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Abstract The first-order temporal structure functions

(SFs), i.e., the first-order statistical moment of absolute

increments of scaled multichannel resting state EEG sig-

nals in healthy children and teenagers over a wide range of

temporal separation (time lags) are computed. Our research

shows that the sill level (asymptote) of the SF is mainly

defined by a determinant of EEG correlation matrix

reflecting the EEG spatial structure. The temporal structure

of EEG is found to be characterized by power-law scaling

or statistical-scale invariance over time scales less than

0.028 s and at least by two dominant frequencies differing

by less than 0.3 Hz. These frequencies define the oscilla-

tion behavior of the SF and are mainly distributed within

the range of 7.5–12.0 Hz. In this paper, we propose the

combined Bessel and exponential model that fits well the

empirical SF. It provides a good fit with the mean relative

error fitting of 2.8 % over the time lag range of 1 s, using a

sampling interval of 4 ms, for all cases under analysis. We

also show that the hyper gamma distribution (HGD) fits to

the empirical probability density functions (PDFs) of

absolute increments of scaled multichannel resting state

EEG signals at any given time lag. It means that only two

parameters (sample mean of absolute increments and rel-

evant coefficient of variation) may approximately define

the empirical PDFs for a given number of channels. A

three-dimensional feature vector constructed from the

shape and scale parameters of the HGD and the sill level

may be used to estimate the closeness of the real EEG to

the ‘‘random’’ EEG characterized by the absence of tem-

poral and spatial correlation.

Keywords Multichannel EEG � Structure function �
Variogram � Scaling law � EEG absolute increment

distribution

1 Introduction

Electroencephalogram (EEG) signals or EEG time series

are the ones of the basic methods for analysis of brain

activity in health and disease [1]. However, it is not yet

fully known now how the EEG activity recorded at any

location on the human scalp is formed. With a certain EEG

signal, one can only guess something about the behavior of

the underlying neuronal elements, but nobody can precisely

reconstruct it since the relevant inverse problem does not

have a unique solution. The absence of adequate physio-

logical or mathematical ideas of EEG generation stimulates

researchers to analyze EEG time series using various

algorithms based on the concepts of different theories

where the progress is evident. Since the foundations of

these theories are fundamentally different, one can get a

variety of descriptive measures concerning the same EEG

signal. The most popular measures used in EEG time series

analysis [2] came from the information theory [3], non-

linear dynamics, and deterministic chaos theory [4].

Fulcher et al. [5] found that there are now over 9000

methods for time series analysis, which quantify a wide

range of time series properties. Actually, a reduced set of

200 methods, including autocorrelation, auto-mutual

information, stationarity, entropy, long-range scaling, cor-

relation dimension, wavelet transforms, linear and non-

linear model fits, and measures from the power spectrum, is
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enough to form a concise summary of the different

behaviors of time series analysis methods applied to sci-

entific time series [5].

It should be noted that the various entropy methods that

are very popular in EEG time series analysis [1, 6, 7] like

Sample Entropy (SampEn) [8], Lempel–Ziv complexity

[9], auto-mutual information, Shannon’s entropy, and other

approximate entropies are most similar according to Ful-

cher et al. [5] to the approximate entropy algorithm (ApEn)

proposed by Pincus [10]. Unfortunately, current entropy

measures are mostly unable to quantify the complexity of

any underlying structure in the series, as well as determine

if the variation arises from a random process [11]. Since a

high entropy score indicates a random or chaotic series,

and a low score indicates a high degree of regularity [11], it

would be better to use them, at least just, for now, only for

comparisons between different conditions (e.g., resting vs.

task) or systems (e.g., young vs. old) as was suggested in

[12].

The presence of chaos in time series is investigated

through the correlation dimension D2 [13] and Lyapunov

exponent (LE) [14] methods. The D2 reflects the self-

similarity, and the maximal LE reflects the predictability.

Zang et al. [15] found that both are associated with har-

monic content in the time series. The fractional or scaling

property is studied in terms of the Hurst exponent [16] and

Rényi dimension [17].

