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Abstract This research proposes an integrated data envel-
opment analysis (DEA) and analytic hierarchy process
(AHP) approach to obtain attribute weights in a grey rela-
tional analysis (GRA)method. First, this can be implemented
by developing a DEA-based GRA model to obtain attribute
weights for the alternative under assessment. Second, weight
bounds, using AHP, can be incorporated in the DEA-based
GRA model to reflect the priority weights of attributes.
Third, the effects of incorporating weight bounds on attribute
weights can be analyzed by developing a parametric distance
model. Increasing the value of a parameter in a domain of
grey relational loss, i.e., a reduction in grey relational grade,
we explore the tradeoff relationship between the grey rela-
tional grade and the priority weights of attributes for each
alternative. This may result in various ranking positions for
each alternative in comparisonwith the other alternatives. An
illustrated example of selecting dispatching rules is also pre-
sented to highlight the usefulness of the proposed approach.

Keywords Grey relational analysis · Data envelopment
analysis · Analytic hierarchy process · Multiple attribute
decision making

Introduction

Grey relational analysis (GRA) is part of grey system the-
ory [5] which is suitable for solving a variety of multiple
attribute decision-making (MADM) problemswith uncertain
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information. GRA solves MADM problems by aggregating
incommensurate attributes for each alternative into a single
composite value, while the weight of each attribute is subject
to the decision maker’s judgment. When such information
is unavailable, equal weights seem to be a norm. However,
this is often the source of controversies for the final rank-
ing results. Therefore, how to properly select the attribute
weights is amain source of difficulty in the application of this
technique. Fortunately, the development of modern opera-
tional research has provided us two excellent tools called data
envelopment analysis (DEA) and analytic hierarchy process
(AHP),which can be used to derive attributeweights inGRA.

DEA is an objective data-oriented approach to assess the
relative performance of a group of decision-making units
(DMUs) with multiple inputs and outputs [4]. In the field of
GRA, DEA models without explicit inputs are applied, i.e.,
the models in which only pure outputs or index data are taken
into account (see [10,23,25]). The other combined GRA and
DEA methodologies can be found in the literature, such as
using GRA for the selection of inputs and outputs in DEA
[3,22], using GRA for ranking efficient DMUs in DEA with
crisp data [7], and using GRA for ranking DMUs in DEA
with grey data, i.e., the unknown numbers which have clear
upper and lower limits [16].

In these models, each DMU or alternative can freely
choose its own favorable system of weights to maximize its
performance. However, this freedom of choosing weights is
equivalent to keeping the preferences of a decisionmaker out
of the decision process. In fact, an alternative may be indi-
cated as the best one by assigning zero values to the weights
of some attributes and neglecting the importance of these
attributes in a decision-making process.

Alternatively, AHP is a subjective data-oriented proce-
dure which can reflect the relative importance of a set of
attributes and alternatives based on the formal expression
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of the decision maker’s preferences. AHP usually involves
three basic functions: structuring complexities, measuring on
a ratio scale, and synthesizing [20]. The application of AHP
with GRA can be seen in [2,9,24].

However, AHP has been a target of criticism because of
the arbitrary nature of the ranking process (see [1], [21, p35]
and [6]). In fact, the AHP weights are based on the experts’
personal experiences and the subjective judgments. If the
selection of experts is different, the weights obtained will be
different (see [13,14]).

To overcome the problematic issue of confronting the
contradiction between the objectiveweights inDEA and sub-
jective weights in AHP, this research proposes an integrated
DEA and AHP approach in deriving the attribute weights in
the field of GRA. This can be implemented by incorporating
weight bounds using AHP in DEA-based GRA models. It
is worth pointing out that the models proposed in this arti-
cle are not brand-new models in the DEA-AHP literature.
Conceptually, they are parallel to the ratio-based DEA mod-
els using AHP, as discussed in [17]. Nevertheless, it is the
first time that these models are applied to the field of GRA.
In addition, as far as we know, nothing in the existing lit-
erature discusses the simultaneous application of DEA and
AHP methodologies in the field of GRA.

Methodology

This research has been organized to proceed along the fol-
lowing stages (Fig. 1):

1. Computing grey relational coefficients usingGRAproce-
dure to obtain the required (output) data for DEA-based
GRA models.

