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Abstract The last two decades have witnessed the

explosive growth in the development and use of noninva-

sive neuroimaging technologies that advance the research

on human brain under normal and pathological conditions.

Multimodal neuroimaging has become a major driver of

current neuroimaging research due to the recognition of the

clinical benefits of multimodal data, and the better access

to hybrid devices. Multimodal neuroimaging computing is

very challenging, and requires sophisticated computing to

address the variations in spatiotemporal resolution and

merge the biophysical/biochemical information. We review

the current workflows and methods for multimodal neu-

roimaging computing, and also demonstrate how to con-

duct research using the established neuroimaging

computing packages and platforms.

Keywords Multimodal � Neuroimaging � Medical image

computing

1 Introduction

Neuroimaging has profoundly advanced neuroscience

research and clinical care rapidly in the past two decades,

prominently by magnetic resonance imaging (MRI), com-

plemented positron emission tomography (PET), and

electroencephalography (EEG)/magnetoencephalography

(MEG). The art of neuroimaging today is shaped by three

concurrent, interlinked technological developments [1]:

Data Acquisition The advances of imaging instrumen-

tation have enabled digital image acquisition, as well as

electronic data storage and communication systems, such

as the picture archiving and communication system

(PACS). These imaging systems, CT, MRI and PET

showed obvious clinical benefits by providing high contrast

tissue differentiation. The previous film-based reading was

replaced by the electronic displays (axial, coronal and

sagittal planes of the volume) without losing diagnostic

quality.

Medical Image Computing The growth of neuroimaging

has spurred a parallel development of neuroimaging com-

puting methods and workflows, including bias correction,

registration, segmentation, information extraction and

visualization. We should note the difference between

neuroimaging and neuroimaging computing. Neuroimag-

ing focuses on the image acquisition, capturing the snap-

shot of the brain; whereas neuroimaging computing focuses

on the computational analysis of the brain images,

extracting and enhancing the information of relevance to

best describe the brain anatomy and function.

Package and Platform Development To fit into research

and clinical timelines and facilitate translational medicine,

the neuroimaging computing methods and workflows are

often integrated into software packages. Many such pack-

ages were added to imaging systems by the major vendors
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of medical imaging equipment and many specialized

companies. However, a greater number of neuroimaging

computing packages and platforms are free and open-

source, designed and supported by the medical imaging

research groups and communities.

Multimodal neuroimaging, i.e., the simultaneous imag-

ing measurement (EEG/fMRI [2], PET/CT [3]) or sum-

mation of separate measurement (PET and sMRI [4], sMRI

and dMRI [5], fMRI and dMRI [6]), has become an

emerging research area due to better access to imaging

devices, especially the hybrid systems, such as PET/CT [7,

8] and PET/MR [9]. The recent advances in neuroimaging

computing methods also enabled joint analysis of the

multimodal data. The free and open-source software

(FOSS) packages and platforms for neuroimaging com-

puting further facilitate the translation of the multimodal

neuroimaging research from the lab to better clinical care.

Multimodal neuroimaging advances the neuroscience

research by overcoming the limits of individual imaging

modalities and by identifying the associations of findings

from different imaging sources. Multimodal neuroimaging

has been used to investigate a multitude of populations and

disorders, such as Alzheimer’s disease (AD) [4, 10–12],

schizophrenia [13–16], epilepsy [3, 17–19], obsessive-

compulsive disorder (OCD) [20–22], bipolar disorder [23,

24], attention-deficit hyperactivity disorder (ADHD) [25–

27], Autism spectrum disorder (ASD) [28–30], traumatic

brain injury (TBI) [31–34], stroke [35, 36], multiple scle-

rosis (MS) [37–39], and brain tumors [9, 40–42]. We have

recently reviewed advances in neuroimaging technologies

and the applications of multimodal neuroimaging in these

neuropsychiatric disorders [43]. Multimodal neuroimaging

has also been used in many non-clinical applications, such

as building brain machine interface (BMI) [44], tracing

neural activity pathways [45] and mapping mind and

behavior to brain anatomy [46–48].