Recent detailed examination of commonly used com-

plexity measures from information theory, chaos theory,

and random fractal theory for characterizing EEG time

series shows that their variations with time are either

similar or reciprocal, but the behaviors of some of them are

counter-intuitive and puzzling [2]. It is not surprising, and

one has to be careful with using various complexity mea-

sures adopted from theories mentioned above for EEG

analysis. There are at least two reasons for that.

The first one is that the brain is not completely deter-

ministic, and the stochasticity may influence its function in

some cases [18]. Furthermore, time series arising from

chaotic systems share with those generated by stochastic

processes several properties like a wide-band power spec-

trum, a delta-like autocorrelation function, and an irregular

behavior of the measured signals that make them very

similar and, as a result, the distinction between them is not

trivial [19]. Indeed, the D2 values and ‘maximum likeli-

hood estimate of the correlation dimension’ (DML value)

found in [20] for the white (gamma, uniform, Gaussian,

and k-distributed) and correlated stochastic time series

consisted of 50,000 data points which suggest that these

data have a low fractal dimension which might be inter-

preted as the presence of chaos. The LE estimated for the

same time series also suggests this interpretation [20]. It

would be better to use the D2, the DML, and the LE, at

least just, for now, for comparisons between different

conditions (e.g., resting vs. task) or systems (e.g., young vs.

old) as was suggested in [12] for using entropy measures.

The second reason is that a basic requirement for using

measures adopted from non-linear dynamics and chaos

theory implies the stationarity in the EEG time series, but it

is not the case. Even detrended fluctuation analysis (DFA)

specifically introduced by Peng et al. [21] to address non-

stationarity estimates can be affected by very simple

sinusoidal periodicities [22] or large-amplitude transient

artifacts [23].

To avoid any speculations about what types of deter-

ministic and/or stochastic processes govern the EEG sig-

nals, we will use here some properties of these signals that

depend on processes underlying them but do not require

knowing their exact nature. The one-dimensional proba-

bility density functions (PDFs) of the absolute increments

of scaled multichannel resting state EEG signals calculated

over a wide range of temporal separation (time lags) may

be used as one of the properties [24]. It is not sufficient to

infer the EEG dynamics, but it is enough to capture some

of its features. It should be noted that the moment of order

p of the relevant distribution represents the structure

functions (SFs) of order p at a given time lag. The term

‘‘structure function’’ as such was proposed by Obukhov

[25] but Kolmogorov [26, 27] was the first to introduce the

formal definition of the second- and third-order SFs under a

theoretical analysis of velocity difference of a turbulent

fluid. Kolmogorov’s second-order SF is also known today

as the variogram. The latter has been widely used for many

years to quantify the spatial variability of spatial phe-

nomena for many years in geostatistical studies (e.g.,

Gringarten and Deutsch [28]) as well as to describe a

pseudo-periodic signal [29]. It is important that the SF

approach is applicable to non-stationary time series. It does

not require the mean estimation and is one of the several

techniques available for calculating the generalized Hurst

exponent.

Since the EEG absolute increment distributions are non-

Gaussian [24], it is reasonable to use the SFs of various

orders to analyze EEG data. It is more applicable than

restricting the analysis using the autocorrelation function

only. There are just a few examples of using variograms

and SFs in neurosciences. The first attempt to investigate

the brain’s electrical activity by deriving the second-order

temporal SF for every separate electrode that appears was

performed by Sergeev et al. in 1968 [30]. The application

of the variogram technique for analysis of fundamental

brain waves, as recorded by the EEG, was done by Conte

et al. [31]. In their research, records from only four elec-

trodes (CZ, FZ, OZ, and T4) were used and the multi-

variate variogram was calculated for the time series formed

as the Euclidean norm of these four records. Timashev
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et al. [32] used the scale of fluctuations in the difference

