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Abstract Fuel treatments have been widely used as an effec-
tive fire management tool to mitigate catastrophic wildland
fire risk in forested landscapes. Fire research efforts of the last
two decades have significantly advanced fire behavior model-
ing and fuel treatment effects analysis, but integrated fuel
treatment planning and optimization models have yet to be
extensively developed and used, mainly due to the complexity
of the planning problem. This paper describes the problem
complexity in terms of essential considerations when deciding
where, when, and how to perform fuel treatments. Previous
studies published in mainstream peer-reviewed journals are
summarized and identified by their unique contributions, as-
sumptions, and simplifications. Only a handful studies
assessed fuel treatment effects in spatial and temporal contexts
and incorporated them into the optimization framework. Most
of these existing studies introduced optimization approaches
as proof of concept with limited applications. It is hoped that
future studies will build on these previous efforts and develop
more efficient and integrated optimization approaches that can
address multiple concerns simultaneously while producing
effective fuel treatment plans for field implementation.

Keywords Firemanagement . Fire modeling .Mathematical
programming . Heuristics . Large-scale optimization

Introduction

Wildland fires are still viewed as a threat to society and eco-
systems. Many efforts have been made to suppress and ex-
clude fire from forest land management. For example, in the
USA, the “10 Acre Policy” and “10 A.M. Policy,” developed
in the 1920s and 1930s by the US Forest Service, mandated all
wildfires should be suppressed before they reached 10 ac in
size and before 10 o’clock the next morning [1]. This long
tradition of fire suppression, together with even-aged forest
structures left from intensive logging, significantly altered fuel
loadings and vegetation composition in many fire-dependent
ecosystems across the western USA. Currently, large amounts
of accumulated fuels contribute to conditions for the recent
uncontrollable catastrophic wildfires that threaten communi-
ties, wildlife, and natural resources. Since the year 2000, al-
most three million hectares have burned every year in the
USA, more than double the average annual areas burned dur-
ing the previous three decades [2].

Fuel treatments such as commercial timber harvest, me-
chanical thinning, mastication, and prescribed burning are rec-
ognized as practices that reduce hazardous fuels and achieve
restoration objectives. The Healthy Forests Restoration Act of
2003 enacted in the USA provided extensive opportunities for
hazardous fuel reduction projects to reduce the risk of cata-
strophic wildfires [3]. The US Forest Service (USFS) and
Department of the Interior (DOI) have treated 21.2 million
hectares of federal lands between 2001 and 2013, approxi-
mately 1.6 million hectares a year [4]. Wildfire management
funding in 2014 accounts for 56 % of the USFS’s entire bud-
get and approximately 8 % of the DOI budget [5]. Despite
efforts of fuel reduction and forest restoration treatments,
USFS estimated that up to 42 % of the entire national forests
(approximately 33 million hectares) still need restoration
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treatments [6]. This need for fuel treatments is unlikely to
decline due to vegetation regrowth and climate change im-
pacts such as extended dry seasons.

As wildfire concerns grow and the need for understanding
fire and fire management effects are widely recognized, large
research efforts have been undertaken and significant progress
has been made in wildfire behavior modeling and fire effect
tools. USFS Fire Sciences Laboratory located in Missoula,
MT, continues to develop cutting-edge fire models, while
the interagency Joint Fire Science Program (JFSP) adminis-
tered by DOI and USFS has been an effective science funding
and information dissemination program. JFSP supports
emerging wildland fire research and distributes research find-
ings to help land managers develop effective fire management
and fuel treatment activities.

Due to the complexity of fuel treatment planning, however,
most fire models and tools in use today were designed to
address limited aspects of fuel management. Integrated fuel
treatment planning and optimization methods have yet to be
extensively developed and used. For example, BehavePlus
[7], NEXUS [8], FIREHARM [9], FARSITE [10], FlamMap
[11], and many other computer simulation models were devel-
oped to compute fire behavior and spread at a treatment unit
level or across a landscape.