Multimodal neuroimaging computing is a very chal-

lenging task due to large inter-modality variations in spa-

tiotemporal resolution, and biophysical/biochemical

mechanism. Compared to single imaging modality com-

puting, it requires more sophisticated bias correction, co-

registration, segmentation, feature extraction, pattern

analysis, and visualization. Various methods for neu-

roimaging analysis have been proposed, and many have

been integrated into the task-oriented packages or inte-

grated platforms.

In this paper, we review the state-of-the-art methods and

workflows for both modality-specific neuroimaging com-

puting and multimodal neuroimaging computing, and

demonstrate how to conduct multimodal neuroimaging

research using the established packages and platforms.

Fig. 1 provides an overview of the current status and illus-

trates the major components of neuroimaging computing,

including neuroimaging modalities, modality-specific

computing workflows (a series of tasks), multimodal com-

puting methods, algorithms, packages, platforms and com-

munities. MRI, PET, EEG/MEG and their computing

workflows and methods are discussed in this review. A

neuroimaging computing task in an analysis workflow may

be fulfilled bymultiple algorithms, and themost widely used

algorithms, e.g., voxel-based morphometry (VBM) [49], are

often integrated into software packages, e.g., Statistical

Parametric Mapping (SPM)1, FMRIB Software Library

(FSL)2, and Neurostat3. The new imaging tasks also demand

the refinement of existing algorithms and development of

new algorithms. Similar algorithms are often developed

independently in different labs, sometimes with little

awareness of existing packages/platforms.

This paper is organized as follows. In Sect. 2, we

elaborate the computing workflows, which consist of a

number of specific tasks, for individual modalities. In

Sect. 3, we review the major multimodal neuroimaging

computing methods, i.e., registration, segmentation, feature

integration, pattern analysis and visualization. In Sect. 4,

we introduce the task-oriented packages and platforms for

the tasks mentioned in previous sections. We focus on the

free and open source software (FOSS) in this review, since

they could help to better realize the quickly evolved

methods and workflows than their commercial counter-

parts, and thus accelerate translational medicine. For the

sake of clarity and precision, the algorithms, packages and

platforms are not described in detail, but we refer the

interested readers to more specific papers instead. In

Sect. 5, we give one example of brain tumor surgical

planning using the established packages and platforms.

Lastly, we outline the future directions of multimodal

computing in Sect. 6.

2 Modality-specific neuroimaging computing

workflows

2.1 Bias and artifacts correction

Different neuroimaging techniques have different spa-

tiotemporal resolutions, and biophysical/biochemical

cFig. 1 Overview of the current status and major components of

multimodal neuroimaging computing, including neuroimaging

modalities, modality-specific computing workflows, multimodal

computing methods, algorithms, task-oriented packages, all-inte-

grated platforms, and neuroimaging research communities

1 www.fil.ion.ucl.ac.uk/spm.
2 www.fmrib.ox.ac.uk/fsl.
3 http://128.208.140.75/*Download/.
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mechanisms, and thereby require different computing

workflows; yet a common step of all workflows is the

correction of bias and artifacts in neuroimaging data. The

main goal of this task is to remove the data components

that contaminate the signals. Tustison recently provided a

set of guidelines for managing the instrumental bias when

designing and reporting neuroimaging studies [50].

Bias and artifacts in neuroimaging signals may result

from imaging systems, environment, and body motion.

Many biases and artifacts are induced by the imaging

systems, e.g. inhomogeneous radio frequency (RF) coils in

MRI, contrast agents in PET/CT, broken or saturated sen-

sors in EEG/MEG system. Environment-related artifacts,

arising from generators of magnetic fields outside the

human body such as magnetic noise from power lines and

other environmental noise sources, such as elevators, air

conditioners, nearby traffic, mechanical vibrations trans-

mitted to shielded room, bed vibration, and pulsation [51].

Motion-related artifacts are caused by eye movements,

head movements, cardiac and muscular activity, and res-

piratory motion. The motion of magnetic implements, such

as pacemakers and implantable defibrillators [52] may also

give rise to artifacts, and may cause danger to patients in

strong magnetic field, although there are new MRI com-

patible pacemakers/defibrillators that have been introduced

[53].

