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Abstract Within the global forest area, a diverse range of
forest types exist with each supporting varying amounts of
biomass and allocations to different plant components. At
country to continental scales, remote sensing techniques have
been progressively developed to quantify the above-ground
biomass (AGB) of these forests, with these based on optical,
radar, and/or light detection and ranging (LiDAR) (airborne
and spaceborne) data. However, none have been found to be
globally applicable at high (≤30m) resolution, largely because
of different forest structures (e.g., heights, covers, allocations
of AGB) and varying environmental conditions (e.g., frozen,
inundated). For this reason, techniques have varied between
the major forest biomes. However, when combined, these es-
timates provide some insight into the distribution of AGB at
country to global levels with associated levels of uncertainty.
Comparisons of data and derived products have, in some
cases, also contributed to our understanding of changes in
carbon stocks across large areas. Further improvements in
estimates are anticipated with the launch of new spaceborne

LiDAR and SAR that have been specifically designed for
better retrieval of forest structure and AGB.
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Introduction

Approximately 30 % (3869 million ha) of the world’s land area
is forested, with 3335 million ha covered by closed canopy
forests [1]; typically with >40 % tree cover. Within this area, a
diversity of forest types occur with their distribution determined
largely by climate, soils, and topography [2••]. The standing
above-ground biomass (AGB) of these forests constitutes about
80 % of terrestrial AGB, which amounts to 432 billion Mg of
dry matter, (averaging 109 Mg ha−1; [1]). Within the forested
area, increases in AGB (carbon) occur through growth, with
rates of uptake greater for forests in the early stages of regener-
ation but slowing asymptotically when mature [3]. Neverthe-
less, forests can continue to sequester carbon beyond maturity
[4]. Decreases in AGB are the result of tree mortality and re-
moval (e.g., through wildfires, windthrow, drought, inundation,
logging and/or clearing). The associated release of carbon di-
oxide (CO2) can be immediate (e.g., through burning) or grad-
ual (e.g., through decomposition). The extent of losses in forest
extent and biomass caused by human disturbance has been
substantial and progressive, resulting in a significant contribu-
tion to overall greenhouse gas emissions (around 17 %; [5]).
Originally covering an area of about 6.2 billion hectares (about
47%of the Earth’s land surface about 8000 years ago; [6]), over
40 % has been cleared with most occurring during and follow-
ing the Industrial Revolution [1].

Primarily, as a consequence of the role of forests in regional
to global carbon budgets, accurate measures of the spatio-
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temporal variation in the AGB of forests at country to global
scales are needed. At the country level, estimates facilitate
national inventory reporting, with information on carbon
stocks and change used to support carbon trading and climate
change initiatives such as the United Nations Framework
Convention on Climate Change (UNFCCC) Reducing Emis-
sions from Deforestation and Degradation (REDD+) program
[7]. Woody vegetation AGB is often a key requirement for
government land use monitoring programs and knowledge
of the drivers of change in forest AGB is useful to natural
resource managers when planning conservation and restora-
tion initiatives (e.g., in degraded and regrowth forests).
Global-scale AGB maps are informative and educational and
provide an overview of where large-scale carbon stocks are
located and can be used as a predictor of other carbon pools
(e.g., below ground). However, the generation of maps across
these scales remains a challenge and can be contentious [8].
This is partly because the different forest structures and envi-
ronmental conditions require different approaches to AGB
estimation. As a result, approaches have ranged from interpo-
lation of field-based estimates to direct and indirect measure-
ment using passive optical and/or active remote sensing data.

As many countries and regions are developing remote sens-
ing methods for retrieving AGB, a review of the different
methods used is informative. This review therefore focuses on
AGB retrieval techniques for themajor forest biomes defined by
[9] (Tropical/subtropical moist broadleaf forest, dry broadleaf
and coniferous forest, mangroves, tropical/subtropical and tem-
perate grasslands, savannas, and shrublands,Mediterranean for-
ests, woodlands and scrub; temperate broadleaved, coniferous
and mixed forests, and boreal forests) with a view to establish-
ing commonalities and differences between these. Some forest
types (e.g., temperate broadleaved, mixed and coniferous for-
ests and boreal forests) were considered together because of
similarities in the architecture of trees and the structure of stands.
The review emphasizes the different structures, AGB quantities,
and environmental conditionswithin different forest biomes that
have led to the different techniques being selected and applied.
Only those approaches relevant to standing AGB are consid-
ered; other carbon pools (e.g., herbaceous, coarse-woody de-
bris, below ground) are beyond the scope of this review.

Characteristics of Different Forest Types

Based on the scheme of [9], maps of 14 major biomes were
generated, with eight representing forests, a further two being
grasslands, savannas, and shrublands and the remainder
representing deserts, shrublands and/or herbaceous vegetation
(Fig. 1). This classification scheme was selected as the basis
for comparing remote sensing methods as the classes reflect
differences in the woody structure (closed/open forests,
shrubs) as well as the foliage components of vegetation.

Between these biomes, the structural characteristics vary
considerably. Using the Moderate Resolution Imaging
Spectroradiometer (MODIS) Vegetation Continuous Fields
(VCF) algorithm, [12••] generated a global map of percentage
tree cover at 500-m spatial resolution (Fig. 2a). Forests that are
contiguous over thousands of square kilometers and which
supported the highest tree covers were associated with the
tropical and subtropical moist broadleaved zones of South
America (namely Amazonia), the Congo Basin and insular
Southeast Asia, the temperate zone of the northern USA and
the boreal zones (taiga) of North America and Siberia. The
lowest covers were associated with the dry broadleaved for-
ests (e.g., in India) and the tropical, subtropical, and/or tem-
perate savanna woodlands of Central Asia, southern Africa,
South America (Cerrado), the African Sahel, and Australia.
Those of intermediate cover included the temperate broadleaf,
coniferous and mixed forests and boreal forests of North
America, Europe, and Siberia. Using Ice, Cloud, and Land
Elevation Satellite (ICESat) Geoscience Laser Altimeter Sys-
tem (GLAS) data at a global level (Fig. 2b), [13] found that
extensive and contiguous areas of tall (>25 m) forests were
located primarily in the humid tropics and subtropics. The
tallest trees and those that exhibited the greatest height vari-
ability were found in the temperate coniferous forests, while
the shortest trees were located in the boreal regions. Other
notable areas with tall trees included southeast and southwest
Australia, the eastern Himalayas, and northeastern USA. [14]
also produced a global canopy height map at 1-km resolution
using ICESat GLAS data. In comparison to [12••], canopy
height estimates were generally greater. In the tropical belt,
for example, estimates for closed to open broadleaf evergreen
or semi-deciduous forest were, on average, 12-m taller but
were around 7-m taller in the boreal zone.