2. Computing the grey relational grade of each alternative
using a DEA-based GRA model which is applied in a
minimax DEA-based GRA model.

3. Obtaining an optimal set of weights for each alterna-
tive using the minimax DEA-based GRA model without
weight bounds (minimum grey relational loss θmin).

4. Computing the priority weights of attributes for all alter-
natives using AHP, which impose weight bounds into the
minimax DEA-based GRA model.

5. Obtaining an optimal set of weights for each alternative
using the minimax DEA-based GRAmodel by imposing
weight bounds on attribute weights, using AHP (maxi-
mum grey relational loss θmax).

6. Measuring the performance of each alternative in termsof
the relative closeness to the priority weights of attributes.
For this purpose, we develop a parameter distancemodel.
Increasing a parameter in a defined range of grey rela-
tional loss, we explore the tradeoff relationship between
the grey relational grade and the priority weights of
attributes for each alternative. This may result in vari-
ous ranking positions for each alternative in comparison
with the other alternatives.

Multi-attribute grey relational analysis

In the grey relational analysis method, alternative Ai (i =
1, 2, . . . ,m) is characterized by a vector Yi = (yi1, yi2, . . . ,
yin) of values of attribute C j ( j = 1, 2, . . . , n). The term
Yi can be translated into the comparability sequence Ri =
(ri1, ri2, . . . , rin) using the following equations:

ri j = yi j − y j (min)

y j (max) − y j(min)
∀ i, j for desirable attributes, (1)

ri j = y j (max) − yi j
y j (max) − y j(min)

∀ i, j for undesirable attributes,

(2)

where y j (max) = max{y1 j , y2 j , . . . , ymj } and y j (min) =
min{y1 j , y2 j , . . . , ymj }. Now, let A0 be a virtual ideal alter-
native which is characterized by a reference sequence U0 =
([u01, u02, . . . , u0n) of the maximum values of attribute C j

as follows:

u0 j = max{r1 j , r2 j , . . . , rmj } ∀ j. (3)

Fig. 1 An integrated approach
to GRA, DEA, and AHP

1. Grey relational analysis 

2.  DEA-based GRAmodel 4.  AHP model 

5.  Minimax DEA-based GRA 
model bounded by AHP weights 

3.  Minimax DEA-based GRA 
model without weight bounds 

Maximum grey relational 
max

Minimum grey relational 
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To measure the degree of similarity between ri j and u0 j for
each attribute, the grey relational coefficient, ξi j , can be cal-
culated as follows:

ξi j = mini min j
∣
∣u0 j − ri j

∣
∣ + ρ maxi max j

∣
∣u0 j − ri j

∣
∣

∣
∣u0 j − ri j

∣
∣ + ρ maxi max j

∣
∣u0 j − ri j

∣
∣

,

(4)

where ρ ∈ [0, 1] is the distinguishing coefficient, generally
ρ = 0.5. It should be noted that the final results of GRA for
MADM problems are very robust to changes in the values of
ρ. Therefore, selecting the different values of ρ would only
slightly change the rank order of attributes.

To find an aggregatedmeasure of similarity between alter-
native Ai , characterized by the comparability sequence Ri ,
and the ideal alternative A0, characterized by the reference
sequenceU0, over all the attributes, the grey relational grade,
�i , can be computed as follows:

�i =
n

∑

j=1

w jξi j , (5)

where w j is the weight of attribute C j and
∑n

j=1 w j = 1.
In practice, expert judgments are often used to obtain the
weights of attributes. When such information is unavailable,
equal weights seem to be a norm. Nonetheless, the use of
equalweights does not place an alternative in the best ranking
position in comparison with the other alternatives. In the next
section, we show howDEA can be used to obtain the optimal
weights of attributes for each alternative in GRA.

