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Abstract In this study, performance of two artificial

networks was evaluated to determine which one would

have more efficiency in predicting nitrate contamination of

groundwater. The case study was in Babol which is rec-

ognized as one of the most fertile regions in Iran. Relevant

factors including hydrogeology, soil nitrogen content, soil

organic matter and soil carbon content were measured

in situ as input data to predict nitrate in groundwater, then

correlated by using the Pearson formula. Next, back-

propagation and radial basis function neural networks were

applied one-by-one. The best structure for back-propaga-

tion model was found to be 4-5-1 and Radial basis function

with a spread parameter equal to 0.5 and the mean square

error (MSE) of 0.50 mg/l. Results showed no significant

difference between the proposed models. Both ANN

models can reliably predict nitrate contamination in

groundwater with acceptable accuracy. However, the radial

basis model showed marginally better performance com-

pared to back-propagation by 30 %.

Keywords Groundwater � Modeling � Pollution � Neural
networks

Introduction

In recent years, groundwater as one of the main sources of

drinking water is being exposed to an increasingly serious

pollution. Several studies have demonstrated that nitrate

nitrogen (NO3-N) is the most common groundwater pollutant

(Ehteshami and Biglarijoo 2014; Rivett et al. 2008). Nitrate in

drinking water can cause various types of cancer (Unesian

1990). Therefore, the maximum permissible concentration for

drinking water was determined below 10 ppm of NO3-N in

USA, or 45 ppm according to the recommendation of the

World Health Organization (Ehteshami et al. 2013).

Being endowed with rich water resources, fertile soil

and temperate climate, agriculture is highly developed in

northern part of Iran. Consequently, nitrogen fertilizers are

used in large amounts and high rates. Several previous

researches have studied nitrate pollution in groundwater as

well as nitrate concentration of groundwater in local areas,

however, with the main focus on general statistic (Alab-

dula’aly 1997; Bruggeman et al. 1995). Agriculture is one

of the human activities that have a large ‘ecological foot-

print’, including a significant influence on nitrate contam-

ination of groundwater (Carey and Lloyd 1985; Williams

et al. 2014; MacQuarrie et al. 2001). Application of

nitrogen fertilizers and nitrate leakage from livestock are

two main factors responsible for groundwater quality

degradation (Sweeten et al. 1995). Based upon previous

studies, there is a direct relation between nitrate contami-

nation in groundwater and agricultural management prac-

tices (Follett et al. 1991; Lee et al. 1992; Hinkle and

Tesoriero 2014).
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In order to study the nitrate concentration in ground-

water of Gilan and Mazandaran rice fields, samples of

surface and groundwater including water in rice fields,

rivers, drains, domestic wells and semi deep wells were

analyzed in 1995. Results showed that the most nitrate

concentration differences are related to domestic wells and

during spring season and almost 3 % of wells contained

nitrate contamination, which exceeds the standard level

(Malakuti 2000). Unesian (1990) reported to determine

nitrate concentration in groundwater in Sari County, 32

samples were collected and analyzed by an ultra violet

spectrophotometer and showed the nitrate concentration in

4 % of region wells was more than permissible nitrate

level. Most of the studies have used statistical methods

such as spatial interpolation.

Since 1990s, artificial neural network (ANN) algorithms

has been developed rapidly, and widely used to derive

predictive results in hydrologic analysis, water resources

and management of agricultural non-point source pollution.

Application of artificial neural networks is becoming

common to solve various types of engineering prediction

and optimization problems (Salami and Ehteshami 2015,

2016). Although some previous studies focused on esti-

mating NO3 pollution in groundwater, selection of input,

type of network and case properties made considerable

differences between investigators. The distribution of

groundwater NO3-N pollution is also simulated using

neural networks, however, in these studies, the selection of

input layers relied on subjective judgments rather than

concrete numerical analysis (Strebel et al. 1989; Maithani

2009). The high concentration of NO3-N in groundwater is

ascribed to a multi-factorial dynamic interaction process in

intensive farming (Maithani 2009). Strebel et al. (1989)

indicated that NO3-N usually overloads into groundwater

as a result of excessive use of nitrogen fertilizers in

intensive farming and cropping systems with low N-use

efficiency. Therefore, a reliable model should be able to

analyze and simulate each influential factor, either natural

or anthropological, to accurately determine its contribution

in increasing the NO3-N concentration in groundwater.

