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Abstract Organismal aging is characterized by a progressive
loss of tissue homeostasis and impaired function over time.
Multi-cellular organisms activate stem and progenitor cells to
replace damaged cells in order to continuously meet the func-
tional demands of tissues. Alongwith tissue dysfunction, stem
cell self-renewal and differentiation capacities diminish with
age in concert with the accumulation of genomic damage,
suggesting a potential link between genetic instability and
aging. Here, we focus on the types of DNA damage found
in aged stem cells, and discuss emerging mechanisms by
which genomic instability may contribute to stem cell impair-
ments and organismal aging, with particular emphasis on in-
sights obtained from progeroid mouse models. Additionally,
we discuss how age-related systemic changes may impact
stem cell genomic integrity and function.

Keywords Aging .Genomicinstability .DNAdamage .Stem
cells . Progeroid

Introduction

One inevitable consequence of aging is diminished health.
Over time, there is accumulating macromolecular damage to
proteins and/or DNA due to defective repair, reduced dilution/
degradation of protein aggregates, and increased free radical
production. DNA acquires mutations from both intrinsic (i.e.,
defective DNA duplication or oxidation) and extrinsic (i.e.,
UV damage, ionizing radiation, exposure to chemicals) fac-
tors. Upon DNA damage, eukaryotic cells initiate stress re-
sponses that are unique to the type and extent of damage, and
ultimately determine cell fate [1]. In response to damage, cells
will generally undergo a transient arrest in order to repair the
damage before re-entering the cell cycle [2, 3]. However, if
this arrest is insufficient to mediate effective repair, cells will
either senesce (enter an irreversible cell cycle arrest) or under-
go apoptosis [2, 3]. Deficiencies in genomemaintenance path-
ways have been observed with aging under normal conditions
[4]. Consistent with this, unrepaired and/or persistent DNA
damage has been linked to several diseases, including cancer
and premature aging [5, 6].

Tissue homeostasis depends on stem cells that are function-
ing properly within tissues. These undifferentiated cells have
several unique properties, including self-renewal and produc-
tion of tissue-specific progenitor cells [7, 8]. In response to
tissue damage, adult stem cells are activated to replace dys-
functional cells through the production of progenitor cells ca-
pable of differentiating into the cell types required to maintain
normal tissue function [8]. If these stem and/or progenitor
cells function suboptimally, this process is attenuated and
may accelerate the onset of tissue aging [9]. Genomic damage
may impede stem cell function at multiple levels, by causing
cell death or withdrawal from the cell cycle, impairing differ-
entiation or the self-renewal process, or through disruption of
the stem cell microenvironment [10]. Here, we discuss the
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existence and significance of accumulated genomic damage to
stem cell functionality during the aging process, with particu-
lar emphasis placed on pathways implicated and insights
gained from progeroid mouse models, where genetic instabil-
ity is promoted due to insufficient DNA damage responses.

Age-Related Genomic Alterations

Genomic damage occurs through a wide range of mechanisms
and has been implicated or characterized in association with
aged cells. These include, but are not limited to, impaired
maintenance of telomeres, defective DNA repair in response
to genotoxic and replication stress, epigenetic alterations, and
genetic instability from translocations and missegregation of
whole chromosomes [10]. Several of these defects are also
observed frequently in cancer; however, for the purposes of
this review, we limit our discussion to organismal aging.

Telomere integrity is important for cellular longevity, as
tandem repeats at chromosome ends are lost continually dur-
ing progressive rounds of DNA replication [11, 12]. Once a
critical telomere length threshold has been breached, the cell
activates a robust DNA damage response. To prevent attrition,
telomerase, a specialized DNA polymerase, has the capability
of maintaining sufficient telomere lengths. However, most
mammalian somatic cells and adult stem cells express very
low amounts of telomerase [13, 14]. Therefore, it is not sur-
prising that telomere shortening is observed in both mice and
humans with normal aging [15, 16]. Most of our understand-
ing of the significance of defective telomeres to genomic sta-
bility and aging come from cell culture studies [17–19] and
specific disease pathologies in humans, including pulmonary
fibrosis, dyskeratosis congenital, and aplastic anemia [20]. In
addition, breeding of telomerase component null mice
(Terc−/−) for successive generations critically shortens telo-
meres, resulting in a shortened lifespan, intestinal and testicu-
lar atrophy, and increased incidence of lymphoma [21, 22].