DEA-based GRA models

Since all the grey relational coefficients are benefit (output)
data, a DEA-based GRA model can be formulated similar to
a classical DEA model without explicit inputs [15]:

�k = max
n

∑

j=1

w jξk j (6)

s.t.
n

∑

j=1

w jξi j ≤ 1 ∀ i, (7)

w j > 0 ∀ j, (8)

where �k is the grey relational grade for alternative under
assessment Ak(known as a decision-making unit in the DEA
terminology). k is the index for the alternative under assess-
ment, where k ranges over 1, 2,…, m. w j is the weight of
attribute C j ( j = 1, 2, . . . , n). The first set of constraints (7)
assures that if the computed weights are applied to a group
of m alternatives, (i = 1, 2, . . . ,m), they do not attain a
grade of larger than 1. The process of solving the model

is repeated to obtain the optimal grey relational grade and
the optimal weights required to attain such a grade for each
alternative. The objective function (6) in this model max-
imizes the ratio of the grey relational grade of alternative
Ak to the maximum grey relational grade across all alterna-
tives for the same set ofweights (max�k/ max

i=1,...,m
�i ). Hence,

an optimal set of weights in the DEA-based GRA model
represents Ak in the best light in comparison with all the
other alternatives. It should be noted that the grey relational
coefficients are normalized data. Consequently, the weights
attached to them are also normalized. In addition, adding the
constraint

∑n
j=1 w j = 1 to the DEA-based GRA model is

not recommended here. In fact, the sum-to-one constraint is
a non-homogeneous constraint (i.e., its right-hand side is a
non-zero free constant) which can lead to underestimation
of the grey relational grades of alternatives or infeasibility in
the DEA-based GRA model (see [18]).

Minimax DEA-based GRA model using AHP

We develop our formulation based on a simplified version
of the generalized distance model (see [8]). Let �∗

k (k =
1, 2, . . . ,m) be the best attainable grey relational grade for
the alternative under assessment, calculated from the DEA-
basedGRAmodel .Wewant the grey relational grade,�k(w),
calculated from the vector of weights w = (w1, . . . , wn) to
be closest to�∗

k . Our definition of “closest” is that the largest
distance is at its minimum. Hence, we choose the form of
the minimax model: minw maxk{�∗

k − �k(w)} to minimize
a single deviation which is equivalent to the following linear
model:

Min θ (9)

s.t.�∗
k −

n
∑

j=1

w jξk j ≤ θ, (10)

n
∑

j=1

w jξi j ≤ �∗
i ∀ i, (11)

θ ≤ 1, (12)

θ,w j ≥ 0, ∀ j. (13)

The combination of Eqs. (9)–(13) forms a minimax DEA-
basedGRAmodel that identifies theminimumgrey relational
loss θmin needed to arrive at an optimal set of weights. The
first constraint ensures that each alternative loses no more
than θ of its best attainable relational grade, �∗

k . The second
set of constraints satisfies that the relational grades of all
alternatives are less than or equal to their upper bound of
�∗
k . It should be noted that for each alternative, the minimum

grey relational loss θ = 0. Therefore, the optimal set of
weights obtained from the minimax DEA-based GRAmodel
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is exactly similar to that obtained from the DEA-based GRA
model.

On the other hand, the priority weights of attributes are
defined out of the internal mechanism of DEA by AHP.
To more clearly demonstrate how AHP is integrated into
the newly proposed minimax DEA-based GRA model, this
research presents an analytical process in which alternatives’
weights are bounded by the AHP method. The AHP proce-
dure for imposing weight bounds may be broken down into
the following steps:

Step 1: A decision maker makes a pairwise comparison
matrix of different attributes, denoted by B with the entries
of bhq(h = q = 1, 2, . . . , n). The comparative importance
of attributes is provided by the decision maker using a rating
scale. [20] recommends using a 1–9 scale.

Step 2: The AHP method obtains the priority weights of
attributes by computing the eigenvector of matrix B(Eq. 14),
e = (e1, e2, . . . , e j )T , which is related to the largest eigen-
value, λmax:

Be = λmaxe. (14)

To determine whether or not the inconsistency in a compari-
sonmatrix is reasonable, the random consistency ratio,C.R.,
can be computed by the following equation:

C.R. = λmax − N

(N − 1)R.I.
, (15)

where R.I. is the average random consistency index and N is
the size of a comparison matrix.