moment of the second-order SFs as an objective diagnosis

of psychiatric disorders, such as schizophrenia, by ana-

lyzing the EEG signals recorded from scalp-mounted

frontal electrodes at locations F3 and F4. The example of

the first-order temporal SF calculated for the scaled EEG

time series formed as the Euclidean norm of sixteen EEG

signals was presented in [24]. Recently, Sleimen-Malkoun

et al. [12] used a battery of multiscale metrics, including

variogram to investigate the changes of cortical dynamics

with aging. Chernyavskiy et al. [33] reported a successful

attempt to classify EEG data of subjects with traumatic

brain injury symptoms on the base of the spatiotemporal

variogram computed from their EEG. In the latter case, the

variogram is formally considered as isotropic but the

authors said nothing about the number of electrodes (spa-

tial sampling points) they used. This is important since for

reliable estimation of two-dimensional isotropic variogram,

Webster and Oliver [34] recommend ideally having 150

sampling points. For comparison, a minimum of some

30–50 increments is needed to estimate the one-dimen-

sional variogram reliably as suggested in [35]. In this case,

the variogram is only calculated for values of 15–25.

All results of the application of variograms and SFs for

analysis of EEG time series mentioned above are very

promising, and the studies in this area need to be continued.

The present paper provides the detailed analysis of multi-

variate temporal SF of multichannel EEG. Generally, the

SF may exhibit complex behavior over time lag and very

short EEG time series may be not enough for its analysis. It

imposes the limit on the applicability of the method.

This paper is organized as follows: the EEG data and the

proposed method of their analysis are introduced in Sect. 2.

Section 3 presents the results of the EEG analysis. The

conclusions are drawn in Sect. 4. In the same section, the

suggestions for further studies are proposed.

2 The methods

2.1 EEG data collection

90 cases of the eye closed resting state EEG signals were

obtained for several years from healthy children and

teenagers aged 5–19.8 using computer-aided electroen-

cephalography analyzer Entsefalan-131-03 (Medikom,

Russia) in 16 channels with sampling frequency Fd of

250 Hz. 16 Ag/AgCl electrodes were placed at Fp1, Fp2,

F3, F4, F7, F8, C3, C4, P3, P4, T3, T4, T5, T6, O1, and O2

on the scalp according to the international 10–20 system.

The option of linked earlobes was used as a reference for a

montage. The written permission from parents for all

subjects to participate in the study was obtained. Only

artifact-free epochs with a length longer than 36 s have

been selected for further analysis. An example of real

16-channel EEG fragment recorded from a subject s1 is

shown in Fig. 1 where 100 lV amplitude scale (vertical

line) and 1 s duration (horizontal line) are shown in the top

right corner.

2.2 EEG data analysis

In this research, we used the method of the EEG signals

analysis briefly presented in our previous paper [4]. Some

relevant parts of it are reproduced below to help the

understanding of the results given in Sect. 3.

Let {X(t) = [X1(t), X2(t), …, Xm(t)]
T, t = 1, 2,…, N}

represent the observed EEG m-dimensional time series,

where m is a number of channels (electrodes), here equal to

16, X(t) is an m-dimensional vector, Xj(t) is the signal

amplitude on the channel j expressed in microvolts at the

discrete integer valued time (sampling point) t, N is the

length of series, and the superscript T denotes the matrix

transpose operation. The sampling interval (in seconds)

equates to 1/Fd.

Since signals reveal significant spread of amplitude

values from subject to subject the original EEG time series

is centered by subtracting their mean in every channel first

and then scaled by the [det(RX)]
(1/2m), where det denotes the

determinant, RX = E[dXdXT] is the sampling covariance

matrix, dX = X - E[X], and E[�] denotes the statistical

expectation or average. As a result, any new vector

Y(t) = dX(t)/[det(RX)]
(1/2m) is dimensionless and has

the same generalized variance independently on the

subject since the determinant of the covariance matrix

RY = E[dYdYT] is equal to 1. Geometrically, the quantity

[det(RY)]
1/2 determines the volume of the confidence

ellipsoid for any particular confidence level, and the scaling

proposed here makes the distributions of any vector Y to be

equivalent in the sense that they occupy the same volume in

m-dimensional space. It means that the ellipsoids with dif-

ferent orientations and different semi-axes but having the

same generalized variance will be considered equivalent.

