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Abstract
Purpose of Review  With the increasing prevalence of commercially available wearable digital devices in sleep medicine, 
this review aims to address some of the benefits and concerns with using these devices, with a specific focus on population-
based studies.
Recent Findings  There has been a recent proliferation of sleep-related research studies that are using wearable digital 
devices, likely due to their relatively low cost and widespread use among consumers. As technology improves, it seems that 
wearables likely provide sleep information on par with actigraphy, which has been traditionally used in many sleep-related 
research studies. We also discuss issues unique to wearables, such as accessing data and data privacy, and the potential for 
decentralized digital research studies.
Summary  Wearable devices have the potential to change how we approach population-based sleep research studies, particu-
larly when considering decentralized digital trials.
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Introduction

The use of mobile health technologies, including wearable 
sensors, in sleep research has increased substantially over 
the last several years. The PubMed library contained 3 arti-
cles containing the terms “sleep” and “wearable” in 2012; 
this has now increased to 1262 articles by the end of 2022, 
suggesting that sleep researchers increasingly recognize the 
potential of harnessing wearable devices in their investiga-
tions of sleep.

Many of the benefits of using commercially available 
wearable devices in research studies are clearly apparent—
the technology is of relatively low cost, readily available, 
and continues to improve in accuracy, convenience, and 
impact on care [1]. Furthermore, wearables passively col-
lect data without the need for substantial levels of participant 

interaction, and without the need to travel to a sleep lab for 
polysomnography (PSG). One of the greatest potential ben-
efits is in the ability of wearables to evaluate multiple nights 
(sometimes years) of sleep, thereby providing longitudinal 
data that may be more reflective of a participant’s normal 
sleep patterns compared to what can generally be obtained 
with more traditional methods. Longitudinal assessments, 
especially when gathered from large, diverse populations, 
can help us better understand how sleep variability and dif-
ferent sleep patterns might impact human health outcomes. 
Wearables also provide value to participants since they 
can return personalized health data in a user-friendly, real-
time way via data visualizations, which may also help with 
engagement and retention in sleep-related research. Further-
more, wearables capture other data (e.g., steps, exercise) that 
might affect sleep, which cannot be done using PSG.

Given the emerging possibilities of utilizing wearables in 
sleep research, we aim to provide a comprehensive review 
regarding the use of wearable devices in population-based 
studies that focus on sleep, including potential challenges for 
researchers as well as future directions in the arena.
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Where the Field has Been: Traditional 
Assessments of Sleep

Previously, the only assessment of sleep that has been done 
on a population scale is survey assessment using subjec-
tive recall. For example, the largest database of population 
sleep in the USA comes from the Behavioral Risk Factor 
Surveillance System (BRFSS)—where the Centers for Dis-
ease Control and Prevention (CDC) query randomly cho-
sen individuals over the phone regarding how much inter-
viewees think they sleep in a 24-h period; this database 
has often been tapped as a resource for sleep researchers 
[2–4]. The Nurses’ Health Study [5], with over 70,000 
participants, was another influential, population-level 
study that utilized surveys for the assessment of sleep. 
However, survey-based data are fraught with limitations, 
including the use of subjective recall (instead of the use of 
objective measurement), the use of ordinal numbers (e.g., 
5 vs 6 h of sleep per night), uncertainty as to whether this 
number means hours slept last night or on average over 
many nights, includes naps or non-nighttime sleep, and 
the cross-sectional nature of the query as opposed to lon-
gitudinally tracked sleep [6].

On the opposite end of the spectrum, the most in-depth 
assessment of sleep comes from PSG, which remains the 
gold standard for sleep assessment, diagnosis for many 
sleep disorders, and is currently the most accurate meas-
ure of sleep duration and architecture. Major limitations 
remain for PSG when considering population-level stud-
ies. PSG must occur in a sleep laboratory, outside of the 
natural environment of the participant, thereby limiting the 
number of participants in a research study. This also lim-
its participant selection based on where a PSG laboratory 
might be available, and cost is an issue both in obtaining 
data and in analysis. Furthermore, PSG does not allow 
for the collection of longitudinal sleep information with-
out repeated returns to a sleep laboratory (and if it did, 
it would likely alter the timing and duration of sleep it 
purports to measure).