These models do not consider temporal changes of fuels
and vegetation. Missing the vegetation changes over time
such as growth, mortality, and stand structure leaves long-
term effects of fuel treatments unaddressed. In contrast, the
Fire and Fuels Extension (FFE) to the Forest Vegetation Sim-
ulator (FVS) [12] is able to predict stand-level vegetative
growth over time, but does not model fire movement between
stands. Missing the spatial distribution of stands prevents the
evaluation of treatment effects on a landscape level. BlueSky
[13] modeling package computes fire emissions and smoke
dispersion to assess smoke impacts from prescribed burns and
wildfires, but does not evaluate spatial and temporal effects of
fuel treatments on mitigating wildfire risk.

Land managers who need to make decisions about what,
where, when, and how to perform fuel treatments to mitigate
current and future fire risk must run multiple models in order to
analyze and develop effective fuel treatment plans. Most of
these tools are highly sophisticated, demandmassive data input,
and require a significant amount of time to learn and maintain.
As a result, fuel treatment planning is often limited to the knowl-
edge and experience of the planning teamwithout any extensive
search for the most effective fuel treatment operations.

Forest fuels treatment planning would likely benefit from
use of an operations research approach such as optimization
theory and applications. Very few studies, however, apply
optimizations to fuel treatment planning mainly because of
the extreme complexity of such planning problems. This pa-
per describes the problem complexity in terms of essential
considerations when deciding where, when, and how to

perform fuel treatments. Previous studies published in main-
stream peer-reviewed journals are summarized, identified by
their unique contributions, assumptions, and simplifications.
This paper focuses on past attempts to optimize the placement,
timing, and methods of fuel treatments for the purpose of
reducing wildfire risk potential across a landscape. Other
fire-related planning efforts, such as planning of fire suppres-
sion activities or forest management planning models partly
incorporating wildfires, were already summarized in two re-
cent review papers [14, 15]. The author promotes future re-
search and development that fill the current gaps and incorpo-
rate both temporal and spatial effects, as well as operational
constraints in forest fuel treatment analysis and planning.

Complexity of Fuel Treatment Planning

Considering spatial and temporal effects of forest fuel treat-
ments to optimize landscape-level planning is a daunting task.
Figure 1 summarizes decision variables, fuel treatment effects,
and practical considerations that were taken into account in
the recently developed fuel treatment optimization models.

The effects of fuel treatments on reducing fire risk change
dynamically with many internal and external variables that
often involve uncertainties. For example, treatment effects
within a single forest unit vary with pre-treatment condition,
treatment method, and post-treatment condition of the unit
[16, 17]. A single fuel treatment also influences fire behavior
in its neighboring areas. A series of treatments affect fire
growth potential across a landscape; overall effects may vary
depending on treatment location relative to other treatment
areas, untreated areas, topography, and many other locational
factors [18].

Fig. 1 Examples of decision variables, fuel treatment effects, and
practicality issues that are typically considered in the past fuel treatment
planning and optimization model development
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Timing of treatment adds another dimension of complexity
in fuel treatment planning and optimization. Past treatments
influence current fuel treatment decisions designed for future
effects. Fuels and vegetation across a landscape change over
time, with or without treatments. Treatment effects within the
unit and on neighboring areas may diminish as time elapses
since vegetation grows back [19].

Treatment method is an important decision variable when
multiple methods are possible for a treatment unit. Prescribed
burning can be an effective tool to reduce understory vegeta-
tion and surface fuels in many forests, although a very narrow
burning window and smoke management are often challenges
associated with this treatment technique. Mechanical thinning
or timber harvesting activities have been used to reduce can-
opy fuels and can be an effective fuel management tool when
used with understory burning [17]. Mechanical mastication of
fuels and prescribed burning is recognized as a cost-efficient
and effective method to alter fuel loadings [20].

