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Abstract A 3D time-domain Rankine source method is
developed to study the hydrodynamic loads and motions of
a moored ship in shallow water waves in head sea condi-
tions. Both the wave steepness and ship motions relative to
the ship’s draft are assumed small and the exact free-surface
and body-boundary conditions are expanded about the mean
surface by a Taylor series. A formulation correctly to sec-
ond order in the wave steepness is adopted. A fourth-order
Runge–Kutta method is used to time integrate the bound-
ary conditions and the six degree of freedom motion equa-
tions. It is found that the water depth has significant effects
on the hydrodynamic coefficients, especially on the verti-
cal modes of motions. The linear horizontal motions of a
moored ship have distinct increment in shallowerwater depth
in the low-frequency domain. Further, the horizontal slow-
drift excitation forces increase significantly with decreasing
water depth and the second-order velocity potential gives
dominant contribution in a frequency range of importance
for moored ships in shallow water. Lastly, the slowly vary-
ing motions of an LNGC is simulated and the satisfactory
agreements with experiments demonstrate that the present
method can predict the slowly varying motions of a moored
ship in finite-amplitude shallowwater waves with acceptable
results.
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1 Introduction

It is well known that slow-drift excitation forces can induce
lateral resonance oscillations of a moored ship. In the last
30 years, the difference-frequency problem has been stud-
ied mainly in deep water. To avoid the calculation of the
second-order velocity potential, which is computationally
difficult to obtain especially for three-dimensional bodies,
Newman (1974) proposed an approximation of the slow-drift
excitation forces. This approximation assumes that a natural
frequency associated with slow-drift motions is sufficiently
small so that the exact quadratic transfer function (QTF)
for difference-frequency forces can be approximated by the
mean drift force value which is a second-order effect depend-
ing only on the first-order velocity potential and motions.
For many applications, the validity of Newman’s approxima-
tion is appropriate. Afterward, Faltinsen and Løken (1978,
1979) solved consistently to second order the difference-
frequency forces on an infinitely long horizontal cylinder
in beam sea and irregular waves in deep water. They con-
cluded that the contribution from the second-order velocity
potential to the slow-drift excitation forces was small and
that Newman’s approximation was a practical way to cal-
culate the horizontal slow-drift excitation force on a ship in
irregular beam sea waves. Pinkster (1980) made an extensive
investigation of slow-drift forces on three-dimensional bod-
ies. However, the effect of the second-order velocity potential
was incorporated by an approximated method. He found that
the approximation was good when the difference frequency
was small and that the approximation gave higher values than
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the exact solution for large difference frequencies. Gener-
ally, Pinkster’s approximation gives the right order of mag-
nitude to the slow-drift excitation forces due to the contri-
bution of the second-order velocity potential. Further, Chen
and Duan (2007) proposed a novel O(�ω) approximation
for the difference-frequency QTF, in which the double sum
of the wave components is reduced to one sum. They divided
the total QTF into two parts, one depending on the quadratic
products of the first-order wave fields and the other depend-
ing on the second-order velocity potential. The first part is
calculated by the ‘middle field’ method by Chen (2006a, b),
in which the integration over the body surface is transformed
to integration over control surfaces at a distance from the
body. The calculation of the second-order velocity poten-
tial contributions is performed by an ‘indirect method’ pro-
posed by Molin (1979), in which Green’s second identity is
used to evaluate the second-order velocity potential contribu-
tions without solving the second-order boundary value prob-
lem (BVP). Recently, Shao and Faltinsen (2011) proposed
an alternative formulation of the BVP for added resistance
analysis based on a body-fixed coordinate system, whichwas
first used in the wave-body problem by Shao and Faltin-
sen (2010). Good agreement with experimental results was
obtained for several types of ships which include a modified
Wigley I hull, a Series 60 ship and S175 container ship at
moderate forward speeds.

In addition to predicting the slow-drift excitation forces,
accurate calculation of the wave-drift damping is neces-
sary for estimating the amplitude of the slowly varying drift
motion correctly as illustrated by Faltinsen (1990). In the
simplest damping model, the value is just set as a fraction
of critical damping empirically. A more rational way is to
include wave-drift damping by the added resistance gradi-
ent (ARG) method. Since the wave-drift damping coefficient
is related to the low-frequency velocity-dependent part of
the wave-drift force, the surge damping coefficient without
the presence of current can be approximated by the deriva-
tive of mean longitudinal wave-drift force with respect to the
forward velocity at zero forward speed.Wichers (1988) mea-
sured for a VLCC model the mean longitudinal drift force
for small forward speed and derived derivative values. The
good agreement with wave-drift damping coefficients from
experimental extinction tests demonstrated the correctness
of the ARG method. The accuracy of the ARG method was
further demonstrated by Hearn and Tong (1986), Hearn et al.
(1987a, b). They used a strip theory including an enhanced
forward speed-dependent diffraction analysis and their cal-
culatedwave-drift dampingwas comparedwith experimental
data. The agreementwas good for amooredVLCC, amoored
barge and a semisubmersible. Zhao et al. (1988) developed a
theory for first order in wave amplitude and current velocity
and proposed a corresponding numerical procedure which
made the direct calculation of wave-drift damping in three-

dimensional problems possible. Grue and Palm (1993) and
Hermans (1998) also developed 3D numerical models and
applied it to wave-drift damping of ships. In practice, a for-
mula based on the asymptotic theory proposed by Faltinsen
et al. (1980) gives good estimation of wave-drift damping for
small wavelengths in head sea.

In addition to studying wave-drift damping, Zhao and
Faltinsen (1988) showed that eddy-making damping and
slowly varying wave-drift damping may also give impor-
tant contributions to slow-drift motions of a moored struc-
ture in irregular waves. Their considered problem was two
dimensional. They found that the slowly varying wave-drift
damping had little influence on the standard deviation of the
motions, while it had significant effects on the extreme val-
ues. Moreover, they showed that for a sufficiently small nat-
ural frequency that the standard deviation could be estimated
in the frequency domain byNewman’s approximation for the
slow-drift excitation force and by neglecting the slowly vary-
ing wave-drift damping. However, mean wave-drift damping
has to be included. Drag damping can be included by equiv-
alent linearization.

