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Abstract
Purpose of Review This review will discuss how the steroid hormones, estrogen and progesterone, as well as treatments that
target steroid receptors, can regulate cancer stem cell (CSC) activity. The CSC theory proposes a hierarchical organization in
tumors where at its apex lies a subpopulation of cancer cells endowed with self-renewal and differentiation capacity.
Recent Findings In breast cancer (BC), CSCs have been suggested to play a key role in tumor maintenance, disease progression,
and the formation of metastases. In preclinical models of BC, only a few CSCs are required sustain tumor re-growth, especially
after conventional anti-endocrine treatments. CSCs include therapy-resistant clones that survive standard of care treatments like
chemotherapy, irradiation, and hormonal therapy.
Summary The relevance of hormones for both normal mammary gland and BC development is well described, but it was only
recently that the activities of hormones on CSCs have been investigated, opening new directions for future BC treatments and
CSCs.

Keywords Progenitor . Biomarker . Signal pathway . Therapy resistance . Breast cancer stem cells

Introduction

The cancer stem cell (CSC) concept proposes a hierarchical
organization of the cells within a tumor, where only a small
subset of cells, the CSCs, drives and sustains tumor growth. In
preclinical studies using breast cancer models, CSCs are de-
fined as self-renewing cells that can propagate the tumor,
which makes them very important in the processes of tumor
recurrence, metastasis, and resistance to therapy. These roles
make them an important therapeutic target [1].

The first report providing evidence for the presence of
breast CSCs (BCSCs) observed that CD44+/CD24low/ESA+/

lineage− (named CD44+/CD24−/lo henceforth) cells (Table 1),
isolated from human breast tumors by fluorescence activated
cell sorting (FACS), were enriched for CSCs that were ade-
quate to seed tumors in immune-deficient mice [14]. CD44+/
CD24−/lo cells were serially passaged and gave rise to tumors
containing both CSCs (CD44+/CD24−/lo) and non-CSCs, sug-
gesting self-renewal and differentiation, respectively. Breast
cancers with high CD44 and low CD24 have been associated
with the triple negative subtype (negative for estrogen recep-
tor (ER), progesterone receptor (PR), and HER2 receptor) and
with poorer prognosis [15, 16].

Other strategies have also been used to identify BCSC
enriched populations. Mammosphere formation, high alde-
hyde dehydrogenase (ALDH) activity, and CD49f or CD133
expression are properties that have been utilized to isolate
CSCs (Table 1). The mammosphere colony assay tests the
capacity of BCSCs to survive in non-adherent culture condi-
tions and to form spherical colonies, called mammospheres
[17–19]. The activity of ALDH1, which retinaldehyde to
ret inoic acid, is detected by an enzymatic assay
(ALDEFLUOR) and flow cytometry [20]. The proportion of
cells with ALDH1 expression in breast cancer has been shown
to correlate with poor prognosis [20–22]. Finally, CD49f and
CD133 (Table 1) have recently been shown to enrich for CSCs
in chemotherapy resistant triple negative and endocrine-
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Table 1 Markers of breast cancer stem cells

Markers and reference Epitope function Expression in preclinical
models

Expression in cancer
subtypes

Essays used to
evaluate activity

CD44+/CD24−/low/EpCAM+ [2] CD44 is a ubiquitously
expressed receptor for
hyaluronan and exerts
control over cell growth,
migration, and tumor
progression.

Not detected in MCF7, T47D,
ZR75, SKBR3, and
MDA-MB-468

Significantly
associated with
basal-like and
luminal B subtypes,
but the inverse
associated with
luminal A [3].

In vitro
proliferation,
migration,
invasion,
colony
formation.

In vivo tumor
formation
studies

CD44+/CD24−/low/EpCAM+/Lin−

CD24, also known as heat
stable antigen (HSA), a
sialoprotein that is expressed
on B cells, T cells,
keratinocytes, and myofiber
synaptic nuclei and is
upregulated in a wide variety
of cancers.

Highly expressed in
MDA-MB-231,
MDA-MB-361, HCC1937

CD44+/CD24−/low/Lin−

ALDH1+

ALDH1+/CD44+/CD24−
[4] Aldehyde dehydrogenases

(ALDHs) detoxify aldehydes
by oxidizing them to
carboxylic acids. ALDH1A1
is a cytosolic enzyme that
preferentially oxidizes
retinaldehyde to retinoic
acid.