Fire stochasticity related to likelihood of fire ignition and
different weather events makes it difficult to integrate stochas-
tic fire modeling results into a spatial optimization framework
because a large number of fire simulations are often required
to effectively address such uncertainties [21]. Future fire event
is a stochastic disturbance that can significantly change vege-
tation and forest production potential across the landscape; a
major fire event can affect future vegetation management de-
cisions, especially in long-term planning [22•]. Due to the
random nature of wildfires, it is difficult to predict future fires
in spatial and temporal contexts.

Value at risk assigned to each land parcel is often used to
estimate potential loss values due to fire risk or protection
values by fuel treatments [23, 24]. These values can provide
alternative measures of success in fuel treatments, but proper
risk assessment is crucial to reasonable quantification of loss
or protection values. Cost and benefit analysis of fuel treat-
ments, integrated with stochastic fire modeling, has been used
to address long-term economic efficiency of the current fuel
treatment decisions [22•]. Cost-efficiency of fuel treatments is
an important decision criterion and key factor determining
project feasibility.

Finding the optimal treatment layout across a landscape,
over multiple time periods, is not a simple task. Optimization
or selection of one treatment plan among many possible alter-
natives is methodologically and practically challenging, even
when many assumptions are made to simplify the problem.
Some studies attempted to use mathematical programming
approaches, such as mixed integer programming and dynamic
programming [22•, 24]; others used heuristic optimization
techniques for solving large combinatorial problems [25,
26••]. Some past studies developed optimization methods on-
ly based on hypothetical settings, not real-world applications.
Applicability of tools and models is certainly essential to land
management agencies and other potential users.

Recent Fuel Treatment Optimization Modeling Efforts

Mark Finney with USFS Fire Sciences Laboratory pioneered
fuel treatment planning. In his early work, Finney proved the
efficiency of strategically placed treatments in disrupting fire
growth across a landscape, simulating fire spread on simple
hypothetical landscapes with fuel treatments in various geo-
metric arrangements [18]. He later developed an optimization
algorithm to identify treatment locations across a landscape
that most efficiently disrupts fire growth while meeting a giv-
en treated portion of total landscape area [27].

The optimization algorithm starts with dividing the land-
scape into a series of parallel strips, then computes fire growth
and minimum travel routes within each strip. Areas with the
greatest impact on blocking fire paths in the strip are priori-
tized as treatment units. Although the algorithm was able to
identify efficient fuel treatment locations, model queries are
limited to one strip at a time due to the computational chal-
lenge; overall treatment effects across the entire landscape
were not examined. In addition, no temporal aspects of treat-
ments were considered. The shape of each selected treatment
area was theoretically developed based on fire paths, not by
terrain or operational unit boundaries, limiting the applicabil-
ity of the algorithm in actual land management settings.

Palma et al. [23] developed a method to evaluate relative
effects of timber-harvesting treatment in each individual forest
stand, ranking treatments by their effectiveness of protecting
values, expressed as reductions in loss values across a land-
scape. Their method did not optimize fuel treatments, but
ranked forest stands by their potential contribution to slowing
down fire spread. Potential contribution of a harvesting block
was derived from changes in fire risk in the areas affected by
the block. Fire risk was calculated as a function of fire occur-
rence probability, the values at risk, and reduced fire spread
probabilities by the treatment block.

Palma’s study addresses the effects of a single-harvesting
block on the entire landscape by identifying all the areas that
the treatment block could potentially affect. The method com-
putes shortest fire paths between all possible pairs of grid cells
on the landscape and identifies areas where shortest paths go
through the subject treatment block. The potential savings on
expected loss by one single block are then calculated based on
the comparison between the untreated and treated harvesting
block cases.

One weakness of the method is that it assumes only one
harvesting block is treated at a time, excluding potential syn-
ergetic effects from multiple harvesting blocks. In practice,
more than one harvesting block is treated, and overall treat-
ment effects across the landscape would be different depend-
ing on combinations of harvesting blocks and the sequence of
their treatments. The ranks of individual harvesting blocks as a
single treatment might not serve as a valid measure when
multiple blocks are to be treated.
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Acuna et al. [28•] incorporated this ranking method into a
forest management planning model. The model is an iterative
forest fire management planning system that models fire igni-
tion, suppression and spread, ranks harvesting units, and spa-
tially schedules harvest activities to maximize economic
returns. Using the mixed integer linear programming ap-
proach, the model optimizes treatment locations and timing
based on pre-computed distribution of burn probability and
ranking of harvesting blocks. The model applicability carries
the same caveat as Palma et al. [23] and does not address fire
dynamics affected by multiple treatment locations over multi-
ple time periods.