Genotoxic stress, either through endogenous or exogenous
mechanisms, also contributes to disease and tissue/organ func-
tional decline [10]. Endogenous stress, which occurs as a con-
sequence of normal metabolism and cellular processes, in-
cludes hydrolysis or oxidation, resulting in depurination, de-
amination, and numerous other chemical lesions [23]. Exog-
enous stressors include radiation, such as UV light and ioniz-
ing radiation, and a number of environmental agents, such as
benzo[a]pyrene, which is present in cigarette smoke and die-
sel exhaust [23]. Exposure to these types of stresses will lead
to the accumulation of DNA damage, if not immediately and
effectively repaired. Cells within highly proliferative organs
may accumulate mutations at a high rate during DNA replica-
tion, especially if the DNA repair machinery is defective [10,
23]. For example, normal human colon crypts acquire large
chromosomal deletions, duplications, and gene conversions

with age [24•], potentially due to loss of apoptotic potential.
Mutations in numerous DNA repair genes have been linked to
premature aging diseases in humans, including Cockayne syn-
drome, trichothiodystrophy, and ataxia telangiectasia. These
diseases are characterized by cancer susceptibility and a num-
ber of progeroid phenotypes, including cachexia, kyphosis,
retinal degeneration, and shortened lifespan [5]. Cockayne
syndrome and trichothiodystrophy are caused by mutations
to one of several genes associated with transcription-coupled
repair (CSA, CSB, XPB, XPD, and TTDA) [5]. Ataxia telangi-
ectasia is caused by mutations in the ataxia telangiectasia mu-
tated gene (ATM), which functions as part of the DNA damage
response (DDR), which is triggered by DNA double-strand
breaks (DSBs) [25].

A number of epigenetic changes also occur throughout life
to regulate gene expression and promote variation between
different cell types [26]. Several histone marks, such as in-
creased H4K16 acetylation, H4K20 or H3K4 trimethylation,
and decreased H3K9 methylation or H3K27 trimethylation,
have been associated with organismal aging [27–31]. Both a
global loss of DNA methylation and hypermethylation of a
subset of loci have also been described with progressive ag-
ing, and may result in silencing of active genes, activation of
silenced genes, and accumulation of DNA damage due to
open chromatin confirmation [32]. In addition, mice harboring
mutations in the Lsh gene, which encodes PASG, a facilitator
of DNA methylation, results in global hypomethylation, de-
velopmental growth retardation, and numerous premature ag-
ing phenotypes, including hair graying and loss, reduced fat
deposition in skin, osteoporosis, kyphosis, cachexia, and a
shortened lifespan [33]. Fibroblasts isolated from Lsh mutant
mice exhibit premature replicative senescence in culture due
to increased p16INK4A expression, resulting from downregu-
lation of Bmi1, a negative regulator of p16INK4A [33].

Aneuploidy, the state of having non-modal numbers of
whole chromosomes, is caused by defective chromosomal
segregation and has been detected in various tissues from
wild-type mice with increasing age [34••]. In addition, prema-
ture aging and aneuploidy have been observed in mouse
models with reduced levels of the mitotic checkpoint proteins
BubR1, Bub3, and Rae1 [35, 36]. Heterozygous deletion of
Bub3 or Rae1 promotes aneuploidy, but is insufficient to pro-
mote premature aging phenotypes in mice. However,
haploinsufficiency at both loci causes significantly higher
levels of aneuploidy than each model individually and promotes
an earlier onset of age-related pathologies than wild-type mice
[36]. Mice with reduced levels of BubR1 have an even earlier
onset of a variety of progeroid phenotypes, including shortened
lifespan, cachetic dwarfism, lordokyphosis, cataracts, loss of
subcutaneous fat, impaired wound healing, and progressive an-
euploidy [35]. Mutations in human BUB1B have also been
found in mosaic variegated aneuploidy (MVA) patients [37], a
syndrome characterized by rampant aneuploidy. In addition,
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these patients develop a variety of phenotypes at a very young
age, including short stature, facial abnormalities, and cataracts
[38]. Taken together, these results demonstrate that aging is ac-
companied by a number of genetic insults. Their significance,
however, is difficult to evaluate in the context of normal aging.

