lemma 5.2 implies (1.12b) (since σ > 1/2), completing
the proof of Theorem 1.

We briefly sketch the refinement mentioned in Remark 6. Specifically we verify
that the final state predicted by the linear theory is accurate to within O(ε2). Indeed,
let gL be the solution to

⎧
⎨

⎩

∂t gL + F L(t, z + vt) · ∇v f 0 = 0,

̂F L(t, z + vt)(t, k, η) = −ikŴ (k)ĝL
k(t, kt)δη = kt ,

gL(t = 0, z, v) = hin(z, v).

(7.1)
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By the analysis of §4 we have that hL(t, x, v) = gL(t, x − tv, v) satisfies the conclu-
sions of Theorem 1 for hL∞ = hL∞(z, v) given by

hL∞(z, v) = hin(z, v) −
∫ ∞

0
F L(t, z + vt) · ∇v f 0(v) dt.

Consider next the PDE

∂t

(
g − gL

)
+
(

F − F L
)

(t, z + vt) · ∇v f 0 = −F(t, z + vt) · (∇v − t∇z)g.

By treating the right-hand side as a decaying external force, the analysis of §4 with λ′
replaced by λ′′ < λ′, then implies

∥
∥
∥g(t) − gL(t)

∥
∥
∥

λ′′ �λ′−λ′′ ε2,

which shows that the nonlinearity changes the linear behavior at the expected O(ε2)

order. Justifying higher order expansions should also be possible, but justifying the
convergence of a Newton iteration is significantly more challenging as the constants
would need to be quantified carefully.
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