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Abstract Streamflow forecasting is used in river training and management, river restoration,
reservoir operation, power generation, irrigation, and navigation. In hydrology, streamflow
forecasting is often done using time series analysis. Although monthly streamflow time series
are stochastic, they exhibit seasonal and periodic patterns. Therefore, streamflow forecasting
entails modeling two main aspects: seasonality and correlation structure. Spectral analysis can
be employed to characterize patterns of streamflow variation and identify the periodicity of
streamflow. That is, it permits to extract significant information for understanding the
streamflow process and prediction thereof. For forecasting streamflow, spectral analysis has,
however, not yet been widely applied. Streamflow spectra can be determined using entropy
theory. There are three ways to employ entropy theory: (1) Burg entropy, (2) configurational
entropy, and (3) relative entropy. In either way, the methodology involves determination of
spectral density, determination of parameters, and extension of autocorrelation function. This
paper reviews the methods of spectral analysis using the entropy theory and tests them using
streamflow data.

Keywords Entropy.Relativeentropy.Spectralanalysis .Burgentropy.Configurationalentropy
. Streamflow forecasting

1 Introduction

Streamflow forecasting is the process of estimating future streamflow in advance, based on
available information. Timely streamflow may help the public to reduce the impacts of a flood
or a drought. As streamflow is stochastic, time series analysis is a widely used method for
streamflow forecasting. The most widely used models are autoregressive (AR) or
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autoregressive moving average (ARMA) models, which have been applied for forecasting
streamflow under different conditions (Carlson et al. 1970; Haltiner and Salas 1988; Jones and
Brelsfor 1967; Salas and Obeysekera 1982). However, the underlying linear assumption of
these methods is the major drawback that sometimes limits their application (Elshorbagy et al.
2002). On the other hand, it has been shown that spectral analysis is capable of extracting
significant information for understanding the streamflow process and prediction thereof
(Fleming et al. 2002; Ghil et al. 2002; Labat 2005; Marques et al. 2006; Molenat et al.
1999). Thus, entropy theory is employed to combine spectral analysis and time series analysis
for streamflow forecasting.

The development of Burg entropy spectral analysis (BESA) (Burg 1967, 1975) not only
improved the resolution of the spectral density but also improved the reliability of prediction of
streamflow. BESA has been applied to forecast hydrological series and it is recommended over
classical methods (Krstanovic and Singh 1989, 1991a, b; Singh 2013). However, due to the
weakness in determining multi-peak spectral density for non-stationary conditions (Boshnakov
and Lambert-Lacroix 2012), it sometimes does not work well for monthly streamflow with
strong seasonal and periodic characteristics.

The configurational entropy spectral analysis (CESA) was introduced by Frieden (1972)
and Gull and Daniell (1978), which is sometimes also referred to as maximum entropy method
2 (MEM2) or spectral MESA (SMESA) (Katsakos-Mavromichalis et al. 1985; Tzannes et al.
1985; Tzannes and Avgeris 1981). Superior to BESA, CESA has been shown to be not
restricted to the AR process (Liefhebber and Boekee 1987; Ortigueira et al. 1981). Configu-
rational entropy has also been applied for spectral analysis and shown to have a better
resolution than BESA for autoregressive moving average (ARMA) and moving average
(MA) processes, and is comparable to BESA for the autoregressive (AR) process (Nadeu
et al. 1981). It has been applied to forecast monthly streamflow and has shown better reliability
than BESA for both high flow and low flow (Cui and Singh 2015).

Besides, there is relative entropy spectral analysis (RESA), which was developed by Shore
(1979, 1981) as an extension of Burg’s maximum entropy spectral analysis, where the spectral
power was considered as a random variable. RESA can be used for streamflow forecasting as
well. Later, another version of RESA was developed by Tzannes et al. (1985), considering
frequency as a random variable. The RESA spectra are reported to have higher resolution and
are more accurate in detecting peak location than other methods for spectral computation
(Papademetriou 1998). Besides, the RESA theory reduces the number of prediction coeffi-
cients by relying on the prior information (Schroeder 1982). However, RESA has not been
applied to streamflow forecasting yet.

The objective of this paper is to review and compare three methods of entropy spectral
analysis, which are Burg entropy spectral analysis (BESA), configurational entropy spectral
analysis (CESA) and relative entropy spectral analysis (RESA).