Highly expressed in
MDA-MB-468,
MDA-MB-231, HCC1937,
SKBR3, MCF7, ZR75 [5].

Significantly
associated with
HER2+ and
basal-Like BC, but
negative associated
with luminal A [3].

In vivo tumor
formation
studies.

Not detected in T47D,
MDA-MB-361 [5]. Detected
in BT-20, MDA-MB-157,
and MDA-MB-231 [6].

CD133+ [7••,
8,
9]

CD133 (also known as
prominin 1) is a plasma
membrane protein known to
be expressed on neural stem
cells and hematopoietic stem
cells.CD133 high cells may
predict for refractory
metastatic disease following
neoadjuvant endocrine
therapy.

Associated with higher
self-renewal potential and
vascular mimicry.

Highly expressed in
MDA-MB-468. Not
detected in MCF-7, T47D,
ZR75, SKBR3,
MDA-MB-231,
MDA-MB-361, and
HCC1937 [5].

Significantly
associated staining
in Triple negative
(71%) [9].

Low expression
(staining) in Her2+
(38%) and Luminal
(26%) tumors [9].

In vivo tumor
formation
studies

Mediating
metastatic
progression.

Not detected in: BT-20 and
MDA-MB-157 [6].

Detected in MCF-7 ER-low,
MCF-7 + Fulv, ZR75 + Fulv
and in a Resistant
PDX-TamR [7••].
Associated with CSC in
Brca1Δ11p53+/− mammary
tumors

CD24+/CD29high [10] Integrin beta-1/CD29: A
membrane receptors
involved in cell adhesion and
recognition in a variety of
processes including
embryogenesis, hemostasis,
tissue repair, immune
response, and metastatic
diffusion of tumor cells

MMTV-wnt (Balb-C) mice NA Tumor
formation
studies

CD24+/CD29−/low/CD61+ Integrin beta-3 (β3)/CD61:
integral cell-surface proteins
known to participate in cell
adhesion as well as
cell-surface-mediated
signaling.

CSC population inMMTV-wnt
(Balb-C) tumors

NA

Half of the CSC population in
BALB/c-p53+/−

CD24+/CD29+/CD49f+ [11, 12] Integrin alpha-6/CD49f: a cell
surface proteins integral
cell-surface involved in cell
adhesion as well as
cell-surface mediated
signaling. CD49f has novel
and dynamic roles in

CSC population in
Brca1-mutant
primary mammary
tumors(Balb-C)

NA
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resistant breast cancer, respectively [7••, 23]. The establish-
ment of BCSC markers suitable for all tumors is hindered by
intra-tumor and inter-tumor heterogeneity of CSC
populations.

At the present time, the most robust enrichment for BCSCs
is achieved through the use of CD44+/CD24−/lo and ALDH+.
These two cell populations have been demonstrated to mark
BCSCs in different states and with gene expression resem-
bling either mesenchymal (CD44+/CD24−/lo cells) or epitheli-
al characteristics (ALDH+ cells) [24]. A small overlapping
population of cells which is both CD44+/CD24−/lo and
ALDH+ was identified, which suggested that BCSCs possess
cellular plasticity and can dynamically switch between mes-
enchymal and epithelial states. The epithelial–mesenchymal
transition and vice-versa (mesenchymal–epithelial transition)
can be driven by the tumor microenvironment, with hypoxia
or transforming growth factor beta playing key roles in this
[25, 26]. It is likely that other signaling factors that have been
reported to regulate BCSC activity, such as hormones, will
influence this. Herein, we discuss the regulation of BCSC
function by the steroid hormones, particularly estrogen and
progesterone, and their antagonists [22].

Estrogen and BCSCs

Estrogen promotes mammary epithelial cell proliferation and
is therefore critical for normal breast development, but it also
stimulates breast tumor growth through the estrogen receptor
(ER) [27]. Estrogen binds to its receptors, ERα and ERβ,
which are nuclear ligand-activated transcription factors, to
modulate the transcription of target genes [28]. The effects
of estrogen in the breast epithelium are mainly mediated by
ERα, which has a higher affinity to 17β-estradiol, the

physiological form of estrogen, than does ERβ [29].
Transcription factors need nuclear receptor co-regulators to
mediate their action on target DNA sequences; in this case,
ER signaling is dependent on FOXA1 expression, which pro-
motes local DNA unwinding facilitating the access of ER to
DNA [30].