All the works mentioned above were conducted in deep
water. However,with the increase of LNG terminals designed
to operate in offshore areas next to harbors, where the water
depth is finite or shallow, the accurate prediction of the
hydrodynamic loads and motions of a ship in shallow water
becomes important for the design of the mooring system.
Compared with the works in deep water, less research exists
on wave-induced hydrodynamic loads and motions of ships
in shallow water. Oortmerssen (1976) studied the motions of
a VLCC in shallow water, both theoretically and experimen-
tally. A linear frequency-domain BEM code was used and
the numerical results of the first-order excitation forces and
ship motions agreed well with the experimental data. More
recently, Li et al. (2003) presented experimental results of
motions of a large FPSO in extremely shallow water with
irregular waves. They found that the wave frequencymotions
of the FPSO decrease with the decrease of the water depth.
There is less published research for the slow-drift excita-
tion forces acting on a ship in shallow water. Pinkster and
Huijsmans (1992) reported both experimental and numeri-
cal results for a VLCC in shallow water in both regular and
irregular waves. A dynamic system of restraint was used
in the experiments to restrict the ship model from slow-
drift motions and avoid corresponding dynamic magnifica-
tion effects due to resonance oscillations. Both the computa-
tional and experimental results showed that decreasing water
depth led to increasing wave-drift forces. Pinkster’s approxi-
mation provides reasonably good results for slow-drift exci-
tation forces, although it is an incomplete theory. Recently,
Chen and Rezende (2008) applied the O(�ω) approxima-
tion to calculate the difference-frequency QTF for an LNG
in shallow water and found that it provided good results in
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Fig. 1 Sketch of the coordinate
systems

the small difference-frequency domain compared with the
complete QTF.

In the present paper, a 3D time-domain Rankine source
method based on a complete second-order theory is devel-
oped to study the hydrodynamic loads and motions of a
moored ship in shallow water waves. Firstly, the hydrody-
namic coefficients and linear motions of a VLCC in shallow
water are calculated and compared with available experi-
mental and numerical results. The influence of water depth
on the hydrodynamic coefficients and linear motions are
discussed. Then, the wave-drift forces and the difference-
frequency QTF are calculated and compared with Pinkster’s
experimental data and calculations. The results by the present
method agree better with experimental data than that given
by Pinkster’s approximation, especially when the difference
frequency is relatively large. Different components that con-
tribute to the wave-drift forces are analyzed and the contribu-
tion from the second-order velocity potential is found to be
dominant in the difference-frequency range that is important
for moored ships. This is different from the situation in deep
water, where the second-order velocity potential’s contribu-
tion is negligible. At last, the wave-drift damping of a LNGC
in shallow water is calculated by the ARG method with a
wave–current–body interaction model. The slowly varying
motions of the vessel is then simulated and compared with
the experimental data by Kristiansen (2010). The agreement
is, in general, satisfactory and the error sources are discussed.

2 Mathematical formulation

2.1 Coordinate systems

Two Cartesian coordinates systems are defined as shown in
Fig. 1, i.e. OXY Z and Gxyz.OXY Z is Earth fixed with the
OXY plane on the calm water surface and with the OZ -axis
positive upward. Gxyz is a body-fixed system with origin at
the centre of gravity of the body and therefore moves with
the unsteady motions of the body.

2.2 Boundary value problem

Potential flow of incompressible water without surface ten-
sion is assumed. The velocity potentialφ(X,Y, Z , t) satisfies
the Laplace equation in the water domain, i.e.

∇2φ = 0 (1)

The water domain is bounded by a horizontal bottom, a free
surface, a body surface and vertical boundaries far from the
ship. On the free surface, the fully non-linear kinematic and
dynamic boundary conditions are:

ζt = φZ − φXζX − φY ζY , Z = ζ(X,Y, t), (2)

φt = −gζ − 1

2
∇φ · ∇φ, Z = ζ(X,Y, t). (3)

Here, the subscripts indicate partial differentiations, ζ(X,

Y, t) denotes the free-surface elevation and g is the accel-
eration of gravity. The atmospheric pressure is taken to be
constant and can thus be omitted in the dynamic free-surface
boundary condition.

On the body surface, the impermeable condition is used
to ensure that water particles cannot penetrate it.

φn = (ξ̈ + α̇ × rb) · n, Sb. (4)

Here, the operator ‘·’ means the first-order time derivative at
a fixed point. The vector ξ = (ξ1, ξ2, ξ3) describes the trans-
latory displacements due to surge, sway and heave, while the
vector α = (ξ4, ξ5, ξ6) represents roll, pitch and yaw angles.
rb means the position vector of a point on the body surface
relative to the gravitational centre. The effect of finite rota-
tion angles is neglected. Further, n is the normal unit vector
pointing positively out of the water domain.

On the bottom and the vertical side wall, the impermeable
condition is used, i.e. the velocity component in the normal
direction is zero.

φn = 0 (5)

A numerical wave beach is introduced by means of a free-
surface damping layer.

2.3 Perturbation method

The amplitudes of the incidentwaves and the oscillatory body
motions are assumed small compared to the characteristic
body dimensions. We do not introduce the ratio between
water depth and the incident wave length as a small para-
meter. Therefore, the velocity potential, wave elevation and
body motions can be written as series expansions.

φ = ε1φ(1) + ε2φ(2) + · · ·
ζ = ε1ζ (1) + ε2ζ (2) + · · ·
ξ = ε1ξ (1) + ε2ξ (2) + · · ·
α = ε1α(1) + ε2α(2) + · · ·

(6)
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Here, ε is a perturbation parameter with respect to the wave
steepness and the superscripts denote the order of the expan-
sions. Introducing the series expansions (6) into the free-
surface boundary conditions (2) and (3), then Taylor expand-
ing about Z = 0, the following free-surface boundary con-
ditions can be obtained:

ζ
(m)
t − φ(m)

z = F (m)
1 (7)

φ
(m)
t + gζ (m) = F (m)

2 . (8)

The terms F (m)
1 , F (m)

2 (m = 1, 2) are given as:

F
(1)

1 = 0

F
(1)

2 = 0

F
(2)

1 = −∇̄φ
(1) · ∇̄ζ

(1) + ζ
(1) ∂2φ

(1)

∂Z2

F
(2)

2 = − 1
2∇φ

(1) · ∇φ
(1) − ζ

(1) ∂2φ
(1)

∂Z∂t

(9)

The vector operators ∇ and ∇̄ are defined as:

∇ = i ∂
∂X + j ∂

∂Y + k ∂
∂Z

∇̄ = i ∂
∂X + j ∂

∂Y

(10)

Here, i, j and k denote unit vectors along the X -, Y - and
Z -axes, respectively.

The wave field is separated into an incoming part and a
scattered part which is generated due to the presence and
motions of the body. The description of the irregular incom-
ing waves consistent with second order can be found in
Dalzell (1999). Chen (2006a, b) found an extra set-down
term that has to be added in bichromatic waves of two wave
frequencies up to second order. Otherwise, a discontinuity
should appear on either side of the diagonal of the QTF for
second-order vertical forces. We can write

ζ (m) = ζ
(m)
s + ζ

(m)
w

φ(m) = φ
(m)
s + φ

(m)
w

(11)

Here, the subscripts ‘w’ and ‘s’ denote the wave elevation
due to incoming and scattered waves, respectively.

Then the free-surface boundary condition can be rearran-
ged as:

∂ζ
(m)
s

∂t
= ∂φ

(m)
s

∂Z
+

[
∂φ

(m)
w

∂Z
− ∂ζ

(m)
w

∂t

]
+ F (m)

1 , Z = 0,

(12)

∂φ
(m)
s

∂t
= −gζ (m)

s −
[

∂φ
(m)
w

∂t
+ gζ (m)

w

]
+ F (m)

2 , Z = 0.