2 Entropy Spectral Analyses

Let streamflow time series y(t) be denoted as y1,…, yT, where T is the total time period.
Transferring to the frequency (f) domain, the information on streamflow is stored in the
spectral density p(f). Considering frequency f as a random variable, the normalized
spectral density p(f) can be taken as the probability density function. Thus, the Burg
entropy can be defined as
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HB fð Þ ¼
Z
−W

W

ln p fð Þ½ �d f ð1Þ

where W=1/(2Δt) is the Nyquist fold-over frequency and f is the frequency that varies
from –W to W, Δt is the sampling period. It is observed that the Burg entropy is defined
as the sum of log of the spectral density values.

Taking the expectation of the integral of the log of spectral density, the configurational
entropy is defined as

HC fð Þ ¼ −
Z
−W

W

p fð Þln p fð Þ½ �d f ð2Þ

On the other hand, with given prior spectral density q(f), the relative entropy of the spectral
density p(f) can be defined as

HR fð Þ ¼
Z

p fð Þln p fð Þ=q fð Þ½ �d f ð3Þ

The prior spectral density can be taken as a background noise with the peak assumed at the
observed periodicity. It is noted that when a uniform prior is taken, the relative entropy reduces
to the configurational entropy.

The development of entropy spectral analyses comprises the following steps: (1) derivation
of entropy-based spectral density, (2) computation of the Lagrange multipliers, (3) extension of
the autocorrelation function, and (4) forecasting of streamflow.

2.1 Derivation of Entropy-Based Spectral Density

To obtain the least biased spectral density, one needs to maximize the Burg and configura-
tional entropy but minimize the relative entropy to the prior subject to specified constraints.
The constraints can be formed from the relationship between the spectral density and
autocorrelation, which can written as

ρn ¼
Z
−W

W

p fð Þei2πfnΔtd f ;−N ≤n≤N ð4Þ

where i ¼ ffiffiffiffiffiffi
−1

p
and ρn is the autocorrelation function of n-th lag. When n=0, Eq. (4)

reduces to

ρ0 ¼
Z
−W

W

p fð Þd f ¼ 1 ð5Þ

Thus, entropy can be maximized or minimized, subject to the constraints, using the
Lagrange multipliers, in which the Lagrangian function can be formulated as

L fð Þ ¼ H fð Þ−
XN
n¼−N

λn

Z
−W

W

p fð Þexp i2πfnΔtð Þd f −ρn

2
4

3
5 ð6Þ

where λn, n=0, 1, 2, …, N, are the Lagrange multipliers, and H(f) is the entropy to be
maximized [as HB(f) or HC(f)] or to be minimized [as HR(f)]. Taking the partial derivative of
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L(f) with respect to the spectral density and equating to zero, ∂L fð Þ
∂p fð Þ ¼ 0, the least-biased

spectral densities obtained from the maximization of the Burg entropy and configurational
entropy and from the minimization of the relative entropy, respectively, are

pB fð Þ ¼ 1

XN
n¼−N

λne
−i2πfnΔt

ð7Þ

pC fð Þ ¼ exp −1−
XN
n¼−N

λne
i2πfnΔt

 !
ð8Þ

pR fð Þ ¼ q fð Þexp −1−
XN
n¼−N

λne
i2πfnΔt

 !
ð9Þ

It can be seen from the above three equations that the spectral density derived from the Burg
entropy is in the form of inverse of polynomials, while the ones from the configurational
entropy and relative entropy are in the exponential form. The form in Eq. (7) suggests that
BESA is related to the linear prediction process.

2.2 Determination of Parameters

Due to the different forms of the spectral density, the ways of determining Lagrange multipliers
are different. For the Burg entropy, the Lagrange multipliers and prediction coefficients can be
computed from the Levinson-Burg algorithm developed by Burg (1967, 1975). The Levinson-
Burg algorithm is a recursive algorithm for estimating prediction coefficients, and improves
the original Levinson algorithm by computing forward and backward prediction error together
to update the coefficient of next order (Collomb 2009; Lin and Wong 1990).