Actigraphy, which has been used in sleep research stud-
ies since the late 1970s, is a non-invasive method of meas-
uring gross motor activity, and has been used to monitor 
human rest/activity cycles. Actigraphs are generally wrist-
worn devices that rely on accelerometry and have been 
used successfully in many sleep-related research studies 
to estimate sleep duration (though not sleep architecture) 
[7, 8]. These devices use (lack of) body movements (usu-
ally from the wrist/hand) to infer periods of sleep. While 
actigraphy cannot provide sleep staging data and is cer-
tainly not the gold standard for sleep measurements, it 
provides reasonable estimates of sleep duration, wake after 
sleep onset (WASO), sleep latency (when paired with a 

sleep diary), and sleep efficiency. Notably, actigraphy has 
been used in many different populations, including those 
who are ambulatory, chronically ill, and even those who 
are hospitalized [7, 9–13]. While some software can pro-
vide automatic scoring of the data, actigraphy is generally 
manually scored with an experienced scorer determining 
potential “rest intervals” of when a person is thought to 
be trying to sleep, and then an algorithm applied to these 
intervals to determine sleep vs. wake. The Cole-Kripke 
algorithm is an example of how some actigraphy programs 
determine sleep vs. not sleep and takes into account activ-
ity during a given epoch as well as activity in the sur-
rounding time periods [14]. Actigraphy has been used 
successfully in moderate to very large studies of sleep 
duration for many years. The Study of Osteoporotic Frac-
tures (SOF) enrolled almost 3000 women in the 1980s 
to examine what factors, including actigraphically meas-
ured sleep and activity, contributed to the development of 
osteoporosis [15]. Similarly, the Osteoporotic Fractures in 
Men Study (MrOS) used actigraphy in a group of almost 
6000 men in the early 2000s, from which multiple sleep-
related insights were gathered [16, 17]. The Hispanic 
Community Health Study/Study of Latinos (HCHS/SOL) 
study has used actigraphy in their ancillary studies, such 
as the Sueño Sleep Ancillary Study, and Study of Lati-
nos – Investigation of Neurocognitive Aging (SOL-INCA) 
[18, 19], both of which have provided insights into the 
sleep and sleep-related health outcomes in a large Latino 
population. Furthermore, the UK Biobank study utilized 
actigraphy in over 100,000 individuals, where participants 
were asked to wear an actigraphy device on their wrist 
for seven consecutive days. These data have already led 
to novel sleep-related observations such as insight into 
possible sleep phenotypes, despite the modest duration 
of recording (only 7 days) and lack of use of PSG [20, 
21]. Such data, when combined with genetic information, 
helped confirm—and also extend—knowledge of genes 
important for sleep timing and duration.

Where the Field is Now: Wearables, 
Smartphones, and What They Measure

Wearables  Wearables are like actigraphy in many ways—
they use a similar underlying technology (3-axis accelerom-
etry, which captures movement in the x-, y-, and z-planes), 
they infer sleep from a lack of movement, and are able to 
estimate similar sleep metrics as actigraphy through likely 
similar algorithms as described above (though the algo-
rithms and analyses from these devices are proprietary and 
not publicly available). Many devices now also utilize a 
green-light photoplethysmography (PPG) or infrared sens-
ing to determine heart rate, heart rate variability, and pulse 
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oximetry, and can also now estimate respiratory rate (so-
called multi-sensor wearables). Most commercially pur-
chased devices are worn on the wrist or finger, with fewer 
that are worn on the chest or hip. The technology is also 
often connected to smartphones and other devices. The 
expectation is that wearables provide at least similar data to 
actigraphy, with claims or hopes that these additional inputs 
can help approach PSG level of accuracy.

