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Abstract In Europe, like in many temperate lowlands world-
wide, forest has a long history of fragmentation and land use
change. In many places, forest landscapes consist of patches
of different quality, age, size and isolation, embedded in a
more or less intensively managed agricultural matrix. As po-
tential biodiversity islets, small forest patches (SFP) may de-
liver several crucial ecosystem services to human society, but
they receive little attention compared to large, relatively intact
forest patches. Beyond their role as a biodiversity reservoir,
SFP provide important in situ services such as timber and wild
food (game, edible plants and mushrooms) production. At the
landscape scale, SFP may enhance the crop production via

physical (obstacle against wind and floods) and biological
(sources of pollinators and natural enemies) regulation, but
may, on the other hand, also be involved in the spread of
infectious diseases. Depending on their geographic location,
SFP can also greatly influence the water cycle and contribute
to supply high-quality water to agriculture and people.
Globally, SFP are important carbon sinks and are involved
in nutrient cycles, thus play a role in climate change mitiga-
tion. Cultural services are more related to landscape values
than to SFP per se, but the latter may contribute to the con-
struction of community identity. We conclude that SFP, as
local biodiversity hotspots in degraded landscapes, have the
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potential to deliver a wide range of ecosystem services and
may even be crucial for the ecological intensification of agro-
ecosystems. There is thus an urgent need to increase our
knowledge about the relationships between biodiversity and
ecosystem services delivered by these SFP in agricultural
landscapes.

Keywords Biodiversity . Cultural services . Lowlands .

Provisioning services . Regulating services . Supporting
services

Introduction

Habitat fragmentation is widely acknowledged as a major
threat to biodiversity worldwide [1–3], but see [4]. It encom-
passes at least four interacting processes: (i) pure habitat loss,
which usually directly destroys sessile organisms (e.g. plants)
and constrains mobile organisms (e.g. birds and mammals)
that retreat into remnant patches of habitat; (ii) reduction of
fragment size, which reduces species richness and population
sizes, increasing the risk of local extinction [5]; (iii) increase in
edge:interior ratio, which can promote the colonisation of hab-
itat generalists and species from neighbouring habitats to the
detriment of habitat specialists that have retreated to remnants
[6]; and (iv) increase in spatial isolation of remnant habitat
patches, which reduces the movements of individuals between
populations [7] and disrupts metapopulation and meta-
community functioning [8, 9]. In Europe, forest has a long
history of fragmentation and land use/cover change [10–12].
The clearance of forests for agriculture and their recovery on
abandoned lands resulted in patchy forest cover with patches
of different quality, age, size and isolation embedded in a more
or less intensively managed agricultural matrix. Ecologically,
these forest patches often exhibit homogenized stand struc-
ture, either because they are intensively managed or originate
from plantations or afforestation of former farmlands [13–15],
or management can be neglected [16].

The increasing demand for food and the promotion of
bioenergy crops in the context of a bio-based energy transition
have led to an increasing demand for new agricultural areas
worldwide and increased crop production to the detriment of
semi-natural habitats, including forests [17]. Therefore, land-
scape change in the forms of clearance of existing forest
patches and afforestation of abandoned lands are still ongoing
processes in European lowlands [18•]. In general and at the
same time, forests are of major importance to human society,
delivering several crucial ecosystem services [19••], but also
some disservices (e.g. diseases [20]). There is growing evi-
dence that biodiversity is vital to ecosystem functioning
[21–23, 24•, 25, 26]. By decreasing biodiversity, fragmenta-
tion may thus impact ecosystem processes such as nutrient
cycling and energy flows and ultimately affect flows of

ecosystem service [27, 28••]. Ecosystem services (ES) are
often categorized as provisioning, regulating, cultural and
supporting services [29]. Costanza [30] proposed an alterna-
tive classification based on the spatial characteristics of ES,
using five categories: in situ, local-proximal, directional flow
related, global and user movement related.