Suen and Eheart (2003) collated the effectiveness of

Back-propagation neural networks (BPNNs) and radial

basis function neural networks (RBFNNs). These two

models were also compared with conventional water quality

modeling methods such as regression and mechanistic.

Concerning overall precision RBFNN outperfomed others.

Sharma et al. (2003) simulated the subsurface drain

outflow and nitrate–nitrogen concentration in tile effluent

adopting a trainable fast back-propagation (FBP) network

and a self-organizing radial basis function (RBF) network.

Data were gathered in the period of 40 month and

employed to train the models. Supreme performance of the

RBF neural network in predicting the concentration of

nitrate-nitrogen was confirmed. Moasheri et al. (2013)

strived for a more accurate and reliable understanding of

spatial distribution of sodium, calcium and magnesium in

Kashan aquifer by merging statistical methods and artificial

neural networks. Results suggested high precision of the

method.

In this study, the Back-Propagation Neural Network

(BPNN) and Radial basis (fewer neurons), two popular

artificial neural networks is applied to simulate the

groundwater nitrate concentration in Babol. The main

objective of the study is to investigate the complex non-

linear relationship between multi-factorial behaviors of

nitrate groundwater contamination.

Materials and methods

Study area

Babol is situated in Mazandaran province. This area

encompasses 14,301 km2 which is about 5.94 % of the

Mazandaran province, located between 36�050 and 36�350
latitude, and 52�300 and 52�450 longitude. A total of

80,900 Ha is under cultivation of rice, fruits, vegetables,

grain and other products as it is shown in Table 1. At the

same time, the health of groundwater is particularly impor-

tant, not only because its potable use by the majority of local

people but also for its possible interaction with other open

water bodies at lower elevations. City of Babol is situated

210 km northeast of Tehran and it is surrounded by Babolsar

at north, Alborz Mountains at south, Amol city at west and

Ghaemshahr and Savadkooh at east. In this area, shallow

wells are the main source of drinking water supply The

average water table depth is about 2.5 m with the minimum

at the ground surface level while a maximum depth of 5.5 m

was observed at the southern part of plain (Badei 1998).

Urea is the most common fertilizer used in the area. Its

water solubility and its leaching potential are high enough

to contaminate groundwater. High concentrations of nitrate

in drinking water can cause drastic diseases such as

Methemoglobinemia in infants and stomach cancer in

adults (Lee et al. 1992; Wolfe and Patz 2002). A concen-

tration of 10 mg/l is a generally accepted limit for safe

drinking water (USEPA 2012). WHO guideline for drink-

ing water proposed the standard level of 50 mg NO3/l for

nitrate concentration in drinking water. USEPA (2012)

maximum allowable contaminant levels in drinking water

for nitrate and nitrite concentration are 10 mg N/l (=45 mg

NO3/l) and 1 mg N/l, respectively. The rate of fertilizer

application in Babol County including urea and phosphates

are 13,000 and 4000 tons annually respectively. Therefore,

possible consequences of its high usage necessitated us to

conduct this study with the objective of accurately
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assessing its seepage rate and occurrence in local

groundwater.

Water sampling

The sampling was performed in fifty randomly selected

wells as shown in Fig. 1. The sampling and the associated

analyses was conducted in autumn season. The average

concentration of nitrate was 20.88 mg/l while the maxi-

mum value in rice farm region was 45.5 mg/l, which is less

than WHO standard but it is according to USEPA standard

out of the acceptable range. The minimum nitrate rate was

4.3 mg/l which was measured in fruit gardens. The water

testing was performed using DR2000 Spectrophotometer

(by: HACH, USA) at Babol university health service lab-

oratory. The samples transferred to the laboratory in the

shortest possible period of time, and analyses were con-

ducted readily. Furthermore, 10 cc of sulfuric acid was

added to each sample to preserve its quality.

