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Abstract Supplementation of certain micronutrients to stan-
dard nutrition therapy in pharmacological doses can modulate
the host immunologic response. The three most extensively
studied: arginine, glutamine, and omega-3 fatty acids (Bfish
oils^). While animal studies are encouraging, human clinical
trials arrive at conflicting conclusions for multiple reasons,
mainly related to heterogeneity in patient selection, concentra-
tion and combination of agents, dose, route, and timing and
administration. Glutamine should not be given to patients with
multi-organ (especially renal) failure and arginine should be
avoided in septic shock. Enteral glutamine may be beneficial
in burn and trauma patients. Larger, higher-quality studies are
required before strong recommendations can be made.
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Introduction

Nutrition therapy has become increasingly recognized as a
key component of optimal care of the critically injured

patient. Accumulating evidence demonstrate that provid-
ing early and sufficient nutrition is associated with im-
provements in important outcomes such as infections,
ventilator days, intensive care unit (ICU) length of stay,
hospital days, discharge location, physical recovery, and
mortality [1, 2]. Unfortunately, international surveys have
also revealed that ICU patients, particularly surgical and
trauma patients often do not receive the full amount of
prescribed macronutrients (calories and protein) [3]. For
example, two large observational studies reported that
trauma patients in general and patients with traumatic
brain injury (TBI) received slightly over half of their re-
quired calories and protein [3, 4]. Severe trauma imposes
significant stress upon the patient and causes an acute
phase marked by catabolism, oxidative stress, and im-
mune system dysfunction [5–8]. Dysregulated processes
are believed to predispose the patient to complications
such as infectious morbidity, multi-organ failure, and
death. These complications can be reduced by early and
optimal of artificial nutrition [1, 2].

Since the 1980s, it has long been recognized that sup-
plementation of certain micronutrients to standard nutri-
tion therapy in pharmacological doses can modulate the
host immunologic response. Termed Bimmunomodulating
agents^, Bimmunonutrition^, Bpharmaconutrition^, or
Bnutritional pharmacology^ [9, 10], these micronutrients
may be added to standard formula as an enrichment or
may be administered separately as a medication.
Because of the aforementioned difficulties in providing
adequate nutrition (both enterally and parenterally), the
latter approach may be preferable in order to ensure con-
sistency and adequacy of delivery. While many nutrients
have been considered for supplementation, this review
will focus on the three most extensively studied: arginine,
glutamine, and omega-3 fatty acids (Bfish oils^).
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Glutamine

Glutamine is the most abundant amino acid and is the main fuel
source for rapidly dividing cells such as enterocytes, macro-
phages, and lymphocytes. Numerous animal and human studies
have implicated glutamine in the normal function of the immune
system, whether by mediating T cell immunity or acting as an
antioxidant. Other proposed key functions of glutamine include
acting as a nitrogen shuttle, participating in glucose metabolism,
inducing heat shock proteins, or stimulating autophagy [11].
During states of health, glutamine is a nonessential amino acid
and can be synthesized by the body. However, low levels of
glutamine have been observed during critical illness and trauma
[12, 13] and are associated with increased mortality [14, 15];
thus, glutamine had come to be referred to as Bconditionally
essential^ [11, 16], though the exact origin of the concept is
obscure. The association led many to hypothesize that adminis-
tering exogenous glutamine, parenterally or enterally, to restore
glutamine to Bnormal^ levels during critical illness may improve
clinical outcomes [15, 17]. Indeed, animal models of hemorrhag-
ic shock demonstrate that glutamine supplementation can atten-
uate the impairment of intestinal blood flow, potentially preserv-
ing mucosal integrity [18], while peritonitis models have shown
that glutamine enhances peritoneal bacterial clearance [19] as
well as neutrophil function through increased production of re-
active oxygen intermediates [20]. Based on encouraging obser-
vational studies and meta-analyses of smaller randomized trials
[21], two large, well-designed and adequate poweredmulticenter
trials have recently been conducted.

