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Abstract
Purpose of Review: Automatic analysis of sleep is an important and active area of research. Machine learning models are
commonly developed to classify time segments into sleep stages. The sleep stages can be used to calculate various sleep
parameters, such as sleep efficiency and total sleep time. The machine learning models are typically trained to minimize the
sleep stage classification error, but little is known about how error propagates from sleep stages to derived sleep parameters.
Recent findings: We review recently published studies where machine learning was used to classify sleep stages using
data from wearable devices. Using classification error statistics from these studies, we perform a Monte Carlo simulation to
estimate sleep parameter error in a dataset of 197 hypnograms. This is, to our knowledge, the first attempt at evaluating how
robust sleep parameter estimation is to misclassification of sleep stages.
Summary: Our analysis suggests that amachine learningmodel capable of 90%accurate sleep stage classification (surpassing
current state-of-art in wearable sleep tracking) may perform worse than a random guess in estimating some sleep parameters.
Our analysis also indicates that sleep stage classificationmay not be a relevant target variable formachine learning onwearable
sleep data and that regression models may be better suited to estimating sleep parameters. Finally, we propose a baseline
model to use as a reference for sleep stage estimation accuracy. When applied to a test set, the baseline model predicts 2-, 3-,
4- and 5-class sleep stages with an accuracy of 74%, 54%, 46% and 35%, respectively

Keywords Sleep · Sleep staging · Sleep parameters · Machine learning · Wearables

Introduction

Objective sleep measurements are a critical part of sleep
research and diagnosis of sleep disorders [1]. Polysomnog-
raphy (PSG) is the gold standard of objective sleep measure-
ments, but analysis of PSG requires expert human annotation.
In addition to being expensive to analyze, PSG is time-
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consuming to set up, requires specialized equipment and
causes discomfort, making prolonged ambulatory sleepmea-
surements infeasible. To mitigate these limitations, two
avenues can be identified in both research and clinical mea-
surements. On one hand, to ease the data collection for a
broader part of the population, consumer-grade wearables
have become a prominent tool [2], and on the other hand,
machine learning models have been developed to automate
analysis [3–5].

Machine learningmodels, and deep learning, in particular,
are commonly used to classify sleep stages (sleep staging).
Of the 185 Google Scholar article results where both “sleep"
and “deep learning" were present in the title, approximately
40% were about sleep staging (similar findings for PubMed,
author search October 20th, 2022). Sleep staging is an impor-
tant step in the analysis and diagnosis of sleep because it
establishes the macrostructure of sleep, and several sleep
statistics are derived from the sleep stages [6]. These clin-
ically relevant sleep parameters include, for example, sleep
efficiency (SE), wake after sleep onset (WASO) and amount
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of time spent in rapid eye movement (REM) sleep. Machine
learning models typically follow the same protocol as human
scorers and designate each 30-second non-overlapping time
segment (epoch) one sleep stage. This results in a sequence
of sleep stages called a hypnogram which is then compared
to a hypnogramwhere an expert human scorer performed the
sleep staging, to evaluate the accuracy of the machine learn-
ing model. In this paper, we refer to this manually scored
hypnogram as the “ground-truth hypnogram".

Most published work describing machine learning mod-
els for classifying sleep stages only reports the sleep staging
error of the model, with the implicit assumption that this
would translate to a lower error in derived sleep parameters.
However, it is unclear how robust sleep parameter estimation
is to misclassifying sleep stages and to the best of our knowl-
edge, the impact of sleep staging error on the derived sleep
parameter error is poorly understood. For example, it is not
known how well a machine learning model capable of 92%
accurate sleep staging performs when estimating sleep effi-
ciency. This paper focuses on the propagation of error from
sleep stages to sleep parameters.

The mapping from a hypnogram to sleep parameters is
highly non-linear and depends on multiple interacting fac-
tors, not least the structure of the underlying ground-truth
hypnogram. Thus, a formulation of error propagation can not
be derived analytically. Instead, here, we propose a Monte
Carlo error propagation simulation framework tailored to
the analysis of sleep data. We simulated how a machine
learning model would estimate sleep stages for a dataset
of ground-truth hypnograms, given the machine learning
model’s confusion matrix.