To estimate themaximum relational loss θmax necessary to
achieve the priority weights of attributes for each alternative,
the following set of constraints is added to theminimaxDEA-
based GRA model:

w j = αe j ∀ j. (16)

The set of constraint (16) changes the priority weights of
attributes toweights for the new system bymeans of a scaling
factor α. The scaling factor α is added to avoid the possibility
of contradicting constraints leading to infeasibility or under-
estimating the grey relational grade of alternatives (see [18]).

A parametric distance model

In this stage, we develop a parametric distance model that
can be solved repeatedly to generate the various sets of
weights for the discrete values of the parameter θ , such
that 0 ≤ θ ≤ θmax. Let w(θ) be a vector of attribute
weights for a given value of parameter θ . Let w∗(θmax) be
the vector of priority weights of attributes obtained from the
minimaxDEA-basedGRAmodel after adding the set of con-
straints (16). Our objective is tominimize the total deviations

between w(θ) and w∗(θmax) with the shortest Euclidian dis-
tance measure subject to constraints (10)–(13):

Min Zk(θ) =
⎛

⎝

n
∑

j=1

(

w j − w∗
j (θmax)

)2

⎞

⎠

1/2

(17)

s.t. constraints (10)–(13).
Because the range of deviations computed by the objective

function is different for each alternative, it is necessary to
normalize it using relative deviations rather than absolute
ones (see [19]). Hence, the normalized deviations can be
computed by

�k(θ) = Z∗
k (0) − Z∗

k (θ)

Z∗
k (0)

(18)

where Z∗
k (θ) is the optimal value of the objective function for

0 ≤ θ ≤ θmax. We define �k(θ) as a measure of closeness
which represents the relative closeness of each alternative
to the weights obtained from the minimax DEA-based GRA
model in the range [0, 1] after imposing weight bounds (16)
to it. Increasing the parameter (θ), we shift the optimal set of
weights obtained from the minimax DEA-based GRAmodel
to its corresponding weights bounded by AHP. In this way,
we explore the tradeoff relationship between the grey rela-
tional grade and the priority weights of attributes for each
alternative. This may lead to different ranking positions for
each alternative in comparison with the other alternatives. It
should be noted that in a special case, where the parameter
θ = θmax = 0, we assume �k(θ) = 1.

A numerical example: dispatching rule selection

In this section, we present the application of the proposed
approach for production scheduling problems using nine
alternatives dispatching rules andfiveperformance attributes.
The processed data have been adopted from [12]. Table 1
shows the results of grey relational generating for dispatch-
ing rule selection problem based on Eq. (2). The notations in
Table 1 are as follows:MDminimum deviation, SPT shortest
processing time, SLK slack,DD due date,GCMD generalized
cumulative minimum deviation, COST, VALUE, COV cost
over time, and LPT longest processing time. A full descrip-
tion of both dispatching rules and performance attributes can
be found in [11].

Table 2 shows the results of a pairwise comparison matrix
in the AHP model as constructed by the author in the Expert
Choice software. The priorityweight for each attributewould
be the average of the elements in the corresponding row of
the normalized matrix of pairwise comparison, as shown in
the last column of Table 2. One can argue that the priority
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Table 1 Results of grey
relational generating for the
dispatching rule selection
problem

Dispatching rule Waiting time Idle time Queue time Dollar days Backlog cost

MD 1.0000 0.3820 0.9998 0.7962 0.0727

SPT 0.9997 0.3708 1.0000 0.7962 0.0803

SLK 0.9177 0.3146 0.8600 0.6423 0.9998

DD 0.8397 0.1517 0.7553 0.5346 0.9999

GCMD 0.7481 0.2135 0.5948 0.2962 0.3802

COST 0.7704 0.2079 0.6352 1.0000 0.1797

VALUE 0.7011 0.2191 0.6335 0.8077 0.0000

COV 0.8206 1.0000 0.6521 0.4115 1.0000

LPT 0.0000 0.0000 0.0000 0.0000 0.0713

weights of attributes must be judged by production schedul-
ing experts. However, since the aim of this section is just to
show the application of the proposed approach on numerical
data, we see no problem to use our judgment alone.

Using Eq. (4), all grey relational coefficients are computed
to provide the required (output) data for theDEA-basedGRA
model, as shown in Table 3.