Compared to large forest ecosystems, e.g. [19••, 31], little
is known about the role of biodiversity of small forest patches
(SFP, from less than 1 to 50 ha; [32]) in delivering ES to
society [33•, 34••] in agricultural landscapes, which cover
40 % of the Earth’s surface [35]. The research effort has in-
deed mostly focused on how forest fragmentation actually
alters the delivering of ES. Furthermore, these SFP are poten-
tially threatened by urbanisation, expanding croplands and
agricultural intensification despite their potential to maintain
biodiversity and contribute to the Becological intensification^
of agro-ecosystems [36] and human well-being. Thus, there is
an urgent need to increase our understanding of the relation-
ship between biodiversity and ES delivered by SFP embedded
in an agricultural landscape matrix (Fig. 1). We here review
the literature on the topic, with a special focus on temperate
European landscapes and make profit from still unpublished
results of the smallFOREST BiodivERsA project into which
all co-authors of this paper were involved. Following
Costanza’s classification [30], we successively review in situ
ES (i.e. that are delivered locally, within the ecosystem), local-
proximal ES (i.e. that depends on the spatial proximity of the
focal ecosystem), directional flow-related ES (i.e. from the
ecosystem to the point of use), global ES (i.e. independent
from ecosystem location) and user movement-related ES
(i.e. involving a movement of people towards the ecosystem)
(Table 1).

In Situ Services

Biodiversity

Most contemporary SFP are young, in an early secondary-
successional stage, homogeneous in their structure, and, as a
consequence, host only a few forest-specialist species
[37–40]. The sensitivity of biodiversity components to rem-
nant habitat size and habitat structural quality varies signifi-
cantly [41–43]. Sessile and less mobile organisms are more
threatened by habitat degradation [40, 44–46] in comparison
to species with good dispersal or mobility [47, 48•]. The effect
of fragmentation on species richness and community compo-
sition in forests is mediated by four main groups of variables:
(1) forest patch quality in terms of soil variables, notably pH,
nutrient availability and light [11, 49]; (2) patch heterogeneity,
i.e. the variability of environmental drivers and stand diversity
[50, 51]; (3) habitat configuration in terms of forest patch size
and isolation [49, 52]; and (4) the history of the patch,
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especially whether it has been continuously forested for cen-
turies (ancient forest) or afforested on agricultural land (recent
forest) [52, 53]. Generally, the number of species in SFP in-
creases with increasing patch area, decreasing isolation, in-
creasing heterogeneity and temporal continuity, while the ef-
fects of patch quality are more complex and often species
specific. Edge effects may have negative impacts on forest
specialists due to alteredmicroclimate (e.g. [54, 55] for fungus
species diversity). Forest management and the creation of
novel forest habitats such as parks do not always have a

negative effect on forest biodiversity, as the optimization of
stand structure can result in SFP that support a high diversity
of vascular plants [56, 57], insects [58, 59] and bats [60, 61].
The positive effect of management on biodiversity, however,
is generally driven by the increase of habitat generalists or
open habitat species [43, 62]. As a result, the positive spe-
cies–area relationship underlying the patch size effect in some
cases has been weak or absent (e.g. [63] for plants; [64] for
arbuscular mycorrhizal fungi), meaning that even SFP may
comprise a high number of species [65]. Moreover,

Fig. 1 Various aspects of small forest patches in European agricultural
landscapes. Small deciduous forests look like isolated patches within
intensively cultivated open fields (a) or more or less connected by
hedgerows within grasslands (b); even sometimes as small islets in a
coniferous-dominated landscape (c). These small forest patches are
often hotspots of biodiversity within agricultural landscapes, with a
species-rich herb layer (d) and a mixture of deciduous tree species (e).
These patches are sometimes managed for wood production (f) but are
often unmanaged (g). They potentially deliver a wide range of ecosystem
services to neighbouring crop lands (h) and pastures (i), such as pest

biocontrol and shelter for grazing animals, respectively. a Open fields in
North-West Germany (A. Kolb); b bocage of Thiérache (A. Jamoneau),
North France; c agricultural landscape in Central Sweden (G. Decocq); d
understory in an alder stand in North-East Germany (M. Wulf); e
understory of Flanders in Belgium (E. Brosens); f fuel wood harvest in
North France (J. Lenoir); g unmanaged woodlot in North France (G.
Decocq); h forest edge in an open field landscape of North France (G.
Decocq); i forest edge in an open field landscape of North France (G.
Decocq)
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irrespective of the variation in the environment, a dense net-
work of SFP can contribute to counteracting the disruption of
the meta-population functioning of the landscape with respect
to new colonization events [9], depending on the species dis-
persal ability [43, 66]. On the other hand, many long-lived
organisms, such as some vascular plant species, may persist
over many decades even under non-favourable conditions.
This Bextinction debt^ of species in SFP offers an opportunity
to halt biodiversity loss by taking conservation action in time
[67•].