Around three out of four breast tumors express ERα. Its
expression is associated with luminal differentiation markers
and with a more favorable breast cancer prognosis and is the
most important breast cancer predictive factor for endocrine
responsiveness [31, 32]. Exposure to high levels of estrogen
during women’s lifetime is established to be associated with
increased risk of postmenopausal breast cancer [33].
However, exogenous estrogen used as hormone replacement
therapy may reduce the risk of invasive breast cancer and
breast cancer-specific mortality in postmenopausal women
[34]. This paradoxal effect of the role of estrogen in breast
cancer initiation and progression might be explained by the
different impacts of estrogen on different breast cancer cell
types. On one hand, the pro-proliferative function of estrogen
in ERα-positive breast cancer cells has been well character-
ized, but on the other hand, literature detailing the effects of
estrogen on breast cancer stem cell (BCSCs) remains relative-
ly scarce [35].

These effects are proposed to occur indirectly via paracrine
mechanisms since BCSCs (CD44+ CD24−/lo and ALDH+

cells) are mostly ERα-negative [36–38]. It has been reported
that treatment of CSC-enriched mammosphere population
with estrogen decreases the proportion of BCSCs in ERα-
positive breast cancer cells as a result of downregulation of
embryonic stem cell genes [39]. This observation could in
theory explain the better prognosis of ERα-positive tumors
[40]. But it also has been shown that ERα-positive breast
cancer cells can secrete FGFR and EGFR ligands in response

Table 1 (continued)

Markers and reference Epitope function Expression in preclinical
models

Expression in cancer
subtypes

Essays used to
evaluate activity

regulating the differentiation
potential of hMSCs and
maintaining pluripotency

Tumor formation, migration, and
metastasis studies

CD24high/CD49fhigh/DNERhigh [13] DNER: Delta and Notch-like
epidermal growth
factor-related receptor

Epithelial cells from
reductive
mammoplasties.

Colony
formation
Sphere-form-
ing study

In vivo tumor
formation
studies

CD24high/CD49fhigh/DLL1high

DLL1: a member of the
delta/serrate/jagged family
involved in cell-to-cell
communication

CD49f+/DLL1high/DNERhigh

Basal-like cell lines including MDA-MB-468, MDA-MB-231, and HCC1937; luminal-like cell lines such as T47D, MCF-7, ZR-75, and SKBR-3

EpCAM epithelial cell adhesion molecule, ALDH aldehyde dehydrogenase, Fulv fulvestrant, BC breast cancer, CSC cancer stem cell
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to estrogen, which can act as paracrine mediators to promote
CSC activity and expand the fraction of CD44+ CD24−/lo cells
[41, 42]. In contrast, Axlund et al. reported that estrogen does
not change cancer stem/progenitor cell properties on its own
[43]. The reasons why some data show a protective effect of
estrogen whereas others show that it can enhance cancer cell
growth are not yet clear, but likely are related to other under-
lying differences in the tumor models used in the studies.

More recently, despite the fact that BCSCs do not express
the classical ERα, estrogens have been suggested to act di-
rectly on BCSCs through the ERα36 variant and ERβ.
ERα36 variant activates mitogenic signaling via the AKT/
GSK3β pathway and is essential for the maintenance of
CD44+ CD24−/lo cells of two ER-positive breast cancer cell
lines [44]. Ma and colleagues identified ERβ expression to be
associated with stem cell markers CD44 and ALDH1 and also
to be important for mammospheres formation [45].
Interestingly, ERβ gene expression has been reported to be
upregulated in FACS sorted human breast stem cells [46••]
compared to the total tumor cell population.

The complex implications of estrogen signaling in human
breast cancer cells with stem-like characteristics indicate that
further studies are needed to fully elucidate the effects of es-
trogens on BCSCs. Standardization of experimental condi-
tions is warranted since the use of different BCSC markers,
models, or culture conditions alters the analysis of CSC
activity.

Anti-estrogen Drugs and BCSCs

Anti-estrogen therapies are used for breast cancer treatment of
ER-positive tumors in both the adjuvant and metastatic set-
tings. The principal classes of drugs are selective estrogen
receptor modulators (SERMs, e.g., tamoxifen) and
downregulators (SERDs, e.g., fulvestrant) as well as aroma-
tase inhibitors, that reduce estrogen synthesis [47]. Since
BCSCs are mostly ER-negative, they are not targeted by
anti-estrogen therapies and several publications have reported
that these therapies enrich for cells with BCSC characteristics.