Define the absolute increment (relative displacement)

DYs as the Euclidean distance between two vectors Y(t) and

Y(t ? s) which are separated by a dimensionless and rel-

ative lag parameter s = 1, 2…, N - s

DYs ¼ Y t þ sð Þ � YðtÞj j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

m

j¼1

Yj t þ sð Þ � YjðtÞ
� �2

v

u

u

t :

ð1Þ

The actual time difference (in seconds) between samples

Y(t ? s) and Y(t) is calculated as the time lag s divided by

the sampling frequency Fd, i.e., equal to s/Fd.
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Recently, Trifonov and Rozhkov [24] have analyzed the

PDFs of DYs and found them closely matched to hyper

gamma distribution (HGD) proposed by Suzuki [36]

f DYsð Þ ¼ cDYv�1
s exp �bDYa

s

� �

; ð2Þ

where c = abm/a/C(m/a), C(�) is the gamma function, a and

m are shape parameters, and b is the scale parameter.

Generally, all these parameters may depend on s, but for
simplicity of notation the index s is omitted from them.

The choice of given type of fitting function was based on

the fact that the ‘‘random’’ EEG absolute increment DYs
(obtained from m-dimensional vector X(t) whose compo-

nents are independent normal random variables having

zero mean and variance r2) is distributed according to the

scaled chi-distribution that is a special case of (2) when

m = m, a = 2, and b = 0.25/r2. It should be noted that

both the HGD and the scaled chi-distribution are special

cases of the Amoroso distribution [37]. The HGD is closed

under scaling by a positive factor, and the random variable

(E[DY1]/E[DYs])�DYs has the same distribution as DY1.
Letting m be m, and solving a single non-linear equation

rs=E½DYs�ð Þ2¼ C mþ 2ð Þ=að ÞC m=að Þ= C mþ 1ð Þ=að Þ½ �2�1;

where rs is the sample standard deviation one can estimate

the value of parameter a. The scale parameter b is esti-

mated then as

b ¼ C mþ 1ð Þ=að Þ½ �a= E½ ½DYs�C m=að Þ�a:

Since the EEG absolute increment distributions are non-

Gaussian, a basic tool for DYs analysis may be given by the

pth-order SF Sp(s) which is defined as the expectation of

the pth moment of DYs

Sp sð Þ ¼ 1

N � s

X

N�s

t¼1

DYp
s ; s ¼ 1; . . .:smax; ð3Þ

where smax is maximal time lag value. At least for p = 2

(the SF S2(s) represents well-known multivariate vari-

ogram originally developed for spatial data analysis by

Bourgault and Marcotte [38]) there is an upper limit for

smax. According to Petersen and Esbensen [39], smax should

not be higher than N/2 (rounded down).

In practical, data analysis order value p may range from

1 to at most 10 or so [40]. However, according to Fisher

et al. [41], the first-order SF is more robust than higher-

order SFs with respect to outliers in the absolute increment.

This conclusion may be partly illustrated by comparing the

coefficients of variation (CV) of the first- and the second-

order SF in the limiting case of ‘‘random EEG.’’ Since the

random variable DYs is distributed according to the scaled

chi-distribution, while DYs
2 is distributed according to the

scaled v2 distribution, then one can easily derive analytical

expressions for CV1 and CV2 as follows:

Fig. 1 An example of real 16-channel EEG signals for subject s1.

The channels are labeled as Fp1, Fp2, F7, F3, F4, F8, T3, C3, C4, T4,

T5, P3, P4, T6, O1, and O2. Figure in the top right corner shows the

100 lV amplitude (vertical line) and 1 s duration (horizontal line) of

the EEG record
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CV1 ¼ sqrt 0:5m � C2 m=2ð Þ
�

C2 mþ 1ð Þ=2ð Þ � 1
� �

;
and CV2 ¼ sqrt 2=mð Þ:

Using these expressions, one can get that the ratio CV1/

CV2 is slightly above 0.5 even for small m value. Prelim-

inary analysis of real EEG data shows that using S1 is

preferable as having the smallest coefficient of variation

CV1 as well. For this reason, in this study, we concentrate

our attention on and discuss the first-order SF only.

