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Abstract A possible mechanism that is responsible for the
occurrence of rogue waves in the ocean is the Benjamin–Feir
instability ormodulation instability. The deterministic frame-
work that describes this latter instability of Stokes waves in
deep water is provided by the family of Akhmediev breather
(AB) solutions of the nonlinear Schrödinger equation (NLS).
It is indeed very convenient to use these exact pulsating
envelopes particularly for laboratory experiments, since they
allow to generate extreme waves at any location in space at
any instant of time. As such, using this framework is more
advantageous compared to the classical initialization of the
unstable wave dynamics from a three wave system (main
wave frequency and one pair of unstable sidebands). In this
work, we report an experimental study on higher-order AB
hydrodynamics that describe a higher-order stage of mod-
ulation instability, namely, starting from five wave systems
(main wave frequency and two pairs of unstable sidebands).
The corresponding laboratory experiments, that have been
conducted in a large water wave facility, confirm the NLS
wave dynamics forecast while boundary element method-
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based numerical wave tank simulations show a very good
agreement with the experimental data.
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1 Introduction

The modulation instability (MI) is known to be a universal
mechanism that describes the disintegration of periodically
perturbed wave trains in deep-water and that is responsi-
ble for the emergence of extreme water wave localizations
(Benjamin and Feir 1967; Zakharov and Ostrovsky 2009).
Since the 1960s significant progress has been made in this
field of research, that includes several experimental studies in
different physical media (Benjamin and Hasselmann 1967;
Tulin and Waseda 1999; Tai et al. 1986). Indeed, MI has
been suggested to provide an explanation for ocean rogue
waves which suddenly appear and cause severe damages to
ships and offshore structures (Kharif and Pelinovsky 2003;
Kharif et al. 2009). The MI process is initiated when two
small-amplitude sidebands of the unstable frequency range,
located symmetrically around the main carrier frequency are
spontaneously excited. As a result, a periodic focusing of the
field with the following return to the initial state of constant
amplitude wave occurs. In the spectral domain, this corre-
sponds to formation of a triangular cascade and successive
return to the initial wave field, consisting of single carrier
frequency.

This fundamental process can be described within the
framework of the nonlinear Schrödinger equation (NLS)
(Zakharov 1968). In fact, for each unstable modulation fre-
quency, one can assign an exact Akhmediev breather (AB)
solution (Akhmediev et al. 1985; Akhmediev and Korneev
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1986; Akhmediev et al. 1987) to describe the whole spa-
tiotemporal unstable wave field dynamics (Wetzel et al.
2011). When studying the MI in laboratory environments, it
turns out that breather description can be very useful when
considering the excitation of extreme events (Dudley et al.
2009; Kibler et al. 2010; Chabchoub et al. 2011, 2014).
Lately, it has been shown that breathers can indeed persist
in sea state configurations (Chabchoub 2016), thus, proving
its importance in the study of unidirectional extreme seas.
Furthermore, recent studies also emphasized the significance
of these pulsating solutions for sea keeping tests (Onorato
et al. 2013) as well as for developing standards for ships and
marine offshore structures (Bitner-Gregersen and Gramstad
2015).

On the other hand, the MI process can be much more
complex when initial conditions are beyond a simple cosine-
type perturbation of Stokeswaves. In fact,MI can be initiated
with five frequencies (carrier wave frequency and two pairs
of unstable sidebands) or more. The corresponding solutions
that model this type of instability dynamics are referred to as
higher-order ABs (Akhmediev et al. 1985; Akhmediev 2012;
Frisquet et al. 2014; Kibler et al. 2015). These regimes have
higher amplitude amplification factors than three. Thus, the
modeled waves are expected to be very steep.

Here, we investigate experimentally the dynamics of such
higher-order ABs in a water wave facility (laboratory and
numerical data). We find that both numerical and laboratory
data are in very good agreement demonstrating that the NLS
provides a practically good prediction of wave dynamics.
Section 2 is devoted to describing the MI-AB formalism. In
Sect. 3, the numerical scheme as well as the experimental
set-up are described while Sects. 4 and 5 provide details of
the laboratory and numerical results, respectively. Finally, the
results are discussed in Sect. 6 while a perspective research
is presented in the last conclusive Sect. 7.