Wood Production

SFP may be important for local timber and firewood produc-
tion as a provisioning ES. In Western Europe, a heavily
fragmented region with a mean forest cover of c. 26 %,
93 % of all forests were available for wood supply [68]. In
total, 172 million cubic metres of wood were harvested in this
region in 2010. Nevertheless, the mean patch size of private
forests, for instance, in Belgium, the UK and Germany is only
2, 13 and 10 ha, respectively [69]. Wood production in these
forests is faced with management challenges like a high num-
ber of forest owners and a patchy occurrence of the wood
resource, which—nevertheless—could partly be resolved by
a specific local organization [70]. Close-to-nature manage-
ment systems such as continuous cover, retention forestry or
selective logging of single trees can often be a good option for
wood production in SFP because they most likely sustain the
continued delivery of other ES [71, 72•]. Given that the de-
mand for fuel wood is expected to continuously increase in the
near future, the pressure on SFP to provide local inhabitants
with wood in densely populated areas is expected to increase
over the next few decades [73].

Wild Food Production

Wild food provision, of which the most iconic components are
game hunting and mushroom picking, is hardly accounted for
in any mapping of ES in Europe. A key aspect that regulates
the availability of wild food (including hunting) is a heteroge-
neous landscape that is threatened by agricultural intensifica-
tion [30, 74, 75]. SFP can provide a wide range of edible plant
products (e.g. wild berries and nuts) and mushrooms, which
are commonly used by local populations and/or marketed. A
recent study revealed that 11 wild plant species were still used
as food in Sweden but none as medicinal plants, whilst in the
economically less developed rural areas of Ukraine, 26 and 60
species are used as food and herbal, respectively, suggesting
that the consumption of wild food and medicine is influenced
by the socioeconomic situation in a country [76]. In western
Europe, a considerable number of forest plant species have
been used in the past (22.2 and 13.6 % for food and medicinal
applications, respectively, out of a total species pool of 1024
species; smallFOREST project, unpublished data). Thus,
gathering of wild food may be considered more of a cultural
service in Europe and part of people’s identity [77], with the
potential for increasing demand in response to industrializa-
tion [78].

SFP can also act as a refuge for game animals (e.g. roe deer,
wild boar, hare, rabbit and pheasant). Mammals such as hares
and roe deer are generalist herbivores that move and forage
freely across agricultural landscapes and can use SFP as a
source of food and as shelter during periods of agricultural
activity in neighbouring croplands [79, 80]. Their value as
hunting reservoirs is often one of the main reasons that have
prevented these SFP from being converted into agricultural
land [81].

Table 1 Ecosystem services
delivered by small forest patches
embedded in agricultural
landscapes that are assessed in
this review (right part), grouped in
five classes according to their
spatial characteristics (left part),
after [30]

In situ services

= services delivered within the forest patch

• Biodiversity

• Wood production

• Wild food production

• Biological invasion risk (disservice)

Local-proximal services

= services depending on the spatial proximity of the forest patch

• Disturbance regulation

• Habitat & refuge

• Biological pest control

• Pollination

• Infectious diseases (disservice)

Directional flow-related services

= services extending from the forest patch to the point of use

• Water regulation

• Water supply

• Erosion control

Global services

= services independent from the forest patch location

• Carbon storage & climate regulation

User movement-related services

= services involving a movement of people towards the forest patches

• Recreational activities

• Aesthetics

• Construction of local identity
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Biological Invasion Risk

Habitat loss and fragmentation are thought to promote the
spread of invasive species. An increased risk of biological
invasion can be seen as a disservice provided by SFP, and it
may alter some of the beneficial ES and thus have huge costs
to society [82]. In some countries, exotic tree species have
beenwidely used for reforestation [83]. However, the assump-
tion that SFP are more exposed to invasion mainly comes
from percolation-based model simulations [84], and empirical
evidence is still scarce. It has also been suggested that frag-
mentation may slow down invasion spread, at least for species
that are not dispersal-limited [84], and therefore, SFP might
also provide a beneficial ES in this sense. A negative relation-
ship between patch size and exotic species richness has been
repeatedly found [85–87], but other landscape factors (e.g.
landscape composition and configuration, management inten-
sity and proximity from seed sources) interact with patch
invasibility. Although forest ecosystems are usually consid-
ered as resistant to biological invasion but see [88], fragmen-
tation creates more edge, which offers a more suitable habitat
than the forest interior for many exotic species that are not
dispersal-limited and able to move through the landscape ma-
trix [89]. It is likely that the (dis-)services associated to inva-
sive species do not fundamentally differ between SFP and
other forest ecosystems. For example, the Asian shrub
Lonicera maackii, one of the most widespread invaders of
US woods, has been shown to reduce the survival, growth
and fecundity of native herbs and tree seedlings [90], hence,
to negatively impact local biodiversity. A recent meta-analysis
found that pollinator communities of bees and bumblebees
were negatively impacted by the combined effect of fragmen-
tation and biological invasions via the disruption of plant–
pollinator networks [91]. Another potential disservice is seed
dispersal from small forests into adjacent cropland, but this
has been shown to be limited, so that the forest edge cannot be
regarded as an important source of weed infestation of crop
fields [92].