Uncertainty in sleep staging can be attributed to several
diverse sources, with recent developments in quantifying and
describing this uncertainty [7, 8]. However, the literature is
scarce regarding the error in sleep parameters derived from
a hypnogram. Although not commonly applied in sleep sci-
ence, Monte Carlo simulation is a well-established method
for evaluating error propagation in other fields, such as
physics, biology, chemistry and geology [9–11]. In this paper
we present the results of a Monte Carlo simulation study
showing the impact of error propagation relative to the error
of sleep staging models.

Wearable sleep trackers, such aswrist-worn smartwatches,
have been suggested as an alternative or complement to the
resource-heavy PSG to measure sleep, e.g. for screening of
sleep disorders [1]. The reason is two-fold: i) wearables pro-
vide light-weight measures at a relatively low cost compared
to the PSG, and; ii) wearables can continuously capture data
over a long time, which enables new types of analysis to be
conducted, allowing measurements of so-called free-living
sleep [12]. However, there is a gap in the literature regarding
what type of data they can capture and how to analyze the
data.

Most consumer-grade wearables currently in use are wrist
worn [19, 20]. The technology is promising but requires vali-
dation, access to the algorithms applied to the aggregated data
or access to the raw data. Furthermore, wearable sleep track-
ers are less accurate than PSGat classifying sleep stages [1, 2,
13–17]. Hence, understanding how staging error propagates
to sleep parameters is especially important when working
with data from wearable sleep trackers.

With this background, we opted to limit the scope of
this simulation study to examine machine learning models
which estimate sleep stages fromwrist-worn wearables. This
requires finding reported confusionmatrices and other details
of such machine learning models.

Our main contributions are three-fold:

1. A review of machine learning models using data from
wrist-worn sleep trackers, demonstrating a gap in the lit-
erature when it comes to reporting error statistics.

2. A novel Monte Carlo simulation framework for estimat-
ing error propagation from sleep staging error to clinical
sleep parameters, which demonstrates that sleep staging
error is not representative of the error in derived sleep
parameters.

3. Suggestions for futurework developingmachine learning
models for estimating clinically relevant sleepparameters
from wearable data.

Background

Previous work has reviewed the use of wearables to detect
sleep stages [16, 21, 22] and the use of machine learning
models to detect sleep stages [3, 4, 23, 24]. We searched
the literature for papers about machine learning models per-
forming sleep staging on data from wrist-worn wearables.
Performing a Web of Science search for the query

(ALL=(wearable OR wearables OR wrist))
AND (ALL=(stages OR staging OR stage))
AND ALL=(classifier OR machine learning
OR deep learning OR probabilistic OR
logistic regression) AND (TI=sleep)

resulted in 39 papers, of which 30 were excluded because
they did not fit the following eligibility criteria:

• Does the article present a machine learning model for
automatic sleep staging?

• Does the machine learning model use data from a wrist-
worn wearable device?

• Is the machine learning model’s accuracy reported?
• Does the paper describe an original machine learning
model? Review articles are excluded.
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An identical search on PubMed did not offer new results. The
search was performed on August 5th, 2022. Table 1 summa-
rizes the findings of the literature search regarding which
sensors were used, how many sleep stages were considered,
the machine learning model used, the staging accuracy and
whether the paper reported the confusion matrix or informa-
tion about sleep parameters. As can be seen in the table,
most studies use photoplethysmography (PPG), accelera-
tion (ACC) or electrodermal activity (EDA); their accuracy
ranges from 59% to 93%; five out of nine papers show the
confusionmatrix and only two report information about sleep
parameters. Eight of the nine papers used 30-second epochs;
Gashi et al. classified 600-second segments [25]. Only Wul-
terkens et al. and Fonseca et al. reported the error in clinical
sleep parameters [26, 27].

Epochs can be classified into various numbers of classes.
Common designations are 2-class (wake or sleep), 3-class
(wake, N1/N2/N3 or REM sleep), 4-class (wake, N1/N2, N3
or REMsleep) and 5-class (wake, N1,N2,N3 or REMsleep).
When 4-class staging is performed, the N1/N2 class is com-
monly referred to as light sleep and theN3 class as deep sleep.
Of the nine machine learning models, five performed 4-class
sleep staging These five techniques form the basis of our
simulation study. All five techniques use data from research
devices, as opposed to consumer-grade wearables. Compar-
ing the staging performance of machine learning models is
problematic since the accuracy depends on multiple factors,
such as the dataset used, which sensors were used, how lights
out was defined and what validation method was used. For
example, the machine learning model described by Anusha
et al. has the highest reported 4-class staging accuracy in
Table 1.However, it was validated against a home sleep apnea

testing devicewith no electroencephalography data recorded.
[28].