(13)

Similarly, the body-boundary condition (4) can be expanded
as:

∂φ
(m)
s

∂n
= B(m), Sb0 (14)

with

B(1) = n(0) ·
[
ξ̇ (1) + α̇(1) × rb − ∇φ(1)

w

]
B(2) = n(0) ·

[
ξ̇ (2) + α̇(2) × rb − ∇φ(2)

w

−{(ξ (1) + α(1) × rb) · ∇}∇φ(1)
]

+ n(1) ·
[
ξ̇ (1) + α̇(1) × rb − ∇φ(1)

]
, (15)

where n(0) denote the normal vector positive out of the body
when the body is at rest n(1) = α(1) × n(0).

2.4 Hydrodynamic forces and moments

The hydrodynamic forces and moments are calculated by
pressure integration. The pressure on the body surface is
given by the Bernoulli’s equation:

p = −ρ

(
φt + 1

2
∇φ · ∇φ + gZ

)
. (16)

The pressure on the instantaneous body surface can be
approximated by Taylor expansion about the wetted mean
body surface. Keeping to second order, the pressure is sepa-
rated into three parts:

p = p(0) + p(1) + p(2), (17)

where p(0), p(1) and p(2) denote the ‘hydrostatic’, first-order
and second-order pressure, respectively. They are defined as
follows:

p(0) = −ρgZ

p(1) = −ρ
[
φ

(1)
t + g

(
ξ

(1)
3 + yξ (1)

4 − xξ (1)
5

)]
p(2) = −ρ

[
φ

(2)
t + 1

2
∇φ(1) · ∇φ(1) +

{(
ξ (1) + α(1) × rb

)
·∇

}
φ

(1)
t + g

(
ξ

(2)
3 + yξ (2)

4 − xξ (2)
5

)]
. (18)

The hydrodynamic forces and moments can be expressed as:

F = ∫∫
sb
pnds

M = ∫∫
sb
p(rb × n)ds

(19)

Introducing (19) into (20), the following approximation can
be obtained:

F = F(0) + F(1) + F(2)

M = M(0) + M(1) + M(2) (20)
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with

F(0) =
∫∫

sb0

p(0)n(0)ds

F(1) =
∫∫

sb0

(
p(1)n(0) + p(0)n(1)

)
ds

F(2) =
∫∫

sb0

(
p(2)n(0) + p(1)n(1) + p(0)n(2)

)
ds

+
∫
cw0

1

2
ρg

[
ζ (1) −

(
ξ

(1)
3

+yξ (1)
4 − xξ (1)

5

)]2
n(0)/

√
1 −

(
n(0)
3

)2
dl

M(0) =
∫∫

sb0

p(0)
(
rb × n(0)

)
ds

M(1) =
∫∫

sb0

[
p(1)

(
rb × n(0)

)
+ p(0)

(
rb × n(1)

)]
ds

M(2) =
∫∫

sb0

[
p(2)

(
rb × n(0)

)
+ p(1)

(
rb × n(1)

)

+p(0)
(
rb × n(2)

)]
ds

+
∫
cw0

1

2
ρg

[
ζ (1) −

(
ξ

(1)
3

+yξ (1)
4 − xξ (1)

5

)]2
(rb × n(0))/

√
1 −

(
n(0)
3

)2
dl.

(21)

Here, sb0 and cw0 denotemeanwetted body surface andmean
waterline, respectively n(k) = α(k) × n(0), (k = 1, 2).

2.5 Rigid-body motion equations

The generalized rigid-body motion equations can be written
as:

6∑
j=1

mi, j ξ̈
(m)
j + ki, jξ

(m)
j = F (m)

i . (22)

Here, the operator ‘..’ means the second-order time deriva-
tive.mi, j represents the element of the 6×6 generalizedmass
matrix and ξ j is the body displacement in the j th general-
ized direction. ki, j denotes an element of the 6 × 6 restor-

ing force matrix due to the mooring system and F (m)
i rep-

resents the generalized hydrodynamic forces and moments
about the centre of gravity of the body in the i-th generalized
direction. Infinite-frequency added mass terms were added
on both sides of the equations to stabilize the time integration
which will be described in the following section.

3 Numerical implementation

3.1 Boundary element method (BEM)

Applying the Green’s second identity, a boundary integral
equation using a Rankine source as the Green function
G(p, q) can be expressed as:

C(p)φ(p) =
∫∫
S

[
(G(p, q)

∂φ(q)

∂n
− φ(q)

∂G(p, q)

∂n

]
dS

(23)

Here, p(X,Y, Z) and q(ξ, η, ζ ) are the field point and source
point, respectively. C(p) is the solid angle at the field point,
which equals to 2π when p(X,Y, Z) is on a smooth sur-
face and 4π when p(X,Y, Z) is in the solution domain. S
denotes the boundaries of the water domain which include
the free surface, the body surface and the bottom and the
side walls. When the solution domain is symmetric about the
OXZ plane, and the bottom is horizontal, theRankine source
and its image with respect to the symmetry plane and the bot-
tom are used as a Green function to reduce the computational
boundaries and time. In the numerical method, the computa-
tional boundaries are discretized by bilinear plane elements.
Four nodes are placed on each plane element. After intro-
ducing shape functions N j (ξ, η) for each surface element,
variables like displacement, velocity potential and its deriv-
atives can be written in the following forms:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

X(ξ, η) =
K∑
j=1

N j (ξ, η)X j

φ(ξ, η) =
K∑
j=1

N j (ξ, η)φ j

∂φ(ξ,η)
∂n =

K∑
j=1

N j (ξ, η)
∂φ j
∂n

(24)

Here, K is the number of nodes in the element, X j and φ j

express the position and potential, respectively, and (ξ, η)

are local intrinsic coordinates. Then, the boundary integral
equation can be expressed as:

C(p)φ(p)

=
N∑

n=1

M∑
m=1

⎧⎨
⎩G(qm, p)

⎡
⎣ K∑

j=1

N j (ξ, η)

(
∂φ

∂n

)
j

⎤
⎦

−∂G(qm, p)

∂n

⎡
⎣ K∑

j=1

N j (ξ, η)φ j

⎤
⎦
⎫⎬
⎭wm |Jm(ξ, η)| (25)

Here, M is the number of sampling points used in the stan-
dard Gauss–Legendre integration method, wm is the inte-
gral weight at the m-th sampling point, Jm(ξ, η) is the Jaco-
bian transformation from the global coordinate to the local
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one and N is the number of elements. When the field point
is located in a particular element, the corresponding singu-
larity is evaluated by using the triangular polar coordinate
transformation by Li (1985). The solid angle C(p) is calcu-
lated from the influence coefficient matrix as Wu and Eatock
Taylor (1989) did.