Reducing Deaths Due to Oxidative Stress (REDOXS) [22•]

The REDOXS trial randomized 1223 mechanically ventilated
adults with multi-organ failure to receive glutamine (enteral and
parenteral) supplementation, antioxidants, both, or placebo in a
2×2 factorial design. Trauma patients comprised less than 3 %
of all subjects and patients with severe traumatic brain injury
(TBI) were specifically excluded. The study was conducted in
40 ICUs in Europe, Canada, and the USA. Contrary to expecta-
tion, the patients receiving glutamine had a significant increase in
hospital and 6-month mortality. Furthermore, there was no effect
of glutamine on infectious complications or organ failure.
Antioxidants had no effect on the primary endpoint of 28-day
mortality or any other secondary endpoint. Several important
points must be made. In this study, the majority of patients were
in shock and the harmwasmostly observed in patients with renal
failure [23]. Additionally, the dose of parenteral and enteral glu-
tamine was relatively high (30 g/day enteral glutamine and
0.35 g/kg ideal body weight per day), over twice the previously
recommended doses. This should be contrastedwith prior studies
showing benefit, which were performed in hemodynamically
stable patients without organ failure at lower doses (0.3–0.5 g/
kg/day). Thus, while the results of the REDOXS study clearly

identify patients who should not receive glutamine, many ques-
tions remain regarding which patients may potentially benefit.

Metaplus [24]

The Metaplus trial was conducted in 14 ICUs across Europe
and randomized 301 adult patients on mechanical ventilation
to an enteral formula enriched with glutamine, selenium, and
fish oils or to a high-protein control formula. Both groups
received the same amounts of calories and protein. There
was no difference in the primary endpoint of new infections.
Similar to the REDOXS study, the Metaplus trial demonstrat-
ed an increase in 6-month mortality in the medical patients
receiving the enriched formula.

After the publication of the REDOXS and Metaplus trials,
some have begun to question the hypothesis that low gluta-
mine levels cause worse outcomes. It may be possible that low
glutamine levels are, in fact, an adaptive stress response and
supplementation may be counter-productive [25]. This is anal-
ogous to the familiar concept of Bpermissive hypotension^ in
trauma patients [26, 27]. In a few short years, the enthusiasm
for glutamine has been greatly tempered and some have
heralded an Bend of an era^ [28]. Much remain unknown, as
it has been observed that low glutamine levels are inconsistent
and widely variable, having little correlation with severity of
illness markers such as the commonly used APACHE II score
[14]. Less than a third of critically ill patients are actually
glutamine-deficient [15, 29]. Interestingly, about 15 % of pa-
tients may have baseline high levels of glutamine, a state
which is also associated with worse outcomes [14]. Thus,
one explanation of the divergent findings of recent studies
may be that without measurement of actual glutamine levels,
some patients with high glutamine levels may have received
supplementation. A trend towards higher mortality in patients
with high baseline glutamine levels treated with supplemental
glutamine was observed in the Metaplus trial.

One potential concern about glutamine supplementation in
trauma (specifically TBI) patients is the fact that glutamate is
excitotoxic and may exacerbate edema, worsening secondary
brain injury [30, 31]. While some have been hesitant to pre-
scribe glutamine to brain injured patients for fear of elevating
brain glutamate levels. These concerns have not yet been
borne out thus far, even with relatively high doses of contin-
uous glutamine infusion [32, 33].