However, for the configurational entropy and relative entropy, the cepstrum analysis is
incorporated. Taking the inverse Fourier transform of the log-magnitude of Eq. (9), one obtains

Z
−W

W

1þ log p fð Þ½ �−log q fð Þ½ �f gei2πfnΔtd f ¼
Z
−W

W

−
XN
n¼−N

λne
i2πfnΔt

 !
ei2πfnΔtd f ð10Þ

It can be seen from Eq. (10) that there are two terms relating to the spectral density that can
turn to the cepstrum of autocorrelation, which is also called autocepstrum.

Let the prior cepstrum of autocorrelation be denoted as eq.(n), which is transferred from the
prior spectral density as

eq nð Þ ¼
Z
−W

W

logq fð Þei2πfnΔtd f ð11Þ

Similarly, the posterior cepstrum of autocorrelation ep(n) transform from the posterior
spectral density can be expressed as

ep nð Þ ¼
Z
−W

W

logp fð Þei2πfnΔtd f ð12Þ
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Doing the integration of both sides of Eq. (10), one gets

δn þ ep nð Þ−eq nð Þ ¼ −
XN
s¼−N

λsδn−s ð13Þ
where δn is the delta function defined as:

δn ¼ 1; n ¼ 0
0; n≠0

�
ð14Þ

Equation (13) can be expanded as a set of N linear equations:

λ0 ¼ −1−ep 0ð Þ þ eq 0ð Þ
λ1 ¼ −ep 1ð Þ þ eq 1ð Þ

⋮
λk ¼ −ep kð Þ þ eq kð Þ

ð15Þ

Equation (15) enables to solve for the Lagrange multipliers in a straight-forward manner.
Thus, the Lagrange multipliers can be estimated from the summation of the prior and posterior
autocepstrums. The prior autocepstrum can be obtained from the observed periodicity of
streamflow. The posterior autocepstrum can be estimated from the following recursive
function introduced by Nadeu (1992) as

ep nð Þ ¼ 2 ρ nð Þ−
Xn−1
k¼1

k

n
ep kð Þρ n−kð Þ

" #
; n > 0 ð16Þ

It is seen from Eq. (16) that the nth lag of cepstrum ep(n) is dependent on the previous n-1
lags of cepstrum and n-lags of autocorrelation. Thus, for given N lag autocorrelations, the
cepstrum of autocorrelation can be computed up to lag N.

It can be noted that for solving parameters of the configurational entropy without prior, the
cepstrum eq in Eq. (15) equals 0 and diminishes, and the Lagrange multipliers are solved from

λ0 ¼ −1−ep 0ð Þ
λ1 ¼ −ep 1ð Þ

⋮
λk ¼ −ep kð Þ

ð17Þ

where ep(n) is computed from Eq. (16) as well.

2.3 Extension of Autocorrelation

According to Burg’s (1967, 1975) derivation, maximization of the Burg entropy allows the
autocorrelation to be extended as a linear combination of previous lags with the prediction
coefficients as

ρNþk ¼ −
Xm
j¼1

ρNþk− ja j ð18Þ

On the other hand, for the configurational entropy and relative entropy, the autocorrelation
is extended with the inverse relationship of Eq. (16) using the autocepstrum as

ρNþk ¼
ep N þ kð Þ

2
þ
Xm
j¼1

k

N þ k
ep jð Þρ N þ k− jð Þ ð19Þ
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When no prior is given, Eq. (19) reduces to

ρNþk ¼
Xm
j¼1

k

N þ k
e jð Þρ N þ k− jð Þ ð20Þ

2.4 Streamflow Forecasting

Streamflow is forecasted in the manner that autocorrelation function is extended. Thus using
BESA, streamflow is forecasted by a linear combination of past series weighted by the
coefficients in Eq. (18) to extend the autocorrelation, which becomes

yTþ1 ¼ a1yT þ a2yT−1 þ…þ amyTþm−1 ð21Þ
When using CESA or RESA, streamflow is forecasted with cepstrum analysis which is the

way autocorrelation is extended. Thus, streamflow is forecasted by

yTþk ¼
cp T þ kð Þ

2
þ
Xm
j¼1

k

T þ k
cq jð Þy T þ k− jð Þ ð22Þ

where c(j) is the cepstrum of the time series and equals to 1
2 e nð Þ. Then Eq. (22) can be written

as

yTþk ¼
1

4
ep N þ kð Þ þ 1

2

Xm
j¼1

k

T þ k
e0q jð Þy T þ k− jð Þ ð23Þ

When no prior is given, ep is 0, thus, streamflow forecasted by CESA becomes

yNþk ¼
1

2

Xm
j¼1

k

T þ k
e jð Þy T þ k− jð Þ ð24Þ

The order of forecasting model m is identified by the Akaike information criterion (AIC) or
the Bayesian information criterion (BIC) (Box and Jenkins 1970; Hipel and McLeod 1994).