2 Modulation instability and Akhmediev breather
formalism

A dimensionless form of the time-NLS that is the basic gov-
erning equation for description of ocean wave dynamics in
deep-water conditions, can be represented as

iψξ + 1

2
ψττ + |ψ |2 ψ = 0. (1)

This form is generally adopted to simplify the presentation
of exact NLS solutions. A simple rescaling can be applied to
solutions of Eq. (1) to satisfy its dimensional form

i

(
�x + 2k

ω
�t

)
− 1

g
�t t − k3 |�|2 � = 0. (2)

The rescaling coefficients are straight-forward and we refer
to (Kharif et al. 2009; Osborne 2010) for details. Parame-
ters ω, k and g denote the wave number, wave frequency
and gravitational acceleration, respectively. Indeed, the MI
dynamics can be fully described in time and space through
the family of ABs (Akhmediev et al. 1985). That is, for a
given modulation frequency κ , the one parameter family of
AB solutions is

ψ (ξ, τ ) = exp (iξ)

×
√
2a cos (κτ) + (1 − 4a) cosh (Rξ) + iR sinh (Rξ)√

2a cos (κτ) − cosh (Rξ)
.

(3)

Here, 0 < a = 1

2
− κ2

8
< 0.5 is the breather parame-

ter and R = √
8a (1 − 2a) is the growth-decay rate of AB

(the same as the growth rate of MI). It is well-known that
the AB solution is the exact model to study the classical
MI dynamics in a deterministic framework (Wetzel et al.
2011). This dynamics has been already observed in sev-
eral physical media (Dudley et al. 2009; Chabchoub et al.
2014).

Explicit analytical expressions for the second-order AB
solutions can be found in Akhmediev et al. (1985), Akhme-
diev and Ankiewicz (1997), Akhmediev (2012). They are
cumbersome and will not to be shown here. These solutions
are derived using the recursive Darboux method (Akhme-
diev et al. 1988; Matveev and Salle 1991; Akhmediev
2012). Comprehensive description of step by step construc-
tion of AB solution of any order is given in Akhmediev
et al. (1988), Akhmediev and Ankiewicz (1997). They are
nonlinear superpositions of individual fundamental AB com-
ponents that involve two or more eigenvalues li of inverse
scattering technique (NLSE spectral problem). The modula-
tion frequencies of individual components in the higher-order

solutions are κi = 2
√
1 + l2i while the instability growth

rate for each unstable frequency component is given by δi =

κi

√
4 − κ2

i

2
. Figure 1 shows dimensional envelope propaga-

tion of the first-order AB and the higher-order AB dynam-
ics together with their corresponding spectral evolutions,
respectively.

We can clearly see in these examples that the fundamen-
tal, first-order AB describes the MI, starting from a three
wave system (main carrier frequency and one sideband pair).
For a given order n of the solution, higher-order periodic
ABs initiate the instability dynamics from a 2n + 1 wave
system (main carrier frequency and n sideband pairs). How-
ever, in present study, we will address only second-order
solutions (two eigenvalue components initial five wave
systems).
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Fig. 1 Top left evolution of the first-order AB over 200 m for a = 0.25
(the case of maximal growth rate). Top right evolution of a second-

order AB over 200 m for κ1 = 0.8, δ1 = 0.5κ1
√
4 − κ2

1 , κ2 = 1.6 and

δ2 = 0.5κ2
√
4 − κ2

2 . The background parameters for both AB models

are set to be ε = 0.05 and a = 0.005 m. Bottom left spectral evolution
of the first-order AB.Bottom right spectral evolution of the higher-order
AB

