
O. Banerjee Res Math Sci (2021) 8:25
https://doi.org/10.1007/s40687-021-00261-8

RESEARCH

On the cohomology of certain subspaces
of Symn(P1) and Occam’s razor for Hodge
structures
Oishee Banerjee

*Correspondence:
oishee@math.uni-bonn.de
Mathematical Institute, University
of Bonn, Bonn, Germany

Abstract

Vakil and Matchett-Wood (Discriminants in the Grothendieck ring of varieties, 2013.
arXiv:1208.3166) made several conjectures on the topology of symmetric powers of
geometrically irreducible varieties based on their computations on motivic zeta
functions. Two of those conjectures are about subspaces of Symn(P1). In this note, we
disprove one of them and prove a stronger form of the other, thereby obtaining
(counter)examples to the principle of Occam’s razor for Hodge structures.

1 Introduction
For a smooth and proper variety X over C, the Hodge–Deligne polynomial determines
the Hodge numbers, but that is no longer the case when X is not smooth or proper. To
elaborate, for any varietyX overC, the compactly supported cohomology groupsHi

c(X,Q)
carry Deligne’s mixed Hodge structures. One defines the Hodge–Deligne polynomial as:

HD(x, y) :=
∑

p,q
ep,qxpyq.

Here, ep,q are virtual Hodge–Deligne numbers, defined in terms of pure Hodge structures
that the associated grades for the weight filtration on H∗

c (X,Q) are equipped with

ep,q =
∑

i
(−1)ihp,q

(
grp+q

W Hi
c(X,Q)

)
.

When X is smooth and proper, one has ep,q = (−1)ihp,q(Hi(X,Q)). There are many
examples where the simplest possibility holds, i.e. there is a simplest Hodge structure on
Hi
c(X,Q) for all i in agreementwith the virtualHodge structure. In [9], Vakil andWooddub

this well-known principle as ‘Occam’s razor forHodge structures’. This principle led them
to conjecture about the stable rational cohomology of certain subspaces of Symm(P1), the
m-fold symmetric product of P

1
C
. 1 ,2 This note provides examples (from Conjectures G’

and H’ of [9]).

1Note that the conjectures are in the arXiv version of the paper, and not the published version [10].
2In [6] Kupers and Miller proved Conjectures G and H of [9].
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We now fix some notations and state the conjectures of Vakil andWood. For a complex
quasiprojective variety X , let Symm(X) denote the n-fold symmetric product, i.e.

Symm(X) := Xm/Sm,

where the symmetric group overm letters,Sm acts on Xm by permuting its factors. For a
partition λ ofm, let wλ(X) denote the locally closed subset of Symm(X) with multiplicities
precisely λ. For example, w1m (X) is the space of unordered configuration of m points on
X corresponding to the partitionm = 1 + 1 · · · + 1︸ ︷︷ ︸

m times

.

Conjecture H’ of [9] states that the values of i > 0 for which

lim
n→∞ dimHi(w1n22(P1

C
);Q) �= 0

is periodic in i, and the nonzero limits equal 1. Conjecture G’ of [9] states that

lim
n→∞ dimHi(w1n23(P1

C
);Q) =

⎧
⎨

⎩
1 i = 0, 1,

0 otherwise.
Our main theorem disproves Conjecture G’ of [9].

Theorem A We have

lim
n→∞Hi(w1n23(P1

C
);Q) =

⎧
⎨

⎩
1 for i = 0, 1, 2,

2 for i > 2.

Furthermore, Hi(w1n22(P1);Q) is pure of weight −2i and Hodge type (−i,−i) for all i. ��
The following corollary to Theorem A is a refinement of the statement of Conjecture G’
of [9].

Corollary 1 We have

lim
n→∞ dimHi(w1n22(P1

C
);Q) ∼=

⎧
⎪⎪⎨

⎪⎪⎩

1 for i = 0, 2k + 1, k ≥ 0,

2 for i = 4k, k ≥ 1,

0 for i = 4k + 2, k ≥ 0.