In terms of accuracy in healthy populations, some studies 
suggest that wearables over-estimate sleep duration com-
pared to PSG on the order of only 8 min (Fig. 1) [22–28]. 
Furthermore, recent studies have shown many newer devices 
performed as well as or better than actigraphy on sleep vs. 
wake measures in children to adults, though not as accurate 
as PSG [24, 29]. Given the reliance on movement (or lack 
thereof) for estimation of sleep, wearables have variable 
accuracy in being able to assess the time of sleep onset. 
The inclusion of heart rate, heart rate variability, and res-
piratory rate in device algorithms has improved the assess-
ment of time to sleep onset, but not all devices carry these 
capabilities [30]. Circadian rhythm measurement is often of 
interest in sleep-related research and is easily measured with 
actigraphy. To our knowledge, no population-level studies 

have been conducted with wearables to evaluate circadian 
rhythms. However, some recent studies have shown promise 
in being able to extract circadian activity rhythm data using 
multiple parameters from the devices, and sometimes in con-
junction with additional smartphone data [31–33].

The measurement of sleep staging has gained momentum 
in terms of the technology and algorithms used, but further 
improvements are likely needed prior to comfortably rely-
ing on staging data [34, 35]. Most sleep architecture infor-
mation from wearables is gained from accelerometry but 
also heart rate variability, which changes when transition-
ing from one sleep stage to the next [27]. For example, in 
de Zambotti et al.’s validation study of the Fitbit Charge 2 
(Fig. 1), they found 0.81 sensitivity in detecting light sleep 
(N1 + N2 stages), 0.49 sensitivity in detecting deep sleep 
(N3), and 0.74 sensitivity in detecting rapid-eye-movement 
(REM) sleep [36]. While these estimations certainly show 
promise, they do not yet provide PSG-level sleep architec-
ture information. Indeed, the de Zambotti et al. study utilized 
slightly older technology, and wearables continue to improve 
in terms of accuracy.

Fig. 1   Sleep metric agreement between Fitbit Charge 2 and PSG. 
Originally published in de Zambotti et  al. [82]. Image and figure 
explanation reproduced with permission from Taylor and Francis. 
Bland–Altman plots for total sleep time (TST), sleep onset latency 
(SOL), time N1 + N2 (“light”) sleep, and time in N3 (“deep”) sleep. 
PSG-Fitbit Charge 2™ discrepancies for sleep outcomes (y-axis) 
are plotted as a function of the PSG outcomes (x-axis) for each indi-

vidual. Circles represent individuals in the main group and triangles 
represent PLMS (Periodic Limb Movements) individuals. Biases are 
marked; the dotted lines refer to the upper and lower Bland–Altman 
plot agreement limits. Biases, and upper and lower agreement limits 
of the biases, are displayed for the main group (n = 35) only for clar-
ity in the graphical representation
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Smartphones  Smartphones, which have become almost 
ubiquitous in the USA, have the potential to passively mon-
itoring a person’s daily activities, including sleep-related 
measures. These devices allow for data collection from a 
person’s so-called digital footprint [37], which includes 
when they start/stop using their phones over the day, peak 
times of phone use, and typing speed. Others have harnessed 
these data (most using apps downloaded to the phone, or 
GPS mobility patterns) to track sleep/wake timing, sleep 
duration, and circadian-related patterns, with good success 
[38–42]. Ceolini and Ghosh recently used 2 years of data 
from 401 participants to analyze over 300 million smart-
phone touchscreen interactions in an effort to determine the 
presence of multi-day rhythms across the cohort [43], which 
underscores the potential for passively collected digital data 
in providing new insights into sleep and circadian-related 
patterns in human health.

Considerations When Using Wearables in Sleep 
Research

Intellectual Property, Proprietary Sleep Algorithms, and 
Future Open Framework Efforts  The data obtained from 
wearables in a research study do not necessarily “belong” 
to the researcher but remain with the company providing the 
device. Device companies vary in how much data they share, 
in what format, and which data sharing platforms and apps 
to which they can connect. Furthermore, the algorithms that 
underly sleep detection are proprietary, and thus the granu-
lar level data—such as that obtained with actigraphy—are 
often unavailable to the researcher. This leaves a reliance 
on the company provided algorithm, with no ability for the 
researcher to make their own assessments of sleep vs. wake 
or to make further manipulations of the data. While Fitbit 
has recently allowed for an extended level of granularity 
for approved research requests, this drawback is certainly 
a limitation of the use of wearables for sleep research. 
Additionally, questions remain regarding if and how the 
different algorithms for different devices might impact the 
collected results analysis; in our experience, sleep data pro-
vided through company algorithms (e.g., Apple vs. Fitbit) 
have variations that can impact results, even for basic sleep 
measurements such as sleep duration. Given the proprietary 
nature of the company algorithms, the development of open 
frameworks to standardize data analysis across devices has 
been difficult, though progress towards this goal is being 
made. For example, others with expertise in validating con-
sumer devices for sleep research are working to standardize 
steps towards testing consumer sleep technology perfor-
mance against PSG and have published open-source code for 
this purpose [44]. Perez-Pozuelo et al. recently published a 
device-agnostic heart rate–based algorithm applicable across 
multiple devices to predict sleep metrics with good results; 