3.2 Numerical wave beach

A numerical wave beach as proposed by Ferrant (1993) is
used. This means damping terms are introduced in the free-
surface conditions in the ‘wave beach’ region. The modified
free-surface conditions are:

ζ
(m)
t = φ

(m)
z + F (m)

1 − υ(r)ζ (m)
s

φ
(m)
t = −gζ (m) + F (m)

2 − υ(r)φ(m)
s

(26)

Here, r denotes the horizontal distance from one point on
the free surface to the gravitational centre of the body. The
damping coefficient υ is defined as:

υ(x) =
{

αω( r−r0
βλ

)2 r ≥ r0
0 r < r0

(27)

Here, r0 denotes a reference value specifying the horizontal
distance to the gravitational centre of the body, and λ and
ω are the wavelength and wave frequency, respectively. In
bichromaticwave conditions, themeanwavelength andmean
wave frequency of the two primary waves are used. Further,
α and β control the strength and length of the damping zone,
respectively.

3.3 Time-integration scheme

An explicit fourth-order Runge–Kutta method (RK4) is used
to time integrate the boundary conditions and the six degree
of freedom motion equations. Actually, the equations of
motion (22) take the following form, since the hydrodynamic
forces depend on the acceleration of the body:

ẏ = f (ẏ, y, t). (28)

Here, vector y denotes the variable of interest and f (ẏ, y, t)
represents a function of both space and time. This form may
lead to instabilities due to the impulsive term in the hydro-
dynamic forces proportional to the acceleration, especially
when the added mass is much larger than body mass (this
happens in the vertical modes of motions of a ship in shallow
water according to our numerical study). Kvålsvold (1994)
obtained a stable form of the equation of motions by merely
adding an infinite-frequency added mass term on both sides
of the equation. Then the equation of motion takes the form:

ẏ = f (y, t) (29)

which is similar with the free-surface boundary conditions.
The solution for the above first-order ordinary equation by

RK4 is expressed as follows:

y(t + �t) = y(t) + 1

6
(k1 + 2k2 + 2k3 + k4), (30)

where

k1 = �t · f (t, y)
k2 = �t · f (t + �t

2 , y + k1
2 )

k3 = �t · f (t + �t
2 , y + k2

2 )

k4 = �t · f (t + �t, y + k3)

4 Numerical studies

Two small parameters are introduced in this section. One is
the ratio between the water depth and the ship draft δ =
h/d and the other is the water depth-to-wave length ratio
� = h/λm . Here, λm is the wave length corresponding to
the mean wave frequency υ of the two primary waves in the
bichromatic waves.

4.1 Hydrodynamic coefficients and RAOs of a VLCC

To investigate the influence of the water depth on hydro-
dynamic coefficients of a moored VLCC, numerical forced
motion tests are performed based on linear theory and the cal-
culated hydrodynamic coefficients are compared with exper-
imental data by Oortmerssen (1976). Three water-depth val-
ues are chosen corresponding to water depth-to-draft ratios
δ = 1.1, δ = 1.2 and δ = 2.0, respectively. The main par-
ticulars of the VLCC are listed in Table 1. As shown in Figs.
2 and 3, the added mass and damping coefficients predicted
by the present code agree well with the experimental data
in general. The ship length L used in non-dimensionalizing
results is the length between perpendiculars. The addedmass
in sway increases with decreasing water depth in the low-
frequency domain, while the opposite is the tendency in the
high-frequency domain. The maximum slope of the curve
increases considerably with decreasing water depth, which
means a significant increase of sway-added mass in the low-
frequency domain in shallow water. The damping in sway
also increases with decreasingwater depth, but the difference
is smaller at higher frequencies. Moreover, both the added
mass and damping in heave increase with decreasing water
depth. This is in accordance with the results presented by
Kim (1968). The same trends also occur in the other horizon-
tal and vertical modes of motions due to our numerical tests.
However, they are not shown due to the lack of experimental
data to compare with. Therefore, the influence of the water
depth on the added mass and damping can be significant.

The strip theory may lead to wrong results in shallow
water due to strong three-dimensional effects at the ship ends,
especially in the lateral modes of motions. We consider as
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Table 1 Main particulars of the ships

Items VLCC LNGC Body plans: VLCC (the top figure)
LNGC (the figure below)

Length between perpendiculars L pp(m) 310.00 270.00

Breadth B(m) 47.17 43.40

Draft d(m) 18.90 11.86

Displacement ∇(m3) 234994 105770

Gravity centre forward midship LCG(m) 6.61 1.50

Gravity centre above keel VCG(m) 13.32 16.73

Block coefficient CB 0.85 0.78

Longitudinal radius of gyration in pitch kyy(m) 77.47 65.58

Fig. 2 Experimental and
numerical non-dimensional
added mass and damping in
sway for a fully loaded VLCC
with parameters
δ = 1.1, δ = 1.2 and δ = 2.0
presented as a function of
non-dimensional frequency

an example the sway-added mass of the middle cross sec-
tion of the VLCC. The non-dimensional value at zero fre-
quency for a rectangular profile with breadth-to-draft ratio
B/d = 2.5 is A22/(ρBd) ≈ 11.0 at a water depth-to-draft
ratio δ = 1.2 according to Flagg and Newman (1971). How-
ever, the non-dimensional 3D added mass in sway at zero
frequency is A22/(ρ∇) ≈ 3.0 according to the experimental
and present numerical results. Kim (1968) reported results
of ship motions in restricted water depth by strip theory. He
concluded that strip theory can be used to predict vertical
motions, but cannot be used for lateral motions.

The linearmotions of freely floatingVLCC in regular head
waves are calculated by the present linear code. Figures 4,

5, 6 shows RAOs of the VLCC in surge, heave and pitch for
different water depths in regular head sea waves. When the
wave frequency ω is small, the corresponding wavelength
is large relative to the ship length and the ship tends to
behave as a fluid particle. The oscillating particle motions
in linear incident waves in the X - and Z -directions can be
described as{

ξ1 = −A cosh k(z+h)
sinh kh sin(ωt − kx)

ξ3 = A sinh k(z+h)
sinh kh sin(ωt − kx)

(31)

whichmeans that thefluidparticle has an elliptical path.Here,
A, k and ω represent the incident wave amplitude, wave
number and wave frequency, respectively. ξ1 and ξ3 denote
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Fig. 3 Experimental and
numerical non-dimensional
added mass and damping in
heave for a fully loaded VLCC
with parameters
δ = 1.1, δ = 1.2 and δ = 2.0
presented as a function of
non-dimensional frequency

Fig. 4 Experimental and numerical RAOs in surge of a fully loaded VLCC with parameters δ = 1.2 and δ = 4.4 presented as a function of
non-dimensional frequency. A is the amplitude of incoming waves

the horizontal and vertical fluid particle motion, respectively.
The ratio between the maximum horizontal motion and max-
imum vertical motion is coth k(z + h). The consequence is
the well-known fact that maximum horizontal motion for a
givenwater depth is always larger than themaximum vertical
motion. Further, we note that the maximum vertical motion
occurs for ω = 0 and is equal to A. The pitch motions
amplitude ξ5a approaches k A when the wave frequency ω

becomes very small. On the other extreme case when ω

becomes large, the correspondingwavelength becomes small

and hence the linear wave excitation forces decrease with
the consequence that the ship motions go to small values.
We will somewhat arbitrarily use as a criterion for the ship
to behave as fluid particle that λ ≥ 3L , where L denotes
the ship length between perpendiculars. For the small water
depth case with δ = 1.2, when the non-dimensional wave
frequency ω