Furthermore, Hi(w1n22(P1);Q) is pure of weight −2i and Hodge type (−i,−i) for all 0 ≤
i ≤ n + 2. ��
A question along the lines of the conjectures based on the Occam’s razor of Hodge

structures would be: can one determine the rational cohomology of a variety over C by
counting the number of Fq points of that variety? The answer, in general, is in negative.
In fact, the conjectures in [9] were made on the very basis of such point-counts. The
Grothendieck–Lefschetz trace formula (see [5]) allows one to count the number of Fq
points of a variety X from its topology when X is a reasonably nice variety. On a larger
scale, the Weil conjectures form a bridge between the topology of X(C) and the number
theoretic properties ofX(Fq). However, there is no sufficient criterion to cross that bridge
and go from |X(Fq)| to the rational Betti numbers of X(C).
The existing literature on the (co)homology of configuration spaces is already extremely

rich. Instead of attempting to add that, the purpose of this note is to give rather simple
examples of varieties X for which points counts, or the principle of Occam’s razor of
Hodge structure, do not carry us across the said bridge from |X(Fq)| (that Vakil and
Wood computed) to the rational Betti numbers of X(C) (which we compute in this note).
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2 Cohomological stability of some locally closed strata of Symm(P1)
In this section, we prove Theorem A and Corollary 1. We will prove the theorem and the
corollary together. Our proof can be outlined through the following steps:

1. Describe the spaces w1n23(P1) and w1n22(P1) as fibre-bundles over PConfnP1 and
UConf2(P1), respectively, with fibres isomorphic to UConfnC×. Here, for a space X
we define UConfnX := w1n (X) and PConfnX := (Xn − union of all diagonals).

2. Invoke [1, Corollary 2] to compute H∗
c (UConfnC×;Q), the compactly supported

rational cohomology of UConfnC×.
3. Analyse the Serre spectral sequence for a fibration to computeH∗(w1n22(P1);Q) and

H∗(w1n23(P1);Q).

Now a few words about the proof. Steps 2 and 3 constitute the core of the proof. The
cohomology H∗(UConfnC×;Q) is very well known; for example, Cohen [2] does it by
computing the homology of free En algebras; Totaro, by considering the Leray spectral
sequence for the inclusion PConfnX ↪→ Xn, and describing ring structure and the weight
filtration on its E2 page, when X is a smooth algebraic variety over C (see [8] and the ref-
erences therein), etc. With the aim of computing (a) H∗(UConfnC×;Q) with the weights,
and (b) bypassing the significant combinatorial complexities that arise if we approach
H∗(UConfnC×;Q) viaH∗(PConfnC×;Q); we use the spectral sequence constructed in [1],
which in turn has been developed from Deligne’s theory of cohomological descent (see
[4]).
Since we only consider cohomology with Q-coefficients, the field of coefficients will be

almost always suppressed. Moreover, we implicitly use the fact that on a nice topological
space X , if AX denotes the constant sheaf of R-modules with stalks isomorphic to the
R-moduleA, then the singular cohomologyHi(X ;A) and the sheaf cohomologyHi(X,AX )
are isomorphic. As such, we use H∗(X) to denote the sheaf cohomology H∗(X,QX ) and
by extension, the singular cohomology H∗(X ;Q). And all varieties are defined over C.

Proof of Theorem A and Corollary 1 Step 1 For any positive integer n define the maps

π : w1n23(P1) → PConf2(P
1)

{x1, . . . , xn}, a, a, b, b, b �→ (a, b), (2.1)

where the fibres are

π−1(a, b) = UConfn(P
1 − {a, b}) ∼= UConfnC

×,

and

υ : w1n22(P1) → UConf2(P
1)

(
{x1, . . . , xn}, a, a, b, b

)
�→ {a, b}, (2.2)

where the fibres are

υ−1{a, b} = UConfn(P
1 − {a, b}) ∼= UConfnC

×.