Local-Proximal Services

Disturbance Regulation

Flooding, storm, wildfire or fast spread of pests and pathogens
are disturbances that strongly affect human activities and have
heavy financial consequences. Their frequency or their conse-
quences are influenced by landscape characteristics, such as
connectivity, that may contribute to the expansion of these
disturbances. SFP may play a key role in this process and then
provide a regulation ecosystem service. However, the low
frequency of these events renders the study of how SFP may
reduce their consequences challenging yet crucial since the

occurrence and magnitude of such extreme events are predict-
ed to increase with global warming [93]. Lindner et al. [93]
reviewed the impacts of climate change on European forests
with a special focus on the risks of greater disturbances, but
without taking into account the spatial patterns of forest frag-
mentation. The analysis of past disturbance in European for-
ests during the nineteenth and twentieth centuries did not ad-
dress spatial patterns either [94] and as such little is known.
SFP may, depending on their location in relation to farmland
or housing, act as windbreaks and protect land against erosion,
although there is a little research on this topic. It is generally
admitted that several SFP scattered across agricultural and flat
landscapes might be better than a one single large forest stand
at reducing, breaking up and dissipating wind storms, but
empirical results [95] do not always fit with this assumption,
underlying the need for more detailed studies.

Habitat/Refuge

Of around 220 forest plants in northwest and central Europe
(list in prep. by the FLEUR network, http://www.fleur.ugent.
be/), two-thirds have been found in SFP along a latitudinal
gradient from southern France to central Sweden [96••].
Small forest fragments are therefore important habitats for
these habitat specialists. Moreover, it has been demonstrated
that several habitat specialists can persist for many decades or
even longer in SFP [67•, 97]. In general, SFP may serve as
transitional habitats or stepping stones in a network of isolated
forest habitats [59, 98•]. On the other hand, SFP can act as
Blifeboat^ habitats for species, particularly in landscapes with
a high degree of fragmentation [99]. These fragments could
ultimately act as climate refugia in the current context of cli-
mate change [100], as long as surface area is large enough to
sustain a viable population and species are not bounded by
matrix habitat and therefore unable to migrate due to climate
change. However, obviously, microhabitat conditions within
SFP offer short-term (e.g. minutes to days for wildlife
inhabiting agricultural landscapes) protection from anthropo-
genic disturbances dominating in the surrounding matrix and
thus act as Btransit shelters^ or Brefuges^ for biotas [101] (cf.
disturbance regulation). Less obvious, the cooler and more
stable conditions generated by forest canopy closure in SFP
compared with the highly disturbed agricultural matrix (cf.
vegetation-cover effect in [100]) may be partly responsible
for the buffering effect on warming-induced community com-
position changes that have been reported in lowland forests
[102, 103]. Coherently, it has been demonstrated through a
manipulative experiment that light accelerates warming-
induced changes in understory plant communities [104].
Given these recent findings, we argue that SFP have a strong
potential to provide climatic refugia (cf. involving longer time
scales than refuges), as a local-proximal ES. This is especially
important in lowland agricultural landscapes [100], which are
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heavily disturbed by humans and where both habitat frag-
mentation and long distances between isotherms hinder spe-
cies range shifts that are lagging behind climate change
[105]. Noteworthy, the identification of climate refugia,
such as SFP, within anthropogenic-disturbed lowland eco-
systems and the assessment of their capacity for conserva-
tion planning under contemporary and future climate
change has recently been highlighted as a daunting but time-
ly endeavour [106].

Biological Pest Control

Biotic interactions associated with biodiversity can provide
important local-proximal, regulating ES, particularly in terms
of pest control in crop fields through natural enemy diversity
from proximal non-crop habitats [107]. As a rough estimate,
the value of pest control attributed to insect predators and
parasitoids, which are primarily responsible for natural control
in 33 % of cultivated systems [108], has been estimated at
$4.5 billion per year [109].