√
L/g ≤ 0.56, the corresponding wavelength

λ ≥ 3L . The ship then tends to behave as a fluid particle.
On the other hand, when ω

√
L/g ≥ 6.55, the water depth

h ≥ λ
2 and the ship behaves as though it is in deep water.
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Fig. 5 Experimental and numerical RAOs in heave of a fully loaded VLCC with parameters δ = 1.2 and δ = 4.4 presented as a function of
non-dimensional frequency. A is the amplitude of incoming waves

Fig. 6 Experimental and numerical RAOs in pitch of a fully loaded VLCC with parameters δ = 1.2 and δ = 4.4 presented as a function of
non-dimensional frequency. A is the amplitude of incoming waves

When it comes to the larger water depth case, the wave-
length λ ≥ 3L corresponds to ω

√
L/g ≤ 1.03 and the water

depth h ≥ λ
2 corresponds to ω

√
L/g ≥ 3.42. As shown in

Fig. 4, the surge motion amplitude increases dramatically in
the low-frequency domain and our numerical results agree
well with the fluid particle motions. For the heave motion
amplitudes present in Fig. 5, all the numerical values for
small non-dimensional frequencies tend to 1.0 and this is
consistent with the fluid particle motions. However, for the
pitch motion amplitudes shown in Fig. 6 there are big dis-

crepancies between our numerical results and Oortmerssen
(1976) calculations in the low-frequency domain. Our results
for ξ5a/k A tend to 1.0 when ω → 0, while the results by
Oortmerssen go to unreasonably large values. For the larger
water depth case, both our numerical results and Pinkster
(1980) calculation of ξ5a/k A have the same tendency and
approach 1.0 for very small frequency values. When the
non-dimensional frequency becomes large, all the consid-
ered motion amplitudes for different water depths go to zero
as a consequence of small wave excitation load.
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4.2 Slow-drift excitation forces on a VLCC

The second-order wave-drift forces acting on a VLCC is
calculated and compared with Pinkster’s experimental and
numerical results. The model tests were carried out with a
1:82.5 scale model of the VLCC in fully loaded conditions
and in head sea. Two sets of restraint systemswere used in the
model tests. One was a simple soft-spring system which was
used in regular waves. The other was a dynamic positioning
systemused in irregularwaves. The purpose of it was to allow
the vessel to move freely at wave frequency while restraining
the motions at the difference frequency. The consequence is
that the slow-drift excitation forces can be determined. The
model tests were carried out in two different water depths
corresponding to water depth-to-draft ratios δ = 1.6 and
δ = 1.2, respectively. The irregular waves with two sets of
parameters were used in the two different water depths. All
model tests in irregular waves were carried out for a dura-
tion of 6 h in full scale to generate long-time records of the
measured forces. To extract the slow-drift excitation forces
accurately, a cross-bispectral technique (CBS) was used to
analyse the measured force records in irregular waves and
form the QTFs for slow-drift excitation surge force. More
details about the setup of the model test and the analysis of
the experimental data can be found in Pinkster and Huijs-
mans (1992). According to Faltinsen (1990), the generalized
slow-drift excitation surge force Fsv

1 can be represented as

Fsv
1 =

N∑
j=1

M∑
i=1

Ai A j

{
T ic
ji cos[(ωi − ω j )t + (βi − β j )]

+T is
ji (ωi , ω j ) sin[(ωi − ω j )t + (βi − β j )]

}
. (32)

Here, Ai and A j denote the amplitudes of the linear inci-
dent waves with frequency ωi and ω j , respectively. T ic

ji and

T is
ji denote the QTF for the slow-drift excitation forces in

phase and out of phase with the difference-frequency inci-
dent waves, respectively. βi and β j denote the random phase
angles of the incident waves with frequency ωi and ω j ,

respectively. According to the definition of Newman (1974),
we have T ic

ji = T ic
i j and T is

ji = −T is
i j . Further, the amplitude

of the QTF for the second-order difference-frequency force∣∣Tji
∣∣ =

√
(T ic

ji )
2 + (T is

ji )
2.

To obtain the QTFs and compare with the experimen-
tal data, we study the slow-drift excitation surge force on
the moored VLCC in bichromatic waves. Since the QTFs
are independent of the incoming wave amplitude, the lin-
ear wave amplitudes of the two components in bichromatic
waves are set to be unity. Moreover, the phase angles of the
incoming waves are set to be zero in the simulations. The
ship is restrained from the low-frequency motions but free
to wave-frequency motions like the conditions in the model

tests. Fourier analysis is used to analyze the time history of
the second-order forces and extract the amplitudes of the
difference-frequency components. In case the frequencies of
the two primary waves are different, the amplitude of the
difference-frequency force has to be divided by a factor 2 to
get the correct QTFs. When the frequencies of the two pri-
marywaves are identical, only sum frequency and ameanpart
exist in the second-order force time history. At this time, the
total slow-drift excitation force equals four times the mean
drift force in regularwave,which is the samewith one compo-
nent in the bichromatic waves. This is not difficult to explain.
When the twowaves are identical in the bichromaticwaves, it
is identical with a regular wave with the same frequency and
amplitude doubled. The slow-drift excitation force is propor-
tional to the square of the amplitude of the incoming wave.
Therefore, the slow-drift excitation force has to be divided
by a factor 4 to get the correct QTFs at this time.

The QTFs for different mean frequencies υ of the bichro-
matic waves and water depth-to-wave length ratios � =
h/λm are plotted in Figs. 7, 8, 9, 10. It can be seen that
the smallest value of � is still larger than 0.1, which is
the shallow water waves’ limit. However, please note that
λm is not the same as the longer wave length λ2 in the
bichromatic waves. If we consider the case with parameters
υ = 0.43 rad/s, μ = 0.24 rad/s and � = 0.11, for instance,
the water depth-to-wave length ratio for the longer wave in
the bichromatic waves �2 = h/λ2 = 0.078, which satis-
fies shallow water wave condition. Moreover, the difference-
frequency waves satisfy shallow water condition in all the
considered cases. Therefore, the characteristics of shallow
water waves are included in the following case studies. As
shown in Figs. 7, 8, 9, 10, both Pinkster’s approximation and
the present complete second-order theory give the QTFswith
the same magnitude as the experimental data, except in the
high mean wave frequency range υ ≥ 0.76 rad/s and when
the difference frequencyμ ≥ 0.1 rad/s. In this case, the wave
lengths of the two primary waves are approximately 1