Tumors treated with letrozole (aromatase inhibitor) in-
creased in CD44+CD24−/lo mammosphere forming cells
[48]. Piva and colleagues reported that tamoxifen-resistant
MCF-7 cells have increased CD44+CD24−/lo and ALDH+
populations and form more mammospheres than the parental
cells. In addition, they established that expression of the em-
bryonic stem cell marker SOX2 and consequent activation of
WNT signaling pathway was key for BCSCs survival after
tamoxifen treatment [49]. Another study showed that
ERα36 promotes tamoxifen resistance by increasing the pro-
portion of CD44+CD24−/lo cells and mammosphere-forming
cells [44]. Our group has shown that BCSCs (ALDH+ cells)
are enriched following anti-estrogen treatment of breast cancer

cells both in vitro using patient samples and in vivo using
patient-derived xenografts. We also found that ALDH+ cells
have high expression of JAG1 ligand and NOTCH4 receptor
and that high ALDH1 expression predicts anti-estrogen resis-
tance in women treated with tamoxifen [38]. Recently, two
different studies from Sansone and colleagues demonstrated
how the transfer of miR-221 or full mitochondrial DNA from
cancer-associated fibroblasts to breast cancer cells through
circulating extracellular vesicles could promote an exit from
dormancy of BCSCs (CD133+) leading to endocrine therapy
resistance [50, 51].

Together, these findings suggest that inhibition of estrogen
signaling in breast cancer cells may lead to an increase of the
proportion of BCSCs. It still needs to be addressed whether
this phenomenon occurs through selection and survival of the
ER negative BCSCs, through induction of BCSCs character-
istics in the ER+ cells, or by both processes. Either way, we
hypothesize that BCSCs that survive anti-estrogen treatments
can enter a dormant state and eventually re-initiate tumor
growth, sometimes several years after the therapy. Further
interest in this field has given rise to several clinical trials
directly targeting CSCs (via recognized markers like ALDH)
or using different signaling pathways linked to CSCs
(Table 2).

Progesterone and BCSCs

Progesterone plays a pivotal role in lobuloalveolar develop-
ment of the mouse mammary gland during pregnancy [52,
53]. In premenopausal women, breast epithelial cell prolifer-
ation is highest in the luteal phase of the menstrual cycle
during maximum progesterone secretion [54, 55].
Progesterone signaling is mediated by the progesterone recep-
tor (PR), expressed as two isoforms (PRA and PRB) that are
only different by a third activation domain on the 5′ end of
PRB [56]. Importantly, the ratio of these two isoforms is key
in the normal development of the mammary gland [57].
Further evidence from isoform-specific murine mutants dem-
onstrates that mammary gland morphogenesis is linked to
PRB, whereas PRA plays a prominent role in the ovarian
homeostasis [58, 59]. The gene expression patterns while
largely overlapping indicate that PRB can regulate gene ex-
pression of more genes in comparison to its counterparts [60].

In normal human breast cells, stimulation with progester-
one in matrix-embedded culture increases bi-potent cell num-
bers [61]. Evidence in mouse models corroborates that pro-
gesterone and PR signaling drives mammary gland develop-
ment by expansion of the mammary stem cell population; this
signaling is also appropriated in carcinogen-induced mamma-
ry tumor formation [62–64]. In established cancer cell lines,
progestin administration leads to an increase of progenitor
cells and CSC markers [65].
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In the normal breast epithelium, the ratio of the PR iso-
forms remains balanced, but this is disrupted in the cancer
setting, favoring the expression of PRA [61, 66]. The in-
creased risk of developing breast cancer has been linked to
atypical hyperplasia [67] which often exhibits loss of PRB,
equally, altered ER expression, sole PRA expression, and
preferential PRB loss is also reported in the normal breast
tissue of women with germline BRCA1/2 mutations [68].
Such women demonstrate PR isoform imbalance and double
the circulating progesterone levels compared to matched con-
trols; however, the cause and significance of these findings
remain obscure [69].