Soil and water laboratory analyses

From a list of 145 wells in the study area 50 wells were

selected randomly, so a uniform grid at the scale of

Table 1 Annual usage of urea

and phosphate fertilizers in

Babol County

Cultivation Rice Fruits Vegetables Grains Other products

In acre 50,000 11,000 6500 400 13,000

Urea fertilizer (kg/acre) 200 100 150 150 100

Phosphate (kg/acre) 50 50 – 50 50

Fig. 1 Study area and sampling distribution in Babol
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1 9 1 km were made and adapted to the wells map. The

selected wells were within the residential area and mostly

in agricultural zones. Autumn was the season to start the

sampling for three continuous years. Extended studies

indicate that autumn is the best season for sampling

because after the dry season by the end of the harvest time,

all the applied fertilizers are completely leached out of the

soil profile.

In this study area there is not any second cultivation,

therefore, all the nitrogen is likely to be washed away and

leached into the groundwater. Water samples at different

depths were collected and analyzed for nitrate and nitrite

concentrations for three continuous years from 2011 to

2014. The sampling was performed 20 times at 0–30 and

30–60 cm depth. The sampling instrument was consisted of

one oger which was a hollow tube with sharp head.

The analysis of water samples was done using a DR2000

device in the health department of Babol medical center. In

82 % of samples nitrate Concentration exceeded the

USEPA standard, however, nitrite concentration in all

samples fell within the standard range. Nitrate concentra-

tion in all samples of rice field was higher than the standard

limit while no sample in citrus cultivation area exceeded

the standard limit. The mean nitrate and nitrite concentra-

tion in all samples were 20.3 and 0.12 mg/l, respectively.

The laboratory measured data were soil saturation percent,

electrical conductivity, acidity, organic matter percent,

carbon percent and the total available nitrogen at each soil

sampling. Huang et al. (2011) showed that groundwater

runoff modulus in previous system is not important as input

data for neural networks. Therefore, in this study, this

parameter was not measured. Table 2 shows the average,

maximum and minimum of the soil and groundwater

measured parameters. Numbers of wells in each range of

concentration are shown in Table 3. The sample analyses

showed nitrate concentration is higher than USEPA nitrate

recommendation in drinking water and it justifies the

importance of regional groundwater studies.

Artificial neural network modeling

At first step, the Pearson formula was used to determine the

main measures for neural network model as input. Next,

two kinds of neural network (BPNN and Radial base) was

developed to be used for prediction of nitrate in regional

groundwater. Correlation analysis of all influential vari-

ables associated with the groundwater nitrate concentration

was performed using the Pearson formula.

The results are shown in Table 3. The analyses

demonstrated that variables such as soil nitrogen content,

soil carbon content, soil organic matter content and the

nitrite concentration in water are the most influential fac-

tors affecting the groundwater NO3-N concentration, sig-

nificant at the 0.01 level in a two-tailed test.

According to Table 4 nitrite in ground water (X), soil

organic matter content (Y), soil nitrogen content (Z) and

pH (T) were chosen as input layers for artificial neural

network, and groundwater NO3-N concentration (R) was

the output layer. Then the ANN model with functional

relationship of R = f (X, Y, Z, T) was established.

ANNs are analytical techniques, capable of acquiring

the knowledge and modeling the complex environmental

processes. For predictive purposes, such modeling is done

using the observed data for storing the knowledge of

underlying process, and thus synthesize it to be applied to

new observations (test phase). In order to optimally predict

(find a best fit for) the sample data, during the training

phase in which the knowledge of an environment is

acquired from the observed data; an iterative learning

algorithm is applied to the number of inputs (variables) to

find the optimal adjustment of the network connection

weights (Sahoo et al. 2005).