Wei et al. [24] used a probabilistic approach to estimate
expected loss value of each raster grid cell across a landscape.
Their study simplifies fire spread between cells. They assume
a cell can burn by either a fire ignited in the cell or entered
only from three adjacent cells located in the wind direction.
This simplification allows the modelers to estimate fire risk in
each cell based on the probability of fire occurrence and con-
ditional probability of fire spread from adjacent cells as linear
functions. The fuel treatment placement problem becomes a
mixed integer programming problem with an objective func-
tion to minimize the total expected fire loss across the land-
scape. Distribution of values at risk, fire ignition risk, fire
intensity, and the conditional probability for fire entering from
adjacent cells were all driving factors for the objective func-
tion. Limited treatment budget was considered as a constraint.

Their model was the first trial to formulate the fuel treat-
ment planning problems using a mathematical programming
approach. However, their optimization model does not sched-
ule treatments, and the grid cell size used in the study (i.e.,
23 ha) is probably too large to be practical; it may not capture
variability in topography and vegetation that can affect wind
direction, fuel loading, and resulting fire spread.

Kim et al. [25] used a heuristic optimization technique
called Great Deluge [29] to schedule timber management ac-
tivities in specific spatial patterns across a landscape. They
evaluated subsequent and cumulative effects of scheduled
management activities on changing wildfire behavior using
multiple fire simulations. They attempted to address wildfire
risk mitigation within the context of spatially explicit forest
management planning, where desirable timber harvest vol-
umes are pursued in each planning period for a given land-
scape. Their selection of timber harvest units was based on
both even flow of desirable harvest volume of timber and
spatial patterns of harvest units.

The study of Kim et al. concluded that forest management
activities designed to meet timber management goals were not
effective enough to mitigate landscape-scale wildfire behavior
despite the spatial arrangement of harvesting units. One of the
lessons learned from their study is that spatial arrangement of
treatments could be a necessary prerequisite, but not sufficient
condition for efficient landscape-level fire mitigation. Unlike

a homogeneous, hypothetical landscape, spatial arrangement
of fuel treatments that simply follow a geometric pattern may
not be effective in fire mitigation on a heterogeneous land-
scape. The specificity of individual treatments in terms of
location, timing, topography, and conditions of neighboring
areas needs to be considered as a whole, along with its spatial
pattern to realize greater fire risk mitigation benefits.

Konoshima et al. [22•] applied a spatial dynamic optimiza-
tion model to a hypothetical landscape consisting of seven
equal-sized hexagonal management units, exploring optimal
patterns of fuel treatment under various physical and econom-
ic conditions. One of the unique contributions of their study is
that it incorporates stochastic future fire events that are influ-
enced by fuel treatment decisions. In their optimization frame-
work, treatment locations are determined for each of two 10-
year periods by maximizing both net revenue in the current
period (i.e., timber harvest incomes minus treatment costs)
and the expected net present value of future timber production.
Incorporation of future fire events into a decision model al-
lows the planners to develop different trajectories that might
occur from stochastic events, probabilistically analyzing fu-
ture benefits and costs of the current fuel management
activities.

The study suggests it could be more economically benefi-
cial to shift fire management focus from protection against fire
spread to protection of on-site resource value as the fire envi-
ronment becomes more severe or as net value of the manage-
ment unit increases. Similar to other studies, the study simpli-
fied the planning problem to reduce complexity. The simpli-
fications include seven hypothetical management units of
equal size, fuel treatments available only in the first planning
period, and no future fire events considered beyond the 20-
year planning horizon.