3 Application

The proposed three entropy spectral analysis methods, BESA, CESA and RESA, are verified
using observed streamflow data from Iowa River. Iowa River is a tributary of Mississippi
River, which is about 520 km long and has a drainage area of 33,000 km2. Two stations are
chosen for comparison, one from the upstream and the other from the downstream. The
upstream station of Iowa River has a mean monthly streamflow of 9.3 m3/s, while the
downstream station has a mean of 305 m3/s.

3.1 Estimation of Spectral Density

First of all, the spectral densities, estimated by BESA, CESA and RESA, are compared to the
one estimated from the Fast Fourier transform (FFT), as plotted in Fig. 1. As seen from the
figure, the spectral density of the upstream station is more likely to be multi-peaked than that
of the downstream station. For the upstream station, spectral peaks at frequencies 1/12th, 1/6th
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and 1/4th are significant and even peaks at frequencies 1/3th, 5/12th and 1/2th are visible.
However, for the downstream station, there are no more peaks after frequency 1/4th. The
performance of the three entropy spectral analyses was evaluated by the Itakura-Saito distor-
tion, which is a measure of the perceptual difference between an original spectrum and its
estimate. The distortion is defined as

DI−S p̂ fð Þ; p fð Þ
� �

¼ 1

2π

Z
p fð Þ
p̂ fð Þ

−log
p fð Þ
p̂ fð Þ

 !
−1

" #
d f ð25Þ

where p(f) represents the spectral density from FFT and p̂ fð Þ is the estimated spectral density.
The smaller value represents a better fit.

As seen in Fig. 1, BESA did not perform well in estimating the spectral density with multi-
peaks. BESA estimated spectral peaks at frequencies 1/12th and 1/6th with the same
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Fig. 1 Spectral density estimated by three entropy spectral analysis methods for a an upstream station on Iowa
River and b a downstream station on Iowa River
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significance for the upstream station and estimated spectral peaks at frequency 1/6th with
higher significance than at 1/12th frequency. However, for monthly streamflow of Iowa River,
the 12 month periodicity is the most important periodicity, and should always be most
significant. On the contrary, the CESA and RESA methods correctly estimated the most
significant peak at 1/12th frequency. One concern of CESA is that it ignores all less significant
peaks to keep the peak at 1/12th frequency most significant. Though, using RESA, those less
significant peaks were estimated, and were found to be consistent to the ones from FFT.

The Itakura-Saito distortion, listed in Table 1, had the largest values using BESA and
smallest values using RESA for both upstream and downstream stations. Besides, the differ-
ence between BESA and CESA was larger than that between CESA and RESA. It suggests
that for streamflow of Iowa River, the exponential form of CESA and RESA fits better than the
polynomial form of BESA.

3.2 Forecasted Streamflow

Streamflow was forecasted by the three entropy spectral analysis methods with a 3 year lead
time for an upstream station and a 1 year lead time for a downstream station on Iowa River,
as shown in Fig. 2. The goodness of forecasting was examined by RMSE, r2 and NSE, which
are defined as

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i¼1

Qo ið Þ−Qf ið Þ
� �2

N−1

vuuuut
ð26Þ

r2 ¼

XN
i¼1

Qo ið Þ−Qo

� �
Qf ið Þ−Qf

� �
XN
i¼1

Qo ið Þ−Qo

� �2" #0:5 XN
i¼1

Qf ið Þ−Qf

� �2" #0:5

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

2

ð27Þ

NSE ¼ 1−

XN
i¼1

Qo ið Þ−Qf ið Þ�� �� j
XN
i¼1

Qo ið Þ−Qo

��� ��� j
ð28Þ

whereQo(i) is the i-th observed streamflow;Qf(i) is the i-th forecasted streamflow; and Qo and
Qf are the average values of observed and computed discharges, respectively.