Meta-analysis of randomized trials has concluded that en-
teral supplementation with glutamine in heterogeneous criti-
cally ill patient populations is not associated with improve-
ments in mortality, infectious complications, or ICU length of
stay [34]. The most recent recommendations from the Society
of Critical Care Medicine (SCCM) and the Canadian Practice
Guidelines recommend against routine enteral or parenteral
glutamine supplementation in critically ill patients [35••].
Clinical trials enrolling exclusively trauma patients are
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plagued with methodological flaws such as small sample size,
surrogate outcomes, heterogeneous populations, inconsistent
nutrition delivery, varying glutamine delivery routes, etc.
[36–44] We statistically aggregated all the randomized trials
of glutamine in exclusively trauma patients. Glutamine has
not been shown to improve mortality or length of stay in
trauma patients but is associated with a trend towards reduced
infectious complications. (Fig. 1a–c) In patients with burn
injury, meta-analysis of glutamine supplementation in burns
demonstrates decreased hospital mortality, infectious compli-
cations, specifically Gram-negative bacteremia, and hospital

LOS (Fig. 2a, b). Thus, to summarize the state-of-the-art evi-
dence, glutamine supplementation should not be given to crit-
ically ill patients in multi-organ failure. For burn and trauma
patients, moderate dose enteral glutamine (<0.5 g/kg/day)
may be considered after resuscitation is complete [29] but
more research is needed to confirm these estimates of treat-
ment effect. The RE-ENERGIZE trial is a large-scale, multi-
national, multicenter randomized trial that aims to enroll 2700
burn injured patients to evaluate the effect of enteral glutamine
on 6 month mortality in this unique patient population
and is currently enrolling patients (clinicaltrials.gov ID

Fig. 1 aMeta-analysis of glutamine trials, trauma subgroup, and mortality bMeta-analysis of glutamine trials, trauma subgroup, infectious complica-
tions c Meta-analysis of glutamine trials, trauma subgroup, and hospital LOS
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#NCT00985205). A similar mortality-based trial of glutamine
in trauma patients is warranted.

Arginine

Arginine stimulates the release of growth factor, prolactin, and
insulin. As a precursor for hydroxyproline (and thus collagen),
arginine is necessary for tissue repair and wound healing [45].
In experimental animal models, arginine has been shown to
enhance macrophage phagocytic activity and reactive oxygen
species production by neutrophils [46, 47]. Studies have shown
that serum arginine levels are likewise depressed soon after
major trauma and burns, mainly from increased degradation
with unchanged de novo synthesis [48–51]. Thus, arginine, like
glutamine, has been similarly labeled as Bconditionally
essential^ or Bsemiessential^ [52, 53] and many have tried to
demonstrate benefit from supplementing arginine in critically ill
patients. However, arginine is a precursor for nitric oxide, a
potent vasodilator, and arginine supplementation in animal
models has shown increased nitric oxide production with sub-
sequent loss of vascular tone and hypotension [54, 55]. This
finding has also been found in human clinical trials [56–58].
These detrimental effects were not seen in stable populations.

Interestingly, argininemay have a role in neuroprotection after
traumatic brain injury through reduction of excitotoxicity and
attenuation of mitochondrial dysfunction [59]. Despite the

long-standing interest in arginine as a potential pharmaconutrient
and a wealth of animal experiments [60], relatively few clinical
trials have been performed exclusively in trauma patients [61].

The 2015 update to the Canadian Clinical Practice guidelines
meta-analyzed five level 1 studies and 22 level 2 studies and
concluded by recommending against routine arginine supple-
mentation in critically ill patients, particularly those with sepsis
[62]. Meta-analysis of the subgroup of trauma patients found no
overall evidence of benefit or harm regarding mortality or infec-
tious complications [62]. (Figure 3a-b) However, the most recent
2016 SCCM recommendations provide a weak recommendation
for arginine supplementation in severe trauma, based on very low
quality evidence [35••]. This recommendation is based on a
meta-analysis (which did not find any benefit of arginine-
containing formulas over standard formula) [62], a single RCT
of 20 patients [37], and expert consensus review.

Fish Oils

The omega-3 fatty acids eicosapenaenoic acid (EPA) and
docosahexaenoic acid (DHA), the so-called Bfish oils^ or
poly-unsaturated long-chain fatty acids (PUFAs), are consid-
ered less inflammatory than the commonly used omega-6 fatty
acids through alterations in cell membrane structure and func-
tion, signaling pathways, and gene expression.