their code library is open-source and thus available for oth-
ers to use [26].

Data Management  Collection and aggregation of the sleep 
data must be considered. As wearables have become more 
prevalent for research, companies have made participant data 
(from participants who have consented to share their data) 
more accessible via application programming interfaces 
(API) and access to cloud-based storage of data. Third-party 
platforms are also sometimes available to help collect and 
aggregate data for research studies, depending on the device 
[45]. Additionally, some large digital studies, such as the 
DETECT study [46], collected data from different types of 
devices, and this aggregation from different platforms may 
be done increasingly in the future.

Device‑related Issues  Data storage on the devices them-
selves is limited, and devices must be synced regularly to 
participants’ smartphones (and therefore the cloud-based 
applications that store individual data). Thus, participants 
generally need to understand this limitation and must have 
the knowledge or available assistance in ensuring their 
phones and devices are set to sync appropriately. Data loss 
can occur if syncing does not occur regularly; for exam-
ple, Fitbit stores high-resolution data on the device itself 
for 5–7 days. If a device is not synced for more than 5 days, 
older high-resolution data are removed permanently and 
deemed unrestorable. Furthermore, firmware updates are 
often offered by device manufacturers, but variably installed 
by the participant. This could impact how many individuals 
are using the most optimized version of software, potentially 
impacting the quality of data collection. If studies are on a 
smaller scale, these issues are more readily dealt with using 
direct communication with participants and allowing for fre-
quent check-ins to ensure devices are syncing and updated 
appropriately. However, depending on the geographic extent 
and volume of participants, these issues could be insur-
mountable and impact the reliability of the data collected.

Participant Habits  Participants vary in how they use wear-
able devices, and many questions remain surrounding sleep 
specifically. Some individuals are consistent users (Fig. 2), 
while others may use their devices on specific days or only 
when they are interested in tracking their data. Not all people 
wear their devices overnight, particularly given that some 
devices require charging overnight (though some devices 
have up to a 5- to 10-day battery life, Table 1), which could 
preclude a consistent assessment of sleep. This is an impor-
tant consideration, especially when compared to actigraphy 
where the battery life can often last several weeks. Addition-
ally, it can be difficult to track short naps, as some devices 
do not reliably capture naps shorter than 1 h. Furthermore, 
if an individual is consistently wearing their device to sleep 
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and is actively tracking their sleep, it is possible the indi-
vidual is concerned about their sleep habits (as opposed to 
an individual who habitually takes off their device at night 
and is not concerned enough about their sleep to track or 
investigate it), which could bias representative samples in 
sleep research.

Validation in the Population Studied  More investigation 
is needed regarding the use of wearable trackers for sleep 
research in healthy vs. unhealthy populations, though it is 
unlikely to be much different than the variation found in 
actigraphy measurements. Most of the validation data that 
is available for wearables has been conducted in a younger, 
ambulatory population. Despite this, many studies are uti-
lizing wearable devices in populations with one or more 
comorbidities. For example, one recent systematic review 
investigated the use of wearable sensors for the monitoring 
of diabetes-related parameters in studies published between 
2010 and 2020 and found that out of 26 studies, acceler-
ometer-based devices with PPG were the most common 
with the intent of measuring activity and heart rate, with 
no specific validation data used [47]. Notably, de Zambotti 

et al. recently called for a move towards standardized per-
formance evaluation approach to new technologies in sleep 
health measurements as opposed to the traditionally termed 
“validation” studies [48]. This is an effort to address the 
multiple new devices (and analytics algorithms), many with 
increased technologic capabilities, that are being used for 
sleep research—most without access to the raw data and pro-
prietary algorithms that would allow for a scientific evalua-
tion—in a variety of different populations.