Table 1 Itakura-Saito distance of estimated spectral density

River BESA CESA RESA

Upstream of Iowa River 5.323 1.513 0.054

Downstream of Iowa River 10.754 5.504 1.997
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As shown in Fig. 2, observed monthly streamflow of Iowa River has the largest value in
April every year. But it did not monotonically increase or decrease. After a small drop in the
month of May, streamflow increases again in June then drops. During the low flow season
from September to February, another small peak occurs in October or November. The entropy
spectral analyses discussed in this paper, though not exactly, forecasted streamflow of the
above characteristics and fitted the observations with r2 of over 0.5. The forecasted streamflow
by RESA was closest to the observations both for upstream and downstream stations, which
led to r2 higher than 0.8.

The peak streamflow of the upstream station in April was correctly forecasted by RESAwith
less than 2 % error, and by CESA and BESAwith errors around 13–17 %. However, the peak
time forecasted by BESA and CESAwere different. The peak forecasted by BESAwas earlier
than by CESA, even earlier than the observed value in the 3rd lead year. The earlier peaks

(a) 

(b) 

0

5

10

15

20

25

30

S
tr

em
ea

m
 fl

ow
 (

m
3 /

s)

Months

Observation

BESA

CESA

RESA

100

200

300

400

500

600

700

0 12 24 36 48 60

0 12 24 36

S
tr

em
ea

m
 fl

ow
 (

m
3 /

s)

Months

Observation

BESA

CESA

RESA

Fig. 2 Streamflow forecasted using entropy spectral analyses for a an upstream station on Iowa River and b a
downstream station on Iowa River
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Table 2 Results of forecasting by three entropy spectral analyses

Location Method RMSE r2 NSE

Upstream of Iowa River BESA 3.091 0.572 0.475

CESA 1.185 0.704 0.498

RESA 1.116 0.844 0.700

Downstream of Iowa River BESA 70.650 0.749 0.544

CESA 73.413 0.838 0.548

RESA 57.600 0.891 0.838
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Fig. 3 Relative errors by three methods for a an upstream station on Iowa River and b a downstream station on
Iowa River
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forecasted by BESA missed more streamflow volume during the high flow season than the
other methods. For the downstream station of Iowa River, the forecast error in streamflow peak
by RESAwas still within 2 %, but BESA and CESA underestimated the peak by around 19 %.

During the low flow season, the advantage of RESAwas significant than the others, where
streamflow was forecasted close to the observation, as shown in Fig. 2. However, it is noted
that BESA had the poorest forecasting during the low-flow season, compared to the other two
methods. The forecasted streamflows in November of the second and third lead years were 4.8
and 3.2 m3/s over the observed value, which is around 1.5 times the observed value. CESA
performs between RESA and BESA for forecasting flow in the low flow season.

All three measurements of goodness of fit in Table 2 show that RESA yielded forecasts
closest to the observations, and CESAwas slightly better than BESA. It seemed that the way of
forecasting streamflow using the recursive function of cepstrum analysis had an advantage
over linear forecasting used by BESA. The reason is that cepstrum analysis, especially when
incorporating prior cepstrum by RESA, helps realize homomorphic characteristics of time
series (Oppenheim and Schafer 2004), thus is more applicable than linear forecasting.

The relative errors in forecasts in versus lead time are shown in Fig. 3. As shown in Fig. 3a,
RESA generated the smallest errors around 0 and does not change much during the 3 year lead
time. However, the relative errors by BESA and CESA tended to get larger as the lead time
increased. Larger errors were noticed for forecasting streamflow during the low flow season
for BESA and CESA, which is consistent with the previous finding. For the downstream
station on Iowa River in Fig. 3b, the relative errors of CESA and RESA were distributed
similarly and were closer to 0 than for BESA.

4 Conclusions

Three entropy spectral analysis methods, developed from Burg entropy, configurational
entropy and relative entropy, are reviewed in the paper. The relative entropy spectral analysis
yields the highest resolution in estimating the spectral density of observed streamflow of Iowa
River. It shows that the exponential form obtained from either CESA or RESA fit streamflow
of Iowa River better than from BESA. The relative entropy spectral analysis also provides the
highest reliability in streamflow forecasting. When forecasting lead time increases, RESA is
more consistent than the other two methods.
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