The architecture of trees also varies between biomes. In the
boreal zone, for example, trees with excurrent (pine-like)
growth forms predominate although these also occur in other
regions (e.g., in the tropics and subtropics, [15]). Decurrent
(branching) forms are, however, the most prevalent globally
and are common to deciduous and/or evergreen forests in the
temperate zones, Mediterranean forests and woodlands, sa-
vanna woodlands, and tropical rainforests. Palms and bam-
boos are also distinct in their structural formation while some
trees are unique in supporting substantive prop root systems
(e.g., [16]; Rhizophoraceae mangroves). The allocation of
biomass to different components also varies, with [17•] not-
ing, for example, a greater allocation to branches and leaves
for broadleaved and needle-leaved trees, respectively, in bore-
al and temperate forests.

In many regions, environmental conditions impact on the
physiology of trees and their overall structure. For example,
forests inundated by freshwater for all or part of the year
include the Varzea regions of the Amazon, the swamp forests
of the Congo, and the peat swamp forests of Southeast Asia
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[18]. In these situations, the prevalence of water often leads to
trees of lower stature [19]. However, in semi-arid areas
experiencing seasonal flooding within and close to river chan-
nels, the tree height and cover can be greater compared to
forests that are not able to make use of the water. Along the
coastal fringes of tropical, subtropical, and some temperate
regions, tidally inundated areas typically support mangrove
species, with their composition and structure depending, in
part, on their tolerance to salinity [20]. In the boreal regions,
freeze-thaw cycles affect the functioning of plants and hence,
their structural development.

The differences between forests in terms of their structure
and the prevailing environmental conditions is fundamental to
understanding why different studies have used different re-
mote sensing techniques in the retrieval of biophysical attri-
butes, including AGB. The following sections therefore re-
view a selection of remote sensing techniques that have been
applied to each of the major forested biomes and assess the
uniqueness and commonalities of these.

Methods by Forest Biomes

Tropical and Subtropical Moist Broadleaved Forests

In most tropical and subtropical regions with broadleaved for-
ests, the high AGB leads to saturation of relationships with
optical data but also Synthetic Aperture Radar (SAR) acquired
across the range of frequencies (namely X-, C-, L- and P-

band). For this reason, other approaches have been adopted
with many using data from the Geoscience Laser Altimeter
System (GLAS) instrument on board the Ice, Cloud, and land
Elevation (ICESat) satellite because of its ability to estimate
the height of forests (which relates indirectly to AGB). As
examples, [21•, 22] generated maps of tropical forest AGB
for the early 2000s and for 2007–2008, with both using rela-
tionships between ICESat GLAS and ground-based estimates
of AGB. Extrapolation was achieved using MODIS sensor
and Shuttle Radar Topographic Mission (SRTM) data, al-
though [21•] also used QuikSCAT radar scatterometer data.
In [21•], the uncertainty in AGB estimates at the 1-km pixel
scale (averaged over all continents) was ±30 %, but was not
uniform across regions or AGB ranges (ranging from ±6 to
±53 %). Regional uncertainties were comparable for Latin
America (±27 %), Africa (±32 %), and Asia (±33 %). The
standard deviation of errors in the MODIS-based models of
[22] was estimated at 6.6, 3.6, and 3.2 % for tropical Africa,
America, and Asia, respectively, while the root mean square
error (RMSE) was estimated at, respectively, 25, 19, and
24 Mg C ha−1 for these regions. Model accuracy increased
where a larger number of GLAS footprints (e.g., at least 5)
were within a single MODIS pixel. Substantial differences in
the spatial distribution of carbon densities existed at the re-
gional scale but aggregated country or biome scale maps were
more agreeable (Fig. 3; [23]). These regional differences be-
tween maps corresponded to areas with a lack of field data.

By integrating ICESat GLAS and wall-to-wall Advanced
Land Observing Satellite (ALOS) Phased Arrayed L-band

Fig. 1 Classification of biomes and ecoregions, based largely on the biogeographic realms of [9–11]
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SAR (PALSAR) data, maps of AGB have been generated at
regional and country scales. For example, an AGB stratifica-
tion map (up to 400 Mg ha−1) based on defined height ranges
for each vegetation structural type was produced for Borneo in
[24]. Comparisons with field estimates of AGB gave a stan-
dard error of predicted biomass of 53.2 Mg ha−1. In Gabon,
AGB stocks were estimated at 78 Tg C (averaging
173 Mg C ha−1), which compared to a field average of
181 Mg C ha−1; the overall uncertainty was ±25 % [25]. Air-
borne light detection and ranging (LiDAR) data have also
been used to estimate tropical forest height over large areas,
with this then related to AGB (e.g., [26]). In [26], AGB was
converted to carbon units by taking 48 % of the dry biomass.
LiDAR-estimated AGB errors were of the order of 10 % for

any 1-ha land area (with RMSE ranging from 10.6 to
17.6 Mg C ha−1). At the national level, the scaled average
pixel level uncertainty for forests was estimated at
20.5 Mg C ha−1. A similar level of uncertainty was observed
in deforested and dryland regions (with AGB <20Mg C ha−1)
and areas dominated by small shrubs and grass cover (AGB
<5 Mg C ha−1). In southern Nepal, [27] used a 5 % LiDAR
sample with forest inventory data to calibrate a Landsat-based
AGB model (RMSE=0.42, R2=0.48 at 1-ha scale). By using
these airborne/spaceborne LiDAR, the AGB estimates were
extended beyond the saturation levels typically associated
with optical and SAR sensor data.

Multi-frequency and interferometric SAR (InSAR) have
also been applied to overcome saturation in the relationship

Fig. 2 a Percentage canopy cover derived from MODIS data [12••] and b global forest height map [13], based on the 90th percentile of ICESat GLAS
height observations within a patch
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between SAR backscatter and AGB. [28], for example, dem-
onstrated how TerraSAR-X (X-band) and ALOS PALSAR
(L-band) data could be combined for large-scale AGB map-
ping in Kalimantan, Indonesia. The L-band data showed
higher sensitivity to AGB but greater variance in low
AGB ranges. Best results were obtained using a com-
bined model (R2=0.53, RMSE 75.7 Mg ha−1, valid up
to 307 Mg ha−1 with an accuracy requirement of
50 Mg ha−1). [29] demonstrated how the AGB of tropi-
cal forests in the Fly River, Papua New Guinea, could be
recovered using airborne GeoSAR (X- and P-band) data.
Forest AGB (>150 Mg ha−1) was estimated by applying
a generic equation to a surrogate vegetation height, ob-
tained from the difference in the Digital Surface Model
(DSM) and Digital Terrain Model (DTM) at X- and P-
band, respectively.