3 Numerical simulations and experimental set-up

The numerical two-dimensional wave tank (NWT2D) simu-
lations are based on the boundary element method (BEM) of
Tanizawa (1996) by adopting a 2.5 cm spatial resolution (see
Waseda et al. 2005 for details). Laboratory experiments on
AB solutions have been performed in large water wave facil-
ity, installed at The University of Tokyo, that is 50 m long
and 10mwidewhile thewater depth is 5m (seeMozumi et al.
2015; Waseda et al. 2015 for a photography and a schematic
description). The 11 wave gauges gi ∈ [g1, . . . , g11] have
been placed at the following distances

di ∈ [d1, . . . , d11] = [5.21, 9.00, 10.97, 14.01, 17.16,
20.15, 23.02, 25.16, 27.04, 28.91, 32.03] (4)

To observe the water wave dynamics described by the solu-
tion of interest, � (x∗, t), that starts its evolution from the

fixed spatial position x∗, the boundary condition applied to
the flap, have to be set accordingly using the following first-
order approximation for surface elevation

η
(
x∗, t

) = Re
(
�

(
x∗, t

)
exp

[
i
(
kx∗ − ωt

)])
(5)

This is sufficient for our purpose, since the bound waves
appear as soon as the wave train is generated. We also anno-
tate that after each run, a mobile beach along the side walls
have been used to damp the cross tank wave if any present.

4 Observations of the fundamental and
higher-order Akhmediev breathers

In this section, we shall present the results of wave propaga-
tion on ABs with particular focus on second-order solutions,
that have been so far only observed in nonlinear optical fibers
(Frisquet et al. 2014).
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Fig. 2 Left AB evolution in the water wave facility for ak = 0.10,
a = 0.01 m and a = 0.25 (blue lines). Corresponding NLS predictions
are shown on the right for comparison (red lines)

We start showing the simplest AB-MI-model. The AB
parameter is set to be a = 0.25, the case of maximal instabil-
ity growth rate. To insure the observation of wave growth and
decay in the facility we set the initial conditions at x∗ = −22
m. Note that these ABs experience their maximal compres-
sion at x = 0. The propagation of the AB waves in the tank
as well as the deterministic weakly nonlinear NLS forecast
are shown in Fig. 2.

First, these observations show that the NLS provides a
satisfactory agreement with the laboratory results for both,
growth and decay processes, considering the significantwave
steepness and themaximalwave amplifications reached. Fur-
thermore, these results can be considered to be analogous to
the observations of MI and the Fermi–Pasta–Ulam recur-
rence, starting from three wave systems, as reported in Tulin
and Waseda (1999). More details can be found in Erkin-
talo et al. (2011), Chabchoub et al. (2014), Chabchoub and
Grimshaw (2016), Kimmoun et al. (2016, 2017).

Higher-order ABs have higher amplitude amplifications
than three times the background, that is the maximal ampli-
fication expected from the standard modulation instability
process. Due to this fact, the steepness ak of the waves
have to be decreased to avoid physical wave breaking and
to allow reasonable agreement with NLS theory. Thus, the
carrier parameters have been set to be a = 0.005 m and
ak = 0.05 while the modulation frequency ratio is 2:1.
Explicitly, κ1 = 0.8 and κ2 = 1.6. The evolution of this
second-order AB solution for x∗ = −30 is shown in Fig. 3.

To confirm these results, we conducted another set of
experiments with a slightly higher steepness value of ak =
0.06. The propagation of these second-order AB-type waves
with the same modulation frequency ratio, as in the previous
case, is depicted in Fig. 4.
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Fig. 3 Left higher-order Akhmediev breather observation (blue lines)

for κ1 = 0.8, δ1 = 0.5κ1
√
4 − κ2

1 , κ2 = 1.6 and δ2 = 0.5κ2
√
4 − κ2

2 .
The background parameters ak = 0.05 and a = 0.005 m. The
corresponding theoretical NLS water surface elevation predictions to
second-order of approximation are shown for comparison on the right
panel (red lines)
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Fig. 4 Left higher-order Akhmediev breather observation for κ1 =
0.8, δ1 = 0.5κ1