Note that we have the following commutative diagram:

w1n23(P1) w1n22(P1)

PConf2(P1) UConf2(P1)

τ̂

π υ

τ

(2.3)
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where τ̂ : w1n23(P1) → w1n22(P1) is induced by

τ : PConf2(P
1) → UConf2(P

1),

the Z/2-quotient map defined by swapping the coordinates of the points in PConf2(P1);
and

τ̂

∣∣∣
π−1(a,b)

: π−1(a, b) → υ−1({a, b})
is identity.
Step 2We compute H∗

c (UConfnC×) by directly quoting Corollary 2 from [1]:
Let X be a connected locally compact Hausdorff topological space. Then, there exists a
spectral sequence:

Ep,q
1 =

⊕

l+m=q

(
Hl
c(Xp) ⊗ sgnp

)Sp ⊗ Hm
c (Symn−2pX)

=
⊕

l+m=q

⊕

i+j=p

(
SymiHodd

c (X) ⊗ �jHeven
c (X)

)(l) ⊗ Hm
c (Symn−2pX)

=⇒ Hp+q
c (UConfn(X)), (2.4)

where sgnp denotes the sign representation ofSp onHl
c(Xp), induced bySp acting on Xp

by permuting the coordinates; and it follows from, say, [7] that
(
Hl
c(Xp) ⊗ sgnp

)Sp ∼=
⊕

i+j=p

(
SymiHodd

c (X) ⊗ �jHeven
c (X)

)(l),

where

Hodd
c (X) :=

⊕

k
H2k+1
c (X), Heven

c (X) :=
⊕

k
H2k
c (X),

and
(
SymiHodd

c (X)⊗�jHeven
c (X)

)(l) denotes the l(th)-graded summand of the cohomology
SymiHodd

c (X) ⊗ �jHeven
c (X).

The strategy behind (2.4) can be summarised briefly as follows:

1. Observe that if Tp := Xp × Symn−2pX , then for all p ≥ 0 there are natural face maps

fp : Tp → SymnX(x1, x2, . . . , xp),

{x′
1, x

′
2, . . . , x

′
n−2p} �→ {x1, x1, x2, x2, . . . , xp, xp, x′

1, x
′
2, . . . , x

′
n−2p}

i.e. by raising the coordinates of the points ofXp tomultiplicity 2, and then forgetting
the ordering of the resulting n-tuple.

2. This results in an augmented cosemisimplicial object in the category of locally con-
stant sheaves on UConfnX :

j!QUConfnX → f•∗QT• ,

where j : UConfnX ↪→ SymnX is the inclusion. See [4] for further details, and [3] for
a modern treatment of it.

3. In turn, one shows that there’s a quasi-isomorphism of locally constant sheaves

j!QUConfnX
∼=−→

(
fp∗QTp ⊗ sgnp

)Sp
,

where Sp acts on Tp = Xp × Symn−2pX by permuting the first p factors, and sgnp
denotes the sign representation ofSp on fp∗QTp (see, for example, [1]).
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A simple but important takeaway from the above discussion is that those X for which all
the differentials vanish and the spectral sequence in (2.4) degenerates on its E1 page, every
cohomology class in H∗

c (UConfnX) is a linear combination of classes of the form α ⊗ β

where α ∈
(
Hl
c(Xp) ⊗ sgnp

)Sp
, which we dub as the ‘alternating part’ of a cohomology

class, and β ∈ Hm
c (Symn−2pX), which we dub as the ‘symmetric part’ of a cohomology

class. Also observe that when X is a quasiprojective algebraic variety over C, all the face
maps are algebraic morphisms, and the spectral sequence in (2.4) is a spectral sequence
of mixed Hodge structures.
Now put X = C

× in (2.4). Then, for p ≥ 1, the spectral sequence (2.4) reads as:

Ep,q
1 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
Symp−1H1

c (C×) ⊗ H2
c (C×)

)
⊗

(
Symn−2pH2

c (C×)
)
, q = 2n − 3p + 1,

(
SympH1

c (C×)
)

⊗
(
Symn−2pH2

c (C×)
)

⊕(
Symp−1H1

c (C×) ⊗ H2
c (C×)

)

⊗
(
Symn−2p−1H2

c (C×) ⊗ H1
c (C×)

)
, q = 2n − 3p,

(
SympH1

c (C×)
)

⊗
(
Symn−2p−1H2

c (C×) ⊗ H1
c (C×)

)
, q = 2n − 3p − 1,

0, otherwise,

(2.5)

and for p = 0 one has

E0,q
1 =

⎧
⎨

⎩
SymnH2

c (C×), q = 2n,

Symn−1H2
c (C×) ⊗ H1

c (C×), q = 2n − 1,

with the differentials going horizontallyEp,q
1 → Ep+1,q

1 (see Fig. 1). The differentials clearly
vanish, and the spectral sequence degenerates on the E1 page. Furthermore, one can read
off the weights from the explicit description of the terms Ep,q

1 of the spectral sequence
in (2.5) by noting that H1(C×) is pure of weight −2 and Hodge type (−1,−1). Letting
Q(1) denote the Tate Hodge structure of weight −2 and Hodge type (−1,−1), and using
Poincaré duality and the universal coefficient theorem, in that order, we obtain for all i:

Hi(UConfnC
×;Q)

∼=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
SymqH1(C×) ⊗ H0(C×)

) ⊗
Symn−2(q+1)H0(C×)

⊕
SymqH1(C×)

⊗ (
Symn−2q−1H0(C×) ⊗ H1(C×)

)
, i = 2q + 1,

SymqH1(C×)
⊗

Symn−2qH0(C×)
⊕ (

Symq−1H1(C×) ⊗ H0(C×)
) ⊗ (

Symn−2q−1H0(C×) ⊗ H1(C×)
)
, i = 2q,

(2.6)

and in particular, we have:

Hi(UConfnC
×;Q) ∼=

⎧
⎨

⎩
Q(−i), i = 0, n,

Q(−i)2, 0 < i < n.
(2.7)

��
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Fig. 1 E1 page spectral sequence converging to H∗
c (UConfn(C

×);Q)

Finally, we record a list of the bases of Hi(UConfnC×;Q) for each i, in terms of the
cohomology classes inH∗(C×;Q). Let ω ∈ H1(C×;Z) correspond to, in terms of de Rham
cohomology, the integral holomorphic one-form dz

z , and we continue to denote its image
in H1(C×;Z) ⊗ Q by ω; and let � denote a generator of H0(C×). Then, plugging these in
(2.6) we get

H2k (UConfnC
×) = Q{ωk ⊗ �

n−2k , ωk−1
� ⊗ �

n−2k−1ω},
H2k+1(UConfnC

×) = Q{ωk ⊗ �
n−2k−1ω, ωk

� ⊗ �
n−2k−2}, (2.8)

where the terms preceding ⊗ are the ‘alternating parts’ of these cohomology classes
and the terms succeeding ⊗ are the ‘symmetric parts’. We should also keep in mind
that any cohomology class of the form ωi

�
j ⊗ β , for some β in the ‘symmetric part’,

vanishes whenever j ≥ 2, because as noted earlier, the ‘alternating part’ comes from(
Hl
c(Xp)⊗sgnp

)Sp
for some l and p, and in its Künneth decomposition,H0(C×) can occur

only at most once. Decomposing the generators ofH∗(UConfnC×) into their ‘alternating’
and ‘symmetric’ parts will play a crucial role in the endgame.
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Step 3 Now we use the Serre spectral sequence for the fibre bundles

π : w1n23(P1) → PConf2(P
1)

and

υ : w1n22(P1) → UConf2(P
1),

and for simplicity we introduce the following notations that will be used for the rest of
this paper:

Ên := w1n23(P1), En := w1n22(P1),

B̂ := PConf2(P
1), B := UConf2(P

1),

Fn := UConfnC
×.