Optical data alone were used by [30] to estimate the AGB
of vegetation in Colombia, including tropical rainforests and
montane forests. Field biomass estimates revealed AGB
ranges of 0.6–10 Mg ha−1 (grassland), 11–87 Mg ha−1 (sec-
ondary forest), and 98–397 Mg ha−1 (primary forest). An ex-
ponential model (R2=0.78 and 0.72 for primary and second-
ary forests, respectively; VCF >40 %) was established, with
this based on empirical relationships between ground-based
AGB and the MODIS VCF product. Total AGB in Colombia
was estimated at 16.2 Tg, with confidence intervals ranging
from 3.7 to 25.0 Tg.

Tropical/Subtropical Dry Broadleaved and Coniferous
Forests

These forests are widely distributed and are found in, for ex-
ample, southern Mexico, southeastern Africa, central India,
Indochina, Madagascar, New Caledonia, eastern Bolivia, cen-
tral Brazil, the Caribbean, and along the coasts of Peru and
Ecuador. In comparison to moist forests, fewer studies have
focused on biomass estimation. For Mexico, [31] used ALOS
PALSAR, Landsat-derived canopy density, SRTM elevation,
and land use maps to extrapolate estimates of AGB from 26,
000 inventory plots; by using this combination, the saturation
problem associated with the SAR data was largely overcome.
AGB estimates were converted to above-ground carbon den-
sity using forest type-specific conversion factors, which
ranged from 0.44 to 0.516. While tropical/subtropical dry
broadleaved and coniferous forests occupied much of the
landscape, the mapping included humid tropical forests and
mangroves. The majority of AGB was <100 Mg ha−1 and the
RMSE was 14 Mg C ha−1, with an R2 of 0.5 and 0.34 for
vegetation located on flat and steep terrain, respectively. The
estimation bias was consistently low (<3 Mg C ha−1). Other
studies of subtropical and tropical dry forests have used Li-
DAR, SAR, or optical data with field measurements to esti-
mate AGB. For tropical dry forests in the Yucatan Peninsula of
Mexico, [32] used regression analysis to predict woody plant
species richness and AGB from LiDARmetrics. The accuracy

Fig. 3 A comparison of pan-tropical maps of AGB generated using ICESat GLAS, SRTM, andMODIS data [21•, 22] and additionally, QuikSCAT data
in [21•]. The absolute difference in AGB estimates is shown in c; [23]
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of AGB estimates improvedwith larger plot sizes (from 400 to
1000 m2), with RMSE decreasing from 37.4 to 19.8 Mg ha−1

(for the Kiuic site) and from 60.2 to 57.2 Mg ha−1 (for Felipe
Carrillo Puerto). For tropical dry deciduous forests in central
west India, [33] used multi-frequency (C-, L-, and P-band)
airborne DLR-ESAR data to estimate AGB. Regression anal-
ysis revealed a significant correlation with biomass at VV
polarization (all bands) and the saturation levels were 70,
150, and up to 200 Mg ha−1 for C-, L-, and P-band, respec-
tively. [34] estimated forest AGB in Cambodia using ALOS
PALSAR 50-m mosaic and field inventory data. Strong rela-
tionships were found between L-band HV (R2=0.67) and HH/
HV (R2=0.56) backscatter and field measurements of AGB.
AGB was estimated to 200 Mg ha−1 (R2 of 0.61, RMSE of
21 Mg ha−1). For tropical dry forest in Peru, [35] utilized
Landsat-7 ETM+ and derived vegetation indices to estimate
the AGB, with best results obtained using the Enhanced Veg-
etation Index (EVI; R2=0.72 and standard error, SE=20.95 for
overall biomass and R2=0.52 and SE=23.9 for tree biomass).

Mangroves

Mangroves are typically found in tropical and subtropical re-
gions, with the majority located between 5 ° N and 5 ° S [36].
At a regional level, maps of mangrove canopy height have
been generated by [37] using SRTM and ICESat GLAS data,
with these converted to AGB through relationships with field-
based heights. Using SRTMdata calibrated with LiDAR and a
high-resolution US Geological Survey (USGS) Digital Eleva-
tion Model (DEM), the mean tree height of mangrove forests
within the Everglades National Park, Florida, was estimated
with an RMSE of 2 m [38]. The standing biomass of the
mangroves was then estimated using a relationship between
mean height and field measured biomass (R2=0.82, RMSE of
37 %). The standard error of AGB estimates ranged from
±20 Mg ha−1 (for stands with height=1 m) to ±40 Mg ha−1

(height=25 m). [39] established a linear relationship between
the ICESat GLAS canopy waveform contribution (CWC) and
SRTM elevation to estimate mangrove canopy height (R2=
0.85) in Colombia. Field data and allometrics were used to
establish an empirical relationship between canopy height and
AGB, which was subsequently scaled to map AGB across the
wider landscape. Total biomass estimates varied between 1.2
and 1.7 Tg depending upon the allometric equations used
(residual RMS of 17.3 and 18.6; correlation coefficient, r, of
0.67 and 0.9). For Mozambique,[40] calibrated SRTM eleva-
tion data using a Landsat-derived land cover map and height
calibration equations. Field measurements and published allo-
metric equations were then applied to map the spatial distri-
bution of biomass within the mangrove forest. Mozambique’s
mangroves extended 2700 km along the coast, with a total
estimated AGB of 23.6 Tg. Mangrove canopy heights ranged

from 1 to 27 m, with an average of 5.8 m, and AGB estimates
ranged from 72 to 207 Mg ha−1 (average=81 Mg ha−1).

In Australia, [41] improved estimates of AGB by combin-
ing SRTM-derived height maps with ALOS PALSAR back-
scatter data. All tall (> ∼10 m) mangroves with prop root
systems supported a backscatter that was lower than those
without and which decreased in proportion to the AGB. [42]
usedmaps of mangrove extent (from Landsat), ICESat GLAS,
SRTM, and field data to generate maps of mangrove canopy
height (RMSE 3.55 m) for Africa. LiDAR-derived height es-
timates were then related to AGB using allometric models
(RMSE of 65.4 Mg ha−1). At a global level, [43] predicted
the potential mangrove AGB using a climate-based model in
BIOCLIM and field data on carbon storage and fluxes in man-
groves; remote sensing data were not utilized. A total global
mangrove AGB of 2.83 Pg was reported.