Phenotypic Effects of DNA Damage in Stem
and Progenitor Cells

The majority of our understanding of how defective DNA
damage repair impacts stem and progenitor cell function
comes from mouse models (Table 1). For example, short,
uncapped or dysfunctional telomeres elicit a DNA damage
response. Mice with defective telomere maintenance due to
deficiencies in Terc, the RNA template required for telomere
replication, are prone to premature aging, including short
lifespans, reduced body weight, intestinal and testicular atro-
phy, and increased incidence of lymphoma [21]. In order to
observe these effects and because mouse telomeres are ex-
tremely long, Terc knockout mice require successive genera-
tions of breeding to develop critically shortened telomeres,
which usually happens in the fifth or sixth generation. Impor-
tantly, Terc−/− mice exhibit defective hematopoietic stem cell
(HSC) renewal, though it is unclear whether and how this
contributes to the aging of this model. It is also unknown
whether other stem cell pools are similarly impacted. When
combined with loss of Atm, there is an even further reduction
of HSC renewal and increased rates of apoptosis in neural
stem cells and intestinal crypts [58]. Interestingly, mice that
overexpress telomerase reverse transcriptase (TERT), the en-
zymatic component of telomerase, exhibit lengthened telo-
meres in hair bulge stem cells, improved fitness, and
prolonged lifespan compared to wild-type controls [61]. This
suggests that either mouse telomeres experience progressive
shortening with age, which contributes to the development of
age-related phenotypes once a critical threshold length is
reached, or that TERT is providing another protective function.
Without additional studies, neither possibility can be ruled out.

Deficient DNA DSB repair drives early aging in a number
of genetically manipulated mice. Ataxia telangiectasia mutat-
ed (Atm) is a kinase rapidly recruited to DSBs by the Mre11/
Rad50/Nbs1 (MRN) complex to hold together the two DNA
ends following damage [62]. In humans, mutations in this
gene cause ataxia telangiectasia, a rare syndrome character-
ized by genetic instability, ataxia, slow growth, premature
aging in skin and hair, radiation sensitivity, and a predisposi-
tion to tumorigenesis [63]. Atm−/− mice recapitulate many of
these features [43] and also have abnormal HSC self-renewal
[44]. Consistent with these findings, mice hypomorphic for
Rad50 (Rad50S/S), one of the proteins of the MRN complex,
also have a short lifespan and HSC failure [48]. HSCs in wild-
type mice also exhibit an increase in single- and double-strand

breaks and cell cycle defects with age [64••, 65••], which are
thought to accumulate, at least in part, through decreased ex-
pression of mini-chromosome maintenance (MCM) helicase
components and altered replication fork dynamics [65••]. Ad-
ditionally, high rates of DSBs are observed in HSCs of mice
lacking FancA, a member of the Fanconi anemia complemen-
tation family of proteins important for DNA cross-link repair,
following repeated infection and activation that ultimately
leads to HSC failure [53••]. Together, these results indicate
that defective DSB repair may commonly lead to depletion
or dysfunction of HSCs. Stem cells of other tissues may also
be impacted by similar mechanisms, although this remains
unclear.

Unlike the previously mentioned models of premature ag-
ing, patients with Hutchinson-Gilford progeria syndrome
(HGPS), a rare disorder characterized by limited growth, hair
loss, and frailty reminiscent of advanced age, is not caused by
defective DNA damage repair. This disease is caused by a
spontaneous mutation in lamin A (LMNA), a scaffold com-
ponent of the nucleus [66]. When mutated, this causes defects
in nuclear structure, which is linked to epigenetic regulation
alterations and loss of genetic material. Mouse models with
inducible expression of mutant Lmna exhibit growth retarda-
tion, along with skin abnormalities and hair loss [56], which
are linked to stem cell dysfunction in the skin due to the
induction of senescence [57]. It is unclear in this case, how-
ever, if the stem cell phenotype or induction of senescence is
related to changes in gene regulation or genomic instability, or
both. It is likely, however, that senescence may be induced in
these cells due to activation of cellular stress responses.