SFP host a broad spectrum of natural pest-predators, from
microbial pathogens to small mammals. Edges of forest frag-
ments generate wider boundary areas, which operate as a
source for biocontrol agents dispersing into adjacent matrix
habitats just before pest outbreak [48•, 110–112]. Since SFP
are often the last semi-natural habitat scattered across a matrix
of agricultural landscapes [62, 113, 114], they have the poten-
tial to offer environmental (reduced need of chemical pesti-
cides) and economic benefits (reduced yield loss free of
charge) to crop production [61, 115–119]. Although it is likely
that smaller forest fragments provide fewer natural enemies
than larger fragments, both in terms of richness and abun-
dance, several SFP might be more efficient in providing a
sufficient pressure of natural enemies on crop pests across
an entire agricultural landscape than just a single large forest
[120, 121], simply by providing more edge habitat. Mitchell
et al. [34••] found that insect herbivory regulation in soybean
fields in Canada was maximized adjacent to forest fragments
and decreased with distance from the forest fragment edge.
Thompson and Hoffmann [122] showed that species of para-
sitoids and predators strongly aggregate close to SFP.
Shackelford et al. [123] found a positive effect of the compo-
sitional complexity of agro-ecosystems (proximity to, diversi-
ty of or proportion of natural or non-crop habitats) on the
abundance and richness of natural enemies, although this
trend was mainly driven by spiders. Spiders are very mobile
and generalist predators and have therefore a large potential in
contributing to the natural pest control [124]. This confirmed
former findings from Bianchi et al. [125] who showed that
natural enemy populations were greater and pest pressure low-
er in heterogeneous landscapes containing a good mixture of
crop fields and non-crop habitats (including SFP).

Pollination

Almost 90 % of the world’s Angiosperm plant species and
about 75 % of the most important global food crops depend,
at least partly, on animal pollination [126, 127]. Pollinators
thereby play a critical role in the maintenance of biodiversity
and provide an essential intermediate ES to society. Habitat
loss and fragmentation may influence pollination processes by
affecting plant densities, pollinator densities and pollinator
behaviour, all of which in turn may affect plant pollination
success [91, 128–131]. Effects are often negative, for exam-
ple, plants in fragmented populations may receive fewer flow-
er visits, smaller pollen loads or pollen of poorer quality, there-
by suffering pollen limitation and reductions in reproductive
success [132–135], which may lower population viability and
increase local population extinction risk.

However, SFP within agricultural landscapes are also hab-
itats for insect species that provide pollination services in ad-
jacent fields. The compositional complexity of agro-
ecosystems has been shown to increase the abundance and
species richness of crop pollinators, an effect which was even
greater than the positive effect on natural enemies [123]. This
further highlights the importance of non-crop habitats such as
SFP in delivering local-proximal ES [136]. Indeed, crop pol-
lination declines with the distance from natural or semi-natural
habitats, with patterns being stronger in tropical than in tem-
perate regions [137]. Moreover, Garibaldi et al. [138] found
that temporal and spatial stability of pollination services also
decrease with isolation from natural areas such as forest.

Infectious Diseases

SFP might also have a negative impact on human society
through the provision of what has been called ecological dis-
services [139]. Among the most important disservices is the
prevalence of ectoparasites like ticks (mainly Ixodes ricinus)
that can transmit a variety of viruses, bacteria or parasites and
thereby play an important role in providing infectious diseases
to a wide range of animal hosts, including humans [140].
Lyme Borreliosis, which has Borrelia burgdorferi sensu lato
as causative agent, is the most common infectious disease
transmitted by ticks and seems most prevalent in central
European countries [141]. Other tick-borne diseases include
tick-borne encephalitis with ever increasing case numbers all
over Europe (see [142] for a comprehensive study on all
known tick-borne diseases occurring in Central Europe). In
North America, landscape fragmentation seems to play a cru-
cial role in explaining patterns of tick abundance and Lyme
Borreliosis prevalence mediated by ungulate and small mam-
mal dynamics [143]. The influence of the landscape context is
not yet completely understood in Europe, but there are indi-
cations that landscape fragmentation is responsible for pat-
terns of tick-borne encephalitis in European agricultural
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landscapes [144] and the prevalence of B. burgdorferi in for-
ests and pastures [145]. This is presumably due to the greater
amount of edges in fragmented landscapes where small verte-
brates, ungulates and medium-sized mammals act as reservoir
hosts. An important concept, the dilution effect, is based on
higher diversity of potential tick-host species. Higher species
richness results in fewer interactions between ticks and those
host species known to be infective to ticks. A loss of biodi-
versity associated to landscape fragmentation might thus con-
versely increase the prevalence of pathogens in fragmented
landscapes [146, 147].