4 and
1
3

of the ship length, respectively. It becomesdifficult for a tradi-
tional BEMmethod to calculate wave-drift forces for so short
wave lengths. It is noted that the QTFs with a difference fre-
quency close to 0.05 rad/s, which is important for a moored
ship with natural period near 125s, is considerably higher
than that for zero difference frequency. That means New-
man’s approximation underestimates the values of QTFs sig-
nificantly in this difference-frequency range. Compared with
experimental data and our complete second-order results,
Pinkster’s approximationoverpredicted theQTFs in the small
wave frequency range and especiallywhen the difference fre-
quency μ ≥ 0.05 rad/s. This is because Pinkster’s approxi-
mation only considers the contributions of the second-order
undisturbed incoming waves to the second-order potential,
while neglecting the interactions of the first-order diffraction
and radiation effects, which are not small when the wave fre-
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Fig. 7 QTF of the surge drift force in head waves for a fully loaded VLCC (δ = 1.6, υ = 0.43–0.59 rad/s and � = 0.13–0.20)

quency is close to 0.45 rad/s due to large vertical modes of
motions.

With the purpose of investigating the proportion of dif-
ferent components in the slow-drift excitation force, we first
separate the total second-order force into several parts fol-
lowing Pinkster (1980).

F (2) = F1 + F2 + F3 + F4 + F5 (33)

with

F1 = 1

2
ρg

∫
cw0

[
ζ (1) −

(
ξ

(1)
3 + yξ (1)

4 − xξ (1)
5

)]2
n(0)

/√
1 −

(
n(0)
3

)2
dl

F2 = −
∫∫

sb0

1

2
ρ∇φ(1)·∇φ(1)n(0)ds

F3 = −
∫∫

sb0

ρ[(ξ (1) + α(1) × rb)·∇φ
(1)
t ]n(0)ds

F4 = α(1) × mξ̈
(1)

F5 = −
∫∫

sb0

ρφ
(2)
t n(0)ds

Here, we select the case with mean wave frequency ν =
0.49 rad/s as an example to illustrate the different compo-
nents in the slow-drift excitation forces. Both the amplitudes
and phase angles of the different components of the slow-
drift excitation forces with parameters δ = 1.6, � = 0.16
and δ = 1.2, � = 0.13 are plotted in Figs. 11 and 12.
F1 dominates in most of the difference-frequency domain,
while F5 takes a larger part when the difference frequency
μ is close to 0.1 rad/s at water depth δ = 1.6. How-
ever, in the case of δ = 1.2, F5 dominates when the dif-
ference frequency μ ≥ 0.03 rad/s. The relative magni-
tude of F1 ∼ F4 is in agreement with Pinkster (1980)
results for mean drift forces of the same VLCC in regular
waves.

According to Pinkster (1975), the spectral density SF of
the slow-drift excitation forces can be calculated once the
QTFs are obtained. The formula is

SF (μ) = 8
∫ ∞

0
|T (ω, ω + μ)|2 S(ω)S(ω + μ)dω. (34)
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Fig. 8 QTF of the surge drift force in head waves for a fully loaded VLCC (δ = 1.6, υ = 0.65–0.81 rad/s and � = 0.23–0.33)

Here, S(ω) represents the wave spectrum. In deep water, the
QTFs can be calculated as follows by themean forces accord-
ing to Newman’s approximation:

T (ω, ω + μ) = 1

2
[T (ω, ω) + T (ω + μ,ω + μ)]

= 1

2

[
F (2)
m (ω)

A2 + F (2)
m (ω + μ)

A2

]
. (35)

Here, F (2)
m (ω) and F (2)

m (ω + μ) denote the mean drift force
in regular waves with frequencies ω and ω + μ, respec-
tively. A represents the incident wave amplitude. By choos-
ing the modified Pierson–Moskowitz spectrum with mean
wave period Tm = 9.74 s and significant wave height Hs =
2.76m,we plot the corresponding slow-drift excitation force
spectrum in Fig. 13 with QTFs given by Newman’s approxi-
mation, Pinkster’s approximation, the present complete the-
ory and experimental data. Compared with the experimen-
tal results, Newman’s approximation underpredicts the slow-

drift excitation force spectrum significantly, while Pinkster’s
approximation overpredicts the values. The present complete
theory provides results with the samemagnitude as the exper-
imental results. This confirms the necessity of including the
contribution of the second-order potential properly in esti-
mating slow-drift excitation forces in shallow water. How-
ever, for the larger water depth case, our numerical results
have large discrepancies with the experimental results in the
small difference-frequency domain. This is due to the big dis-
crepancies between the experimental and numerical QTFs
in the low difference-frequency range as shown in Figs. 7
and 8. The values of the experimental QTF are basically
smaller than our numerical results in the low difference-
frequency range. It even approaches zero near zero differ-
ence frequency in the case with ν = 0.49 rad/s, � = 0.16
and δ = 1.6, which means the mean drift force is zero in this
case. This is unphysical and one possible reason is the statis-
tical uncertainty in the CBS analysis of the measured forces
by Pinkster (personal communication 2012). The CBS tech-
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Fig. 9 QTF of the surge drift force in head waves for a fully loaded VLCC (δ = 1.2, υ = 0.43–0.59 rad/s and � = 0.11–0.17)

nique is expecting oscillatory quantities and the QTF for the
mean forces is a result of oscillation frequencies approach-
ing zero. There is a large statistical uncertainty in the CBS
analysis, especially for the QTF values close to zero differ-
ence frequency. To reduce the uncertainty, one should con-
duct many long-duration tests in irregular waves so that the
statistical averages become relatively stationary.

4.3 Slowly varying motions of a moored LNGC

We have also studied the slowly varying surge of an LNGC
model in bichromatic waves and head sea and compared the
numerical results with experimental data from Marintek by
Kristiansen (2010). The main particulars of the LNGC are
listed in Table 1 and the wave parameters of the tests, which
are in full scale, are given in Table 2. The water depth-to-
wave length ratio � = h/λm is much larger than the shallow
water wave limit 0.1 for the primary waves in the bichro-

matic waves. Therefore, it is finite water depth condition in
the tests. However, for the difference-frequency waves, shal-
low water condition is satisfied in the considered cases. The
model tests were done with a 1:40 scale model and in an
ocean basin with length and width 80m × 50m and water
depth 0.715m. The corresponding water depth-to-draft ratio
δ = 2.4. The bichromatic waves were generated by a multi-
flap wavemaker located at one end of the basin and propagat-
ing over a ramp at a distance of 7.7m from the wavemaker in
the longitudinal direction. A 20m-long beach was located in
the other end of the basin to absorb propagating waves. The
LNGC model was located in the middle of the basin and at
a distance of 35.6m from the wavemaker in the longitudinal
direction. A soft spring system was used and its stiffness in
surge kx = 420N/m.