Effects of Aneuploidy on Stem Cell Function

Down’s syndrome (DS) typically occurs due to non-
disjunction of the maternal copy of chromosome 21 and is
one of the most commonly observed chromosomal abnormal-
ities in humans. This stable aneuploidy occurs in all cells of
the body and results in profound phenotypic consequences,
including slowed growth, a characteristic facial appearance,
and mild to moderate intellectual impairment [67]. The
Ts65Dn mouse model for DS, which is trisomic for 132 genes
that are homologous to human genes found on chromosome
21 [41], exhibits defective self-renewal, proliferation, and dif-
ferentiation of hematopoietic stem and progenitor cells, and a
reduction in neural progenitors, which is at least partly
through increased amounts of Usp16 [42•]. The defects in
these stem and progenitor cell pools may explain the increased
prevalence of red cell macrocytosis, B- and T lymphocyte
abnormalities, thrombocytopenia, neutropenia, myelodysplasia,
bone marrow failure, and neurologic deficiencies observed in
DS patients [67].
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Various animal models with germline mutations in genes
involved in maintaining karyotypic stability exhibit premature
aging phenotypes (Table 1). However, in many of these
models, it is unclear whether it is mature, terminally differen-
tiated progenitors, or stem cells that are particularly prone to
accumulating instability. Unlike the underlying karyotypic al-
teration of DS patients, reduction of the spindle assembly
checkpoint protein BubR1 in mice results in random
missegregation of chromosomes [35]. In addition to the fea-
tures mentioned above, these mice have reduced adiposity and
accelerated muscle wasting/sarcopenia [35, 39]. Both fat tis-
sue and skeletal muscle exhibit premature cellular senescence
in this model [39], which occurs primarily in adipocyte stem
cell/preadipocytes and fibro/adipogenic progenitors, respec-
tively [40••], and is likely the cause of dysfunction for these
tissues. Whether these “senescence-prone” cells exhibit even
greater rates of genomic instability than other “non-senescent”
cell types in these tissues warrants further study. The apparent
selectivity of the senescence phenotype for progenitor cells,
rather than stem cells proper, and the fact that progeroid phe-
notypes occur in slow-cycling tissues set this model apart
from most other DNA damage models.

Mice of advanced age have reduced expression of
BubR1 and increased aneuploidy in a variety of tissues
compared to young mice [34••, 35]. This decrease in
BubR1 may directly influence tissue dysfunction, as mice
expressing extremely high levels of BubR1 throughout life
exhibit less aneuploidy and have delayed aging in several
tissues [34••]. However, aneuploidy does not seem to in-
crease with advanced age in skeletal muscle and cardiac
stem cell pools from wild-type mice [34••], suggesting that
stem cells may have unique protective mechanisms to pre-
vent whole chromosomal instability, which are not present
in other cell types. In support of this idea, quiescent stem
cells can acquire DNA damage when dormant. Once they
are stimulated to re-enter the cell cycle, there is a rapid
reactivation of highly efficient DNA repair processes [68],
though whether and how cells correct chromosome copy
number errors is unknown. Understanding the molecular
reasons for these differences will be of interest to explore
in future studies, as they may lead to new pathways to
exploit to insure high retention of genomic stability.

Taken together, these studies demonstrate that maintenance
of genomic integrity in various stem cell compartments is
important for maintaining tissue homeostasis and organismal
health. In response to DNA damage, stem cells may exhibit
defects in proliferation or differentiation, and induce apoptosis
or cellular senescence. In the next section, the various effector
pathways that are engaged in response to genomic damage in
stem cells will be discussed. Although much additional data
has been generated in regards to genetic instability in cultured
stem cells for regenerative medicine purposes, we have cho-
sen to focus only on defects observed in vivo in an effort toT
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determine the significance of these defects in organismal
health.