Data Privacy  Data privacy issues are not unique to digi-
tal sleep health studies but apply to any study where par-
ticipants are asked to share wearable and other health data 
electronically. While the number of individuals who use 
wearables has increased substantially, there are increasing 
concerns regarding data privacy [49]. Wearables collect an 
enormous amount of data—not only physical activity and 
sleep metrics, but personal information about the partici-
pants, including zip code, GPS location, and time stamps. 
In addition to the security of the databases themselves that 
store large datasets, there are also concerns regarding the 
exposures participants may face when linking their devices 
to cloud-based storage systems. Each layer of sharing has 
the potential to expose the participant to additional risks, 
with potential for reidentification remaining a large concern. 
A recent systemic review of 72 studies where participants 
shared biometric data of some kind, showed high risk to 
the participants of reidentification, with sometimes as lit-
tle as 1–300 s of data needed to identify the an individual 
participant [50]. On an individual level, participants may 
also be concerned about which aspects of their data will be 
shared and how the information will be used. In one study, 
non-English speaking participants expressed concern about 
the term “tracker,” in activity tracker and how this would be 
applied to them [51].

Bias Within Samples and Diversity‑Related Issues in Weara‑
bles  Bias within samples from consumer wearables is a 
major consideration for researchers, and relates to increas-
ing the diversity of participant populations, which remains 
important for the advancement and strengthening of clinical 
research, including in sleep research [52, 53].

First, in regard to selection bias and representative sam-
ples, equity is certainly lacking in access to digital resources 
as well as the specific demographic groups that regularly 
purchase and use activity trackers. Even with growing adop-
tion of broadband internet and smartphones among rural and 
lower-income Americans, there is still a digital divide in the 
use of internet-connected devices including mobile health 
technologies [54–56]. More studies are needed, but Pew 
research and data reported by Chandrasekaran et al. suggest 
that about 20–30% of Americans use a smartwatch or wear-
able fitness tracker, with women reporting higher usage than 

Fig. 2   Considering wear time in population-based studies. Sensitivity 
analysis of the variation in the number of individuals based on device 
wear time and days of data available, suggesting that participant hab-
its impact data collection, i.e., fewer participants wear devices around 
the clock, which is important when considering total sleep time 
including naps during the day.  Taken from internal data from a com-
mercial wearable device
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men [57, 58]. Individuals earning ≥ $75,000 annually were 
found to be more than twice as likely to wear a fitness tracker 
compared to those earning less; college graduates, white 
adults, and those who enjoyed exercise were more likely to 
wear a device as well [57]. Furthermore, more adults under 
the age of 50 use wearables compared to older adults, and 
suburban populations own more wearables than their urban 
and rural counterparts [58]. In general, those who buy and 
wear these devices are possibly more health conscious and 
may possess a greater understanding of health-related infor-
mation. These consumer patterns naturally lend themselves 
to selection bias, particularly when examining secondary 
data from digital devices. Unless researchers are provid-
ing devices to their intended population or filtering partici-
pants in some capacity, a degree of selection bias should be 
expected. However, these studies are no less in important 
in adding to the literature given the potential to reach large 
populations.

Another source of potential bias in how wearables are 
used comes from the underlying technology itself. Some 
studies have reported that wearable devices, and the technol-
ogy that underlies even clinical-grade pulse oximetry, have 
lower accuracy among users with darker skin tones, specifi-
cally for heart rate and oxygen sensing, with a recent class 
action lawsuit claiming racial bias against a high-profile 
wearable technology company [59–61].