√
4 − κ2

1 , κ2 = 1.6 and δ2 = 0.5κ2
√
4 − κ2

2 (blue
lines). The background parameters ak = 0.06 and a = 0.005 m. The
corresponding theoretical NLS water surface elevation predictions to
second-order of approximation are shown on the right panel for com-
parison (red lines)

We would like to emphasize that this chosen set of param-
eters for the carrier and breather is dictated by the facility’s
dimensions andwavemaker’s frequency range. In both cases,
the facility is too short to observe the full growth–decay
cycle of such type of solutions. When the spatial co-ordinate
x∗ = −30 m is chosen to set the wave maker’s initial con-
ditions, a distance of 60 m is required to observe a quasi-
Fermi–Pasta–Ulam (FPU) recurrence process. In both cases
the initial envelope modulation amplitude at x∗ = −30 m
is already considerably high. This is another limitation in
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Fig. 5 Left higher-order Akhmediev breather observation for κ1 =
0.8, δ1 = 0.5κ1

√
4 − κ2

1 , κ2 = 1.2 and δ2 = 0.5κ2
√
4 − κ2

2 (blue
lines). The background parameters ak = 0.05 and a = 0.005 m. The
corresponding NLS water surface elevation predictions to second-order
of approximation are shown on the right panel (red lines)

comparing the model and experimental data. Furthermore,
we observe an asymmetry of the experimental wave pro-
files that is due to higher-order effects, not captured in the
NLS approach, see Figs. 3 and 4, and that are at play
when the wave groups experience a strong nonlinear interac-
tion and significant focusing. These are well-captured in the
MNLS approach (Dysthe 1979; Trulsen and Stansberg 2001;
Goullet and Choi 2011; Slunyaev et al. 2013; Chabchoub
2013; Shemer and Alperovich 2013; Chabchoub andWaseda
2016) or fully nonlinear water wave numerical schemes (Ma
2010). The asymmetry increases when the wave steepness is
increased from ak = 0.05 to ak = 0.06.

In the following set of experiments we operated with the
same carrier parameters, while changing the second-order
ABs’ modulation frequency ratio to 3:2. This is achieved by
setting κ1 = 0.8 and κ2 = 1.2. In Fig. 5, the evolution of this
breather is presented for the carrier parameters ak = 0.05
and a = 0.005 m.

As a next step, we increased the carrier parameter to ak =
0.06 keeping a = 0.005 m and observed the same type of
second-order AB as before. These results are shown in Fig.
6.

When the modulation frequency ratio is 3:2, we can see
clearly the obvious difference of the periodicity in the wave
field compared to the case when the modulation frequency
ratio is 2:1. The nonlinear wave packet interaction dynam-
ics is also different. Generally, experimental results, shown
in Figs. 5 and 6, are well-predicted by the weakly nonlinear
NLS approach. As explained above, a better agreement is
reached for lower steepness values. Thus, the same experi-
mental limitations are still valid.
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Fig. 6 Left higher-order Akhmediev breather observation (blue lines)

for κ1 = 0.8, δ1 = 0.5κ1
√
4 − κ2

1 , κ2 = 1.2 and δ2 = 0.5κ2
√
4 − κ2

2 .
The background parameters ak = 0.06 and a = 0.005 m. The
corresponding theoretical NLS water surface elevation predictions to
second-order of approximation are shown on the right panel for com-
parison (red lines)
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Fig. 7 Left degenerate higher-order Akhmediev breather observation
when κ = 0.8 and δ = 0.5κ

√
4 − κ2. The background parameters

ak = 0.05 and a = 0.005 m (blue lines). Right the corresponding NLS
water surface elevation predictions to second-order of approximation
are shown on the right panel (red lines)

As a final case, we would like to discuss the case of
degeneracy. This type of solutions are obtained when the
imaginary eigenvalues of two ABs involved in superposition
coincide (Akhmediev 2012). Namely, the limiting case of
these solutions is reached when κ1 = κ2. When, additionally
κ1 = κ2 = 0, this doubly-localized breather is known as
the Akhmediev–Peregrine solution (Akhmediev et al. 1985,
2009a, b; Chabchoub et al. 2012; Gaillard 2015; Dontsop
et al. 2016).