Role of p53 and CDKi’s in DNA Damage Models

The cyclin-dependent kinase inhibitors (CDKi’s) p21 and
p16Ink4a are generally considered to enforce transient cell cy-
cle arrest and cellular senescence, respectively [69]. One hy-
pothesis is that p53-induced transcription of p21 mediates
arrest to allow cells time to repair genomic damage prior to
replication and division. If this repair fails, senescence or ap-
optosis is engaged to restrain these damaged and potentially
pre-neoplastic cells from transforming. However, combining
p21 deficiency with depletion of DNA repair factors leads to
variable outcomes for different stem cell types depending on
the nature of the DNA damage (Table 1). For example, Terc−/−

mice have early aging-associated features along with reduced
HSC and intestinal crypt stem cell self-renewal, which is de-
pendent on p53-mediated cell cycle arrest and apoptosis [21].
Ablating Puma, a p53-upregulated modulator of apoptosis,
attenuates apoptosis in this model, which leads to an increased
lifespan along with improved stem cell function [60]. When
cell cycle arrest is prevented by deletion of p21 genetically
(Terc−/−;p21−/−), mice also exhibit improved stem cell self-
renewal, decreased features of progeria, and increased lifespan
[59]. Atm−/− mice, which suffer from increased double-strand
breaks, HSC dysfunction, and osteoporosis, also exhibit a
lifespan extension when p21 is simultaneously deleted [70].
However, this improvement is attributed to an increase in ap-
optosis, which prevents the development of lethal lymphomas
[45–47]. An alteration in the onset/delay of progeria in this
model has not been reported.

In contrast to Terc−/− and Atm−/−, BubR1H/H mice, which
also exhibit accelerated aging phenotypes, have accelerated
aging features in adipose and skeletal muscle tissue and a
substantially decreased lifespan when p21 is deleted [40••].
Consistent with these results, knockout of p53, the major reg-
ulator of p21, in BubR1 hypomorphic mice produces an ear-
lier onset of age-related dysfunction and earlier death [40••].
Similarly, Ku80−/− mice, which have defective non-
homologous end joining (NHEJ) and profound premature
muscle wasting, also exhibit earlier death when either p53
[55] or p21 [54] is depleted. However, the age-related pheno-
types were seemingly not impacted. Taken together, these
studies demonstrate that the effects of p21 deletion in
progeroid mouse models are complex and require a reinterpre-
tation of the role of p21 in response to DNA damage (Fig. 1).

Differences could potentially be explained by variation in
the extent or type of DNA damage in these models, leading to
alternative cellular fates when transient cell cycle arrest is lost.
Terc−/− mice, for example, have a longer lifespan and less
DNA damage than Ku80−/− mice and p21 deletion decreases

rates of apoptosis and increases lifespan, whereas the inverse
is observed in Ku80−/− mice [54, 59]. A strong cell death
response can have negative impacts on lifespan, such as stem
cell depletion, or positive ones, such as cancer prevention. In
light of this, perhaps less damaged Terc−/− cells arrest in a p21-
dependent manner to facilitate repair, but this repair is not
strictly required for cell survival and in fact leads to reduced
tissue regeneration. For highly damaged Ku80−/− cells, how-
ever, it appears that p21 arrest (or other functions of p21) is
necessary for cell survival, and Brelieving^ the arrest is coun-
ter-productive.

Placing BubR1H/H and BubR1H/H;p21−/− mice into this
structure is difficult, as the underlying Bgenomic damage^ in
these models is numerical aneuploidy. Aneuploidy per se is
not sufficient to independently drive progeria because other
whole chromosome instability mouse models with similar, if
not higher, aneuploidy rates do not show accelerated aging
[71, 72]. The observation that p16Ink4a deletion improves the
progeroid phenotype of BubR1H/H mice implies that senes-
cence is linked to aging in this model [39]. Clearance of se-
nescent cells by drug-induced apoptosis confirmed these find-
ings [73], indicating that non-autonomous functions of cellu-
lar senescence contribute to progeria in BubR1 hypomorphic
mice. In contrast to Ku80−/−;p21−/− MEFs, BubR1H/H;p21−/−