Finney et al. [30] integrated the existing vegetation, fire,
and optimization models into one system to schedule fuel
treatments while addressing spatial and temporal effects of
treatments. Finney’s treatment optimization algorithm [27]
was used to place fuel treatments where the treatment effi-
ciently disrupts major fire paths across the landscape for each
single planning period. The FVS was used to simulate chang-
es in vegetation and fuels based on the selected fuel treatment
locations from the previous planning period. Using these two
models, sequentially and iteratively, the system develops treat-
ment decisions for one planning period at a time, evaluates the
landscape effects of the selected treatments, and then grows
the landscape to the next period, providing vegetation and fuel
data for fuel treatment decisions of that period. Their system is
the first attempt to fully address both spatial and temporal fire
dynamics affected by fuel treatments over multiple time
periods.

Although this system is able to schedule fuel treatments
across a given landscape, the forward decision approach
makes earlier period decisions dominate the decisions to be
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made for subsequent periods. Limitations in practical consid-
erations for field implementation, i.e., treatment unit bound-
aries, ownerships, and relative values of lands, also reduce the
applicability of this model.

González-Olabarria and Pukkala [31••] developed an iter-
ative optimization approach that simulates random fires to
estimate burn probability of each hexagon in the landscape,
then uses these probabilities in optimizing fuel treatments over
multiple time periods. They developed a fire spread simulator
using cellular automation modeling that spreads fire from a
random ignition point to its adjacent hexagons with a proba-
bility based on a function of the slope and the characteristics of
the neighboring hexagon. An initial fire spread simulation is
performed for the entire planning horizon prior to treatment
scheduling. The simulation is repeated after an optimal harvest
schedule is developed to reflect the effects of selected fuel
treatments on burn probability across the landscape. This iter-
ative process continues until burn probability and treatment
schedule have stabilized.

Their approach uses a unique fire damage model to esti-
mate fire-related damage in forest stands. Burn probability in
each hexagon together with the fire damage enables the user to
estimate the expected income from selected timber harvest
operation schedules in each hexagon while considering timber
values, harvesting costs and potential fire damage. The net
income was used as a measure of success as it reflects eco-
nomic efficiency of treatments as well as increased fire resis-
tance due to selected treatments. A simulated annealing algo-
rithm [32] was employed to optimize harvest treatments and
meet a given target harvest volume in each period.

The approach optimizes spatial and temporal placement
of harvest treatments while addressing fire stochasticity,
fire dynamics across the landscape, and economic efficien-
cy of treatments. Similar to Acuna et al. [28•], timber man-
agement was the main objective of this approach and other
fuel treatment methods, such as prescribed burning, were
not considered. Another limitation may be the simplified
fire spread simulation employed in the approach. The sim-
ulation appears to consider only ground slope for quick
calculation of the rate of fire spread, excluding weather,
aspects, and other potential factors that may affect fire
growth and dynamics.

Chung et al. [26••] developed a decision support system
called OptFuels for fuel treatment planning. Similar to Finney
et al. [30], the system uses the FVS and its Fire and Fuels
Extension (FFE-FVS) to project forest stands into the future,
with and without fuel treatments, and compute the fuel param-
eters needed for fire growth modeling. Instead of growing the
landscape in each planning period based on the treatments
selected for the previous period (i.e., forward approach),
OptFuels develops all possible treatment schedules for indi-
vidual units based on user-defined rules and time periods prior
to optimization.

For example, if a treatment unit is eligible for mechani-
cal thinning followed by prescribed burning in any of two
planning decades, all possible combinations of treatment
options and timing for the unit would be the following:
“no action” throughout the planning horizon, “thinning
and prescribed burning” in the first decade, and “thinning
and prescribed burning” in the second decade. If more treat-
ment methods (n) and time periods (t) are available for a
single unit, the total number of possible treatment schedules
for the unit would be (n× t)+1. This assumes that the unit
can receive only one treatment throughout the planning
horizon or no action at all.