Tropical/Subtropical and Temperate Grasslands,
Savannas, and Shrublands

These ecoregions are found in tropical and subtropical areas
where rainfall is generally exceeded by evaporation and for-
ests are typically characterized by their more open canopies
[44]. For estimating AGB, methods have focused primarily on
multi-sensor approaches that integrate optical, SAR, and/or
LiDAR data. For savanna woodlands in Cameroon, [45] esti-
mated the AGB (<100Mg ha−1) using speckle-reduced ALOS
PALSAR data and a regressionmodel developed with ground-
based estimates of AGB. A total AGB of 1.25±0.04 Pg was
estimated, with a mean RMSE of 26.4±3.7 Mg ha−1. In Aus-
tralia, [46•] established that ALOS PALSAR data acquired
under relatively dry conditions facilitated estimation of
AGB. However, better estimates were obtained by first
segmenting the landscape using a combination of ALOS
PALSAR HH and HV backscatter and Landsat-derived frac-
tional cover [47], classifying all segments using a hierarchical
clustering procedure and then associating each class with an
ICESat GLAS waveform. AGB was then considered to be a
function of the fractional cover, L-band HH and HV backscat-
ter and height metrics. [48] adapted a forward parametric
model to derive a relationship between ALOS PALSAR HV
backscatter intensity and field biomass (R2=0.92) for tropical
lowland pine savannas in Belize. Over 90 % of the woodlands
were predicted to have an AGB<60Mg ha−1, with an average
AGB of 23.5 Mg ha−1. Compared to field measurements, er-
rors of <20 % in predicted AGB were observed in the 100-m
resolution product. AGB estimates could be predicted with an
RMSE of 13.5 Mg ha−1, and 80 % of AGB estimates were
found to have an error of <20 Mg ha−1. In [49], a back-
calibration method was used to estimate biomass in a forest-
savanna boundary region in central Cameroon using L-band
SAR data from Japanese Earth Resources Satellite (JERS-1)
and ALOS PALSAR. The RMSE varied from ∼25% for AGB
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<100 Mg ha−1 to ∼40 % for AGB >100 Mg ha−1 using the
ALOS PALSAR HV data. Changes in broad AGB classes in
forest-savanna transition areas were detected with an accuracy
of >95 %.

To estimate the AGB of savannas in Colombia, [30] used a
model that integrated both the EVI andMODIS VCF, with the
inter-annual average of retrieved AGB used because of varia-
tions in EVI over time. Confidence intervals of the regression
were larger as the AGB values increased. The uncertainty was
estimated at 3.7 to 25.2 Tg, with a mean of 16.2 Tg. [50]
modeled the woody AGB across South Africa by integrating
MODIS canopy cover and ICESat GLAS-derived tree height.
[51] established a correlation between Landsat Normalized
Difference Vegetation Index (NDVI) and field measurements
to estimate AGB in the sub-tropical rangelands of Argentina
and a significant but weak relationship was reported (R2=0.5,
P=0.05).

Mediterranean Forests, Woodlands, and Scrub

Mediterranean forests have received little attention compared
to other forest types [52], partly because the complexity of the
terrain, environmental conditions, and heterogeneity (in terms
of species and structure) of these forests presents major diffi-
culties for consistent estimation of AGB over large areas [53].
Most studies have focused on modeled relationships between
optical data field measurements of AGB. For Cistus scrub in
southeastern Portugal, [54] exploited seasonal differences in
the Landsat NDVI to map AGB and 74 % of estimates were
within 50 % of the reference measurements (R2=0.75). For
Mediterranean pine forests in northeastern Spain, [53] gener-
ated maps of forest residual biomass (FRB; comprising
branches, foliage, and unmerchantable stem tops) using a mul-
tiple linear regression between Landsat-5 TM data and forest
inventory data (relative RMSE of 26.7 % or 4.8 Mg ha−1, R2=
0.71). Near Tuscany, Italy, [55] established relationships be-
tween vegetation parameters (height, cover, and diameter) and
AGB in two size classes of vascular plants. A relationship
between Quickbird-derived NDVI and AGB was then used
to map fine (0.02–20 Mg ha−1) and coarse fuel biomass (0–
320 Mg ha−1), with an R2 of 0.7 and 0.61, respectively.

A few studies have considered the use of LiDAR or SAR
data. For Mediterranean forests in central Spain, [56] estimat-
ed AGB fractions using small footprint discrete return LIDAR
intensity data; species-specific models outperformed generic
models (with R2 values >0.7). RMSE values for AGB ranged
between 9.7 and 18.5 Mg ha−1 for stands dominated by Holm
oak (Quercus ilex) and black pine (Pinus nigra),
respectively.[57] estimated the AGB of mixed shrublands
and grasslands in central Israel through inversion of a semi-
empirical backscatter model using European Remote Sensing
Satellite (ERS-2) SAR data, with the relationship between
predicted and measured herbaceous biomass being stronger

for homogenous (R2=0.9) compared to heterogeneous plots
(R2=0.79).

Temperate (Broadleaved, Coniferous, Mixed) and Boreal
Forests

For temperate and boreal forests, active remote sensing data
have proved particularly useful for AGB estimation. For tem-
perate forests of the northeastern USA, [58] estimated AGB
using ALOS PALSAR data and a semi-empirical model based
on ground observations. AGB was best estimated using the
HV rather than HH polarization and the accuracy of estimates
was improved by aggregating maps to the county scale
(RMSE=12.9 Mg ha−1, R2=0.86). For temperate coniferous
forest in British Colombia, Canada, [59] reported that a
LiDAR-based model (RMSE 7.1–11.7 %) could be improved
with the addition of C-band SAR variables. However, in other
studies, the integration of LiDAR canopy height and SAR
data did not always increase the accuracy of AGB retrieval
[60, 61]. Optical data have also proved useful for AGB esti-
mation in these biomes. As an example, and for the contermi-
nous USA, Alaska, and also Puerto Rico, [62] modeled the
AGB using MODIS, land cover, topographic, climate layers,
and field plot data. The accuracy of predictions varied (e.g., r
ranging from 0.31 to 0.73) and overall, the model over- and
under-predicted in low and high AGB areas, respectively. For
continental China, [63] spatially quantified forest AGB at
0.05 ° resolution using the MODIS land cover type product
(MCD12C1) and national forest inventory data (R2=0.76).
Total forest carbon stocks were estimated at 11.9 Pg, with an
average of 76.3 Mg ha−1.