During mammary gland expansion, PR mediates prolifera-
tion via paracrine signals, including RANKL (receptor activa-
tor of nuclear factor-κB ligand) and Wnt4. These signals are
secreted from PR+ sensor cells and act on PR− progenitor
cells, expressing RANK and the Wnt receptors Frizzled and
LRP5/6 [63, 64]. In multiple rodent models, deletion or inhi-
bition of PR or the RANK/RANKL pathway results in signif-
icant reduction in mammary carcinogenesis [62, 63, 70, 71].
More recently, Nolan and colleagues have also shown the
potential of RANKL as a therapeutic target in a Brca1-
deficient mouse model, while in normal breast tissue of
BRCA1-mutation carriers, identifying luminal RANK(+) pro-
genitors that are highly proliferative and bear a molecular
signature similar to that of basal-like BC, this indicates
RANKL inhibition as a promising strategy in the prevention
setting [72•].

One of the mediators of progesterone-induced stem/
progenitor cell functions in normal mammary gland is
CXCR4/CXCL12 [73]. Signaling by progesterone occurs in
a paracrine manner on luminal cells expressing CXCL12
while CXCR4 expression is also induced in both basal and
luminal PR− cells. Inhibition of CXCR4-CXCL12 signaling
axis can arrest the progesterone induced expansion of mam-
mary stem/progenitor cells. Ginestier and colleagues translat-
ed the inhibition of CXCR1 with either a specific blocking
antibody or by methanesulfonamide (a CXCR inhibitor
known as Reparixin), in which both depleted the CSC popu-
lation of two BC cell lines in vitro and in vivo [74]. This
approach is currently under evaluation in the clinic, using
reparixin in both early and advance breast cancer (Table 2).
A further effect of progesterone is the secretion of growth
hormone (GH) in human breast epithelial cells, driving prolif-
eration of the stem/progenitor breast cells expressing growth
hormone receptor (GHR) [75].

Similarly, the increase in CK5+ cell population (linked to
tumor-initiating properties and therapy resistance) and CD44hi

or CD44+CD24− BCSCs has been linked to progesterone in
several ER+PR+ cell lines but particularly in T47D cells,
which have high PR levels, through gene amplification, even
in the absence of estrogen [65, 76–78]. In cell lines where PR
expression is still dependent on estrogen, co-stimulation withT
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estrogen and progesterone is required, while estrogen alone
was not able to induce BCSCs.

In terms of potential mechanisms, reports have shown that
PR signaling inhibits the expression of miR-29 and miR-141,
while de-repressing KLF4 and STAT5A, respectively [77, 79].
Both studies showed expansion of the CK5+/CD44+ CSC
population with an increase in colony formation and in vivo
tumor initiating capacity. KLF4 is a transcription factor re-
quired for maintenance of both BCSCs [80] and pluripotency
in embryonic stem cells [81] whereas STAT5A is a transcrip-
tion factor that regulates the mammary luminal progenitor
population [82]. The maintenance of leukemic stem cells
heavily depends of BCL6 expression while also essential for
progesterone-induction of CK5+ cells in luminal breast cancer
[83]. This progesterone-induced expression of BCL6 is sup-
pressed by prolactin, further demonstrating the interplay tak-
ing place in hormonal signaling in the regulation of BCSCs
[84]. The paracrine signaling taking place in the normal mam-
mary gland between PR+ and PR− cells may indeed be acting
in the same fashion with PR-BCSCs. Furthermore paracrine
signaling of non-endogenous overexpressed RANKL in hu-
man breast cell lines increases the CD44+CD24− BCSC pool,
promoting tumor initiation and metastasis [85]. However, de-
spite strong preclinical data, clinical trials of denosumab, a
monoclonal antibody targeting RANKL, have not translated
to any improvement in cancer specific survival despite their
valuable role in reducing skeletal complications from bone
metastases. Altogether, this large body of evidence indicates
that the expansion of both normal and BCSC is largely or in
part driven by progesterone, although the exact mechanisms
remain to be elucidated. Inhibition of PR directly or its
paracrine/downstream mediators could translate to rational
drug targets for breast cancer prevention and therapy.