Solving the minimax DEA-based GRAmodel for the dis-
patching rule under assessment, we obtain an optimal set of
weights with minimum grey relational loss (θmin). It should
be noted that the value of the grey relational grade of all
dispatching rules calculated from the minimax DEA-based
GRA model is identical to that calculated from the DEA-
based GRA model. Therefore, the minimum grey relational
loss for the dispatching rule under assessment is θmin = 0
(Table 4). This implies that the measure of relative closeness

Table 2 Pairwise comparison matrix of five attributes

Attributes Waiting
time

Idle
time

Queue
time

Dollar
day

Backlog
cost

Priority

Waiting time 1 2/3 1/3 1/2 1/3 0.087

Idle time 3/2 1 1/3 1/2 1/5 0.091

Queue time 3 3 1 2 1 0.292

Dollar day 2 2 1/2 1 1/4 0.145

Backlog cost 3 5 1 4 1 0.385

C.R = 0.03

to theAHPweights for the dispatching rule under assessment
is �k(θmin) = 0. On the other hand, solving the mini-
max DEA-based GRA model for the dispatching rule under
assessment after adding the set of constraints (16), we adjust
the priority weights of attributes (outputs) obtained from
AHP in such a way that they become compatible with the
weights’ structure in the minimax DEA-based GRA model.
This results in the maximum grey relational loss, θmax, for
the dispatching rule under assessment (Table 4). In addi-
tion, this implies that the measure of relative closeness to
the AHP weights for the dispatching rule under assessment
is �k(θmax) = 1.

Table 5 presents the optimalweights of attributes aswell as
its scaling factor for all dispatching rules. It should be noted
that the priority weights of AHP (Table 2) used for incorpo-
rating weight bounds on the attribute weights are obtained as
e j = w j

α
.

Going one step further to the solution process of the para-
metric distance model, we proceed to the estimation of total
deviations from the AHP weights for each dispatching rule,
while the parameter θ is 0 ≤ θ ≤ θmax. Table 6 represents
the ranking position of each dispatching rule based on the
minimum deviation from the priority weights of attributes
for θ = 0. It should be noted that in a special case, where
the parameter θ = θmax = 0, we assume �k(θ) = 1. Table 6
shows that SLK is the best alternative in termsof the grey rela-

Table 3 Results of grey
relational coefficient for
dispatching rule selection
problem

Dispatching rule Waiting time Idle time Queue time Dollar days Backlog cost

MD 1 0.4472 0.9997 0.7104 0.3503

SPT 0.9995 0.4428 1 0.7104 0.3522

SLK 0.8587 0.4218 0.7812 0.583 0.9996

DD 0.7573 0.3708 0.6714 0.5179 0.9998

GCMD 0.6649 0.3886 0.5524 0.4153 0.4465

COST 0.6853 0.387 0.5781 1 0.3787

VALUE 0.6258 0.3904 0.577 0.7222 0.3333

COV 0.7359 1 0.5897 0.4594 1

LPT 0.3333 0.3333 0.3333 0.3333 0.35
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Table 4 Minimum and maximum grey relational losses for each dis-
patching rule

Dispatching rule �∗
k θmin θmax

MD 1.0000 0 0.1889

SPT 1.0000 0 0.1884

SLK 1.0000 0 0.0000

DD 1.0000 0 0.0677

GCMD 0.7225 0 0.1222

COST 1.0000 0 0.3160

VALUE 0.8343 0 0.2280

COV 1.0000 0 0.0392

LPT 0.4953 0 0.0762

Table 5 Optimal weights of minimax DEA-based GRA model for all
dispatching rules bounded by AHP

w1 w2 w3 w4 w5 α

0.1073 0.1123 0.3602 0.1789 0.4750 1.2337

tional grade and its relative closeness to the priority weights
of attributes.

Nevertheless, increasing the value of θ from 0 to θmax has
two main effects on the performance of the other dispatching
rules: improving the priority of attributes (i.e., getting closer
to AHP weights) and reducing the value of the grey rela-
tional grade. This, of course, is a phenomenon, one expects
to observe frequently.