Two well-known ANN models, the feed-forward BP and

the radial basis function (RBF), were employed as pre-

liminary exploratory models to investigate their efficiency

for the purpose of nitrate detection in ground water. The

MATLAB toolbox was used to create BP and RBF type

neural networks for this study.

Table 2 Measured soil and water parameters in Babol

Parameters Min Max Average

Saturation percentage in soil (percent) 39 92 66.4

EC 9 10-3 in soil 0.24 3.17 1.23

pH in soil 6.06 8.19 7.48

Organic matter in soil (percent) 0.75 7.52 2.95

Total nitrogen in soil (percent) 0.015 0.33 0.152

Organic carbon in soil (percent) 0.53 3.835 1.67

NO2 in ground water (mg/l) 0.03 0.31 0.12

NO3 in ground water (mg/l) 4.3 45.5 20.88

Table 3 Number of wells in each concentration range and percentage

Concentration range

nitrate (mg/l)

Number of samples

in the range

Percentage of samples

in the range

0–5 4 4.30

5–10 13 13.98

10–15 15 16.13

15–20 19 20.43

20–30 26 27.96

30–40 7 7.53

40–50 9 9.68
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Back propagation neural network

In this study, the back-propagation training algorithm is

applied which is also the most widely used neural network

method. After the training phase, in which the internal

weights are adjusted, the classifying process begins as the

second stage in application of neural networks for multi-

source classification. Basically, the back-propagation

algorithm trains the network until the minimum target error

between the desired and actual output values is reached or

the number of iterations exceeds the preset maximum

number. When this criterion is met, the network is suffi-

ciently trained and may be used as a feed-forward classifier

to obtain a classification of the entire dataset (Huang et al.

2011). Table 5 illustrates practical research recommenda-

tions about the number of neurons as the most important

feature of BPNN. Ultimately, the distribution pattern of

groundwater nitrate concentration can be obtained after

appropriate training, calibration and validation. The back-

propagation algorithm determines the optimal weighting of

the features by iterative modification of the hidden nodes

and the learning rate while calculating the relative weights

between the input and the hidden layers, and between the

hidden and the output layer (Choi et al. 2010). The feed

forward network modeling and analysis were performed

using the MATLAB software. The term ‘‘feed-forward’’

denotes that the data presented to the input layer are

propagated in a forward direction to the next layer by the

interconnections between the neurons.

An optimal choice of network parameters such as the

number of hidden layers and nodes within a layer, needed

for a particular classification problem is not easy to

achieve. Table 5 presents some recommendations and

heuristic rules for choosing the number of neurons sug-

gested by other studies. In this table, I denotes the number

of input layer and O is the number of output layer. In the

present study, four input parameters including nitrite con-

centration, soil organic matter content, soil nitrogen con-

tent and pH are employed where the only output is nitrate

in groundwater. Therefore, the initial number of hidden

layers is chose between 1 and 12 while also 15 was selected

as an out of range boundary value.

The BPNN architectures were specified selectively to

ensure the minimum difference between the measured data

and the predicted data. The mean square error (MSE), used

as the target error goal, is defined as:

MSE ¼

Pn

i¼1

ðTi � RiÞ2

n
ð1Þ

where n is number of input samples, Ti and Ri are the target

and observed NO3-N concentration in groundwater,

respectively. Training stops when any of these conditions

occur: (1) the maximum number of epochs (repetitions) is

reached, (2) performance has been minimized to the target

error goal (MSE in this case), and (3) the performance

gradient falls below the minimum gradient (Principe et al.

1999). Therefore, if the minimum performance gradient

falls below 10-10 the termination of the training process is

justified as further training would not provide any perfor-

mance improvement (Hagan et al. 1996).

According to previous studies (Maier and Dandy 1998;

Ray and Klindworth 2000), a tangent sigmoid transfer

(between -1 and 1) function is used for hidden layers and a

linear transfer (between -? and ?) function was used for

output layer. The back-propagation algorithm adjusts the

network weights to minimize the error between the pre-

dicted and actual outputs. This algorithm propagated the

error backwards while iteratively adjusted the weights. The

maximum numbers of epochs, target error goal ‘MSE’, and

the minimum performance gradient were set to 1000, 0.01,

and 10-5, respectively. Therefore, if the gradient value

falls below 10-5 the training process terminates or else the

training process will continue till the end of 1000 epochs.