Figure 7 shows the excitation and evolution of the general
degenerate AB case when κ = κ1 = κ2 = 0.8 and carrier
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Fig. 8 NWT2D wave simulation results for ak = 0.05 and a = 0.005
(black lines). Top higher-order AB for κ1 = 0.8 and κ2 = 1.6. Bottom
higher-order AB for κ1 = 0.8 and κ2 = 1.2

parameters ak = 0.05 and a = 0.005 m. As expected, we
observe the asymmetry in the developed wave profiles which
is absent in the NLS predictions. Indeed, it has been shown in
Chabchoub et al. (2012) for similar type of solution and sim-
ilar form of nonlinear wave interaction, a good agreement
is reached when the steepness is very low (of the order of
ak = 0.03). The major problem is that the NLS initial condi-
tions at the starting point lead to a very steep wave evolution
of Stokes waves in the experiment.

5 Results of BEM-based NWT2D simulations

In what follows, we discuss the results of the fully nonlinear
BEM-based NWT2D. The spatial resolution in these simu-
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Fig. 9 NWT2D wave simulation results for ak = 0.06 and a = 0.005
(black lines). Top higher-order AB for κ1 = 0.8 and κ2 = 1.6. Bottom
higher-order AB for κ1 = 0.8 and κ2 = 1.2

lations is 2.5 cm providing a very good accuracy for given
experimental scales. This corresponds to 25 points and 20
points per wavelength for the steepness values 0.05 and 0.06,
respectively. The configuration of the NWT2D simulations
is identical to the wave facility in which the laboratory exper-
iments have been performed. Namely, a plunger-type wave
maker with identical dimensions is used to generate the uni-
directional waves. Furthermore, a sponge layer for absorbing
wave energy starts at the distance 35m. The probes have been
placed at the same positions as in the facility to capture the
surface elevation data.

The data on periodic higher-order breathers have been re-
grouped according to their steepness. For example, Fig. 8
displays the periodic cases for the carrier steepness of ak =
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Fig. 10 (Left) NWT2D
simulated spatial wave profile of
the higher-order AB for
κ1 = 0.8 and κ2 = 1.2 at the
onset of breaking. The values
ak = 0.06 and a = 0.005.
(Right) Five meters
magnification of the wave
profile shown on the left near
the highest amplitude point. It is
also characterized by the crest
slow-down (crest is slightly
shifted to the left)
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0.05. Further, the simulations of the breather cases for the
steepness ak = 0.06 are shown together in Fig. 9. In the
run for the higher-order AB for κ1 = 0.8 and κ2 = 1.2,
the breather wave evolution led to a “blow up” of simula-
tions. Indeed, the extreme waves, modeled by these types of
breathers can be very steep and when initial carrier steepness
is high, wave breaking is inevitable even at these low values
of the carrier wave steepness. Interestingly, wave breaking
visually was not noticed in the experiments. The wave pro-
file in space for this latter case, one step before breaking, is
shown in Fig. 10. Two different scales in Fig. 10 are used for
clarity. The main feature that we can see here is the extreme
amplitude peak of the wave profile in space. We can also see
clearly the crest slow-down that is a particular feature of the
onset of water wave breaking.

Finally, the results of simulations of degenerate case (the
case for κ = 0) are shown in Fig. 11. The dynamics of
the wave profile here is very similar to the Akhmediev–
Peregrine solution. Indeed, the extreme wave (at x = 0)
emerges from the nonlinear superposition of the two modu-
lated wave envelopes (Chabchoub et al. 2012). However, the
maximal wave amplitude reached in this evolution is smaller
than the theoretical limitingAkhmediev–Peregrine value that
is five, see (Akhmediev 2012).