Among emerging diseases, the African swine fever (ASF)
might have an increasing socioeconomic impact (OIE-CIC
Joint Meeting on ASF 2014). A close link between wild boar
(Sus scrofa) ecology and the spread of ASF can be assumed,
since both wild boar and domesticated pigs are vulnerable to
ASF [148] and are suspected to infect each other [149]. Wild
boar are known to show generalist life-history traits and while
other medium to large mammals occur less frequently in
fragmented landscapes, wild boar is less sensitive to fragmen-
tation [150]. However, the response of infectious diseases less
relevant to humans directly, and in particular diseases of do-
mestic animals, to landscape fragmentation is still largely
unknown.

Directional Flow Related

Water Regulation

Water quality is not only important for drinking supply but
also to other hydrologic services, including recreation and
freshwater biodiversity. Forests have important regulatory
functions on the water cycle by fixing soils, modifying soil
structure and producing litter. Due to their capacity for
restricting or delaying water flow, forests regulate water flows
in the ground, streams and rivers [151, 152], providing sub-
stantial economic values to human societies and activities
downstream. As high-water-retention ecosystems, forests de-
crease both flood peaks and low flows [153], but the intensity
of this effect varies with plant water use throughout the year,
which depends upon interactions between seasonal growth
patterns and local climate. Riparian forests promote the infil-
tration of surface water to groundwater, which reduces flood
peaks while increasing base flow, thus increasing the predict-
ability of water availability [154].

Since agriculture is widely acknowledged as a major
source of water pollution, the water quality regulation ES
provided by neighbouring SFP is of great interest. Trees are
indeed able to capture, transform and store a wide range of
chemicals, pathogens, excess nutrients, salts and sediments
from surface and groundwater [155].

Water Supply

Water supply is crucial to a number of domestic, agricultural,
commercial, industrial and electric power uses but also to the
freshwater life. According to FAO, agriculture represents
about 70 % of the water use on Earth, of which 80 % comes
from rainfall stored in soils [156]. Water storage in soil de-
pends upon plant cover, organic matter content and the biotic
community [118]. Forests might increase infiltration while
decreasing the total water volume due to transpiration [155].
The hydrologic effects of forests have been extensively debat-
ed, but in general the volume of surface and groundwater
available from forested watersheds is lower than that from
watersheds dominated with other land cover types [157].

In agricultural landscapes, water is a key factor to be man-
aged to enhance the agricultural production. In rain-fed farm-
ing systems, maximizing soil infiltration of rainfall water and
soil water holding capacity ensures good growth of crops.
Land cover type and cycling through soils are hidden parts
of the water cycle albeit crucial. It has been suggested that
improving rainfall water retention by soils is a more suitable
strategy than irrigation to increase crop productivity [156].

Erosion Control

The negative effects of soil erosion encompass water pollution
and siltation, crop yield depression, organic matter loss and
reduction in water storage capacity [158]. Forest ecosystems
provide the most effective vegetation for preventing soil ero-
sion, thereby contributing to soil protection [159, 160]. Soil
loss is generally more than an order of magnitude lower in
forests than on arable land [160]. In managed forests, heavy
forestry vehicles and mechanical operations associated with
logging, as well as clearcutting practises cause important dis-
turbances of the upper soil layers and ground vegetation, thus
expose these areas to water run-off and soil erosion [161].
Since SFP are usually less intensively managed, the terrain
they cover would be less prone to soil loss and run-off.

Global Services

The northern hemisphere is currently acting as a net terrestrial
carbon (C) sink which has mainly been attributed to C seques-
tration in forests [162], of which a significant part is in boreal
forests [163]. Current increases in the C stock of forest bio-
mass have been estimated to range from 50 to 100 Tg C year−1

for Europe [164–167]. Most of the annual changes in the
forest C stock are influenced by forest management, such as
clearcutting and replanting, whereas smaller changes are due
to natural disturbances [69, 167, 168]. In the wake of climate
change, C sequestration and storage play an important role
across all ecosystems [169]. The forest C stock is influenced
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by anthropogenic drivers such as climate change and nitrogen
(N) deposition [170]. The magnitude of the C pools in forest
soils depends on soil properties, particularly temperature and
humidity [171] and dominant tree species [172, 173].