Before the optimization process begins, the system runs
FFE-FVS on each of the possible treatment options for all
the eligible units in a given landscape and develops a database
with the simulation results for use during optimization.
OptFuels uses a simulated annealing heuristic technique [32]
to solve the large combinatorial problem. The objective func-
tion is to minimize the total expected loss across the landscape
over multiple time periods. The landscape is rasterized into
grid cells, and expected loss value for each grid cell is com-
puted as a function of a user-defined value at risk. Percentage
loss varies with fire intensity and probability that fire duration
is long enough for a modeled fire to reach the grid cell. The
total expected loss is then summed across the grid cells
representing the landscape.

The Dynamic Link Library (DLL) version of FlamMap
is used for fire growth modeling in order for OptFuels to
seamlessly run FlamMap in real time for solution evalua-
tion. FlamMap contains an option called minimum travel
time, which is a fire growth simulator that uses the shortest
path algorithm to compute how fast one fire or a band of
multiple fires move across a landscape. As the outcomes of
the FlamMap simulation, fire arrival time and fire intensity
per grid cell are transferred to OptFuels for the calculation
of total expected loss across the landscape for a given treat-
ment plan.

OptFuels begins with a no-action scenario across the land-
scape, providing an initial no-action solution for comparison.
Then, the system randomly selects treatment units and assigns
one of the eligible treatment schedules pre-developed for each
unit until the total treatment acres in each planning period
exceeds the user-defined minimum treatment acres. This step
generates a random feasible solution that is used as an initial
solution in the simulated annealing algorithm. The algorithm
involves a large number of iterations. In each iteration, the
current solution is slightly modified by replacing one or more
treatment locations or treatment schedule options to form a
new solution for evaluation. This solution process is repeated
until a user-defined ending criterion is met.

Although the heuristic algorithm does not guarantee the
optimality of the final solution, it improves the solution
quality throughout the search process (Fig. 2). In addition,
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the ability to modify treatment schedules during the pro-
cess enables the algorithm to overcome the forward-only
decision approach in multiple time period planning. The
system takes the deterministic approach in fire growth
modeling by using pre-defined fire ignition locations and
weather scenarios. The model does not consider fire
stochasticity, nor impacts of future fire events on the
landscape.

Discussion

Although many studies in the past attempted to incorporate
wildfires into forest management planning models, most of
them considered wildfires as constraints or used fire growth
models to assess model outcomes [15]. Only a handful studies
actually integrated fire spread logics or fire behavior models
into the fuel treatment optimization framework with various

Fig. 2 An example showing the
performance of OptFuels on
solution improvement. A total of
3147 alternative solutions were
created and evaluated throughout
the optimization process in this
example. At the end of the
process, the quality of the best
solution representing total
expected loss value was improved
by 62 % from no-action solution
and 48 % from the random initial
solution that had the similar
amount of areas treated as the
final best solution (adapted from
Chung et al. [26••])

Table 1 Important considerations in fuel treatment optimization addressed in each of the previous studies

Considerations Finney et al.
[30]

Wei et al.
[24]

Kim et al.
[25]

Acuna et al.
[28•]

Konoshima et al.
[22•]

González-
Olabarria
and Pukkala
[31••]

Chung et al.
[26••]

Fuel treatment
location

✓ ✓ ✓ ✓ ✓ ✓ ✓

Timing of fuel
treatment

✓ ✓ ✓ ✓ ✓ ✓

Fuel treatment
method

✓ ✓ ✓ ✓

Optimization Heuristic Mixed integer Heuristic Iterative mixed-
integer

Dynamic Heuristic Heuristic

Objective function Min. fire
spread rate

Min. expected
loss

Min. deviation
from timber
target and
treatment
patterns

Max. net revenue Max. net present
value

Max. expected
net revenue

Min. expected
loss

Fire dynamics and
growth

✓ ✓ ✓

Value at risk ✓ ✓ ✓ ✓

Fire stochasticity ✓ ✓ ✓ ✓ ✓

Long-term
economic
efficiency

✓

Future fire events ✓

Applicability
potential

Medium Medium High Medium Low Medium High
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levels of detail or different issues of concern. Some studies
simplified the problem by looking at only placement of fuel
treatments, while other studies addressed treatment scheduling
over multiple time periods at the expense of simplifying fire
spread calculation across the landscape.