All of the sources of bias discussed above have an impact 
on how diverse participants are included in sleep-related 
research. While these are all very important considerations, 
there may also be a flip side for digital devices in that there 
is also a potential to help bridge important gaps in research-
related diversity issues. Studies in underserved and under-
represented communities show that while cost and knowl-
edge of fitness trackers were barriers to having a device, the 
majority of individuals report they would use a device or 
mobile health application, and would be willing to share data 
for research purposes [51, 62]. Given that digital devices are 
relatively inexpensive, they may be more cost-effective to 
deploy to underserved communities compared to the more 
expensive actigraphy devices. Furthermore, in a bring-your-
own-device (BYOD) approach (discussed below), enrolling 
participants who already have a device may free up fund-
ing and other resources to provide devices for those who 
are unable to afford them. Additionally, digitally deployed 
studies—where recruitment is decentralized (also discussed 
below)—could have a further reach in recruiting diverse 
populations than traditional in-person studies [63]. Finally, 
wearables can feedback health (and sleep) data back to par-
ticipants, particularly in the context of digital research stud-
ies, where survey results, interpretations, and general rec-
ommendations can also be readily returned to participants.

When considering how wearables impact diversity, two 
opposing arguments could be made, as outlined below.

Bring‑Your‑Own‑Device Approach  While investigators may 
be able to provide devices for hundreds or even thousands 
of individuals, it would become a much larger, and likely 
unsustainable, undertaking to provide devices for the tens 
to hundreds of thousands of individuals that often comprise 
population-level studies. Instead, given that up to 30% of 
individuals in the USA (equating to roughly 100 million 
people) currently use a wearable device, a bring-your-own-
device (BYOD) approach to harness data from devices that 
individuals are already using may be the most effective [57]. 
For example, we were previously able to obtain sleep data 
from a large population (over 150,000 individuals) of Fitbit 
users and assess how sleep duration and variability corre-
lated with self-reported BMI in the cohort [64]. This study 
was feasible only because these individuals already owned 
activity trackers and used them consistently prior to access-
ing the data. The DETECT study utilized a prospective 
BYOD approach based on data from wearables (including 
sleep information) in an effort to track COVID-19 infections 
[65], monitor long-COVID, and study vaccine reactogenicity 
[66, 67]. This study has enrolled over 40,000 participants to 
date [46]. Similarly, the TemPredict study analyzed biom-
etric data from over 60,000 individuals wearing an OuraR-
ing in an effort to detect COVID-19 [68]. While the latter 
two studies arose from a need (and likely public desire) to 
help fight COVID-19, they demonstrate how effective digital 
recruiting can be on a large scale. Furthermore, the BYOD 
design also allows for allocation of research funding and 
resources to provide devices to those who do not already 
have one or who cannot afford one, thus combatting some 
of the diversity issues described above.

Where we Might be Headed: Decentralized 
Digital Studies

As intimated above, most studies utilizing activity trackers 
are site-based, small, and observational, even though the 
potential for large population studies is immense. The cur-
rent paradigm of in-person sleep research where one insti-
tution (or multiple institutions in multi-site trials) recruits 
hundreds to thousands of participants may pose limits on 
how data from wearable devices are retrieved, processed, 
and aggregated. Furthermore, recruitment for site-based 
research has geographic constraints since most study partici-
pants reside near study sites for in-person visits, which are 
typically located near urban academic medical centers. This 
selection bias results in homogenous study cohorts that do 
not fully represent the diversity of the real-word patient pop-
ulation, thus creating evidence that only applies to a limited 
group of patients and further propagates health disparities 
[69]. The decentralized study approach can leverage direct-
to-participant engagement using digital recruitment methods 
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through social media networks, apps, and other online chan-
nels without geographic restrictions [70, 71]. Sleep research 
may be able to move towards the same idea on a large scale 
with the utilization of wearables for fully remote sleep track-
ing [72]. With the use of 3rd party platforms and/or smart-
phone application, data collection from wearables among 
large study populations are increasingly feasible and more 
easily managed, in large part due to the COVID-19 pan-
demic [73, 74]. Furthermore, without research coordinators 
to conduct in-person screening, recruitment, and enrollment, 
the lack of manpower that sometimes limits studies would 
be a smaller hurdle in the conduction of large investigations. 
While the UK Biobank study recruited 500,000 participants 
(with ~ 100 K subsequently invited to wear accelerometer 
devices) over 22 sites [75], and the All of Us Research Pro-
gram (AOURP) in the USA has recruited over 600,000 indi-
viduals to date (with participants offered the BYOD option 
to share sleep data) via digital and in-person recruitment, 
these studies had far more resources than most investiga-
tors have access to [76]. One of the main disadvantages of 
decentralizing studies is likely related to reliable data col-
lection and ensuring that participants are completing any 
questionnaires/surveys and reliably linking their devices to 
the study—it may be unrealistic to expect the same level 
of engagement in a digital study that one would find in an 
in-person study.