Forest fragmentation has the potential to affect C and nu-
trient cycling, through decreased area, increased isolation and
greater exposure in forest edges [174, 175]. Fragmentation
leads to drier and warmer edges with altered light availability
and wind microclimate [176–178]. Advection and inflow of
air cause forest edges to trap and concentrate wind-borne dry
deposition of soil nutrients and pollutants from adjacent agri-
cultural or industrial areas [179]. The large spatial variation in
nutrient deposition fluxes in forest edges [180–184] generally
points to the deposition of N being up to four times higher in
the edge of the forest (0–200 m) than in the forest interior.

In temperate forests, the total C accumulated in biomass is
generally limited by the availability of N since the cycling of
C and N is closely linked [185]. Increased supplies of plant
available N from deposition may stimulate tree growth and
litter fall and result in increased biomass production and, con-
sequently, additional C sequestration [186–188] as, for exam-
ple, in a fragmented landscape with a higher forest edge den-
sity. This elevated forest productivity has been hypothesized
to increase soil organic C stocks by increasing the C input to
the soil and by reducing the decomposition of soil organic
matter. There is evidence from respiration and litter decompo-
sition studies that the effect of added N on the soil organic
matter decomposition rate is negative [189–191] and that it
might be responsible for up to a 10 % increase in soil organic
C stocks [162]. Remy et al. [unpublished data] recently
showed that both C and N soil stocks were increased by ap-
proximately 30 % at the forest edges compared to the forest
interiors. Other unpublished data (Ginzburg, personal com-
munication) found no edge effect on soil C stocks. In sum,
the impact of forest fragmentation on C cycling and storage is
still uncharted territory and should be the focus of future
research.

User Movement Related Services

User-movement ES from SFP are represented by the recrea-
tional and aesthetic values they provide. The recreational po-
tential of a forest is determined by access rights and customary
traditions and, more specifically, by a series of factors such as
population density, substitutive or complementary character
of forests [192, 193], and proximity and accessibility to the
forest patch [194–196]. Actual recreational values that people
derive from forest stands can also depend on the activities they
carry out in the forest [197]. Still some general trends have
been ascertained such that the recreational preference for a
forest increases with increasing tree size and stage of stand

development [198, 199], including provision of view as an
important factor [200].

In the case of SFP, the assessment of these values may
be even more challenging since their contribution is high-
ly determined by the agricultural matrices in which they
are embedded. In general, more heterogeneous landscapes
are appreciated [201–203] and SFP contribute substantial-
ly to heterogeneity in the agricultural landscapes.
Assessing social values of the cultural services provided
by these SFP may be more related to the assessment of
the landscape values [204] rather than their role as forests
per se [203, 205, 206]. The preference for a given type of
landscape increases with the number of SFP and their size
[202], although our perception of the landscape and its
beauty varies depending on our background and knowl-
edge [198–200, 207]. Analyses of social preferences for
changes in forest area and forest structure of SFP in
Picardy (northern France) and Flanders (northern
Belgium) (Varela et al. submitted) found that social pref-
erences varied depending on the intensity of disturbance
of the agricultural landscape where citizens lived. It was
hypothesized that this variation may be linked to the char-
acter of the population in these areas, as people living in
landscapes with intensive agriculture had a more urban
character, while people living in areas with less intense
disturbance were more rural. These two regions showed a
proportion of forest close to 6 % in the agricultural land-
scapes and the surveyed respondents were willing to in-
crease the area covered by SFP. The preferences of people
with a more urban-like profile were determined by forest
structure and also by biodiversity aspects; in contrast, the
population in rural areas was mostly concerned about fea-
tures related to the forest structure.