MEFs show increased p16Ink4a expression [40••], presumably
due to loss of p21-mediated cell cycle arrest, which drives
damaged cells into senescence rather than repair. Surprisingly,
not all prematurely aged BubR1H/H tissues display this effect.
While sarcopenia is accelerated in BubR1 hypomorphic mice
with loss of p21, cataract formation is significantly delayed,
which may be the result of increased apoptosis of damaged
lens epithelial cells [40••]. The observation that skeletal mus-
cle progenitor and lens epithelial cells, two distinct cell popu-
lations, respond differently to loss of p21 could be interpreted
as unique and preferred responses of stem versus differentiat-
ed cells. Intriguingly, p53 deletion also leads to an up-
regulation of p16Ink4a in all BubR1H/H tissues with early age-
associated changes [40••], suggesting that p21 is mediating
tissue and cell type-specific choices between cell survival
and death. An alternative possibility, which cannot be exclud-
ed, is that p21 deletion stimulates quiescent stem cells to begin
cycling (discussed further below), which could improve tissue
function if mild, but lead to stem cell exhaustion if severe. A
final complication is that p21 participates in DNA damage
repair directly by binding PCNA to inhibit base excision re-
pair and trans-lesion synthesis [74, 75], in addition to
inhibiting DNA replication. However, it remains unclear to
what extent the benefits of p21 deletion arise from enhanced
basal DNA repair, altered stem cell quiescence, and directing
damaged cells to die or senesce. These contrasting examples
illustrate that the response to effector manipulation in vivo
cannot necessarily be inferred from in vitro work, perhaps
due to differences in the response of relevant cell types to
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DNA damage. Finally, the example of Atm−/−;p21−/− is a cau-
tionary example showing that proper interpretation of lifespan
differences between progeroid models requires cancer inci-
dence data, particularly when cell death mechanisms are
suspected.

Senescence, Effectors, Aging, and the Stem Cell
Niche

Several markers of senescence and cell cycle arrest, including
p16Ink4a and p21, increase with age in multiple tissues [76].
Satellite cells (functioning stem cells of skeletal muscle) of
advanced-aged mice undergo p16Ink4a-dependent senescence
[77•]. Transplantation of these satellite cells that have been
Brejuvenated^ by decreasing p16Ink4a expression via short
hairpin RNA (shRNA) significantly improved repair of dam-
aged muscle in geriatric mice [77•]. Consistent with this ob-
servation, HSCs that cannot up-regulate p16Ink4a with age
exhibit less apoptosis and have improved repopulation

capacity [49]. Similar improvements in progenitor cell expan-
sion with age have been observed in neural forebrain progen-
itors [78] and pancreatic islet stem cells [79] when p16Ink4a

has been deleted. Conversely, mice null for Bmi1, which neg-
atively regulates p16Ink4a/p19Arf expression, exhibit premature
senescence in HSCs and early death [80, 81]. Enforced ex-
pression of p16Ink4a and p19Arf in HSCs promotes senescence
and apoptosis, respectively, while deletion of both of these
proteins in Bmi1−/− mice restores HSC self-renewal [82]. To-
gether, these studies demonstrate that p16Ink4a expression con-
sistently impairs stem cell function (Fig. 1).

The impacts of p21 in stem cell function during aging are
much more complicated, as there are apparently two opposing
roles. p21 maintains a quiescent pool of stem cells through cell
cycle arrest, which is essential for preserving the stem cell
reservoir. Conversely, p21 also may enforce a senescence ar-
rest, which depletes stem cell self-renewal capacity. Therefore,
the consequences of p21 deletion in aging are seemingly de-
pendent on the requirement for a quiescent stem cell reserve.
For example, slow-cycling mouse ventral forebrain precursors
escape quiescence when p21 is deleted and quickly undergo

Fig. 1 DNA damage disrupts stem and progenitor cell function in both
progeroid models and normal aging. Block background and arrows are of
matching colors. In progeria (left panel), knockout of different types of
DNA repair proteins leads to stem cell dysfunction syndromes that are
modified by effector proteins (p16, p53, and p21) in characteristic ways.
For example, Ku80−/− and BubR1H/H tissues show impaired progenitor
cell function, which is improved with p21 activity. In contrast, Terc−/− and
Atm−/− stem cells are lost at the level of stem cell renewal and the overall
health of this compartment is aggravated by loss of p21. The impact of