Although the aforementioned studies have focused primar-
ily on temperate forests, many have also encompassed boreal
forests and vice versa because of their proximity in many
regions. For estimating the AGB of both forest biomes, sig-
nificant use has been made of optical reflectance data. For
example, [64] used global NOAAAVHRR-derived datasets
at 8×8 km resolution to quantify above-ground stump bio-
mass (AGBs) over decadal periods and across six countries
(Canada, Finland, Norway, Russia, Sweden, and the USA)
where needle and broad leaved forests predominated. AGBs
included all woody material, excluding roots, estimated from
inventories of wood volume. AGBs were estimated using the
maximum NDVI cumulated over growing seasons for a 5-
year period. The AGBs associated with a given level of NDVI
varied with latitude, with the largest values being in temperate
zones; hence, latitude was also included as a parameter in the
retrieval. The average absolute difference between remote
sensing and inventory estimates was 10.4 Mg C ha−1 (AGBs),
16.1 Mg C ha−1 (total AGB), and 0.33 Mg C ha−1 year−1

(changes in pool size) or 27, 33, and 50 % of the mean inven-
tory estimates, respectively. [65] mapped the spatial distribu-
tion of AGB in Russia at 500-m resolution by first regressing
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field-derived wood volume against MODIS BRDF (16-day
composite) data and then using the results to assign an AGB
value to forest pixels identified on the GLC2000 and
MOD12Q1 land cover maps. AGB estimates varied between
46 and 67 Pg, due largely to difference in the definition of
forest area. The error of AGB estimates was ∼40 %, and was
greater within the closed canopy forests. The MODIS data
were successful in capturing gross differences in AGB across
broad environmental gradients and for different forest struc-
tures [65].

SAR has often been the sensor of choice for estimating the
AGB of boreal and temperate forests (e.g., [66–68]), although
studies have generally focused on sub-regions rather than the
whole biome. For example, the European Commission SIBE-
RIA project aimed to map approximately 1 million km2 of the
Siberian landmass using data from the ERS-1/2 and the JERS-
1 SAR. A limitation of using the JERS-1 SAR data was that
saturation of the L-band HH response occurred at 40–
50 Mg ha−1 (equivalent to 80 m3 ha−1 of growing stock vol-
ume or GSV). For this reason, ERS-1/2 interferometric coher-
ence data were used and were found to be significantly lower
over closed compared to open forest canopies. For forest clas-
ses with a GSVof up to 80 m3 ha−1, accuracies of over 80 %
were achieved for over 100 ERS frames [67].

For the pan-boreal region (North America, Europe and
Asia covering the latitudes of 30 ° N and 80 ° N), [69•] esti-
mated GSV at 0.01 ° resolution from ENVISAT Advanced
Synthetic Aperture Radar (ASAR) using the BIOMASAR
algorithm [69•, 70]. The algorithm is advantageous as it can
be implemented without the need for calibration data. GSV
wasmappedwithout saturation up to 300m3 ha−1 but less than
1% had a GSVabove this value. The RMSEwas 34.2–48.1%
(1-km pixels), but with 10 % uncertainty applied to temporal
data. Annual, global mapping of the GSV of boreal forests
using a hyper-temporal stack (>20 images) of C-band obser-
vations was considered realistic, particularly following suc-
cessful launch of the Sentinel-1 ScanSAR in 2014.

Around 80 % of the AGB is contained within the stems
[71] and expansion factors can be used to convert GSV to
AGB [72, 73]. On this basis, [17•] took the GSV estimates
of [69•] to generate a map of boreal and temperate forest stock
and carbon density (Fig. 4). There was good agreement be-
tween the carbon density map and inventory data at regional
scales (R2 of 0.7–0.9). The relative uncertainty of the stem
carbon map was below 20 % in most areas, except for broad-
leaf trees where the high variation in wood density caused
higher uncertainties. The algorithm could be improved if a
consistent global dominant tree species map was available.

InSAR has also been used for large area mapping of AGB
on the basis that the surrogate vegetation height inferred from
interferometric pairs relates to AGB [74]. For example, [75]
generated an above-ground carbon (AGC) dataset for the con-
terminous USA using national forest inventory, SRTM, and

Landsat data. The RMSE varied with the scale of estimates,
being 55 Mg ha−1 (plot scale), 19 Mg ha−1 (hexagon),
14 Mg ha−1 (country), and 12 Mg ha−1 (State).

A number of regional-scale studies have applied airborne
LiDAR technology singularly (e.g., [76, 77•]) or in combina-
tion with other satellite (SAR and optical) and field inventory
data (e.g., [59, 78]) to estimate AGB in boreal forests. As
examples of singular use, [76, 77•] used LiDAR strip sand
field inventory data to estimate AGB in Norway and interior
Alaska, respectively. Both design- and model-based estima-
tors were used, with these considered transferrable to other
regions (e.g., the tropics). In [77•], the standard errors of
AGB change estimates over an 11-year period were reduced
by 18–84 % compared to field survey estimates. The model-
assisted estimate of loss in biomass for all change categories
(deforestation, degradation, undisturbed) was 11.9 Mg ha−1

(SE=1.6) compared to the field-based estimate of
17.8 Mg ha−1 (SE=3.7) when using linear models. In [76],
the LiDAR-assisted model estimate of AGB was 35.7 Tg,
with a relative SE of 11 %. Over expansive areas of birch
forest in Sweden, [79] demonstrated that AGB could be re-
trieved using LiDAR data collected with a sparse point densi-
ty, achieving RMSEs of 8.8 and 9.5 % for tree height and 18.7
and 21.2% for AGB for dense (6.1 points m−2) and sparse (1.4
points m−2) scans, respectively. Such sample-based ap-
proaches may present a viable approach to large-area AGB
mapping; a domain once previously thought to be limited to
satellite technology/methods.

Many studies have demonstrated and advocated data fusion
approaches for AGB estimation over boreal forests. [78]
highlighted the potential of radargrammetry (using
TerraSAR-X Spotlight data) in combination with a LiDAR
DTM for large-area estimation of AGB in southern Finland
(RMSE of 41.3 Mg ha−1). InSAR height models retrieved
using TanDEM-X data with a reference LiDARDTM enabled
the AGB of a spruce forest in southeast Norway to be estimat-
ed with an RMSE of ∼44 % (plot level) and ∼20 % (stand
level); [80]. For boreal hardwood forests in Maine, USA,[81]
reported reduced errors (12–38 %, 11–28 Mg ha−1) in AGB
estimates when LiDAR was combined with UAVSAR (L-
band) or Landsat data. In a similar study, [82] improved
AGB estimates (RMSE 31.3 Mg ha−1 up to AGB of 200–
250 Mg ha−1) were obtained through the synergistic use of
LiDAR and ALOS PALSAR data.