The bias and artifacts in MRI are mainly system-related,

e.g., RF inhomogeneity causing slice and volume intensity

inconsistency. The nonparametric nonuniformity normal-

ization (N3) algorithm and its variant based on Insight

Toolkit [54, 55] (N4ITK) [56] are the de facto standard in

this area. The acquisition protocols for dMRI are inherently

complex, which require fast gradient switching in Echo-

Planar Imaging (EPI) and longer scanning time. dMRI is

prone to many other types of artifacts, such as eddy current,

motion artifacts and gradient-wise inconsistencies [57].

Tortoise [58] and FSL diffusion toolbox (FDT) [59] are

popular choices for eddy current correction and motion

correction in dMRI data, and the recently proposed DTI-

Prep [60] offers a thorough solution for all known data

quality problems of dMRI. Motion is a serious issue in

fMRI, and may lead to voxel displacements in serial fMRI

volumes and between slices. Therefore, serial realignment

and slice timing correction is required to eliminate the

effects of head motion during the scanning session. Linear

transformation is usually sufficient for serial alignment,

whereas a non-linear auto-regression model is often used

for slice timing correction [61]. These two types of cor-

rection are commonly performed using SPM and FSL.

Dedicated PET scanners have been replaced by the hybrid

PET/CT systems [62]. The most commonly seen artifacts

on PET/CT are mismatches between CT and PET images

caused by body motion due to the long acquisition time of

the scan. Metallic implants and contrast agents may also

give rise to artifacts on PET/CT, usually leading to over-

estimation of PET attenuation coefficients and false-posi-

tive findings [63]. Knowledge and experience are needed to

minimize these artifacts and, in that way, produce better-

quality PET/CT images. EEG and MEG signals are often

contaminated by all of the three types of artifacts, such as

the system-related superconducting quantum interference

device (SQUID) jumps, and the noise from the environ-

ment or body motion [51]. Visual checks and manual

removal are usually required to exclude the artifacts.

Another strategy uses signal-processing methods to reduce

artifacts while preserving the signal. Linear transformation,

e.g., principal component analysis (PCA) and independent

component analysis (ICA) [64, 65], and regression, e.g.,

signal space projection (SSP) and signal space separation

(SSS) [66, 67], are frequently applied to the raw EEG/

MEG data.

2.2 Structural MRI computing

The sMRI computing workflows usually involve skull

striping, tissue and region of interest (ROI) segmentation,

surface reconstruction [68], and can include brain mor-

phometry analysis, such as the voxel-based morphometry

(VBM)/tensor-based morphometry (TBM)/deformation-

based morphometry (DBM) [49], and surface-based mor-

phometry (SBM) [69] by comparing one group of subjects

to another or tracking the changes over a sequence of

observations for the same subject. FreeSurfer [70] is a well-

established tool for brain tissue segmentation and surface

reconstruction. When registered into a standard brain

space, e.g., the Talariach coordinates [71] and MNI coor-

dinates [72], and labeled with different regions of interest

(ROIs) using brain templates, e.g., ICBM template [73] and

the AAL template [74], the sMRI datasets can further be

analyzed at the ROI level. Various techniques have been

investigated to quantitatively analyze the morphological

changes in cortex, e.g., grey matter density [49], cortical

folding [75], curvedness and shape index [76, 77], cortical

thickness [69], and surface area [78, 79], local gyrification

index (LGI) [75], and many other shape [78, 80] or texture

features [81–83]. Mangin et al. [84] provided an extensive

review on the popular morphological features, and Winkler

et al. [85] demonstrated how to use these features in

imaging genetics.

2.3 Diffusion MRI computing

The dMRI computing workflow consists of four major

steps. The first step is to estimate the principle directions of

the tensor or the orientation distribution function (ODF) in

each voxel, which are used to quantitatively analyze the
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local white matter morphometry and probe the white matter

fiber tracts in the following steps. Advanced fiber orienta-

tion estimation methods include the ball and stick mixture

models [59], the constrained spherical deconvolution

(CSD) [86], the q-ball imaging (QBI) [87], diffusion

spectral imaging (DSI) [88], the generalized q-sampling

imaging (GQI) [89], and the QBI with Funk Radon and

Cosine Transform (FRACT) [90]. Wilkins et al. have

provided a detailed comparison of these models [91]. In the

second step, various parametric maps based on the tensors/

ODFs, i.e., fractional anisotropy (FA), mean diffusivity

(MD), radial diffusivity (RD), and axial diffusivity (AXD)

maps [92], reveal the focal morphometry of the white

matter [93]. The third step is to apply the fiber tracking

algorithms [94] to construct 3D models of the white matter

tracts, referred to as tractography. Tractography further

enables the quantitative analysis of fiber tract morphometry

i.e., orientation and dispersion [95], and the analysis of

connectome, i.e., connectivity networks of populations of

neurons [96]. Brain parcellation and fiber clustering are

two major approaches that can separate the neurons into

different groups/ROIs, and construct the connectome [97].