specific DNA repair pathways on the stem cell lifecycle is not so well
characterized in normal aging as in progerias. However, effector functions
are being characterized. For example, just as p21 has differential effects
depending on the damage model, in natural aging p21 restricts
hematopoietic progenitor numbers but preserves neurogenesis. The
nature of the upstream DNA damage signals driving effector activation
is probably mixed and depends on the tissue type, its rate of turnover, and
exposure to DNA damaging stresses
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proliferative exhaustion [50]. In more rapidly cycling com-
partments, such as the bone marrow, aged p21−/− mice do
not have defects in HSC numbers or regenerative capacity
[83]. Peculiarly, p21−/− HSCs have improved engraftment
and repopulation compared to wild-type HSCs when irradiat-
ed. Similar to p16Ink4a-null mice, p53 knockout animals have
reduced HSC numbers and engraftment potential with age
[84]. Unlike p21−/− HSCs, p53−/− HSCs are dysfunctional
even at a young age [85], indicating that a p21-independent
function of p53 prevents stem cell dysfunction. The observa-
tion that reprogramming of damaged, differentiated cells to
induced pluripotent stem (iPS) cells is limited by p53 and
p21 expression [86] may explain these observations. Perhaps
self-renewing asymmetric stem cell division in vivo is regu-
lated by a process similar to reprogramming (i.e., one dam-
aged stem cell giving rise to two progenitor cells rather than a
daughter stem cell and progenitor cell). Finally, endothelial
progenitor cell function is reduced during both human and
mouse aging, partially as a result of senescence driven by
the p53-p21 pathway [87, 88]. These results are consistent
with a model in which p21 serves multiple functions in normal
stem cell physiology: Btime-out^ for repair, maintenance of
appropriate quiescence, regulating DNA repair, and possibly
acting as an anti-apoptotic factor counter-balancing over-ac-
tive p53. Interestingly, mice with over-active p53 exhibit a
variety of premature aging phenotypes [51, 52]. With this in
mind, it is somewhat surprising that there have been relatively
few documented impacts of p21 deletion on normal organis-
mal aging.

The stem cell niche is a specialized environment in
which stem cells give rise to progenitor (transit-
amplifying) cells and self-renew via asymmetric division
[89]. Proper division depends on supporting cells and the
extracellular matrix, whereas progenitor cell differentiation
occurs by exposure of the maturing cells to a gradient of
differentiation factors [90]. Evidence that the stem cell
niche loses its pro-stemness properties with age was dem-
onstrated by transplantation of spermatogonial stem cells
from old mice. These transplanted cells become rejuvenat-
ed and reactivated in the environment of the young testes
[91]. The stem cell niche is dysfunctional in both adipose
tissue and skeletal muscle of BubR1H/H mice because both
preadipocytes and fibroadipogenic progenitors exhibit
higher rates of senescence [40••]. Clearing these senescent
progenitor cells by activating apoptosis specifically in
p16Ink4a-expressing cells restores stem cell function [73].
This effect might occur through attenuation of the
senescence-associated secretory phenotype (SASP), a char-
acteristic secretome expressed once cells have become se-
nescent [92]. This includes matrix metalloproteinases capa-
ble of destroying ECM architecture, as well as TGF-β
family members [93]. TGF-β is known to inhibit prolifer-
ation of HSCs by upregulating the CDKi p57Kip [94] and

has similar effects on satellite cells [95] and preadipocytes
[96]. Despite the attractive nature of this hypothesis,
whether these mechanisms are at play in aging is
unknown.

Conclusion and Outlook

Many sources of genomic insults result in the accumulation
of damage in stem cells with aging that negatively impacts
their function. In addition, depletion of stem cells occurs in
a number of tissue compartments with aging [97]. Together
with the observations that senescence diminishes stem cell
function, both directly through senescence of stem cells and
indirectly through inhibitory signaling via the SASP, declin-
ing tissue repair due to stem cell dysfunction seems almost
inevitable. However, a plethora of recent parabiosis studies,
where an aged mouse and a young mouse are surgically
joined together so that they have a common circulation,
have shown that circulating factors present in young blood
can have rejuvenating effects on aging in the old animal,
including stem cells of the brain [98••] and skeletal muscle
[99••]. Going forward, it will be interesting to determine if
these circulating factors result in replacement or replenish-
ment of the defective niches that develop with age, and
whether genomic stability of these cells is impacted. These
studies have the potential to identify factors capable of
promoting stem cell function in the elderly, both on native
stem cells and also when given together with stem cell
transplants. Furthermore, iPS cells and other transplantable,
therapeutic stem cells may acquire aneuploidy and other
DNA damage in culture. Understanding the effect of the
aged body on the DNA maintenance machinery and wheth-
er or not we possess molecules that rejuvenate these pro-
cesses may influence what we see as acceptable risk for
these procedures.
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