Generally, all the NWT2D simulations show an excellent
agreement with laboratory experiments, as they use the fully-
nonlinear governing water wave equations for an idealized
fluid (Liggett and Liu 1984; Yeung 1982). In fact, the wave
features in themare almost identical. These are: focusing evo-
lution in time and space, wave packet’s asymmetry as well as
the group velocity. This fact demonstrates the efficiency of
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Fig. 11 NWT2D wave measurement results of the degenerate higher-
order AB for ak = 0.05 and a = 0.005 as well as κ = 0.8 (black
lines)

the NWT2D numerical model in simulating hydrodynamic
extremes. It has stronger potential for applications in ocean
and naval engineering, compared to other nonlinear numeri-
cal schemes (Ma 2010).

6 Discussion

In this Section, we compare the wave dynamics of higher-
order ABs obtained in laboratory observations with theoret-
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Fig. 12 Comparison of experimental data with theory and simulations
for the focused higher-order AB water surface elevations for the case:
κ1 = 0.8, κ2 = 1.6, ak = 0.05 and a = 0.005m.Top left Theorywithin
the NLS framework (red lines), Top Right: MNLS simulations (purple
lines), Bottom left NWT2D simulations (black lines) and Bottom right
Laboratory data (blue lines)
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Fig. 13 The spectra of the water surface elevations for the same set of
data as in Fig. 12

ical NLS framework, with NWT2D simulations as well as
with the MNLS. The latter extension of the NLS is known to
take into account higher-order dispersion and the mean flow
of the wave field (Dysthe 1979; Trulsen and Stansberg 2001;
Goullet and Choi 2011). For the sake of brevity, we make
the comparison only for the case shown in Fig. 2. Namely,
for the case of the higher-order AB solution with κ1 = 0.8
and κ2 = 1.6 and for the carrier parameters ak = 0.05 and
a = 0.005 m. Figure 12 shows the results of the comparison.

The NLS predicts well the wave focusing and its major
parameters such as the amplitude amplification and shape

of the wave packet. Naturally, the MNLS simulations are
in a better agreement with experimental data. This can be
expected considering the physical limitations of the NLS as
well as the significant amplifications reached in experiment
(Trulsen and Stansberg 2001; Chabchoub 2013; Slunyaev
et al. 2013; Shemer and Alperovich 2013). However, the
best agreement is reached when the BEM-based NWT2D
simulations are used with the chosen resolution of 2.5 cm.
These results show a striking agreement with the laboratory
data. The agreement is completed with the asymmetry of the
focused wave packets as well as extreme wave heights. A
good agreement is also observed in the spectral domain as
shown in Fig. 13.

Even though the BEM-NWT2D seems to be the most
accurate framework in describing the very steep waves, the
computation time was much longer compared to NLS or
MNLS simulations. However, this technique is very useful
for studies involving more complete physical properties of
the wave field beyond extracting simple water surface eleva-
tions.

7 Conclusions

We have reported observations of higher-order AB dynamics
in a water wave facility. These include periodic second-order
ABs with two different modulation frequencies and degener-
ate AB when the frequencies coincide. The steepness values
have been set to be relatively small to stay within the limits of
NLS theory. As a direct consequence of these limitations, the
propagation distance in the facility was not sufficient to allow
the observation of the full growth–decay cycle (known as
Fermi–Pasta–Ulam recurrence) of these pulsating localized
structures. The experiments are in a very good agreement
with the fully nonlinear BEM-based NWT2D simulations
with a spatial resolution of 2.5 cm while NLS provides a
solid predicting power to study these higher-order breathers
in a given hydrodynamic environment. Future work will be
devoted to studies of the limitations of the theory of higher-
order ABs when applied to the water surface as well as
their applicability to realistic oceanic conditions following an
example of Chabchoub (2016). Furthermore, the choice of
NWT2D resolution in the analysis of steep nonlinear waves
needs further investigations.
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