Jones et al. [98] recently provided a set of guidelines which

define the good practice in dMRI computing.

2.4 Functional MRI computing

After bias and artifacts correction in fMRI, a mean image

of the series, or a co-registered anatomical image, e.g.,

sMRI, is used to estimate some registration coefficients that

map it onto a template, followed by spatial smoothing and

parameter estimation. Friston [99] gave an introduction to

these procedures. When the brain is performing a task,

cerebral blood flow (CBF) usually changes as neurons

work to complete the task. The primary use of task-evoked

fMRI is to identify the correlation between brain activation

pattern and brain functions, such as perception, language,

memory, emotion and thought [100, 101]. Many models

and methods have been suggested to detect patterns of

brain activation, and some of them have been integrated

into the software packages, such as the general linear

model (GLM) in the SPM and FSL packages, and inde-

pendent component analysis (ICA)/canonical correlation

analysis (CCA) in AFNI package4. When brain is at resting

state, fMRI is used to detect the spontaneous activation

pattern in the absence of an explicit task or stimuli [102].

Resting-state fMRI enables us to deduce the functional

connectivity between dispersed brain regions, which form

functional brain networks, or resting state networks

(RSNs). The Default Mode Network (DMN) is a functional

network of several brain regions that show increased

activity at rest and decreased activity when performing a

task [103]. DMN has been widely used as a measure to

compare individual differences in behavior, genetics and

neuropathologies, although its use as a biomarker is con-

troversial [104, 105]. Rubinov [106] provided a review of

the connectivity measures.

2.5 PET computing

The computing of PET also requires spatial normalization

and smoothing, and parameter estimation, similar to fMRI.

SPM and Neurostat packages are available for voxel-by-

voxel PET analysis. PET functional features are generally

pertaining to the radioactive tracers, reflecting particular

biochemical process. 2-[18F fluoro-2-deoxy-D-glucose

(FDG) is the most widely used tracer to depict glucose

metabolism. Several amyloid-binding compounds,
18F-BAY94-9172, 11C-SB-13, 11C-BF-227, 18F-AV-45 and
11 C-Pittsburgh compound B (11C-PiB), have been reported

as tracers for imaging amyloid plaques in AD. A number of

extensive surveys have been conducted on these amyloid

radioactive tracers [107–110]. A variety of static and

kinetic parameters can be extracted from the PET data, i.e.

the standard uptake value (SUV) [111, 112], cerebral

metabolic rate of glucose consumption (CMRGlc) [81,

113], mean index [114], z-scores [115], hypo-metabolic

convergence index (HCI) and amyloid convergence index

(ACI) [116], tissue time activity curve (TTAC) [117], and

difference-of-Gaussian (DoG) parametric maps [118].

2.6 EEG and MEG computing

In EEG and MEG there are usually four components after

removing the artifacts or unwanted data components that

contaminate the signals. The analysis of event-related

potentials (ERP) in EEG or event-related fields (ERF) in

MEG aims to analyze brain responses that are evoked by a

stimulus or an action, followed by spectral analysis, which

transforms the signals into time-frequency domain. The

aim of source reconstruction is to localize the neural

sources underlying the signals measured at the sensor level.

MRI is usually used to provide anatomical reference for

source reconstruction. The aim of connectome analysis is

to investigate the causality of brain activities and connec-

tivity of brain networks by exploring information flow and

interaction between brain regions. Gross et al. provided

basic guidelines on EEG and MEG in research [51]. MNE5,

EEGLAB6 and eConnectome7 are the most widely used

4 http://afni.nimh.nih.gov/.

5 http://martinos.org/mne/.
6 http://sccn.ucsd.edu/eeglab/.
7 http://econnectome.umn.edu/.
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software packages specifically designed for EEG and MEG

computing.