Global Estimates

To estimate AGB at the global level, both sample-based and
spatially explicit methods have been adopted, but the use of
remote sensing data has been compromised by inconsistencies
in satellite data coverage, lack of long-term continuity of sat-
ellite sensor data, and derived global land cover products, and
insufficient in situ observations for algorithm development.
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The aggregated country-level biomass/carbon stock estimates
available through the FAO Global Forest Resources Assess-
ments (FRA) represents a sample-based approach for estimat-
ing forest AGB at the country level. The FRA 2005 dataset
was downscaled by [83] to generate a global 0.5 ° resolution
map of global forest area (in this case, 3980 million ha), GSV
(466×109 m3), AGB (472×109 Mg), and AGC (234×109 Mg
C). Values for global forest area (+0.69 %) and GSV (+
5.25 %) were higher than those reported in the FRA 2005.
For 2000, [84] produced a Tier 1 global carbon density map
(Fig. 5). In this two-step process, vegetation carbon stocks
were estimated using IPCC global default values and spatial
map data (on a 1×1 km grid) were produced using a variety of
climate and vegetation (e.g., GLC2000, FAO ecofloristic
zones and forest age) datasets. The conversion of biomass to
carbon stocks was specific to each continent, ecoregion, and
vegetation type. This Tier 1 method ([84, 85]) was also used to
create gridded biomass and carbon stock maps for continental
Europe [86] and is considered a cost-effective approach to

large-scale (continental-global) mapping of forest biomass/
carbon stocks.

The only method to use globally available remote sensing
data was developed by [87] who used passive microwave
derived Vegetation Optical Depth (VOD) from the 1990s on-
wards to retrieve above-ground biomass carbon (ABC) for all
vegetation types, albeit at >10 km spatial resolution. The ad-
vantage of the VOD is that it maintains sensitivity at high
biomass density levels (e.g., in rainforests). VOD estimates
were synthesized from a range of passive microwave satellite
sensors (e.g., SSM/I, AMSR-E, MWRI, and Windsat) and
converted to AGB through calibration with the AGB map of
[21•].

Summary of Methods by Forest Type

Approaches to the estimation of AGB at various scales and for
different forest types are summarized in Table 1. Where for-
ests are tall and complex, as in the case of the rainforests of the

Fig. 4 Total forest carbon density in northern hemisphere boreal and temperate forests [17•]

Fig. 5 The distribution of carbon at a global level [84]
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Table 1 Summary of approaches to above-ground biomass estimation for different forest types

Forest type

Method LiDAR Optical SAR Other 
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Tropical and 

subtropical 

moist 

broadleaved 

forests

a
PT Pan-tropical 1 km 30 % (1 km) [21-]

b
PT Pan-tropical 500 m 19-25 Mg [22]

N Kalimantan 50 m 53.2 Mg [24]

R Gabon 100 m 25 % [25]

N Panama 1 ha 10.6-17.6 (1 

ha)

20.5 (national)

[26]

c
R Nepal 1 ha 42.1 % [27]

R Kalimantan 100 m 75.7 [28]

N Colombia 500 m [30]

Tropical/subtrop

ical dry 

broadleaved and 

coniferous 

forests

N Mexico 30 m 14 [31]

R Mexico - 19.8, 57.2 [32]

R India 4.5 m [33]

N Cambodia 50 m 21 [34]

R Peru 30 m [35]

Mangroves

d G Global Potential 

AGB 

[43]

C Africa 1 km 65.4 [42]

R Florida 30 m 20-40 [38]

R Colombia 90 m [39]

N Mozambiqu

e

30 m [40]

Savannas

N Cameroon 25 m 26.4 [45]

R Qld, Aus. 50 m [46-]

R E. Aus. 25 m [47]

R South Africa 1 km [50]

N Colombia 500 m [30]

R Belize 100 m 13.5 [48]

R Argentina 30 m [51]

R Cameroon 25-500 m 25 - 40 % [49]

Mediterranean

R Portugal - [54]

R Italy 2.4 m [55]

R Spain 25 m 4.8 [53]

R Spain - 9.7-18.48 [56]

R Israel - [57]

Temperate 

forests

R NE USA 30 m 12.9 [58]

R BC Canada 25 m 7.1-11.7 % [59]
e

C USf 250 m [62]

C China 0.05° [63]

Boreal (taiga) 

forests

PB Pan borealg 8 km 

AGBs

10.4h

16.1i
[64]

j
PB Pan Borealk 0.01° 

GSV

34.2-48.1 % (1 

km)

[69-]

PB Pan Boreal 0.01° C 

density

<20 % [17-]

C Russia 500 m 40 % [65]

C USA 30 m 55 (plot)

19 (hexagon)

14 (country)

12 (state)

[75]

R Siberia 50 m 

GSV  

[67]

R Norway 1 ha  11.9 [77-]

R Alaska 13 m [76]

R Sweden 10 m 18.7-21.2 % [79]

R Finland - 41.3 [78]

R Norway - 20 % (stand) [80]

12
R Maine, USA 0.1-1km 11-28 [81]

R Maine, USA 15 m 31.3 [82]

l

The class of AGBmapping method, remote sensing data used, country, scale of application, and RMSE (where reported) are listed for each of the studies
identified by this review

G global, PT pan-tropical, PB pan-boreal, C continental, N national, R regional
aMaxent
b Random forests
c 5 % sample
d Bioclim
e See5 and Cubist
f Includes Alaska and Puerto Rico
g Canada, Finland, Norway, Russia, Sweden, USA
hAGB (stumps)
i Total AGB
j BIOMASAR
kNorth America, Europe, Asia
l UAVSAR
#Other radar: includes scatterometers and radiometers
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humid tropics and subtropics, ICESat GLAS data have often
been integrated within retrieval algorithms. These data have
also been used in combination with other data (e.g., L-band
SAR) to support the retrieval of structural attributes (e.g.,
height) in wooded savannas (e.g., in southern Africa and Aus-
tralia), fromwhich AGB has been derived subsequently. Low-
er frequency L-band SAR data (primarily HV polarization)
have been used primarily to retrieve the AGB of lower stature
forests, including regrowth and savannas, where the AGB is
typically below the observed saturation levels; however, the
uncertainty has typically been high [88]. For boreal and tem-
perate regions, ICESat GLAS data have rarely been used, with
focus being more on ALOS PALSAR and higher frequency
X- and C-band SAR data and derived measures (e.g., coher-
ence); some use has also been made of optical (e.g., MODIS)
data. Optical data have also been used for estimating the AGB
of forests with a relatively simple stand structure and gradients
of cover [89], as in the case of Mediterranean woodlands or
wooded savannas. In the majority of studies, data have been
integrated from different sensors as this overcomes sensor-
specific limitations such as saturation, operating modes, and
temporal gaps [90]; however, this often limits the repeatability
of such approaches over time.