The idea is to let the system train until the point of

diminishing returns (MSE = 0.01). All the iterations met

the 0.01 root mean square error goal or the training process

will continue till the end of 1000 epochs. It should be

mentioned that the toolbox of MATLAB software was used

to create BPNN. The input data were normalized to the

Table 4 Pearson correlation results

Parameters Correlation with groundwater

NO3-N concentration

NO2 in ground water (mg/l) 0.759

Saturation percentage -0.037

EC 9 103 0.036

pH -0.115

Organic matter 0.086

Organic carbon 0.075

Total nitrogen 0.156

Table 5 Suggested rule for number of neuron layer in BPNN

networks

References Equation Number of

hidden layer

Patuwo et al. (1993) 2 I ? 1 9

Wang (1994) 2 I/3 3

Piramuthu et al. (1994) 0.5 (I ? O) 2

Lenard et al. (1995) 0.75 I 3

Kanellopoulos and Wilkinson (1997) 2 I 8

Kanellopoulos and Wilkinson (1997) 3 I 12
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range of 0–1, while 70 %of the data used as training, 25 %

for test and 5 % as validation sets.

Radial basis function neural networks (RBFNN)

Radial basis function neural networks (RBFNN) advan-

tages over traditional multilayer perceptron models such as

faster convergence, smaller extrapolation errors, and higher

reliability makes them exceedingly promising for engi-

neering applications (Moradkhani et al. 2004). Like the

back-propagation network, the RBF neural network has a

feed-forward architecture that is very similar to a multi-

layer perceptron network (MLP). It consists of three layers:

(1) one input layer, (2) only one hidden layer that obvi-

ously reduce the computation time, and (3) one output

layer as shown in (Fig. 2), in which numbers of neurons are

N, M, L, respectively. The self-organized characteristic of

the RBF structure allows for adaptive determination of

hidden neurons during the training phase (Zhang and

Kushwaha 1999).

An input pattern enters the input layer and the neurons

in the input layer just propagate input features to the next

layer, whereas output from input layer is same as the input

pattern. Number of nodes in the input layer is equal to the

dimension of input vector p as:

P ¼ ½p1p2. . .pn�
T;

N is number of input nodes, and Pi is the output layer

ð2Þ

The hidden layer consists of locally tuned units each of

which has radial basis function acting like a hidden node.

Each node in this layer must have the following features as:

(a) A center vector Cj in the input space while M is the

number of center vectors. (b) A distance measure to

determine how far an input pattern Pi is from elements of

center vector Cji.We have used Euclidean distance norm to

Fig. 2 Radial basis structure

Table 6 Performance of

different BPNN structures
Number of node R train R test MSE (mg/l) in train MSE (mg/l) in test

2 0.68 0.75 0.83 0.47

3 0.64 0.88 0.80 1.12

5 0.86 0.66 0.35 0.72

8 0.81 0.82 0.42 1.64

9 0.81 0.58 0.53 1.40

12 0.94 0.77 0.13 0.88

15 0.71 0.87 1.03 1.21
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measure distance between input vector P and node j of

hide-layer.

Euclidean distance edj ¼ P� Cjk k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN

i¼1

Pi � Cji

� �2

v
u
u
t ;

i ¼ 1; 2; . . .;N

ð3Þ

(c) A transfer function u which transfers Euclidean dis-

tance to give output for each node. (In this study we con-

sider a Gaussian function).

uj Pð Þ ¼ exp � 1

2r2j
P� Cj2
�
�

�
�

 !