Sleep parameters

The American Academy of Sleep Medicine (AASM) Scor-
ing Manual Version 2.6 lists the following recommended
parameters for polysomnography which must be reported for
clinical sleep studies [6]:

• Total recording time (TRT). Time in minutes between
the first epoch of any sleep and last epoch of any sleep.
Since the dataset used in the simulation did not contain
information about lights on and lights off, this parameter
and those derived from it were defined differently from
the AASM definition.

• Total sleep time (TST). Time in minutes spent in light,
deep and REM sleep.

• REM latency. Time in minutes between sleep onset to the
first epoch of REM sleep.

• Wake after sleep onset (WASO). TRT - TST.
• Sleep efficiency (SE). Proportion of time spent sleeping:
TST/TRT.

• Time in minutes in each state. The four included stages
are wake, light, deep and REM slee

• Proportion in each state. Percentage of TST in each stage
(time in each stage/TST)

The simulation study in this paper uses four sleep stages
(wake, light, deep and REM), so time in each state and pro-
portion in each sleep state leads to a total of six parameters.

Table 1 A summary of published papers using machine learning for sleep staging on data from wrist-worn wearables, in order of publicaton date

Reference Sensors Sleep Stages Accuracy (kappa) ML Method C1 y2

Gashi et al. 2022 [25] EDA, ST, ACC 2 92% (0.55) GB

Anusha et al. 2022 [28] EDA, ST 4 93% (-) RF x

Ko et al. 2022 [29] HR, ACC 2 85% (-) CK

Radha et al. 2021 [18] PPG 4 76.36% (0.65) LSTM x

Wulterkens et al. 2021 [26] PPG, ACC 4 76.4% (0.62) LSTM x x

Li et al. 2021 [30] PPG, ACC 4 69% (0.44) CNN, SVM x

Sundararajan et al. 2021 [31] ACC 2 79%3 (0.5) RF x

Walch et al. 2019 [32] ACC, PPG 3 72.3% (0.27) MLP

Fonseca et al. 2017 [27] PPG 4 59% (0.42) LDC x4

ACC: Acceleration, C : Confusion matrix, CK: Cole-Kripke, CNN: Convolutional neural network, EDA: Electrodermal activity, GB: Gradient
boosting, HR: Heart rate, LDC: Linear discriminant classifier, LSTM: Long-short term memory, ML: Machine learning, MLP: Multi-layered
perceptron, PPG: Photoplethysmograpy, RF: Random forest, ST: Skin temperature, SVM: Support vector machine, y: Sleep parameter
1Marked ‘x’ if a confusion matrix was reported
2 Marked ‘x’ if information about estimated sleep parameters was reported
3 Average precision
4 Fonseca et al. reported estimated sleep parameters but only using a 2-class (sleep/wake) classifier
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In addition to the AASM recommended parameters listed
above, the number of awakenings (NA) is defined as the num-
ber of times at least two subsequent wake epochs occur after
sleep onset [33]. As a result, we consider in total eleven sleep
parameters.

Methods

Performance of machine learning sleep stage classifiers
is most commonly reported in terms of staging accuracy,
Cohen’s kappa and sleep stage confusion matrix. Sleep
parameter error is not commonly reported and can not
be derived analytically from the staging error. To gain an
understanding of how staging error propagates to sleep
parameters, we performed a simulation study [34–36] where
we resampled ground-truth hypnograms and monitored how
the derived sleep parameters change. We note that in what
follows, we used the error of sleep staging models instead of
their accuracy, where error = 1 − accuracy. We refer to this
as staging error.