Since the analytical second-order Stokes waves in finite
water depth are used as incoming waves in the present
method, the elevations without the ship model are first com-
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Fig. 10 QTF of the surge drift force in head waves for a fully loaded VLCC (δ = 1.2, υ = 0.65–0.81 rad/s and � = 0.19–0.26)

Fig. 11 Amplitudes and phase
angles of different components
of the surge drift force in head
waves for a fully loaded VLCC
(δ = 1.6, � = 0.16 and
ν = 0.49 rad/s)
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Fig. 12 Amplitudes and phase
angles of different components
of the surge drift force in head
waves for a fully loaded VLCC
(δ = 1.2, � = 0.13 and
ν = 0.49 rad/s)

Fig. 13 Spectrum of the surge
drift forces in head waves for a
fully loaded VLCC at different
water depths (δ = 1.6 and
δ = 1.2)

Table 2 Parameters of the bichromatic waves in full scale

Test number T1 (s) T2 (s) A1 (m) A2 (m) � μ/ωn

9609 (5200) 8.47 11.51 1.12 1.68 0.22 2.61

9667 (5210) 11.51 14.99 1.48 2.00 0.15 1.69

7687 (5280) 9.49 11.19 1.36 1.20 0.20 1.35

7913 (5230) 8.51 9.42 1.12 1.32 0.25 0.95

Note test numbers in brackets denote ship tests, while test numbers
outside brackets denote wave tests

pared with the experimental results. Four tests are selected
and the results in full scale are plotted in Fig. 14. The satis-
factory agreement shows that the incoming wave fields can
be described well by the analytical Stokes waves.

The wave-drift damping is calculated by the ARGmethod
as previously described. Mean drift forces in surge for dif-
ferent small forward speeds in regular waves are obtained
by a 3D wave–current–body model which keeps correctly
first-order terms in the forward speed. More details about
the theory and formulas can be found in Zhao et al. (1988).
The mean drift forces in surge are plotted in Fig. 15 as a
function of incoming wave frequencies. Then a line-fitting
technique is used to calculate the gradient of mean drift force
with respect to the forward speed for each wave frequency.
The resulting wave-drift damping is plotted as a function of
incoming wave frequencies in Fig. 16. Wave-drift damping
in bichromatic waves are approximated by the sum of the
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Fig. 14 Time histories of analytical and experimental wave elevations at the position (0, 0, 0) in the body-fixed coordinate system with parameters
δ = 2.4 and � = 0.22, 0.15, 0.20, 0.25, respectively

Fig. 15 Mean drift forces of an LNGC at different forward speeds as
a function of non-dimensional incoming wave frequencies. L and B
denote the ship length between perpendiculars breadth, respectively. A
is the incident wave amplitude

two values in regular waves, which can be obtained from the
curve in Fig. 16.

The viscous damping in surge is approximated by the
equation of shear force in non-separated laminar flow condi-
tion, which can be found in Faltinsen (1990).

Bv
11 = ρ

√
ωnτ S (36)

Here, Bv
11 denotes viscous damping in surge and ωn is the

surge natural frequency of the moored ship. Further, S is the
wetted area of the ship surface and τ = 10−6 m2/s.The ratios
between the wave-drift damping Bwd

11 and the critical damp-
ing in surge Bcrit

11 of the moored ship are 0.45, 0.45, 0.48,
0.39%, corresponding to the four tests in Table 2, in which
the wave parameters are listed. The wave-drift damping is
basically small in the considered cases due to the small wave
amplitudes. The ratio between the viscous damping Bv

11 and
the critical damping in surge Bcrit

11 is 0.39%. Moreover, in
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Fig. 16 Wave-drift damping of an LNGC as a function of non-
dimensional incomingwave frequencies. L and B denote the ship length
between perpendicular breadth, respectively. A is the incident wave
amplitude

the experiments, the mooring springs were located in the air
and therefore we do not consider its damping.

After the first- and second-order forces and wave-drift
damping are obtained at each time step, the motion equations
are solved and the corresponding acceleration, velocity and
motions of the ship become known. We focus on the surge
motions of the LNGC model in bichromatic head waves,
whose parameters are given in Table 2. The ratios between
the difference frequency of the incident wavesμ and the nat-
ural frequency of the moored ship ωn for different tests are
also listed inTable 2.The ratio is closest to 1.0 in test 5230 and
the surge damping values have significant influence on the

surge motions. For example, there is a 23% decrease in the
slowly varying surge motion amplitude if the surge damp-
ing is two times the real value according to our numerical
simulations. However, in the other tests, where the ratios are
far away from 1.0, the effects of damping on surge motions
are negligibly small. The simulations and the experimental
results of the surgemotions are plotted in Figs. 17, 18, 19, 20.
The upper figures present the total motions, while the lower
figures show the difference-frequency motions obtained by a
low-pass filtering technique. It can be seen that the simulated
difference-frequencymotions agree well, in general, with the
experiment results. However, there are clear discrepancies in
the total motions between the simulated results and experi-
mental data. There are several possible error sources. Firstly,
parasitic low-frequency free waves were created when the
bichromatic waves propagated over the bottom ramp near
the wavemaker. Although a correction signal was added to
the wavemaker, it was difficult to eliminate them completely.
The influence of parasitic low-frequency free waves is obvi-
ous in test 5210 and test 5280, which are shown in Figs. 18
and 19. There are significant low-frequency components in
the surge motions whose frequencies are different from the
difference frequency of the bichromatic incident waves. One
main reason of the unintentional low-frequency waves was
the influence of the ramp near the wavemaker, which does
not exist in the numerical model. Further, the amplitudes of
the first harmonic components in the incident waves vary
along the longitudinal direction of the basin in the bichro-
matic wave experiments without a moored ship, which may
due to refraction and viscous effects. Therefore, the first-
order incident wave amplitudes vary over a distance of 2ξ1a,
where ξ1a denotes the surge motion amplitude, due to the

Fig. 17 Time histories of
experimental (test 5200) and
numerical surge motions of an
LNGC in head bichromatic
waves with parameters δ = 2.4
and � = 0.22 (the top figure
shows the total motions and the
lower figure the
difference-frequency motions)
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Fig. 18 Time histories of
experimental (test 5210) and
numerical surge motions of an
LNGC in head bichromatic
waves with parameters δ = 2.4
and � = 0.15 (the top figure
shows the total motions, and the
lower figure the
difference-frequency motions)

Fig. 19 Time histories of
experimental (test 5280) and
numerical surge motions of an
LNGC in head bichromatic
waves with parameters δ = 2.4
and � = 0.20 (the top figure
shows the total motions, and the
lower figure the
difference-frequency motions)

surge motion of the ship and this cannot be simulated in the
numerical model. In the worst case, the amplitude of the first
harmonic of the incident waves varied approximately 5%
over a distance of 0.40m in model scale.