; j ¼ 1; 2; . . .;M ð4Þ

where r is the spread parameter that represents the width

of the radial basis function (Sahoo et al. 2005). There are

weight factor wkj (k = 1 to L, j = 1 to M) between kth

nodes of output layer and jth nodes of hidden layer. ‘L’ is

the dimension of output vector. output from output layer

transferred through a transfer function like log sigmoid or

tan sigmoid. The kth network output can be calculated as:

Outputk ¼ f
XL

k¼1

wkj � Outputj

 !

; k = 1,2, :::; L ð5Þ

Calculation and modeling of ANNS, experiment was

conducted in the MATLAB 2008 environment. It has been

tried to minimize the network error in the training process.

Then, the results are compared with measured values using

MSE (mean square error) on training procedure.

Results and discussion

The retrieval results by BPNN

The advantage of using neural networks is the ability to

properly describe nonlinear and interacting relationships

within a regional crop–soil–groundwater system (Paola and

Schowengerdt 1995). In the developed model, the routine

Fig. 3 Best BPNN network

structure

Table 7 The final trained

weights and biases in the control

run with the optimum

parameters

The weights in the input-hidden layers

W1,1 = 1.468 W2,1 = -0.0650 W3,1 = -0.2332 W4,1 = -1.4408

W1,2 = -0.814 W2,2 = -0.0829 W3,2 = -1.8868 W4,2 = -0.8036

W1,3 = 0.191 W2,3 = -2.0920 W3,3 = 0.9399 W4,3 = 1.3919

W1,4 = 1.028 W2,4 = 0.9717 W3,4 = -1.3459 W4,4 = -1.0354

W1,5 = 0.228 W2,5 = -0.3528 W3,5 = 0.5727 W4,5 = 1.9210

The weights in the hidden-output layers

W1,1 = -0.2889 W2,1 = -0.5374 W3,1 = 0.6061 W4,1 = 1.0599 W5,1 = -0.3846

The biases in the hidden layer

b1 = -2.1094 b1 = 0.4812 b1 = 0.0427 b1 = 0.7710 b1 = 2.5049

The biases in the output layer

b2 = -0.121
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data of soil characteristics, groundwater monitoring, field

fertilizer usage and management measures can easily be

used as input data without any preliminary specialized

testing and time consuming parameter identification. A

very important feature of neural networks is their adaptive

nature which enables them to quickly represent the updated

system characteristics by continuous adaption to the

changing environmental factors or human activities. The

model verification results confirmed the BPNN strong

learning ability, robustness, and high predictive accuracy

for nonlinear systems. Table 6 shows how the optimum

number of nodes in hidden layer of back propagation

neural network was estimated.

The model with two neurons in hidden layer showed the

least square error in the test stage. Although it is found to

have a low correlation coefficient, at the same time the

number of false values in training stage was significantly

more than testing stage. Therefore, this neurons architec-

ture was recognized as unsuitable. Comparative analysis of

the neurons system behavior indicated that the best result

would occur with five neurons in hidden layer. Conse-

quently, the 4-5-1 structure is adopted for the BPNN as it is

shown in Fig. 3.

The layers weights acquired by the training phase were

calculated in reverse to represent the contribution or

importance of each factor.

For development of the current network 38 vectors

selected for training from a total sample of 50. Twelve

vectors used for test set. At the third step, we train the

network to get the statistical analyses. The physical mean-

ing of parameters is equivalent to the grid structure, serves

as testing and the input of identifying of new samples. The

fourth step was statistical analyses of output parameters.

The ‘newrb’ function available in the commercial

MATLAB toolbox was used to create a radial basis neural

network. Initially there is no radial basis neuron. It itera-

tively creates one radial basis neuron at a time and adds

neuron to the network until either the sum squared error

falls beneath an error goal (MSE) or the maximum number

of neurons is reached. The values of error goal (MSE) in

MATLAB toolbox were selected equal to (0.01, 0.02, 0.03,

or 0.04), and spread were selected equal to (0.5 or 0.8 or 1).

The selected transfer function in output layer is ‘pureline’

function. The results of the modeling are shown in Table 7.