Anti-progesterone Drugs and BCSCs

The Women’s Health Initiative study reports that combination
of estrogen with progestin (synthetic progesterone derivative),
but not estrogen alone, was associatedwith an increased breast
cancer incidence and mortality [86]. Tumorigenesis in the
mammary gland can be attributed to the effects of progester-
one signaling expanding the stem cell pool, which may trans-
form to BCSCs and eventually lead to the formation of ER+/
PR+ tumors [87]. Recent reports in vitro have shown that
natural and synthetic progestins can increase CSC-related
markers ALDHhigh and CD44high (Table 1) and that this en-
richment of a subpopulation of cancer cells may be of func-
tional significance in the development of BC in vivo [65]. The
potential of progestin modulators as anti-tumor agents has
recently been addressed using a patient derived xenograft
model of breast cancer; investigators showed ulipristal acetate,
a selective progesterone receptor modulator translated to

significant anti-tumor effect, with reduction in Ki67 and
Cyclin D1 [88].

During much of the 1990s, a great investment in anti-
progestins as therapeutic agents was seen. Several trials were
initiated for BC and other indications, as monotherapies and
or in combinations. However, despite much interest, no anti-
progestin is currently used as the recommended standard of
care in any cancer setting either through lack of activity or
tolerability. An example of these was the onapristone phase I
trials which showed liver function test abnormalities, halting
its clinical development [89, 90]. Recent years have seen a
new series of clinical trials (Table 3) using anti-progestin
drugs like mifepristone and onapristone (the latter, now ad-
ministered in a new formulation to avoid previous observed
hepatoxicity) in breast cancer and other solid tumors [91–95].
Based on recent research literature, these drugs may target
BCSCs in ER+/PR+ tumors; although hypothetical, this merits
further investigation. Trials in the prevention setting are also
investigating the effects of ulipristal acetate, a selective pro-
gesterone receptor modulator, assessing proliferation and CSC
markers in normal breast tissue [94]. New evidence on the
complex interaction of estrogen and progesterone now eluci-
dates the co-regulation of proliferative signaling under both
steroid hormones. Progesterone acting through PR is able to
ameliorate the effects of estrogen by reducing it activation of
downstream effectors [96••]. This may offer and explanation
as to why double positive endocrine tumors (ER+/PR+) are
classified as less aggressive than single ER + breast cancers,
translating to better prognosis [96••, 97]. A hypothesis cur-
rently being evaluated in clinical trials investigates the poten-
tial benefits of PR agonists, as single agents in improving and
prolonging response or in combination with cholecalciferol or
letrozole (Table 3). The renewed interest in PR as potential
therapeutic target may hold clinical benefits by either modu-
lating ER co-regulations by progestins or by reducing the
progenitor pool via PR signaling. Despite new advances and
insights into the effects of PR, more clinical work is need to
validate the preclinical data.

Conclusions

In breast cancer, both estrogen and progesterone signaling
have effects on CSC activity. BCSCs are reported to be low
or negative for steroid hormone receptors, and therefore, ef-
fects must be indirect, mediated through paracrine or
juxtacrine cell–cell signaling (Fig. 1). It remains possible that
there is a degree of autocrine signaling downstream of hor-
mones that regulates some BCSCs. The effects of estrogen
and progesterone have only been partly described in cancer,
for progesterone particularly; there is more data from normal
mammary epithelium than from cancer. For estrogen, there is
evidence that following in vitro treatment of serum-starved
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Table 3 Clinical trials involving progesterone receptor modulation

NCT number Compound/agent Mode of
action

Recruitment Disease Combined
treatment

Outcome measures Phases Study type

NCT03306472 Megestrol acetate PR agonist Recruiting Breast
cancer

Letrozole Determination PD
profile of orally
administered
megestrol acetate

2 Interventional

NCT01608451 Inj. progesterone PR agonist Active Advanced
breast
cancer

Cholecalciferol
(vit D
analogue)

To evaluate PFS and
OS

3 Interventional

NCT00123669 Hydroxyprogesterone
caproate (OHPC)