Airborne data have been exploited in many regions, with
both InSAR and LIDAR used to recover height and/or AGB,
either in wall-to-wall mapping or sampled approaches. The
success of InSAR techniques is dependent largely on site con-
ditions (e.g., wind speed and soil/canopy moisture) and timing
of acquisitions, but AGB has been successfully retrieved (e.g.,
in boreal forests [88]). Measurement accuracy decreases
where there is a change in target properties between acquisi-
tions (i.e., temporal decorrelation, which is often the case in
repeat-pass interferometry). This is less of an issue when using
single-pass methods, whereby images are acquired simulta-
neously by two antennas. LiDAR and SAR data are used
extensively for biomass estimation in temperate and boreal
forests. LiDAR is, however, currently restricted to airborne
platforms (with ICESat GLAS no longer operational) and lim-
ited by cost, and so, most studies have used sample-based
approaches. Regression techniques are commonly used to es-
tablish relationships between LiDAR-derived height metrics
and AGB at the tree clump or stand scale, with the resulting
estimates often used in combination with error propagation to
support extrapolation by way of spaceborne sensors. The use
of C- and X-band SAR is limited to low biomass forests but
there have been successful demonstrations of AGB estimation
in boreal forests at pan-boreal and regional scales using multi-
temporal C-band data.

The Influence of Environmental Conditions

When retrieving AGB across large areas, the variations in en-
vironmental conditions can influence the outcome. For eastern

Australia, [46•] established that surface moisture conditions in-
fluenced the ability to retrieve biomass using ALOS PALSAR
data, with the use of scenes acquired under the driest conditions
being preferable. Wet conditions resulted in stripping in region-
al mosaics of ALOS PALSAR data, which was most evident in
dry and open forest environments. Therefore, the development
of AGB retrieval algorithms using these data needs to ensure
that the conditions are suitable. [31] noted that the lack of con-
sistent temporal data was limiting AGB estimation from SAR
data, with retrieval accuracies dependent on imaging conditions
on a per scene basis. Topographic relief causes foreshortening
and shadowing of SAR imagery and also leads to incorrect
retrieval of height profiles andmetrics from ICESat GLAS data.
InSAR height estimation techniques are affected by wind and
on-ground change and the interval between observations should
be as reduced (e.g., to 1 day) for best results. Other factors
complicating the retrieval of AGB include freeze/thaw condi-
tions [69•], the presence of snow and cloud cover, and inunda-
tion below the forest. In the latter case, double bounce scattering
[41] between tree trunks and the water surface enhances the
SAR backscattered signal particularly at lower (e.g., L-band
frequencies) and leads to overestimation of AGB.

Where is the Biomass?

On the basis of remote sensing estimates, [87] estimated the
global distribution of total above-ground biomass carbon
(ABC) for 1988–2002 to be 362 Pg C, with ∼65 % in forests
and 17 % in savannas. Comparable estimates were obtained for
the different forest biomes in related studies (e.g., [2••, 21•, 22];
Table 2). For the pan-tropics and at the broad level, estimates by
[21•, 22] were similar, but differences were evident in local
distributions [23]. The distribution of ABC at the continental
level was highest in Latin America (117.7±8.4 Pg C), followed
by Africa (64.5±8.4 Pg C) and Asia (46.5±3 Pg C; [22]. Con-
tinental biomass was mostly stored in forests with AGB
>100 Mg ha−1 [21•], and nearly half the total AGB was stored
in forests with AGB>250 Mg ha−1. Forests with AGB>
350 Mg ha−1 comprise ∼7–9 % of total continental AGB.

Most of the AGB in temperate and boreal zones is located
in north-west Canada and the USA; the European mountains
(mostly temperate coniferous forest); European Russia; south-
ern central Siberia (temperate, broadleaf, and mixed forests);
and Japan (mostly temperate broadleaf and mixed forests)
[17•]. In the boreal zone, forest biomass decreases moving
north along a latitudinal gradient. [64] similarly found that
Canada, China, Russia, and the USA contained 84 % of the
AGB in these zones. 79.8 Pg C was reported for northern
boreal and temperate forests, with Asian boreal forests ac-
counting for 22.1±8.3 Pg C. [64] estimated the total carbon
pool at 61±20 Pg C, with larger pools in North America
(51 Mg C ha−1) compared to Eurasia (39 Mg C ha−1).
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For mangroves, [43] estimated the total global AGB as
2.83 Pg with an average AGB of 184.8 Mg ha−1 (CI95
142.1–222 Mg ha−1). The largest mangrove extent was found
in SE Asia, and accounted for approximately half of the total
global AGB for this forest type. Mangroves were considered
to contribute 1.4 % of global tropical forest AGB and 1.6 % of
the total tropical forest biomass (above- and below-ground).
Mangroves of low AGB (<80 Mg ha−1) were found at the
limits of their distribution, which were largely governed by
tempera ture . Mangroves wi th the highes t AGB
(>280 Mg ha−1) were found in tropical areas with high annual
rainfall.

Trends in Global Biomass

There are limited remote sensing-based evaluations of trends
in global forest biomass. This can be attributed in part to
inadequate and inconsistent satellite coverage (both spatially
and temporally), uncertainty of retrieval algorithms across for-
est types, and changing environmental conditions between
observation periods. Even studies conducted at local-
regional scale are few, and use, for example, repeat LiDAR
(e.g., [91, 92]) or SAR data (e.g., [93, 94]).

The only known attempt to estimate global above-ground
carbon (ABC) change used passive microwave VOD data
acquired over two decades [87]. It was estimated that
0.07 Pg C year−1 ABC was lost globally between 1993 and
2012, with most losses associated with tropical forests
(−0.26 Pg C year−1). Net gains were reported for boreal and
temperate forests (+0.013 Pg C year−1) and tropical savannas
and shrublands (+0.05 Pg C year−1). The global trends in ABC

change were attributed largely to tropical deforestation, rain-
fall variability in savannas and shrublands, regrowth on aban-
doned lands, and pest attacks and wildfires in boreal and tem-
perate regions [95].