The simulation study is based on the Sleep-EDFDatabase
Expanded (Sleep-EDFx) dataset [37–39], which contains
197 PSGs scored by human experts according to the
Rechtschaffen and Kales manual [40]. The data were
obtained in two studies of mostly healthy adults. We refer to
the original publications for more details on the composition
of the subject group [37, 38]. We treated these 197 hypno-
grams, which we refer to as x1, ..., x197, as ground-truth
hypnograms and use them to calculate ground-truth sleep
parameters.Using aMonte-Carlo approach,we simulated the
operation of a staging classifierwith a given confusionmatrix
C by repeatedly resampling the hypnograms: We pseudo-
randomly selected a new sleep stage for each epoch based
on confusion matrix C . We then calculated the sleep param-
eters according to the simulated hypnogram and the residual
error, i.e. the difference to the ground truth sleep parameter
value. This was repeated nsim times for every hypnogram.

This gave us an estimated sleep parameter error for a given
confusion matrix. The process is described in Algorithm 1
and schematically in Fig. 1.

Stated mathematically (following the notation in [34]),
we considered the calculation of a sleep parameter y given a
hypnogram x by computational model M : X → Y where
the random variable X ∈ X with probability density function
pX (x) represents a hypnogram and Y = M(X) is a random
variable representing the calculated sleep parameter.

Typically, uncertainty propagation is estimated by study-
ing statistics such as the variance of the output variable,
Y ∈ Y . Since we treated the human expert scorer’s classifi-
cation as the ground truth, we instead considered the residual
error, ey = y − ŷ, that is the difference between the ground
truth parameter value and the parameter value resulting from
the simulation (sim), given a confusionmatrix,C . TheMonte
Carlo estimation of sleep parameter error ey is given by

êy =
∑nsim

i (y − ŷi )

nsim

and the estimated root mean squared error (RMSE) andmean
absolute error (MAE) over the dataset are given by

RMSEy =
∑nsim

i

√
∑N

j (y−ŷ j )2

N

nsim

and

MAEy =
∑nsim

i

∑N
j |(y−ŷ j )|

N

nsim
,

respectively, where N is the number of hypnograms in the
dataset.

Fig. 1 A schematic of iteration i of the simulation process, which
generates an estimated sleep parameter error, ey . A manually scored
hypnogram (ground truth) hypnogram, x , is selected from {x1, ..., xN },
a set of experimentally observed hypnograms. The resampled hypno-
gram, x̂i is created by randomly reassigning each 30-second epoch in

x a new sleep stage by making a random selection, weighted by row
number s of confusion matrix, C , where s corresponds to the index of
the true sleep stage. Sleep parameters y and ŷi are calculated from x and
x̂i , respectively and their residual, ey = y − ŷi is the sleep parameter
error
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Generation of ConfusionMatrices

The Monte Carlo method described in Algorithm 1 simu-
lates the resampling of a dataset of hypnograms as though
they were estimated with confusion matrix C . We had a few
examples of confusion matrices from the literature [18, 26,
28, 30], but in order to properly visualize the relationship
between staging error and sleep parameter error, we also gen-
erated a multitude of hypothetical confusion matrices.

For a given target four-class staging error, ẽclass±ε, where
ε is a small value, we generated a hypothetical confusion
matrix, Cẽ as follows: Cẽ is initialized as a 4x4 zero matrix.
First, we assign the four elements on the diagonal of Cẽ by
sampling from a Beta distribution with a maximum at the
target staging accuracy:

Cẽ(i, i) = M(i) · k, k ∼ B(α, β)

where M(i) is the expected proportion of epochs of sleep
stage i ∈ {1, 2, 3, 4}. We set

α =
(
1 − μ

σ 2 − 1

μ

)

· μ2

and

β = α ·
(
1

μ
− 1

)

where μ is the target staging error and σ 2 = 0.01. The
remaining cells of Cẽ( j) were sampled uniformly from the
range

[
0; M( j) − ∑

C j
]
in random order. When there was

only one cell left in row j it was assigned the value

M( j) ·
(
1 −

∑
C j

)

This allowed us to visualize the relationship between staging
error and sleep parameter error by generating thousands of
hypothetical confusion matrices and applying Algorithm 1
to each one.