The recreational and aesthetic experience people derive
from SFP may differ greatly from that in large forests, where
the focus is placed on the stand features: recreationists mainly
enjoy the forest-interior; in contrast, SFP embedded in agri-
cultural matrices may be also valued as part of the agricultural
landscape where they are situated, being likely to be consid-
ered as relicts of wilderness or naturalness [202]. This
landscape-based appreciation depends on their size and shape.
In landscapes of north France and north Belgium economic
valuation surveys have shown that patches are enjoyed from
both outside and inside the landscape (Varela et al. submitted).
Hence, these in-out recreational components did make a dif-
ference in the way forest features are valued. People enjoying
the forest-interior were more concerned than the average pop-
ulation to enhance biodiversity (e.g. paying for measures that
will increase the number of bird or butterfly species), while
people enjoying the patches from outside were more willing
than the average population to increase the area of these
patches (Varela et al. submitted). Forest interior and forested
landscapes have also long been a source of inspiration for
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painters (e.g. BBirch forest^ from Gustav Klimt, 1903 or
BDans la forêt^ from Paul Cezanne, 1898–1899). Their works
probably contributed to the positive perception of forest struc-
ture and forest patches by the society.

SFP may also contribute to the construction of commu-
nity identity [208••], since a community forest can be an
element for local legends [209] signifying sanctuaries, so-
cial events. When dealing with private forests, some loca-
tions may be of personal significance for the forest
owners and their families [210]. It has been observed that
a share of the farmers owning land in the analysed land-
scapes of north France and north Belgium was reluctant to
enhance the structural properties of these SFP to promote
higher biodiversity levels. This may be related to their
forest use, linked to hunting or wood extraction that
may be to some extent hindered by (lack of) management
measures aimed at increasing such structural diversity.

Conclusion and Perspectives

SFP influence their surroundings through ecological process-
es, mediated by patch characteristics such as their species
composition, age, size and shape. Some of these processes
are the basis for ES that benefit (or harm, in the case of dis-
services) different human activities. Mitchell et al. [28••] re-
cently proposed a general and comprehensive framework for
analysing the consequences of forest fragmentation on several
ES (carbon storage, crop production, decomposition, pest reg-
ulation, soil fertility and water quality regulation). According
to their work, forest fragmentation reduces the provision of
most of the ES, mostly due to the negative consequences of
fragmentat ion on biodiversi ty, but this could be
counterbalanced by the fact that fragmentation, at a certain
level, can increase the flow of ES to more beneficiaries (e.g.
food foraging, hunting, and walking) through an easier acces-
sibility. Hence, SFP produce fewer services than larger forests,
but more people can potentially benefit from them. The spatial
patterns of fragmentation (patch isolation, size and
edge:interior ratio) are among the key drivers of the supply
of many of the local and proximal ES, but there is still a strong
need for more research to link given patterns to levels of
services.

Moreover, new ES may emerge from fragmentation or
existing ES may increase in intensity. For example, many
local-proximal ES are strongly associated to the so-called
Bedge effect^. Since a primary effect of forest fragmenta-
tion is the increased edge:interior ratio, one can expect
that those local-proximal ES will increase as well. The
spatial arrangement of forest patches in agricultural land-
scapes also matters: for a same total area and number,
forest patches evenly distributed throughout the landscape
are more effective in delivering local-proximal ESs, such

as, e.g. pest biocontrol, than clumped patches [136]. For
some ES, such as soil protection and water regulation, the
localisation of forest patches within the landscape is likely
of utmost importance. For instance, steep slopes are more
exposed to soil erosion and water run-off than flat areas; a
forest patch will thus be more efficient with respect to soil
protection on the former. Similarly, it is obvious that for-
est patches located along streams are more efficient at
regulating water flow and quality than distant patches.

Agriculture intensification threatens biodiversity in
many rural areas and can jeopardize the delivery of mul-
tiple ES [211]. How to meet the rising demand for agri-
cultural land and crop production without compromising
biodiversity and associated ES is thus a critical challenge
for the twenty-first century in lowland agricultural land-
scapes. Only recently attention has been paid to ES and
many unresolved issues still remain, especially in the con-
text of fragmented ecosystems such as SFP embedded in
agricultural landscapes. ES delivered by SFP have the
potential to mitigate the disservices provided by agricul-
ture, including loss of biodiversity, agrochemical contam-
ination of the environment, soil erosion, emission of
greenhouse gas and other pollutants [212]. However, there
is still an urgent need to document individual and com-
bined (synergistic and antagonistic) ES flows and their
impacts on agriculture and agricultural landscapes and to
analyse whether so-called intrinsic and functional biodi-
versity values of these SFP can go hand in hand. Other
research challenges include the determination of the spa-
tial and temporal scales at which ES significantly contrib-
ute to agricultural productivity and thus, at which spatial
and temporal scales management should be implemented
to increase their efficiency; and how to design incentives
to promote the provision of ES in agricultural landscapes
and, ultimately to green agriculture and increase their bio-
diversity and scenic beauty.
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