Case 1 (Proving Theorem A) The space B̂ =
(
P
1 × P

1 − diagonal
)
is isomorphic to a

C-bundle over P
1, and is therefore simply connected. And we have

Hi(B̂) ∼=
⎧
⎨

⎩
Q(− i

2 ), i = 0, 2,

0, otherwise.

The Serre spectral sequence for π : Ên → B̂ is given by

Ep,q
2 = Hp(B̂,Rqπ∗QFn ) = Hp(B̂) ⊗ Hq(Fn) =⇒ Hp+q(Ên) (2.9)

where the second equality follows from the fact that the locally constant sheaf Rqπ∗QFn
is actually a constant sheaf, B̂ being simply connected. Paired with (2.7), the spectral
sequence (2.9) reads as follows:

(2.10)

The only differentials which can be nonzero are

d0,q2 : E0,q
2 = H0(B̂) ⊗ Hq(Fn) → E2,q−1

2 = H2(B̂) ⊗ Hq−1(Fn). (2.11)

To understand the differentials, we first consider the well-known case of n = 1. In that
case, we are dealing with w123(P1), which is a C

×-bundle on PConf2P1, and observe that

w123(P1) ∼= PConf3P
1.

The cohomology of the latter can be deduced easily using several well-known methods.
A quick way is to observe that the action of PGL2(C) on P

1 by Möbius transformations is
sharply 3-transitive. Therefore,

Hi(PConf3P
1) ∼= Hi(PGL2(C)) ∼=

⎧
⎨

⎩
Q, i = 0, 3,

0, otherwise.
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On the other hand, thinking of PConf3P1 as a C
×-bundle on B̂ = PConf2P1, the resulting

Serre spectral sequence is given by

Ep,q
2 = Hp(PConf2P

1) ⊗ Hq(C×) ∼=
⎧
⎨

⎩
Q, p = 0, 2 and q = 0, 1,

0, otherwise,

and the only differential thatmight be nonzero is δ : H0(B̂)⊗H1(C×) → H2(B̂)⊗H0(C×):

Armed with the knowledge of H∗(PConf3P1), we see that δ is indeed an isomorphism of
Q-vector spaces. Therefore,

δ(ω) = ce ⊗ � (2.12)

for some c ∈ Q
×, and where � ∈ H0(C×) as before, and e denotes a generator of the

Q-vector space H2(B̂).
The differentials dp,q2 in (2.11) are induced by δ. Indeed, given any fibre bundle F →

E → B, its Serre spectral sequence is related to that of the fibre bundles

Fn → E×Bn → B

and

SymnF → Symn
BE → B,

by the naturality properties that their respective spectral sequences satisfy. To ease our
path towards computing dp,q2 in (2.11), let us write down these relations explicitly in the
case when n = 2 (for general n it follows likewise), and when the base is simply connected
(which is our case here).
We have the following diagram of fibre bundles:

F2 −−−−→ E ×B E −−−−→ B
⏐⏐�pi

⏐⏐�
∥∥∥

F −−−−→ E −−−−→ B
where pi denotes projection to the ith factor, i = 1, 2 . By naturality properties of their
respective Serre spectral sequences, the following diagram commutes:

Hp(B) ⊗ Hq(F )
p∗
i−−−−→ Hp(B) ⊗ Hq(F2)

δ
p,q
2

⏐⏐�
⏐⏐�d̃p,q2

Hp+2(B) ⊗ Hq−1(F )
p∗
i−−−−→ Hp+2(B) ⊗ Hq−1(F2)
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where δ
p,q
2 and d̃p,q2 are thedifferentials in the spectral sequences for the respective bundles,

and p∗
i is an abuse of notation that really denotes the map idB ⊗ p∗

i . Then,

d̃p,q2 (β ⊗ (α1 ⊗ α2))