Fig. 2 a Meta-analysis of glutamine trials, burns subgroup, and mortality b Meta-analysis of glutamine trials, burns subgroup, and hospital LOS
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Initial trials demonstrated that patients with septic or
acute respiratory distress syndrome (ARDS) supplement-
ed with these Bfish oils^ benefited in pulmonary neutro-
phil recruitment, alveolar cytokine levels, gas exchange,
mechanical ventilation requirements, new-onset organ
failure, and ICU length of stay [63–65], though some
did not show any benefit [66].

OMEGATrial [67•]

The OMEGA trial was sponsored by the National Heart,
Lung, and Blood Institute ARDS Clinical Trials Network
and randomized 272 adults at 44 hospitals in the USA to
receive enteral nutrition supplemented with fish oils and anti-
oxidants or an isocaloric control. The study was stopped early
for futility for the primary endpoint of 28-day ventilator-free
days. Importantly, there were concerning trends noted in some
secondary endpoints. Specifically, patients receiving fish oils

had higher 60-day hospital mortality, fewer ICU-free days,
fewer nonpulmonary organ failure-free days, and higher num-
ber of days with diarrhea.

Immune system effects aside, fish oils such as DHA
may have a role in traumatic brain injury (TBI) and spinal
cord injury through other mechanisms such as reduction
of excitotoxcity, mitigation of neuronal cell death, and
repair of nervous damage [68–71]. Animal studies are
encouraging, but there have been no controlled clinical
trials performed to date [72–76]. Human experience is
limited to only two case reports [77, 78]. Thus, fish oils
may have a place in the treatment of TBI, though there is
not sufficient evidence to recommend routine use. At this
time, based on conflicting evidence, there is no recom-
mendation for routine enteral fish-oil supplementation in
ICU patients with or without ARDS [35••]. Trials focus-
ing specifically on trauma patients have failed to find any
benefit of fish-oil supplementation [79].
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Fig. 3 a Meta-analysis of arginine trials, trauma subgroup, and mortality b meta-analysis of arginine trials, trauma subgroup, and infectious
complications
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Limitations of Existing Studies

With few exceptions, existing studies of immune-modulating
nutrients are plagued bymethodological flaws. The vast majority
are limited in sample size and underpowered to detect differences
in clinically meaningful outcomes. There is little consistency
between studies in patient population, duration and timing of
treatment, measured outcomes, and composition and concentra-
tion of pharmaconutrients used. Furthermore, there is wide var-
iance in the timing of enteral nutrition, use of parenteral nutrition,
and adequacy of macronutrient delivery. Therefore, meta-
analyses must be interpreted with caution. Indeed, there is a
bewildering array of meta-analyses, of varying quality, which
attempt to combine the randomized trials according to patient
population and route [80–86]. All have commented upon the
high degree of heterogeneity. Not surprisingly, these meta-
analyses have arrived at conflicting conclusions regarding effica-
cy and effect size. To combine critically ill and trauma patients
together is implicitly stating that a 73-year-oldwoman on chronic
steroids for rheumatoid arthritis in multi-organ failure from
urosepsis would have the same response to glutamine or arginine
as a 22-year-old healthymanwith severe brain injury, pulmonary
contusions, and multiple fractured extremities or a 40 year-old
man with 80 % burns and inhalational injury. Trauma and sepsis
have been historically considered to be similar, due to the com-
mon phenotype of the systemic inflammatory response syn-
drome (SIRS). Recently, however, a new definition of sepsis,
BSepsis-3^, has been derived and validated using large databases
and sophisticated statistical methods which divorces SIRS from
sepsis [87]. This lends further weight to the argument that sepsis
and trauma are distinct and separate phenomenawhich should be
treated differently. Even after separating trauma patients from the
rest of the critically ill, it is questionable to aggregate all injured
patients (penetrating, blunt, TBI, burns, etc.) into one group. To
group all trauma patients together into a single trial is analogous

to enrolling patients with melanoma, lung, breast, bone, and
thyroid malignancies into a single Bcancer^ study.