3 Multimodal neuroimaging computing methods

3.1 Registration

Registration is the most commonly used technique in a

neuroimaging study, and it finds the spatial relationship

between two or more images, e.g., multimodal neu-

roimaging data alignment, serial alignment, and atlas

mapping. A registration method can be defined in five

aspects, i.e., a cost function for evaluating the similarity

between images, a transformation model to determine the

degree-of-freedom (DOF) of the deformation, an opti-

mization method for minimizing the cost function, a sam-

pling and interpolation strategy for computation of the cost

function, and a multi-resolution scheme for controlling the

coarseness of the deformation [119].

Registration methods can be roughly classified into three

categories according to the DOF of their transformation

models. Rigid registration has a DOF of 6 and allows for

global translations and rotations. Affine registration, i.e.,

linear registration, allows for translation, rotation, scaling

and skew of the images. Rigid and affine registration

methods are usually sufficient for registering the multi-

modal datasets of same subject. However, deformable

registration, which supports local deformations, is fre-

quently needed to register images with large differences,

e.g., registering an image to a template, or registering pre-

and post-contrast images of the same subject. Deformable

registration always requires rigid or affine registration to

obtain a rough initial alignment. In many multimodal

studies, a combination of these registration methods were

used. For example, we recently jointly analyzed the ADNI

FDG-PET and T1-weighted MRI datasets to classify AD

and mild cognitive impairment (MCI) patients [79]. The

PET images were aligned to MRI using an affine regis-

tration method (FSL FLIRT) [120]. The MRI datasets were

registered to the MNI template using a deformable method

(IRTK) [121], and the output registration coefficients by

IRTK were applied to register the PET images to the same

template. There are many other widely used registration

algorithms, such as B-Spline registration [119, 122],

Demons [123], and SyN [124], and ITK [54] registration

framework is a standard-bearer for all of these popular

registration methods.

3.2 Segmentation

Segmentation is also referred to as brain parcellation or

labeling. The brain can be segmented at different levels,

i.e., tissues (grey matter, white matter, cerebrospinal fluid),

cortical regions, and sub-cortical regions. The segmenta-

tion methods can be classified into three categories [125].

The first category is manual and semi-automatic methods,

which require manually outlining the brain regions

according to a protocol [126, 127] or labeling the land-

marks or seed points [128, 129]. These methods are labour-

intensive and prone to intra- and inter-operator variation.

The second category is the atlas inverse mapping

methods, which can inversely map a labeled atlas, e.g., the

standard ICBM and AAL template, or user-defined image,

to the original image space. Yao et al. recently provided a

review of popular brain atlases [130]. Atlas inverse map-

ping is simple, but its performance heavily depends on the

selected atlas and mapping method.

A more robust but complex solution is multi-atlas

labeling, including the multi-atlas propagation with

enhanced registration (MAPER) [131] and its variants

[132, 133]. These methods carry out whole-brain seg-

mentation in the original image space by fusing multiple

labeling results derived from the multiple atlases. Multi-

atlas labeling is computationally expensive, but the per-

formance is comparable to manual labeling [125]. FSL

FAST8 and NifSeg9 are widely used for brain tissue seg-

mentation. IRTK, Advanced Normalization Tools

(ANTs)10 and NifReg11 are commonly used in multi-atlas

labeling as the normalization tools.

3.3 Feature fusion

Various features can be extracted from the neuroimaging

data, as described in Sect. 2. Feature fusion is needed to

jointly analyze the features from multimodal data. A

straightforward solution is to concatenate input multi-view

features into a high-dimensional vector, and then apply

feature selection methods, such as t-test [134],

ANOVA [118], Elastic Net [10, 135], lasso [136] or a

combination of these methods [137, 138], to reduce the

’curse of dimensionality’.

These methods show promising results. However, the

inter-subject variations cannot be eliminated using the

concatenation methods because the inter-subject distances

measured by different features may have different scales

and variations. With a focus on the subjects, the feature

embedding methods, such as multi-view spectral embed-

ding (MSE) [139] and multi-view local linear embedding

(MLLE) [140], have been used to explore the geometric

structures of local patches in multiple feature spaces and

8 http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FAST.
9 http://cmictig.cs.ucl.ac.uk/wiki/index.php/NiftySeg.
10 http://stnava.github.io/ANTs/.
11 http://cmictig.cs.ucl.ac.uk/wiki/index.php/NiftyReg.
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align the local patches in a unified feature space with

maximum preservation of the geometric relationships.