Table 2 Example of a generated confusion matrix of one thousand
epochs. This confusionmatrix corresponds to a classifierwith an overall
accuracy of 80% but only 42% REM sleep sensitivity

Predicted
Wake Light Deep REM

True

Wake 69 15 4 12

Light 34 532 11 23

Deep 11 4 135 0

REM 6 2 79 63

Table 3 Example of a generated confusion matrix of one thousand
epochs. This confusionmatrix corresponds to a classifierwith an overall
accuracy of 80% but only 71% light sleep sensitivity

Predicted
Wake Light Deep REM

True

Wake 89 1 6 4

Light 111 424 30 35

Deep 2 1 147 0

REM 3 4 5 138

Tables 2 and 3 show two examples out of twenty thousand
generated confusion matrices, where μ = 0.2 was used.
These are examples of confusion matrices where sensitiv-
ity to specific sleep stages are low while overall accuracy is
80%. For the twenty thousand generated confusion matrices
the overall accuracy was (80 ± 6)% while the sensitivity to
all individual sleep stages was (80±10)%. Table 4 shows the
average distribution of all twenty thousand confusion matri-
ces.

Limitations

The simulation approach used has some shortcomings,which
limit the scope of scenarios to which it is applicable. First
of all, the resampling step in Algorithm 1 re-assigned each
epoch a sleep stage independently of other epochs, so the
method assumed that the staging error was random in time.
This assumption holds for machine learning models where
an epoch is scored without taking into account the epoch’s
temporal context, i.e., when p(x̂(k) | x(k)) is independent of
x \ x(k). This is not the case for all of the machine learning
models in Table 1. Secondly, the results of the simulation on
the Sleep-EDFx dataset cannot be assumed to apply to other
datasets unless the structure of participants’ sleep is statis-
tically similar to the Sleep-EDFx dataset. Finally, it should
be acknowledged that all Monte Carlo methods are based on
pseudo-random numbers, and uncertainty in the results is a

Table 4 Themean and standard deviation (μ̄±STD) of individual cells
in twenty thousand generated confusion matrices with one thousand
epochs each

Predicted
Wake Light Deep REM

True

Wake 80 ± 10 7 ± 7 7 ± 7 7 ± 7

Light 40 ± 42 480 ± 59 40 ± 42 40 ± 42

Deep 10 ± 11 10 ± 11 119 ± 15 10 ± 11

REM 10 ± 11 10 ± 11 10 ± 11 119 ± 15
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consequence not only of false assumptions but also of the
method’s inherent randomness [36].

Algorithm 1 Monte Carlo simulated sleep parameter error
for sleep parameter y.
Require: Set of N hypnograms {x1, ...xN }; confusion matrix, C ; num-

ber of simulation repetitions, nsim; formula for calculating sleep
parameter, f (x).

1: procedure SimulateParameterError({x1, ...xN },C)
2: for i ∈ [1, nsim] do
3: for j ∈ [1, N ] do
4: Select the j th hypnogram, x j
5: Calculate the ground-truth parameter value, y j = f (x j ).
6: M ← number of epochs in x j
7: for k ∈ [1, M] do
8: Set weights w ← Cx j (k), the x j (k)

th row of C .
9: Generate x̂ j (k) by randomly selecting one of the sleep

stages according to weights, w.
10: end for
11: Calculate estimated sleep parameter ŷ j = f (x̂ j )
12: ei, j = y j − ŷ j
13: end for
14: end for
15: return ei, j or statistics of e such as the mean of estimators ei

across the nsim simulations, ê.
16: end procedure

Baseline Models

To put the simulated sleep parameter error into perspective,
we need a naïve baseline model to compare against. To that
end, we split the Sleep-EDFx dataset into a training and test-
ing dataset with an approximately 50/50 split, ensuring that
no individual participant’s data was found in both sets. Using
the training set, we calculated the average of sleep parameter
y across every hypnogram,

ȳ =
∑Ntrain

j y(x j )

Ntrain

This was our baseline (BL) model for sleep parameter y,
i.e. ŷBL = ȳ. The baseline sleep parameter model error was
found by applying the baseline sleep parameter model to the
test set:

MAEBL
y =

∑Ntest
j | y j − ȳ |

Ntest

and

RMSEBL
y =

√∑Ntest
j (y j − ȳ)2

Ntest

We also needed to decide on a range of staging errors
for generating confusion matrices. To establish the highest

reasonable staging error, we again created a naïve baseline
model, this time for sleep staging. Using the test set, we
split the dataset into half-hour time slots. We then counted
howmany epochs were assigned to each sleep stage per half-
hour time slot. Figure2 shows the result. The baseline staging
model randomly assigned a sleep stage given the time of
day, weighted by the proportional split of sleep stages in the
corresponding half-hour time bin.