= d̃p,q2

(
β ⊗ (p∗

1(α1) � p∗
2(α2))

)
= d̃p,q2

(
β ⊗ p∗

1(α1)
)

� p∗
2(α2)

+ (−1)|β||α1|
(
β ⊗ α1

)
� d̃p,q2 p∗

2(α2) (by Leibniz rule)

= p∗
1δ

p,q
2 (β ⊗ α1) � p∗

2(α2)

+ (−1)|β||α1|
(
β ⊗ α1

)
� p∗

2δ
p,q
2 (α2) (by the commutative diagram above)

(2.13)

and this is enough for our purposes because we have achieved expressing d̃p,q2 entirely in
terms of δp,q2 and p∗

i . We make a similar argument for the following pair of fibre bundles:

F2 −−−−→ E ×B E −−−−→ B
⏐⏐�ρ

⏐⏐�
∥∥∥

Sym2F −−−−→ Sym2
BE −−−−→ B

where the map ρ forgets the order of a tuple. Then, as before, naturality implies that the
following diagram commutes:

Hp(B) ⊗ Hq(F2) ρ∗−−−−→ Hp(B) ⊗ Hq(Sym2F )
⏐⏐�d̃p,q2 dp,q2

⏐⏐�

Hp+2(B) ⊗ Hq−1(F ) ρ∗−−−−→ Hp+2(B) ⊗ Hq−1(F2)

Recall that elements ofH∗(Sym2F ) are linear combinations of elements of the form α1α2,
where the product is alternating if and only if both α1 and α2 have odd cohomology
degrees, and symmetric otherwise (see [7] for further details). Therefore,

dp,q2 (β ⊗ α1α2)

= dp,q2 (β ⊗ ρ∗(α1 ⊗ α2))

= d̃p,q2 ρ∗(β ⊗ α1 ⊗ α2)

= ρ∗d̃p,q2 (β ⊗ α1 ⊗ α2) (by the commutative diagram above.) (2.14)

Now the terms in the spectral sequence (2.5) (as (2.4), or its proof in [1] shows in details)
come from considering cohomology of the spaces (C×)p × Symn−2p

C
× for various values

of p. Therefore, plugging E = w123, B = PConf2P1 and F = C
×, we have explicit formula

for the Serre spectral sequence of the bundles

(C×)p × Symn−2p
C

× → E×Bp × Symn−2p
B E → B,

which in turn gives us (again, by naturality) the formula for the differentials in (2.11). In
particular, what is sufficient for our purposes is to know where ω is mapped to under the
differentials; and we have

d̃2(ω ⊗ ω) = δ(ω) ⊗ ω − ω ⊗ δ(ω), by (2.13),

d2(ω2) = 0, by (2.14).



25 Page 10 of 13 O. Banerjee ResMath Sci (2021) 8:25

Recalling the generators listed in (2.8), a straightforward computation gives us:

d0,2k2

(
ωk ⊗ �

n−2k
)

=
⎧
⎨

⎩
λ1e ⊗ (� ⊗ �

n−2), k = 1,

0, k ≥ 2

d0,2k2

(
ωk−1

� ⊗ �
n−2kω

)
= λ2e ⊗

(
ωk−1

� ⊗ �
n−2k+1

)

(where the other term.ωk−2
�
2 ⊗ �

n−2kω = 0),

d0,2k+1
2

(
ωk ⊗ �

n−2k−1ω
)

= λ3e ⊗
(
ωk ⊗ �

n−2k
)
,

d0,2k+1
2

(
ωk

� ⊗ �
n−2k−2

)
= 0 (because ωk−1

�
2 ⊗ �

n−2k−2 = 0), (2.15)

where λi ∈ Q
× for all 1 ≤ i ≤ 3. In particular, all the differentials in (2.11) are Q-linear

maps of rank 1. Therefore, the E2 page of the spectral sequence in (2.9) results in an E3
page that looks like:

(2.16)

and all the differentials Ep,q
3 → Ep+3,q−2

3 vanish. So the spectral sequence (2.16) degener-
ates on the E3 page, and this completes our proof of Theorem A.
Case 2 (Proving Corollary 1) Now we turn our focus to the fibre bundle

UConfnC
× → w1n22(P1) υ−→ UConf2(P

1),

and recall that we set up the notations En = w1n22(P1), B = UConf2P1 and Fn =
UConfnC×. The fundamental group of B is Z/2Z. Also, noting that B is a Zariski open
dense subvariety of Sym2

P
1 ∼= P

2 (and thus, connected), with its complement Sym2
P
1−B

a smooth conic (the discriminant locus of a quadratic form), it follows from, say, the long
exact sequence of cohomology that H∗(B) ∼= Q.
Now observe that since Z/2Z is a finite group and we are concerned with cohomology

with Q-coefficients, and thanks to the commutative diagram (2.3), the Serre spectral
sequence for this fibre bundle is simply the term-wise Z/2Z invariants of (2.9). More
precisely, if�(X, •) denotes the global section functor on a spaceX , as well as the invariants
under X when X is a group, then in the derived category of locally constant sheaves on En
we have the following:

R�(En,QEn ) = R�(Z/2Z, R�(Ên, τ̂ ∗
QEn ) (2.17)

= �(Z/2Z, R�(Ên, τ̂ ∗
QEn )) (2.18)

= �(Z/2Z, R�(Ên,QÊn )) (2.19)

= �(Z/2Z, R�(B̂, Rπ∗QFn )), (2.20)
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where (2.17) follows from the definition of τ̂ in the commutative diagram (2.3); (2.17) to
(2.18) follow from the fact that there are no Ext groups because Z/2Z is a finite group
and R�(Ên, τ̂ ∗

QEn ) is a complex of locally constant sheaves of vector spaces over Q; (2.19)
follows from the fact that τ̂ ∗

QEn
∼= QÊn ; and R�(B̂, Rπ∗QFn ) is the complex that gives rise

to the Serre spectral sequence in (2.9), which explains (2.20). On the other hand,

R�(En;QEn ) = R�(B, Rυ∗QFn ) (2.21)

gives the Serre spectral sequence for the fibre bundle Fn → En → B. Comparing (2.20)
and (2.21), we get that

Ep,q
2 (Fn → En → B) ∼=

(
Ep,q
2 (Fn → Ên → B̂)

)Z/2Z =⇒ Hp+q(En),

and where the differentials are given by (2.15). Now we are left with figuring out how
Z/2Z acts on Ep,q

2 (Fn → Ên → B̂) from (2.9), which, in turn, boils down to understanding
how Z/2Z acts on Hq(Fn), and on Hp(B̂).
Let σ ∈ Z/2Z denote the order 2 element. It is not hard to see that for {x, y} ∈ B, the

fundamental group Z/2Z acts on the stalks Rqυ∗QFn

∣∣∣{a,b}
∼= Hq(Fn) by

σω = −ω.

For example, if we mark two distinct points x and y on P
1, thinking of it as the sphere S2,

then if the Poincaré dual of ω is represented by an oriented circle that leaves x and y on
different hemispheres, then σ , which is a half Dehn twist, reverses the orientation of the
Poincaré dual of ω. Now looking back on the generators of Hq(Fn) in (2.8), we see that

σH2k (Fn) ∼=
⎧
⎨

⎩
0, k odd,

Q{ωk ⊗ �
n−2k , ωk−1

� ⊗ �
n−2k−1ω}, k even,

(2.22)

and

σH2k+1(Fn) ∼=
⎧
⎨

⎩
Q{ωk ⊗ �

n−2k−1ω}, k odd,

Q{ωk
� ⊗ �

n−2k−2}, k even.
(2.23)