In addition, machine learning, especially deep learning,

is increasingly used to extract high-level features from

neuroimaging data. The advantage of learning-based fea-

tures is they do not depend on prior knowledge of the

disorder or imaging characteristics as the hand-engineered

features. They are also essentially suitable for multimodal

feature learning, and could expect better performance with

larger datasets. However, learning-based features heavily

depend on the training datasets [141]. Recently, Suk et al.

[142] proposed a feature representation learning framework

for multimodal neuroimaging data. One stacked auto-en-

coder (SAE) was trained for each modality, then the learnt

high-level features were further fused with a multi-kernel

support vector machine (MK-SVM). They further proposed

another deep learning framework based on the deep

Boltzmann machine (DBM) and trained it using the 3D

patches extracted from the multimodal data [143].

3.4 Pattern analysis

Pattern analysis aims to deduce the patterns of disease

pathologies, sensorimotor or cognitive functions in the

brain and identify the associated regionally specific effects.

A substantial proportion of pattern analysis methods

focused on classification of different groups of subjects,

e.g., distinguishing AD patients from normal controls [10,

138]. Hinrichs et al. [144, 145] and Zhang et al. [4] recently

proposed the multi-kernel support vector machine (MK-

SVM) algorithm, which is based on multi-kernel learning

and extends the kernel tricks in SVM to the multiple fea-

ture spaces. We previously proposed a multifold Bayesian

kernelization (MBK) model [79] to transfer the features

into diagnosis probability distribution functions (PDFs),

and then merge the PDFs instead of the feature spaces.

Regression-based pattern analysis is often used to

identify the biomarkers of a group of subjects and probe the

boundaries between different groups. The multimodal

biomarkers can be based on the voxel features, ROI fea-

tures and other features, as described in Sect. 2. Regres-

sion, such as Softmax regression [10], Elastic Net [135],

and lasso [136] can be combined with feature learning in a

unified framework.

Recently, the pattern analysis methods have been

extended to simulation of future brain development based

on the previous states of the brain and comparison to other

brains. The basic assumption is that brains with similar

cross-sectional and longitudinal deformations would have

similar follow-up development [146, 147]. When the

population is sufficiently large to include a majority of

neurodegenerative changes, the simulated results are more

accurate.

3.5 Visualization

The neuroimaging data are mainly 2D and 3D, thus can be

visualized in multi-dimensional spaces with 2D and 3D

viewers. Multimodal data in 2D space are usually displayed

with three layers, including background, foreground and

label maps. The 3D viewer enables visualization of volume

data, such as volume renderings, triangulated surface

models and fiber tracts. Basic image visualization func-

tions, such as look up tables, zoom, window / level, pan,

multi-planar reformat, crosshairs, and synchronous pan /

scroll for linked viewers, have been implemented in most

visualization platforms, such as Slicer12 and BioImage

Suite13. These platforms also can accommodate visualiza-

tion of high-dimensional data, e.g., tensors and vector

fields.

Image markup refers to the graphical elements overlay,

such as fiducials (points), rulers, bounding boxes, and label

maps. Image annotation refers to the text-based informa-

tion [148]. Both image markups and annotations are used to

describe the meta information of the images, and annota-

tions can be associated with markup elements as free text.

Another important use of the image markups is inter-

active visualization. The aforementioned platforms also

provide a graphical user interface to interact with the data.

For example, the volume rendering module of Slicer allows

the users to define a bounding box and visualize the content

in the bounding box only. Another module, tractography

interactive seeding, is designed for interactive seeding of

DTI fiber tracts passing through a list of fiducials or ver-

tices of a 3D model. Slicer also allows the configuration of

the layouts and manipulation of content in the viewers to

suit a specific use case.

4 FOSS packages and platforms

4.1 Task-oriented packages

The FOSS packages for neuroimaging computing are

usually initially designed for a single task, such as regis-

tration and segmentation, and some of them then are

extended to related tasks and become multifunctional

packages. A number of the most widely used FOSS

packages are listed in Fig. 1—packages and platforms.