Alternate sources of trend information can be found in the
successive FAO global forest resource assessments (FRA),
conducted since 1990. Over the period 1990–2005, a decrease
in forest growing stock in Africa, Asia, and South America
and a net increase in other regions was observed [96]. Similar
trends were observed over the period 2005–2010 [97], with
the exception of Asia where planting of broadleaved species
(mostly in China) has increased forest extent and biomass.
Globally, forest growing stock decreased by 1.1 Pg annually
(1990–2005) and 0.5 Pg annually (2005–2010), largely attrib-
uted to deforestation and forest degradation (e.g., from selec-
tive logging, wild fire, and pests/diseases). Global forest bio-
mass stock decreased by ∼23 Pg (3.6 %) over the period
1990–2010 [97], with the greatest losses being in Africa and
South America. Total biomass stock increased in Europe and
North America over the same period.

New and Emerging Technology

Several future satellites sensors are expected to revolutionize
estimation of AGB at country to global scales (Table 3). The
BIOMASS mission aims to produce maps of forest AGB
(twice yearly) at 200-m resolution (with error not exceeding
±20 %; or 10 Mg ha−1) and forest canopy height (with an
expected accuracy of ±4 m; [98]). ICESat-2 is the second-
generation laser altimeter (http://icesat.gsfc.nasa.gov/
icesat2/), the Global Ecosystem Dynamics Investigation

Table 2 Forest carbon stocks by biome, as estimated using remote sensing data

Total forest carbon (Pg C; 90th CI in brackets) Reference

Global Tropical Tropical/subtropical
savanna and shrubland

Boreal Temperate Mangroves

362b (310–422) 195 (180–208) 49 (42–56) 44 (37–66) 36.4 (24–39) [87]

362.6a,c 262.1 53.9 46.6 [2••]

247 [21•]

228.7 [22]

40.8 39 [17•]

61±20d [64]

2.83 (2.18–3.4) [43]

a Includes above and below ground live biomass
b 1998–2002
c 2007
d Includes boreal and temperate
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(GEDI) is a multi-beam waveform LiDAR (http://science.
nasa.gov/missions/gedi/), and the Multi-footprint Observation
LiDAR (MOLI) is a waveform LiDAR combined with a high
(5 m) resolution visible and near infrared (VNIR) imager
[99]. These sensors will provide information on the heights
of vegetation and the distribution of plant material within the
vertical profile at local to global scales. In combination with
optical (e.g., Landsat) time-series data (e.g., [100]), this will
enable the AGB and changes occurring as a result of forest
dynamics to be quantified, thereby allowing better assess-
ments of carbon balances and sequestration potential as well
as habitat quality and biodiversity. High-resolution products
related to canopy height and carbon are also anticipated
through fusion with other satellite sensor data (e.g., Sentinel-
1 SAR, TerraSAR-X).

Initiatives aimed at collating local to global scale in situ and
remote sensing biomass datasets are also increasing, including
the Biomass Geo-Wiki (http://biomass.geo-wiki.org/).
Biomass data can be overlain on high-resolution imagery
and queried against other available datasets (e.g., geo-tagged
photographs, NDVI). Such a platform supports gap analysis,
cross-product validation, and generation of hybrid products
using existing datasets. Archives of LiDAR collated from
purpose-built terrestrial and airborne platforms are also in-
creasingly important in the validation and spatial extrapolation
of AGB from satellite sensors. Notable examples include the
US National Earth Observatory Network (NEON; http://
www.neoninc.org/), Australia’s Terrestrial Ecosystem
Research Network (TERN; http://www.tern.org.au/), and the
Carnegie Airborne Observatory (CAO; https://cao.
carnegiescience.edu/) in the context of REDD+. Terrestrial
LiDAR data have also recently demonstrated near direct
estimation of above-ground volume/AGB [101], which will
reduce uncertainty propagated when using allometrics. Initia-
tives such as the Terrestrial Laser Scanning International In-
terest Group (TLSIIG; http://tlsiig.bu.edu/) are coordinating
research in the development of low-cost sensors and
benchmarking of AGB retrieval algorithms.

Conclusions

The review has highlighted the diversity of remote sensing al-
gorithms and datasets that have been used to retrieve theAGBof
the World’s forests. Many approaches are reliant on regression
analysis of field and remote sensing observations from single
sensors. However, data fusion techniques that exploit the unique
advantages of multiple sensors operating in different modes (op-
tical, LiDAR, and radar) are extending estimates, particularly in
the high biomass range. New and innovative algorithms for
estimating AGB are also being developed, with these including
the BIOMASAR, which ingests high temporal frequency C-
band SAR and has shown application across the temperate/
boreal zone. While many studies attempt to retrieve AGB di-
rectly, estimates of structural attributes (e.g., height and cover
derived from LiDAR and optical/SAR sensors, respectively) are
increasingly being exploited to improve AGB estimates at coun-
try to regional scales. Airborne LiDAR data have been used
alone for estimating AGB across large areas, including within
sample-based approaches, or as a tool for calibrating models for
retrieving AGB from spaceborne sensors.

The potential of many techniques (particularly those at high
(<30 m) resolution) has not been evaluated at a global,
let alone, regional level. This is because many have used par-
ticular datasets that have been developed for specific environ-
ments, with this due to funding and expertise; hence, their
application to other environments has not been tested. Further-
more, by using relatively limited datasets to develop algo-
rithms for regional application, many studies have not ade-
quately considered the environmental conditions prevailing
(both in the development and application process). However,
with the increase in sensors acquiring at high temporal and
spatial resolution [102], there is a significant opportunity for
extracting quantitative statistics on amounts of and changes in
forest cover and carbon stocks worldwide at these high reso-
lutions. These opportunities are anticipated to increase follow-
ing launch of new sensors such as the ICESAT-2, GEDI,
MOLI, and BIOMASS.

Table 3 Characteristics of future spaceborne sensors, either designed specifically for, or expected to contribute to AGB estimation

Sensor Space agency Proposed
launch

Platform Characteristics

BIOMASS European Space Agency (ESA) 2020 – 200-m spatial resolution

The Ice, Cloud, and land
Elevation Satellite-2 (ICESAT-2)

National Aeronautics and
Space Administration (NASA)

2017 – 532-nm laser split into 6 beams,
arranged in 3 pairs; 3.3 km
between each pair.

Global Ecosystem Dynamics
Investigation (GEDI)

NASA 2018 International Space Station 3 laser transmitters
producing 14 parallel tracks
of 25-m footprints

Multi-footprint Observation
LiDAR (MOLI)

Japanese Aerospace
Exploration Agency (JAXA)

2018 International Space
Station

4 laser transmitters,
25-m footprints
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