The graph of �(θ) versus θ , as shown in Fig. 2, is used
to describe the tradeoff relationship between the grey rela-
tional grade and the priority of attributes for each dispatching
rule as parameter θ varies from 0 to θmax. This may result in
different ranking positions for each dispatching rule in com-
parison with the other dispatching rules. Note that at θ = 0,
the dispatching rules can be ranked based on Z∗

k (0) from the
closest to the furthest from the priority weights of attributes.
For instance, at θ = 0, COV, MD, and SPT with grey rela-
tional grades of one are ranked in the second, third, and fourth
places, respectively, while GCMD, VALUE, and LPT with
grey relational grades of less than one are ranked in the ninth,
eighth, and sixth places, respectively (Tables 4, 6). However,
with a small grey relational loss at θ = 0.01, COV, MD, and
SPT take the third, eighth, and seventh places, while GCMD,
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Fig. 2 Relative closeness to the priority weights of attributes [� (θ)],
versus grey relational loss (θ) for each dispatching rule

VALUE, and LPT take the fourth, second, and fifth places
in the rankings, respectively. Using this example, as a guide-
line, it is relatively easy to rank the dispatching rules in terms
of distance to the priority weights of attributes. At θ = 0.02,
COV moves up into the second place again, while VALUE
drops into the third place. It is clear that bothmeasures, Z∗

k (0)
and �k(θ), are necessary to explain the ranking position of
each alternative (Appendix A).

Conclusion

We develop an integrated approach based on DEA and AHP
methodologies for deriving the attribute weights in GRA.
We define two sets of attribute weights in a minimax DEA-
basedGRA framework. The first set represents theweights of
attributes with minimum grey relational loss. The second set
represents the corresponding priority weights of attributes,
using AHP, with maximum grey relational loss. We assess
the performance of each alternative (or DMU) in comparison
with the other alternatives based on the relative closeness of
the first set ofweights to the second set ofweights. Improving
the measure of relative closeness in a defined range of grey
relational loss, we explore the various ranking positions for
the alternative under assessment in comparisonwith the other
alternatives. To demonstrate the effectiveness of the proposed
approach, an illustrative example of a production scheduling
problem using nine alternatives dispatching rules and five
attributes is carried out.

Table 6 Ranking position of each dispatching rule based on the minimum distance to priority weights of attributes

Dispatching rules MD SPT SLK DD GCMD COST VALUE COV LPT

Z∗(θmin = 0) 0.2725 0.2730 0.0000 0.6773 0.8947 0.4693 0.7654 0.0620 0.4951

Rank 3 4 1 7 9 5 8 2 6
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Appendix A

Measure of relative closeness to the priority weights of
attributes [�k(θ)] verses grey relational loss [θ ] for each
dispatching rule