Popular multifunctional packages include FreeSurfer,

FSL, SPM, ANTs and NifTK. They cover similar aspects

of functionality, but all have particular strengths. Free-

Surfer and FSL provide a comprehensive solution of

analysis tools for fMRI, sMRI and dMRI data. SPM is

12 http://www.slicer.org/.
13 http://bioimagesuite.yale.edu/.
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designed for the analysis of fMRI, PET, SPECT, EEG and

MEG. The recently developed ANTs and NifTK are useful

for managing, interpreting and visualizing multimodal

data, and represent the state-of-the-art in medical image

registration and segmentation. Tustison et al. [149] recently

compared ANTs and FreeSurfer in a large-scale evaluation

of cortical thickness measurements. Other packages may

focus on a specific task or a set of related tasks. IRTK14,

BRAINs [150], BrainVisa15, ITK-SNAP16 and MindBog-

gle17 are popular choices for registration and segmentation.

In dMRI analysis, Camino18, DTI-TK19, DSI Studio20,

TrackVis21 and MRTrix22 are most widely used packages.

Soares et al. [151] recently conducted a thorough evalua-

tion of these packages and the other dMRI computing

packages in published studies. In functional neuroimaging

computing, AFNI, PyMVPA23 and REST24 are widely

used for fMRI analysis, whereas MNE, EEGLAB, eCon-

nectome for EEG/MEG analysis.

4.2 All integrated platforms

For clinical applications, the medical image computing and

visualization functions are part of the operation system and

must meet the same standards of reliability, robustness, and

simplicity of operation as the core imaging equipment.

This is usually accomplished using software platforms

added onto imaging system by the major vendors of

medical image equipment and many specialized compa-

nies. Examples include Advantage Windows (General

Electric), Syngo Via (Siemens), Vital Image Vitrea

(Toshiba), Visage Amira (Visage Imaging), PMOD

(PMOD Technologies Ltd.), Definiens (Definiens Inc.), and

MimVista (MIM Software Inc.). These packages provide

users with a set of analysis tools, compatibility with PACS

and customer support. Such clinically oriented systems are

not always affordable for academic researchers. Commer-

cial solutions are typically not extensible by the end user,

nor oriented towards prototyping of new tools, and may

require specialized hardware, thereby limiting their appli-

cability in projects that involve the development of new

image computing methods.

As opposed to the commercial platforms, FOSS plat-

forms are meant to provide a research platform that is

freely available and does not require specialized hardware.

A key step in the evolution of today’s flexible and

sophisticated capabilities for image-data-based research

medicine was the creation of the 3D Slicer, which is based

on a modular architecture [1, 152]. 3D Slicer has become a

successful and long-lived platform for the effective use of

volumetric images in clinical research and procedure

development. There are a number of platforms which aim

to cover similar aspects of functionality, e.g., BioImage

Suite, BrainSuite25, MIPAV26 and MITK27.

Some of the libraries contributing to the foundation of

Slicer were designed in close collaboration and often share

the same developer community. These libraries, including

CMake, ITK, VTK and CTK, are distributed as part of the

National Alliance for Medical Image Computing (NA-

MIC) Kit [153], which are actively supported by the NA-

MIC research community28. Many popular packages, e.g.,

ANTs, MindBoggle, ITK-SNAP, DTIPrep, and MITK are

also based on the NA-MIC Kit. NIPY29 and NeuroDebian30

are another two major research communities for neu-

roimaging research and platform development. To promote

open science, neuroimaging tools and resources are always

shared to other community members, usually through the

INCF31 and NITRC32 forums.

5 Example: surgical planning for brain tumor resection

Tractography derived from dMRI has great potential to

help neurosurgeons determine tumor resection boundaries

in functional areas involving eloquent white matter fibers.