3 The results

An example of the individual empirical PDF f(DY1) and its

HGD fit f(DŶ1) is shown in Fig. 2. In this case, the value of

N is equal to 9000 and corresponds to 36-s EEG record

with the sampling frequency Fd = 250 Hz. Time lag s = 1

corresponds to the sampling interval of 0.004 s and the

histogram bin sizeW1 = 0.2. For comparison, the PDFs for

the ‘‘random’’ EEG with rn = 1 and for the original EEG

with randomly permuted temporal sequence of time series

X(t) are shown in the same Fig. 2. Random permutation of

real EEG time series and generation of the ‘‘random’’ EEG

time series was done in Matlab using randperm and randn

functions, respectively. Visually, all three theoretical HGD

f(DŶ1) provide a reasonably good fit for all three empirical

PDF f(DY1).
The closeness of the empirical normalized histogram

Dy1 = W1�DY1 (RiDy1i = 1) to the fitting normalized his-

togram Dŷ1 was checked by using Bhattacharyya coeffi-

cient BC(Dy1, Dŷ1) = Risqrt(Dy1i�Dŷ1i) as a measure of

similarity between them [42]. It was found that this coef-

ficient equates to 0.999 for the HGD fitting to the empirical

distribution in the case of real and ‘‘random’’ EEG time

series and 0.997 in the case of real, but randomly permuted

EEG time series. For comparison, the closeness of real and

‘‘random’’ EEG normalized histograms is about 0.147.

The same approach was used to check the closeness

between the empirical normalized histograms Dy1 and

Dŷ1 = (E[DY1]/E[DYs])�Ws�DYs at different time lags s
under scaling mentioned above. We found that for ran-

domly selected real EEG time series, and for time lags s up
to 100, this coefficient oscillates between 0.994 and 1 about

a mean value of 0.997. It means that empirical distribution

of DYs is really closed under the scaling and has approxi-

mately the same parameters a and m as the distribution of

DY1 has. This result allows us to use empirical PDFs

estimated at unity time lag only in our further analysis.

Estimating a and b parameters at s = 1 according to the

approach mentioned above, we have found that their values

are in the range [0.30, 0.71] and [12.28, 45.67], respec-

tively. The analysis of the behavior of these parameters

allows us to make a suggestion that they are not completely

independent and that a decreases approximately exponen-

tially with b. We could not test this suggestion carefully

because we have not found yet empirical PDFs with

extremely high values of b which may imply that real EEG

becomes strongly deterministic. It seems we need to esti-

mate a and b in this case theoretically as it was done in

another extreme case of ‘‘random’’ EEG (in the sense

defined above) when we get a = 2 and b = 0.25. The latter

two parameters may serve as a reference point and the

distance to it from any point on the ab diagram can be used

as a quantitative measure of the degree of temporal ran-

domness in real EEG.

The values of the BC values for the whole set of 90 real

EEG time series range between 0.994 and 0.999 with the

average value of 0.998 and standard deviation of less than

0.001. Such result indicates that the HGD provides a good

fit to the empirical PDFs. The closeness of any real EEG

normalized histograms from our dataset to the ‘‘random’’

EEG normalized histogram expressed in terms of the BC

value is in the range [0.013, 0.621].

The empirical first-order SFs over the smax = 1000

(N = 9000) were calculated using Eq. (3). The three typ-

ical examples of S1(s) with lag s up to 250 corresponding

to the 16-channel real EEG time series, are shown in

Fig. 3a. Figure 3b represents S1(s) for subject s1 (in the

case of real EEG and its randomly permuted version), and

for ‘‘random’’ EEG. The randomly permuted EEG means

disregarding the temporal order of the original EEG time

series in all channels simultaneously keeping the mean

vector E[X] and the sampling covariance matrix RX

unchanged. It is obvious that such permutation keeps the

original inter-channel (spatial) correlation structure of any

EEG time series, but destroys original temporal correlation

within each channel.