On the other hand, for the element e ∈ H2(B̂) chosen earlier, we have
σ e = −e. (2.24)

Combining (2.22), (2.23), and (2.24), see that the spectral sequence Ep,q
2 (Fn → En → B)

reads as:

E0,q
2 (Fn → En → B) ∼=

⎧
⎪⎪⎨

⎪⎪⎩

0, q = 4k + 2, k ≥ 0

Q, q = 0, 2k + 1, k ≥ 0

Q
2, q = 4k, k ≥ 1,

(2.25)

and

E2,q
2 (Fn → En → B) ∼=

⎧
⎪⎪⎨

⎪⎪⎩

Q
2, q = 4k + 2, k ≥ 0

Q, q = 2k + 1, k ≥ 0

0, q = 4k, k ≥ 0,

(2.26)

and for all other values of p, we have E0,q
2 (Fn → En → B) = 0 and where the differentials

are still rank 1, wherever that makes sense (see (2.28)). Clearly, all differentials vanish on
the E3 page, and the spectral sequence on its E3 page looks like (see (2.29)):

Ep,q
3 (Fn → En → B) ∼=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Q, {(p, q) : p = 0, q = 4k, 4k + 1, k ≥ 0}
∪{(p, q) : p = 2, q = 4k + 1, 4k + 2, k ≥ 0}

0, otherwise.

(2.27)
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Spectral sequence Ep,q
2 (Fn → En → B).

(2.28)

Spectral sequence Ep,q
3 (Fn → En → B).

(2.29)

Acknowledgements
I am grateful to Benson Farb for his helpful comments and patient guidance. My warm thanks to Melanie Matchett-Wood
for her feedback on an earlier draft of the manuscript. And a very special thanks to the anonymous referee for his valuable
comments on the paper.



O. Banerjee Res Math Sci (2021) 8:25 Page 13 of 13 25

Funding
Open Access funding enabled and organized by Projekt DEAL.

Received: 8 February 2020 Accepted: 10 November 2020 Published online: 16 April 2021

References
1. Banerjee, O.: Filtration of cohomology via semi-simplicial spaces (2019). arXiv:1909.00458
2. Cohen, F.R., Lada, T.J., May, J.P.: The Homology of Iterated Loop Spaces. Lecture Notes in Mathematics, vol. 533.
Springer, Berlin (1976)

3. Conrad, B.: Cohomological descent. https://math.stanford.edu/~conrad/papers/hypercover.pdf
4. Pierre, D.: Théorie de hodge?: lll. Publ. Math. IHES 44, 6–77 (1975)
5. Grothendieck, A.: Cohomologie l-adique et fonctions l. Séminaire de Géométrie Algébrique du Bois-Marie SGA 5,
1965–66

6. Kupers, A., Miller, J.: Some stable homology calculations and Occam’s razor for Hodge structures. J. Pure Appl.
Algebra 218(7), 1219–1223 (2014)

7. Macdonald, I.G.: The Poincare polynomials of a symmetric product. Math. Proc. Camb. Philos. Soc. 58(4), 563–568
(1962)

8. Totaro, B.: Configuration spaces of algebraic varieties. Topology 35(4), 1057–1067 (1996)
9. Vakil, R., Matchett-Wood, M.: Discriminants in the Grothendieck ring of varieties (2013). arXiv:1208.3166
10. Vakil, R., Matchett-Wood, M.: Discriminants in the Grothendieck ring of varieties. Duke Math. J. 164(6), 1139–1185
(2015)

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

http://arxiv.org/abs/1909.00458
https://math.stanford.edu/~conrad/papers/hypercover.pdf
http://arxiv.org/abs/1208.3166

	On the cohomology of certain subspaces of Symn(¶1) and Occam's razor for Hodge structures
	Abstract
	1 Introduction
	2 Cohomological stability of some locally closed strata of Symm(¶1)
	References