The MICCAI DTI Challenge33 is dedicated to comparing

different fiber-tracking algorithms in reconstruction of

white matter tracts, such as peritumoral tracts and cere-

brospinal tract (CST). In this section, we present an

example of pre-operative planning for brain tumor resec-

tion using the sMRI and dMRI data. The original data

consist of a DWI volume and two structure scans of a

patient with meningioma. The DWI scan was acquired with

a spin-echo EPI sequence with the following parameters:

voxel size 2.2 � 2.2 � 2.2 mm, FOV 220 mm, 58 slices,14 https://www.doc.ic.ac.uk/*dr/software/.
15 http://brainvisa.info/.
16 http://www.itksnap.org/.
17 http://www.mindboggle.info/.
18 http://cmic.cs.ucl.ac.uk/camino/.
19 http://dti-tk.sourceforge.net/.
20 http://dsi-studio.labsolver.org/.
21 http://trackvis.org/.
22 https://github.com/MRtrix3.
23 http://www.pymvpa.org/.
24 http://restfmri.net/.

25 http://brainsuite.org/.
26 http://mipav.cit.nih.gov/.
27 http://mitk.org/wiki/MITK.
28 http://www.na-mic.org/.
29 http://nipy.org/.
30 http://neuro.debian.net/.
31 http://www.incf.org/.
32 http://www.nitrc.org/.
33 http://projects.iq.harvard.edu/dtichallenge15/home.
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b-value 1000 s/mm2, 30 diffusion-weighted volumes and 1

baseline volume. The T1 original was acquired using a Ax

3D T1 MPRAGE sequence. The T2 original was acquired

using a Ax 3D SPACE sequence.

The original data were computed in four steps, as

illustrated in Fig. 2. For dMRI-specific computing, the

tensors were estimated using a weighted least square

(WLS) algorithm, and the output is a DTI volume. We then

registered the T1 and T2 MRI volumes to baseline volume

using the affine registration algorithm. The registered T1

and T2 volumes were used as the anatomical references.

For sMRI-specific computing, tumor, ventricle and motor

cortex were manually seeded and semi-automatically

labeled in the baseline volume. The label map of the tumor

and ventricle were than used to generate the 3D surface

model using the Model Maker module in Slicer. The head

surface, pial surface and white matter surfaces for both

hemisphere were reconstructed using the Morphologist

2013 pipeline in BrainVisa [68]. For multimodal comput-

ing, the white matter tracts were visualized using the Slicer

Tractography Interactive Seeding module, which allows

users to mark the image with fiducials, and then move it

around the tumor to visualize the peritumoral fiber tracts.

6 Future directions

The neuroimaging techniques will keep advancing rapidly,

towards higher spatial/temporal/angular resolutions,

shorter scanning time, and greater image contrast. In par-

ticular, the advances in the hybrid imaging scanners, e.g.,

PET/CT and PET/MRI, will enter more clinics and

Fig. 2 Experimental visualization of brain tumor case of DTI

Challenge 2015 using 3D Slicer. The panel on the left shows the GUI

of the Slicer Mosaic Viewer module previously developed by us. The

right side shows the four data viewers, each visualizing a specific step

in the surgical planning workflows. The up left viewer shows the

registered T1 that overlaid on the DTI volume. The up right viewer

shows the segmented tumor (green), ventricle (blue), and motor

cortex (red) surfaces. The bottom left viewer shows the reconstructed

pial surface of the right hemisphere and white matter surface of the

left hemisphere. The bottom right viewer interactively visualizes the

peritumoral fiber tracts as the user moves the fiducial. (Color figure

online)
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laboratories, lowering the cost for data acquisition and

enabling more interesting discoveries in a greater multitude

of populations and disorders.

The continued growth in the complexity and dimen-

sionality of neuroimaging data will spur the parallel

advances of computational models and methods to

accommodate such complex data. Such models and meth-

ods need to keep increasing the grade of automation,

accuracy, reproducibility and robustness, and eventually

need to be integrated into the clinical workflows to facili-

tate clinical testing of the new neuroimaging biomarkers.

The multidisciplinary nature of neuroimaging comput-

ing will keep bringing together clinicians, biologists,

computer scientists, engineers, physicists, and other

researchers who are contributing to, and need to keep

abreast of, advances in the neurotechnologies and appli-

cations. New methods and models will be developed by the

collaboration of different groups or individuals, with rapid

iterations. Therefore, future packages and platforms need

to respond more quickly to the updates, without compro-

mising the functionality, extensibility and portability. This

might cause difficulties in the maintenance of large pack-

ages and platforms, but will encourage the researchers to

provide smarter solutions, e.g., providing an online version

to make the whole process of developing, sharing and

updating much quicker for both developers and users.
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