Radial basis result

The entering data for BPNN network normalized in 0–1

distance and 25 % of data has been selected as test and

75 % has been selected as training sets. It is necessary to

mention that this data are the same random data as BPNN

network test data and during training phase was found that

Training Performance is equal to one. This infers that our

predictive model is trained well. Since the neurons in the

hidden layer of RBF network respond to inputs in the

neighborhood of their centers, they develop a composition

of localized receptive fields.

A sensitivity analysis was carried out to ensure the

optimum spread values are chosen to minimize model

prediction error. It is proved that the RBF with a spread of

0.5 can achieve better results than RBF with spread 1.0

(default value of MATLAB toolbox) or higher spreads.

Also it was found that lower spread values (\ 0.5) may not

lead to any performance improvement.

Therefore, a good choice of the spread value in a typical

RBF network is a determining factor for its successful

application in achieving the most accurate simulation

results. According to Table 8 best Radial Basis network

which can predict the nitrate in groundwater have their

spread and error goal as 0.5 and 0.03, respectively. Thus,

the network weights were determined, as measures of each

parameter effective contribution and influence on the sys-

tem. The final trained weights and biases of a randomly run

with the optimum parameters are shown in Table 9.

Conclusions

Two types of neural networks; back-propagation neural

network, and a radial basis function (RBF) were tested for

prediction of nitrate in groundwater from analyzed

groundwater N concentration, soil organic matter content,

soil nitrogen content and pH as input data. Since sample

collection, analysis, and re-sampling are expensive, only 50

samples from 50 wells were used for analyses in this study.

Among the various structures of BPNN and RBF networks

employed for this study, BPNN with five neurons in hidden

Table 8 The calculated performance indices for radial basis function

neural network models

Case

RBF (spread, goal)

Training

performance

Validation Performance

R MSE (mg/l) R

RBF (0.5, 0.01) 1.0 4.78 -0.192

RBF (0.5, 0.02) 1.0 1.23 0.31

RBF (0.5, 0.03) 1.0 0.50 0.85

RBF (0.5, 0.04) 1.0 1.09 0.37

RBF (0.8, 0.01) 1.0 5.60 -0.074

RBF (0.8, 0.02) 1.0 10.46 0.48

RBF (0.8, 0.03) 1.0 0.65 0.77

RBF (0.8, 0.04) 1.0 0.65 0.77

RBF (1, 0.01) 1.0 8.08 -0.28

RBF (1, 0.02) 1.0 0.71 0.69

RBF (1, 0.03) 1.0 0.69 0.7

RBF (1, 0.04) 1.0 0.69 0.7
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layer was found to be superior to other structures. The

prediction ability of the RBF neural network was found to

be marginally better than BPNN. Figures 4 and 5 show the

comparison between BPNN and RBF in process of vali-

dation step. It shows RBF could differentiate the trend

slightly more accurate than PBNN. Moreover, weights and

biases are illustrated in Tables 7 and 9 to determine values

of each parameter in different layers. ANN models can

predict nitrate contamination in groundwater with accept-

able accuracy. However, the radial base model had a

marginally better performance compared to the back-

propagation by 30 %.

Table 9 Trained weights and

biases in best radial basis

training phase

The weights in the input-hidden layers

W1,1 = 0.75 W2,1 = 0.3454 W3,1 = 0.4009 W4,1 = 0.5714

W1,2 = 0.8571 W2,2 = 0.09980 W3,2 = 0 W4,2 = 0.1428

W1,3 = 0.6071 W2,3 = 0.5547 W3,3 = 0.5930 W4,3 = 0.7460

The weights in the hidden-output layers

W1,1 = -0.0578 W2,1 = 0.9158 W3,1 = 0.7813

The biases in the hidden layer

b1 = 1.6651 b1 = 1.6651 b1 = 1.6651

The biases in the output layer

b2 = -0.0622
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Fig. 4 Comparison of the

measured and simulated NO3 in

the ground water, back

propagation neural network
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Fig. 5 Comparison of the

measured and simulated NO3 in

the ground water, radial base

neural network
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