Most of the past fuel treatment optimization work were
developed in the USA. This reflects the nation’s policy chang-
es in federal wildland fire management over the last two de-
cades, making hazardous fuel reduction and forest restoration
a dominant management objective in many dry, fire-
dependent ecosystems in the western USA.

Table 1 organizes the previous studies reviewed in this
paper into a matrix aimed at identifying fuel treatment plan-
ning issues addressed in each study based on the authors’
subjective interpretation. Most of them attempted to address
both spatial and temporal arrangements of fuel treatments. The
treatment methods considered by Wei et al. [24], Acuna et al.
[28•], and González-Olabarria and Pukkala [31••] were fo-
cused around timber management rather than fuel treatment,
whereas Finney et al. [30] and Chung et al. [26••] mainly dealt
with fuel reduction and restoration treatments.

Mathematical programming approaches were used only
when fuel treatment effects on fire dynamics were simplified in
a linear model or translated into burn probability computed prior
to optimization [24, 28•] or when the landscape is simple enough
to track down possible combinations of activities [22•]. Heuristic
approaches were used to deal with non-linear effects of fuel
treatments or large combinatorial problems when spatial and
temporal dynamic changes of fire growth potential were consid-
ered across a complex landscape. Fire protection value or value
at risk was often used as a measure of success that guides fuel
treatment decisions. Some studies employed a stochastic ap-
proach to estimate expected loss values by computing the distri-
bution of fire ignition and occurrence probabilities based on a
large number of fire growth simulations under varying weather
conditions [22•, 24, 28•, 30, 31••], while others used a determin-
istic approach to avoid large fire simulations [25, 26••].

The long-term economic efficiency of fuel treatments ap-
pears difficult to address because it requires modeling future
disturbance as a function of current fuel treatments. So far,
only one study attempted to address the issue by modeling
possible trajectories of future fires across the landscape [22•].

Most of the existing studies introduced optimization ap-
proaches as proof of concept with limited applications. The
work of Chung et al. [26••] is one of the very few studies that
has been incorporated into a decision support system currently
available for use in real treatment planning efforts [33]. As
Martell [14] pointed out, collaboration with land and fire man-
agers on development of decision support tools would be es-
sential to address the practicality of developing methods for
use by operations and land managers.

It is hoped that future studies will build on these previous
efforts and develop more efficient and integrated optimization

methods that can addressmultiple concerns simultaneouslywhile
producing effective fuel treatment plans for field implementation.

Conclusions

Optimizing forest fuel treatments to reduce wildfire risk over
long periods and across a large landscape is a daunting, yet
necessary task. The unpredictable nature of fire starts, the
complex factors directing fire behavior, and the fuel treatment
effectiveness are difficult to measure. Computer models de-
veloped during the last decade to optimize forest fuel treat-
ments address only limited concerns. Most existing optimiza-
tion models still suffer from problem complexity and a com-
putationally intensive process of fire modeling, making them
almost impractical for field applications.

Building on these past efforts, future research must result in
more comprehensive, field-ready forest fuel treatment pro-
jects. More reliable and field-verified data will result in more
efficient fire models, as fire managers, researchers, and prac-
titioners gain experience with wildfire behavior and the effects
of fuel-treated acres. Technical improvements in computer
hardware and software in tandem with scientific advances in
optimization techniques can reduce computational expenses
for solving challenging optimization problems.

Large forest landowners, primarily public agencies using
landscape-level planning, will benefit most from these ad-
vances in fuel treatment optimization. Integrated optimization
modeling of fuel treatments to mitigate the risk of wildfire will
be a key research area for fire-dependent ecosystems. Contin-
ued monitoring and research will be necessary to demonstrate
that land managers can trust and rely on the output of com-
puter analysis as results match what is observed in the field.
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