Many studies investigated proprietary Bimmune-enhancing
formulas^ and therefore it is impossible to discern the contribu-
tions of individual components such as glutamine, arginine, fish
oils, nucleotides, antioxidants, trace elements, butyrate and diffi-
cult to combine their results for meta-analysis [57, 88, 89]. These
proprietary formulas have differing concentrations of multiple
components, making meta-analysis difficult, if not impossible.
(Table 1) Interactions between components may be important,
as illustrated by evidence that arginine supplementation causes
increased plasma glutamine levels [90]. Adding further to the
confusion, in some studies the two arms did not receive compa-
rable calories/protein and the control group was administered a
pro-inflammatory formula, skewing the results in favor of the
intervention group [91]. The majority of trials did not actually
measure baseline serum levels of glutamine, arginine, or fish oils
or the effect of treatment. Therefore, it remains unclear whether
or not the enrolled subjects even required supplementation or had
the intended increase in serum levels. Future trials should con-
sider supplementing only patients with documented low gluta-
mine levels, as only about 30 % of critically ill patients are
actually hypoglutaminemic at admission and high glutamine
levels have also been associated with increased mortality [14].

Finally, one must consider the overall improvements in
critical care that have resulted in approximately 1 % decrease
in mortality per year over the past few decades [92]. With
changes such as lung-protective ventilation, bundles for pre-
vention of central line-associated bloodstream infections and
ventilator-associated pneumonia, early ambulation, daily in-
terruption of sedation and spontaneous breathing trials, tighter
glycemic control, fluid restriction, and restrictive blood trans-
fusion, the immunomodulatory effects of micronutrients may
no longer be as important as they once were a decade ago. For
example, a time-sequential analysis of glutamine studies

Table 1 Immunonutrition
products and comparison (per
1000 kcal)

Product kcal/mL Arginine (g) EPA/DHA (g) Glutamine (g) Nucleotides

AlitraQa 1.0 4.4 0 15.5 0

Crucialc 1.5 10 3.6 0 0

Immun-Aidd 1.0 14 0 12 1.0

Impactb 1.0 12.5 1.7 0 1.2

Impact 1.5b 1.5 12.5 1.5 0 1.2

Optimentala 1.0 5.5 3.26 0 0

Perativea 1.3 6 0 0 0

Pivot 1.5a 1.5 8.6 2.6 0 0

Stresson Multi-fibrec 1.25 7.12 0.88 10.4 0

a Ross Products
b Novartis Nutrition
c Nestle Clinical Nutrition
d Product discontinued

Reprinted with permission from [95]

84 Curr Trauma Rep (2016) 2:79–87



demonstrated that only trials performed prior to 2003 reported
positive effects, whereas more recent studies reporting
no benefit [93].

Conclusions

The provision of specific micronutrients in pharmacologic
doses for the purposes of modulating the immune response
is an area of ongoing active investigation. Agents such as
glutamine, arginine, and fish oils are neither panaceas nor
universal venoms. As with all interventions, timing, drug
dose, and route of administration are important considerations
and appropriate patient selection is paramount. The same in-
tervention may be beneficial in one patient and harmful in
another. We must guard against inappropriate extrapolations,
lest we throw the baby out with the bath water [58, 94]. At
present, the existing evidence does not support the routine
supplementation of arginine or fish oils in severely injured,
critically ill patients [35••]. Routine glutamine supplementa-
tion during hemodynamic instability (especially in the setting
of renal insufficiency) is strongly discouraged, though enteral
glutamine may still be considered for burn patients. Much
remain unknown and additional research is required to further
clarify which particular patient populations will benefit from
supplementation by which route with which micronutrient at
which dose for what duration of treatment.
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