Actually, Fig. 3a shows that the individual first-order SF

S1(s) increases approximately exponentially with increas-

ing time lag s for the first few s values, but starting with

Fig. 2 The examples of the empirical PDFs f0(DY1) and HGD fits

f(DY1) for the cases of real (blue a = 0.51, b = 22.7), real, but

randomly permuted (green a = 0.54, b = 8.3), and ‘‘random EEG’’

time series (red a = 2.01, b = 0.246), m is everywhere 15
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some s* value the S1(s) begins to oscillate around its sill

level V rather than approaches it monotonically. In geo-

statistical studies, the variogram (the second-order SF)

exhibiting cyclicity (under-dumped behavior) has been

termed a ‘‘hole-effect variogram’’ (e.g., Ma and Jones

[43]). Such behavior means that there is a high temporal

correlation between a given EEG sample and neighboring

EEG samples as well as some relatively distant EEG

samples. The curve s1 in Fig. 3a exhibits strong cyclicity

while curves s2 and s3 exhibit low cyclicity which corre-

sponds to a higher damping ratio in terms of under-damped

motion.

At the same time, both randomly permuted real EEG,

and ‘‘random’’ EEG should not reveal significant temporal

correlation by definition, and one can see that the relevant

S1(s) does not really depend on s. They differ only in the

sill level V. The first one is around the sill value corre-

sponding the original EEG while the second one is close to

the theoretical value V0 of 5.569 corresponding to the

‘‘random’’ EEG time series for rn = 1 and m = 16. These

levels appear to be defined by the type of spatial correlation

characterized by the sampling correlation matrix RX.

According to Peña and Rodrı́guez [44], the determinant of

RX summarizes the linear relationships between the vari-

ables and may be used as the scalar measure of multivariate

linear dependence. Proposed in [44] measure named as

effective dependence is defined by

De Xð Þ ¼ 1� det RXð Þ½ �1=m:

It was found here that there is an empirical dependence

between De and the sill V which can be fitted by the non-

linear expression

V ¼ V0=ð1 � DeÞq:

The value of V0/V may serve as a measure of random-

ness of the spatial structure of real EEG.

The empirical dependence between De and V derived

from 90 cases of the eyes closed resting state EEG time

series is shown in Fig. 4. The fitting parameter q is equal

here to 0.535. (The coefficient of determination

R2 = 0.936 in the relevant log–log regression model).

These findings approve the suggestion that the spatial EEG

structure define the sill level of the first-order SFs. On the

other hand, the temporal EEG structure is reflected in the

under-damped oscillatory behavior of S1(s). It was found

that this behavior depends on the subject’s individuality

and appears most conspicuous in the resting state. As usual,

the dominant oscillation frequency lies in the alpha range.

The amplitudes of peaks and troughs attenuate with

increasing lag distance and the sill level V here is only

meaningful at the larger time lags, where vectors X (and

Y) no longer exhibit any significant temporal correlation.

The time lag s0 at which the S1(s0) reaches the sill value is
usually called as range, but in practice, it is not rigorously

defined. Theoretically, the expected range value s0 should
be equal to 0 for both first-order SFs corresponding to the

randomly permuted real EEG and ‘‘random’’ EEG. And it

is actually true as one can see from Fig. 3b.

Fig. 3 a The examples of the first-order SF S1(s) derived from the

three real EEG time series (subjects s1, s2, and s3). b S1(s)
corresponding to the subject s1 [real EEG—(blue), real but randomly

permuted EEG—(green)], and S1(s) derived from ‘‘random’’ 16-chan-

nel EEG time series (red)

Fig. 4 The empirical dependence between De and V
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It is reasonable to suggest that the cyclical pattern is

typical for the spatial first-order SFs as well. This sug-

gestion is not discussed because the number of channels is

too small here, but it is indirectly supported by fMRI data

analysis [45], where variograms waving behavior was

found as the spatial lag distance increases.

It was found that all SFs S1(s) derived from EEG time

series appear to exhibit scaling, i.e., S1(s) � sf at time lags s
ranging from 3 to 7 in dependence on the subject. To esti-

mate the scaling exponent f, we used linear least squares fit

to the SFs in log–log coordinates and R-squared method

proposed by Pressel and Collins [46]. We let a lower bound

on the coefficient of determination R2 of 0.998 for our

analysis. Such choice is explained here by a relatively low

number of S1(s) samples within the range between 1 and s0,
where S1(s0) reaches (intersects) first the sill value V. Most

likely by increasing the sampling frequency Fd one can

identifymore distinct scaling regions with the breaks in S1(s)
slope. It should be noted that according to [41, 46], the first-

order SF scaling exponent f is simply the Hurst exponent H

that has a clear physical meaning. We have found that the

average value of f in our analysis is 0.88 ± 0.03 for time

scales less than 0.028 s. It means that one-dimensional

random process jXðtÞj (and jYðtÞj) is characterized at these

scales by persistent increments and long-range correlations.