θ MD SPT SLK DD GCMD COST VALUE COV LPT

0 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Rank N/A N/A 1 N/A N/A N/A N/A N/A N/A
0.01 0.0529 0.0545 1.0000 0.1533 0.1896 0.0345 0.3777 0.2553 0.1684
Rank 8 7 1 6 4 9 2 3 5
0.02 0.1059 0.1075 1.0000 0.3048 0.3674 0.0684 0.4161 0.5105 0.3105
Rank 8 7 1 6 4 9 3 2 5
0.03 0.1588 0.1605 1.0000 0.4533 0.5271 0.1015 0.4529 0.7658 0.4486
Rank 8 7 1 4 3 9 5 2 6
0.04 0.2118 0.2135 1.0000 0.5985 0.6437 0.1337 0.4881 1.0000 0.5847
Rank 8 7 1 4 3 9 6 2 5
0.05 0.2647 0.2665 1.0000 0.7435 0.6932 0.1652 0.5211 1.0000 0.7159
Rank 8 7 1 3 5 9 6 1 4
0.06 0.3177 0.3195 1.0000 0.8885 0.7357 0.1965 0.5515 1.0000 0.8314
Rank 8 7 1 3 5 9 6 1 4
0.07 0.3706 0.3725 1.0000 1.0000 0.7782 0.2279 0.5789 1.0000 0.9356
Rank 8 7 1 3 5 9 6 1 4
0.08 0.4236 0.4255 1.0000 1.0000 0.8208 0.2593 0.6055 1.0000 1.0000
Rank 8 7 1 1 5 9 6 1 4
0.09 0.4765 0.4785 1.0000 1.0000 0.8633 0.2907 0.6322 1.0000 1.0000
Rank 8 7 1 1 5 9 6 1 1
0.1 0.5294 0.5315 1.0000 1.0000 0.9058 0.3221 0.6589 1.0000 1.0000
Rank 8 7 1 1 5 9 6 1 1
0.11 0.5824 0.5844 1.0000 1.0000 0.9483 0.3535 0.6855 1.0000 1.0000
Rank 8 7 1 1 5 9 6 1 1
0.12 0.6353 0.6374 1.0000 1.0000 0.9908 0.3849 0.7122 1.0000 1.0000
Rank 8 7 1 1 5 9 6 1 1
0.13 0.6883 0.6904 1.0000 1.0000 1.0000 0.4162 0.7388 1.0000 1.0000
Rank 8 7 1 1 5 9 6 1 1
0.14 0.7412 0.7434 1.0000 1.0000 1.0000 0.4476 0.7655 1.0000 1.0000
Rank 8 7 1 1 1 9 6 1 1
0.15 0.7942 0.7964 1.0000 1.0000 1.0000 0.4790 0.7922 1.0000 1.0000
Rank 7 6 1 1 1 9 8 1 1
0.16 0.8471 0.8494 1.0000 1.0000 1.0000 0.5104 0.8188 1.0000 1.0000
Rank 7 6 1 1 1 9 8 1 1
0.17 0.9001 0.9024 1.0000 1.0000 1.0000 0.5418 0.8455 1.0000 1.0000
Rank 7 6 1 1 1 9 8 1 1
0.18 0.9530 0.9554 1.0000 1.0000 1.0000 0.5732 0.8722 1.0000 1.0000
Rank 7 6 1 1 1 9 8 1 1
0.19 1.0000 1.0000 1.0000 1.0000 1.0000 0.6046 0.8988 1.0000 1.0000
Rank 7 6 1 1 1 9 8 1 1
0.2 1.0000 1.0000 1.0000 1.0000 1.0000 0.6359 0.9255 1.0000 1.0000
Rank 1 1 1 1 1 9 8 1 1
0.21 1.0000 1.0000 1.0000 1.0000 1.0000 0.6673 0.9521 1.0000 1.0000
Rank 1 1 1 1 1 9 8 1 1
0.22 1.0000 1.0000 1.0000 1.0000 1.0000 0.6987 0.9788 1.0000 1.0000
Rank 1 1 1 1 1 9 8 1 1
0.23 1.0000 1.0000 1.0000 1.0000 1.0000 0.7301 1.0000 1.0000 1.0000
Rank 1 1 1 1 1 9 8 1 1
0.24 1.0000 1.0000 1.0000 1.0000 1.0000 0.7615 1.0000 1.0000 1.0000
Rank 1 1 1 1 1 9 1 1 1
0.25 1.0000 1.0000 1.0000 1.0000 1.0000 0.7929 1.0000 1.0000 1.0000
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θ MD SPT SLK DD GCMD COST VALUE COV LPT

Rank 1 1 1 1 1 9 1 1 1
0.26 1.0000 1.0000 1.0000 1.0000 1.0000 0.8243 1.0000 1.0000 1.0000
Rank 1 1 1 1 1 9 1 1 1
0.27 1.0000 1.0000 1.0000 1.0000 1.0000 0.8556 1.0000 1.0000 1.0000
Rank 1 1 1 1 1 9 1 1 1
0.28 1.0000 1.0000 1.0000 1.0000 1.0000 0.8870 1.0000 1.0000 1.0000
Rank 1 1 1 1 1 9 1 1 1
0.29 1.0000 1.0000 1.0000 1.0000 1.0000 0.9184 1.0000 1.0000 1.0000
Rank 1 1 1 1 1 9 1 1 1
0.3 1.0000 1.0000 1.0000 1.0000 1.0000 0.9498 1.0000 1.0000 1.0000
Rank 1 1 1 1 1 9 1 1 1
0.31 1.0000 1.0000 1.0000 1.0000 1.0000 0.9812 1.0000 1.0000 1.0000
Rank 1 1 1 1 1 9 1 1 1
0.32 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Rank 1 1 1 1 1 1 1 1 1
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