PR agonist Active Breast
neo-
plasms

To evaluate PFS and
OS

2/3 Interventional

NCT02651844 Mifepristone PR
antagonist

Recruiting Breast
cancer

Determination PD
profile of orally
administered
Mifepristone

1/2 Interventional

NCT01138553 Mifepristone PR
antagonist

Terminated Advanced
breast
cancer

Determination PD
profile of orally
administered
Mifepristone

1 Interventional

NCT02046421 Mifepristone PR
antagonist

Active Advanced
breast
cancer

Carboplatin and
gemcitabine
hydrochlo-
ride

DLT and MTD of
combination

1 Interventional

NCT02014337 Mifepristone PR
antagonist

Active Breast
cancer

Eribulin DLT and MTD of
combination

1 Interventional

NCT01493310 Mifepristone PR
antagonist

Active Advanced
breast
cancer

Nab-paclitaxel DLT and MTD of
combination

1 Interventional

NCT01800422 Telapristone acetate Selective
progester-
one
receptor
modulator

Active Breast
cancer

Determination PD
profile of orally
administered
telapristone acetate

2 Interventional

NCT02314156 Telapristone acetate Selective
progester-
one
receptor
modulator

Recruiting BRCA1
mutation
carrier
breast
cancer

Determination PD/PK
profile of
telapristone acetate

2 Interventional

NCT02052128 Onapristone Selective
progester-
one
receptor
modulator

Unknown
status

Breast
cancer

Determination PD/PK
profile of
onapristone

1/2 Interventional

NCT02052128 Onapristone Selective
progester-
one
receptor
modulator

Unknown
status

Breast
cancer

Determination MTD
and PK profile of
onapristone

1/2 Interventional

NCT02408770* Ulipristal acetate Selective
progester-
one
receptor
modulator

Unknown
status

Normal
breast
tissue
(breast
cancer)

Determination PD
profile of ulipristal
acetate in normal
breast epithelium

2 Interventional

NCT00555919 Lonaprisan Selective
progester-
one
receptor
modulator

Completed Metastatic
breast
cancer

To evaluate PFS, ORR
and OS

2 Interventional

DLT dose limiting toxicity, maximum tolerated dose, PFS progression-free survival, CBR clinical benefit rate, BORR best overall response rate, ORR
objective response rate, OS overall survival. * Trial designed in the prevention setting
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breast cancer cells, CSC activity is upregulated and that this is
regulated by EGF, FGF, or Notch1 receptors, indicating indi-
rect, paracrine or juxtacrine signaling between cells (Fig. 1). In
contrast, anti-estrogens, such as tamoxifen or fulvestrant,
block direct estrogenic effects on cell proliferation, and indi-
rect signals to the ER−BCSCs. Surprisingly, however, tamox-
ifen can actually increase BCSC activity in mammosphere
colony culture [38, 39, 98], and more recently, the same has
been confirmed for both tamoxifen and fulvestrant in vivo
[38]. In breast cancer, both estrogen and progesterone signal-
ing have effects on CSC activity. BCSCs are reported to be
low or negative for steroid hormone receptors, and therefore,
effects must be indirect, mediated through paracrine or
juxtacrine cell–cell signaling (Fig. 1). It remains possible that
there is a degree of autocrine signaling downstream of hor-
mones that regulates some BCSCs. The effects of estrogen
and progesterone have only been partly described in cancer,
for progesterone particularly; there is more data from normal
mammary epithelium than from cancer. For estrogen, there is
evidence that following in vitro treatment of serum-starved
breast cancer cells, CSC activity is upregulated and that this

is regulated by EGF, FG,F or Notch1 receptors, indicating
indirect, paracrine or juxtacrine signaling between cells (Fig.
1). In contrast, anti-estrogens, such as tamoxifen or
fulvestrant, block direct estrogenic effects on cell proliferation
and indirect signals to the ER− BCSCs. Nevertheless, as men-
tioned previously, tamoxifen can actually increase BCSC ac-
tivity [38].
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Fig. 1 Representation of juxtacrine and paracrine signals involved in
estrogen and progesterone regulation of BCSCs. Estrogen (E2) and pro-
gesterone (Pg) bind to their receptors along with nuclear transcription
factors, respectively, regulating expression of downstream target genes.
Estrogen sensor cells (non-BCSCs) increase transcription of EGF (epi-
dermal growth factor), AREG (amphiregulin), TGFα (transforming
growth factor α), and FGF (fibroblast growth factor), which will signal
to the BCSCs through the EGFR and FGFR receptors. Non-BCSCs can

also signal with BCSCs via Notch signaling. Progesterone sensor cells
(non-BCSCs) upregulate the transcription of several key signaling fac-
tors. Regulation of BCSCs via Pg may occur via activation of
RANK/RANKL, Wnt receptors/Wnt4, CXCR4/CXCL12, and GHR/
GH paracrine signaling (dashed lines). Estrogen and progesterone-
induced signals can be blocked by anti-estrogens (e.g., tamoxifen and
fulvestrant) and anti-progesterone drugs (e.g., mifepristone and
onapristone)
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