Since the Hurst exponent of such a process is related to the

fractal dimension D by D = 2 - H, then D = 1.12 and this

process has a distinctly less space filling. Within the EEG

dataset considered here, the scaling behavior slightly

depends on subject and condition during the eyes closed

resting state EEG is recorded.

We adopt the idea of using the Bessel model for

describing the pronounced hole-effect structure in the

variogram function proposed in [45]. We propose here to fit

the combined Bessel and exponential model S1*(s) to the

empirical first-order SF S1(s). The model S1*(s) is defined
as

S�1 sð Þ

¼ V 1� exp �a0sð Þ þ 1� exp �b0sð Þ½ �
X

K

k¼1

pkJ0 xksþ hkð Þ
( )

;

ð4Þ

where K is the order of the model, J0(�) is the Bessel

function of the first kind and zero order, pk is weight

(pk = wk/J0(hk), wk C 0, Rkwk = 1), xk and hk are fre-

quency and phase parameters, respectively, and a0 and b0
are positive constants (a0[ b0). It should be noted that the

model (4) is valid only if the derivative [S1*(s)]0 B 0 at

s ? 0. This condition imposes a limitation on the choice of

phase parameters hk.
The beat pattern clearly pronounced in empirical S1(s)

for large time lags (see the curve s1 in Fig. 3b) can arise

from interference between at least two cosine signals of

slightly different frequencies. Since J0(z) for large argu-

ment z is just cosine (J0(z) * cos(z - p/4)), the model (4)

should have at least order 2 for the case of strong cyclicity.

The mean values of frequency and phase parameter x0 and

h0 for such a model can be estimated from the matching of

root locations for function J0(�) and C(s) = (1 - S1(s)/V)
within the time lag s range [0, 260]. If RJ0 is a set of actual

roots of J0(�) and rS1 is a set of roots of C(s) estimated by

linear interpolation, then x0 and h0 are evaluated as

regression coefficients in the simple linear regression

model

R�
J0 ¼ h0 þ x0rS1;

where R�
J0 is the estimate of the known RJ0.

We tried to fit the model (4) with K = 3 to the empirical

S1(s). The examples of such a fitting are shown in Fig. 5. To

find the estimates formodel parameters, we used a simplified

algorithm and estimate ofx0. At first, the frequenciesx1,x2,

and x3 were estimated by finding the first three maximum

values of the discrete form of integral
R smax

0
CðsÞ cos xsð Þds

calculated with frequency step Dx = 0.001. This approach

is based on the Neumann’s addition theorem and the fact that
R1
0

Jv xsð Þ cos xsð Þds = ? for any order v. The phases h1,
h2, and h3 were estimated by finding the maximum

$C(s)J0(xks ? hk)ds by varying hk separately for k = 1, 2,

and 3. After that the weights w1, and w2 from the range [0, 1]

were chosen (w3 = 1 - w1 - w2) by exhaustive search

with step Dw1,2 = 0.1 using the Nash and Sutcliffe criterion

or F value [47, 48]

F ¼ 1�
Psmax

s¼1ðS1 sð Þ � S�1 sð ÞÞ2
Psmax

s¼1ðS1 sð Þ � E S1½ �Þ2
; ð5Þ

as the criterion of the goodness of fit. The same searching

approach was used at the final step for finding parameters

of a0 and b0 with step Da0 = 0.01 and Db0 = 0.001,

respectively, under condition a0[ b0.
The approach mentioned above does not yield the

optimal set of estimated parameters to the model (4).