4.4 Convergence tests

Convergence tests have been done by varying the mesh size
on the body surface and the free surface, as well as the time
increment. Since it is easy to obtain convergent results for
the linear excitation and motions, the convergence tests for

the second-order forces are only shown here. Our numerical
studies found that the results are not sensitive to the size of
the damping zone when the length of it is larger than 2λ2.
Here, λ2 represents the wavelength of the longer primary
wave. Therefore, the length of the damping zone is chosen
to be 2.5λ2 in the present studies. Further, the results are not
sensitive to the distance between the ship and the beginning
part of the damping zone as long as the control parameter of
the damping zone satisfies α ≤ 2. Actually, the results are
identical if this distance is larger than the ship length in our
numerical studies. So we chose this distance to be two ship
lengths 2L with control parameter α = 1.
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Fig. 20 Time histories of
experimental (test 5230) and
numerical surge motions of an
LNGC in head bichromatic
waves with parameters δ = 2.4
and � = 0.25 (the top figure
shows the total motions, and the
lower the difference-frequency
motions)

Fig. 21 The difference between
the volumes of the generated
panel model and the designed
hull shape as a function of
different body surface panel
numbers divided by one

Fig. 22 Two mesh schemes
(Mesh1 and Mesh2) for a fully
loaded VLCC

Here, the parameters υ = 0.49 rad/s, � = 0.13 and
μ = 0.16 rad/s are chosen for the convergence studies of
the VLCC and the parameters in test 5280 are used for the

convergence studies of the LNGC. First of all, the discretiza-
tion of the body surface and free surface should be suffi-
ciently large to guarantee a sufficient panel number within
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Fig. 23 Free-surface mesh in the two mesh schemes (Mesh1 and Mesh2) for a fully loaded VLCC

Fig. 24 Two mesh schemes
(Mesh1 and Mesh2) for an
LNGC

one wavelength. According to our numerical tests, at least
11 bilinear panels should be used for one wavelength to
calculate the first-order forces and motions accurately and
this number increases to 18 for accurate prediction of the
second-order mean and difference-frequency forces. A cir-
cular free surface is chosen in the present study and the
mesh size increases with the increase in the distance to the
ship. It is reasonable to have meshes that have exponen-
tially increasing size in the vertical direction due to the expo-
nential characteristic of the velocity potential. However, in
the present numerical studies, the results are not sensitive
to the vertical mesh size when the panel number is larger
than 6 on the body surface and along the ship draft direc-
tion. Therefore, we just use 11 constant vertical-size pan-
els along the vertical direction on the ship surface. Further,
the number of panels on the body surface should be suffi-
ciently large to guarantee the difference between the vol-
umes of the generated panel model and the designed hull
shape is acceptable for hydrodynamic analysis.Most industry
and ship classification societies suggest that this difference
γ = 100(∇N −∇D)/∇D should be less than 1.0 for seakeep-

ing analysis. However, for the investigation of global loads
acting on ships, no exact guideline has been found. Here, we
use four kinds of mesh schemes to descretize the ship surface
and use γ = 1 as a reference. Figure 21 shows the relations
between panel numbers and γ. We chose the largest and sec-
ond largest panel numbers on the body surface as ‘Mesh1’
and ‘Mesh2’ for convergence tests for both the VLCC and
LNGCmodels. Figures 22 and 24 shows the generated panel
models for the VLCC and LNGC by the two selected mesh
schemes, while Figs. 23 and 25 give the free-surface panel
plot.

Figure 26 shows the second-order difference-frequency
force on the ship with two different mesh schemes. For the
VLCC, there are 880 panels on the body surface and 4,400
panels on the free surface for ‘Mesh1’, and 1,760 panels
on the ship surface and 8,800 panels on the free surface for
‘Mesh2’. For the LNGC, there are 1,120 panels on the ship
surface and 5,200 panels on the free surface for ‘Mesh1’,
ans 2,240 panels on the ship surface and 10,400 panels on
the free surface for ‘Mesh2’. The results for the different
mesh arrangements have 0.26% difference for the VLCC
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Fig. 25 Free-surface mesh in the two mesh schemes (Mesh1 and Mesh2) for an LNGC

Fig. 26 Time histories of the
surge difference-frequency force
F (2)
1 - on a fully loaded VLCC

(the left-hand figure) and an
LNGC (the right-hand figure)
for different mesh schemes
(�t = T1/100)

and 1.12% difference for the LNGC, which is small from
a practical point of view. This is because the second-order
difference-frequency force mainly depends on the long wave
component in the incoming waves which is not sensitive to
the mesh size. In the present numerical studies, ‘Mesh2’ is
adopted to keep the accuracy. Figure 27 shows the conver-
gence test results for different time increments. It is noted
that 75 time steps per period can provide satisfactory accu-
rate results. However, 100 time steps per period are used in
all the presented numerical studies.

5 Conclusions and future works

Investigations on wave-induced loads and motions of a
moored ship in shallow water are performed by a second-
order perturbation method with the incident wave slope as
a small parameter. Two types of realistic ships are chosen
which are a VLCC and an LNGC. It is demonstrated numer-
ically that the added mass and damping coefficients increase
with decreasing water depth in general, except for the added
mass in longitudinal modes of motions in the high wave fre-
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Fig. 27 Time histories of the
surge difference-frequency force
F (2)
1 - on a fully loaded VLCC

(the left-hand figure) and a
LNGC (the right-hand figure)
for different time increments
(Mesh 2)

quency domain. The linear surge motion amplitude has dis-
tinct increment in shallowerwater depth in the low-frequency
domain,which is consistentwith fluid particlemotions.How-
ever, the influences ofwater depth on the surgemotion ampli-
tude are not significant in the wave-frequency domain, while
the heave and pitch motion amplitudes tend to be smaller
with reducing water depth. Further, according to our numeri-
cal results, the longitudinal slow-drift excitation forces on the
moored VLCC increase with decreasing water depth and the
second-order velocity potential dominantly contributes in a
frequency range which is important for moored ships in shal-
low water. Therefore, as expected, Newman’s approxima-
tion in which the second-order velocity potential is neglected
significantly underpredicts the slow-drift excitation loads in
shallow water. Moreover, the results tend to be overpre-
dicted by Pinkster’s approximation, which only considers
the second-order components in the incident waves, although
the orders of magnitudes are still the same with experimental
and our complete second-order numerical results. Lastly, the
slowly varying motions of an LNGC in head waves are sim-
ulated and compared with available experimental data. Both
the numerical and experimental results show that the low-
frequency components dominate in the surge motions of the
moored ship, while the magnitudes of the wave-frequency
motions are relatively small. The influences of the wave-drift
damping on the ship surge motions are significant when the
difference frequency is close to the natural frequency of the
moored ship. The satisfactory agreements demonstrate that
the present method can provide acceptable results for slowly
varying motions of a moored ship in shallow water waves.

The present model can be used for simulating moored
ship motions in six degrees of freedom. However, only three
degrees of freedom are considered in the present paper due to
the head sea conditions in the experiments. The lateral hydro-
dynamic loads andmotions of amoored ship in obliquewaves
in shallow water will be considered in the future. Further, the
influence of a weak current on slow-drift excitation forces on
a moored ship in shallow water will be investigated in future
studies.
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