An interesting aspect to consider in decentralized stud-
ies is the ability to bring in electronic health record (EHR) 
data, which has the potential to make data sets more robust 
as it provides background health information, as well as pos-
sibly vital signs and laboratory measurements [77]. Having 
access to these aspects of an individual’s healthcare can help 
enhance sleep-related research, and can also help us under-
stand how sleep impacts important healthcare outcomes. Our 
approach to date is to have participants link their EHR data 
into digital studies when possible; however, there are major 
networks currently aggregating EHR data for the investiga-
tion of research questions. For examples, PCORnet studies 
have harnessed large-volume, real-world data through dif-
ferent Clinical Research Networks that contain patient data 
from multiple institutions all the way from major healthcare 
centers to community health clinics. Kaiser Permanente has 
been aggregating patient data for research purposes for dec-
ades [78, 79], and has recently aimed to have a biobank 
of over 400,000 patients that includes EHR and some bio-
marker data. The Veteran’s Administration (VA) also has an 
EHR database that can be mined for health research. While 
some sleep-related diagnoses may be able to be extracted 
from (e.g., insomnia, OSA) such datasets, future next steps 
may be to have individuals link their wearable device data 
into the EHR (and thus these networks) to make help net-
works link patient health data to daily digital footprints that 
include sleep data.

Future Considerations

Until recently, applications for wearable devices have revolved 
around the consumer, with a goal of increasing users in the 
wearable market by the owner company. Now, however, some 
devices are becoming cleared for specific medical use pur-
poses (for example, Fitbit and Apple watch technology is 
FDA approved for atrial fibrillation), and clinical purposes 
that involve sleep disorders may be developed in the future, 
with the intent of diagnosis, monitoring, or even treatment. 
Given the proliferation of commercial wearables, we expect 
that the presence of these devices in the research space for 
discoveries related to sleep will only increase. Researchers 
may need to become more comfortable with the limitations of 
the data collection from these devices (e.g., not having PSG 
or granular actigraphy data available) and also recognize that 
differences in algorithms between devices can impact research 
findings. As the consumer space evolves, researchers may also 
need to adapt to different wearables. It also remains to be seen 
how popular wearables remain in the consumer setting as well, 
which could impact how these devices are utilized for in a 
sleep research context.

At the current juncture, wearables show promise in 
becoming a core component of the next wave of sleep-related 
research studies. One of the next stepping stones would be 
increasing the number of interventional studies, as most of 
the population-level studies completed using wearables to date 
have been observational in nature. Certainly, most modern 
wearables seem reasonable substitutes for actigraphy, and we 
hope that as technology and algorithms improve, deeper sleep-
level data will also become available. Over time, we also hope 
that more granular data is made available by the companies 
that market these devices. Additionally, it would be interesting 
to see if wearables themselves could be used as an intervention 
on a large scale to help individuals track their own biometric 
data to improve their own sleep and possibly other potentially 
sleep-dependent clinical outcomes. Interestingly, not all stud-
ies with wearables have been positive—for example, step 
counters used for weight loss may have instead led participants 
to reward high step counts with additional food [80]. And, for 
sleep devices, some sleep data leads people to try and perfect 
their sleep, causing frustration where none existed before—so-
called orthosomnia [81]. Important questions remain around 
accuracy with different skin tones, and health equity.

Conclusions

We anticipate an increase in wearable-based sleep research 
in the near future, and we may also see wearables become 
more prominent in the clinical setting as another tool to 
improve outcomes. More randomized clinical trials are 
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needed in the population-level sleep space, and decentral-
ized digital studies may serve as an important opportunity 
in accomplishing this goal.
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