However, the mean error fitting defined as 100 %�E
S1ðsÞ � S�1ðsÞ
�

�

�

�=S1ðsÞ
� �

is 2.8 % for over the time lag s
within the range [0, 250] for all cases under analysis. It was

found that frequencies f1, f2, and f3 are mainly distributed

within the range of 7.5–12.0 Hz (84.4 % of all cases) with

two clearly pronounced modes located at 9.75 and

10.75 Hz. There is also a less pronounced mode located at

6.25 Hz corresponding to the frequency distribution within

the range of 4.5–7.5 Hz (15.6 % of all cases). These fre-

quency estimates may be considered as trivial but for the

high correlation of 0.94 between two nearest frequencies

and the difference about 0.3 Hz between them that is

observed for roughly 70 % of all cases.
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4 Conclusions and future work

The analysis of the first-order SFs derived from 90 eye

closed resting state EEG records in healthy children and

teenagers shows that this function contains integral infor-

mation about spatial and temporal EEG organization. It

was found that the sill level (asymptote) V of the S1(s)
indicates how strong the correlations between channels

take place and, therefore, reflects the EEG spatial organi-

zation. The shape a and scale b parameters of the HGD,

successfully representing the empirical distribution of the

EEG absolute increment, characterize the degree of tem-

poral randomness in real EEG. It is reasonable to construct

a three-dimensional feature vector FV = (a, b, V)T which

may be used to estimate the closeness of the real EEG to

the ‘‘random’’ EEG (in the sense defined above). In the

case of 16-channel EEG, the reference FVR has compo-

nents 2, 0.25 and 5.569, respectively.

The EEG temporal organization is also characterized by

the scaling exponent f (or Hurst exponent H in our case)

and at least by two frequencies defining the type of S1(s)
cyclicity around the sill level. The time scale where EEG

records appear to exhibit scaling depends on subject

varying between 0.012 s and 0.028 s. The average value of

f (or H) in our analysis is 0.88 ± 0.03. It means that one-

dimensional random process jXðtÞj at low time scales is

characterized by persistent increments and long-range

correlations. The mere fact that f has a value close to unity

and relatively small coefficient of variation can be con-

sidered only preliminary. It calls for further investigations.

The next characteristic defining the temporal structure of

EEG is the cyclicity of S1(s). In 84.4 % of cases, the

derived S1(s) exhibited relatively high oscillation (under-

damped behavior) around the sill level with frequencies

mainly distributed within the range of 7.5–12.0 Hz. At

least two dominant frequencies differing by less than

0.3 Hz were found within this range. This fact is rather

interesting and needs to be understood.

It is shown that the combined Bessel and exponential

low-order model can capture the behavior of the first-order

SFs exhibiting high cyclicity. The third-order model pro-

vides the mean relative error fitting of 2.8 % over the time

lag range of 1 s, using a sampling interval of 4 ms, for all

cases under analysis.

Fig. 5 Two examples of the model (4) fitting to the empirical S1(s): a–
c Subject sK, 16 years old, (high cyclicity), x1 = 0.239

(f1 = 9.51 Hz), h1 = 0.6, x2 = 0.232 (f2 = 9.23 Hz), h2 = 0.95,

x3 = 0.245 (f3 = 9.75 Hz), h3 = 0.05, a0 = 0.17, b0 = 0.054,

w1 = 0.7, w2 = 0.2, w3 = 0.1; mean relative error fitting is 1.4 %; d
Subject sR, 12 years old, (low cyclicity), x1 = 0.239 (f1 = 9.51 Hz),

h1 = -0.05, x2 = 0.157 (f2 = 6.25 Hz), h2 = -0.05, x3 = 0.129

(f3 = 5.13 Hz), h3 = 0.15, a0 = 0.17, b0 = 0.001, w1 = 0.6,

w2 = 0.2, w3 = 0.2, mean error fitting is 2 %; Error fitting = 100 %

jS1ðsÞ � S�1ðsÞj=S1ðsÞ, mean relative error fitting is calculated over the

time lag s range of 1 s (s 2 [0, 250]); [S1*(0)]
0 are everywhere C 0
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Our future studies will focus on the analysis of EEG

recorded at a higher sampling frequency to identify more

distinct scaling regions with the breaks in the slope of the

first-order SF. Using such data can allow us to understand

more carefully underlying stochastic processes and to sug-

gest appropriate improvements in the model (4). Assuming

that S1(s) might be a solution of some forced second-order

ordinary differential equation it would be interesting to think

about the possible form of such equation.
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