Results and Discussion

Algorithm 1 produced resampled hypnograms for a given
staging error. Figure3 shows examples of a hypnogram with
30-second epochs resampled by Algorithm 1, using confu-
sion matrices reported in three of the papers in Table 1. We
see that for a higher staging error, the hypnogram became
more chaotic and less representative of actual sleep. How-
ever, the same may not necessarily be said about the derived
sleep parameter error as reported in the literature. Of the
machine learning models in Table 1, only Wulterkens et al.
reported estimated sleep parameter statistics for four-class
staging [26].

Figure4 shows the distribution of residual sleep param-
eter error over the dataset using the same three confusion
matrices. In blue, is the simulation of the staging in the paper
by Wulterkens et al. (76% staging accuracy), and the dotted
lines show the upper and lower limits of the error reported
in the paper. When comparing the simulated error distribu-
tion to the error range reported by the authors (dotted lines in
Fig. 4) we found that the simulation agreed reasonably well
with their empirical results.

The simulated resampling of a low-error staging machine
learning model resulted in a low-variance, low-bias sleep
parameter estimation and as the staging error increased, so

Fig. 2 Proportion of time spent in each sleep stage, every half hour
frommidnight, for the subjects in the training set. This information was
used in a baseline stagingmodel, which randomly assigned a sleep stage
given the time of day to the subjects in the testing set. Abbreviations:
REM: Rapid eye movement
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Fig. 3 The effect of resampling
a hypnogram. a) An original
manually scored hypnogram and
the same hypnogram, resampled
using the confusion matrix from
b) Anusha et al. 2022 (93%
staging accuracy), c) Wulterkens
et al. (76% staging accuracy)
and d) Li et al. 2019 (69%
staging accuracy).
Abbreviations: REM: Rapid eye
movement

did the sleep parameter bias and variance (Fig. 4). Comparing
the reported and simulated RMSE of the machine learning
model fromWulterkens et al. listed inTable 5,we again found
a reasonably good agreement.

Baseline values

We applied the baseline models for sleep staging and sleep
parameters to test set. This gave us baseline error values to

Fig. 4 Histograms showing the
distribution of simulated sleep
parameter error across the
dataset for one iteration of the
Monte Carlo method (nsim = 1).
The blue shows a simulation of
the staging in the paper by
Wulterkens et al. [26] (76%
staging accuracy), and the
dotted lines show the upper and
lower limits of the error reported
in the paper. The histogram in
red shows a simulated error
distribution for the staging in the
paper by Anusha et al. [28]
(93% staging accuracy), and the
green shows a simulation of the
machine learning model by Li et
al. [41] (69% staging accuracy).
Abbreviations: REM: Rapid eye
movement, WASO: Wake after
sleep onset
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Table 5 RMSE mean and
standard deviation for sleep
parameter error residual from
ground truth, as reported by
Wulterkens et al. and the
estimate from Monte Carlo
simulation. The rows where
reported values are missing
correspond to parameters not
reported by Wulterkens et al

Error mean ± SD RMSE
Parameter Reported Simulated Reported Simulated

WASO [min] 9.8 ± 39.5 27.3 ± 46.8 40.6 54.2

TST [min] −4.0 ± 34.1 22.2 ± 42.3 34.3 47.8

SE [%] −0.7 ± 6.6 2.5 ± 4.6 6.7 5.3

Time in light sleep [min] 1.2 ± 50.0 6.4 ± 40.2 49.9 40.7

Proportion light sleep [%] 0.6 ± 10.7 −2.2 ± 5.9 10.7 6.3

Time in deep sleep [min] 1.2 ± 40.3 9.4 ± 17.9 40.2 20.2

Proportion deep sleep [%] −0.6 ± 9.6 1.7 ± 4.3 9.6 4.7

Time in REM sleep [min] −6.4 ± 22.9 6.4 ± 11.1 23.8 12.8

Proportion REM sleep [%] −1.2 ± 5.8 0.6 ± 2.7 5.9 2.7

Number of awakenings 42.5 ± 47.1 63.4

REM latency [min] −126.0 ± 117.2 172.1

Note: The uncertainty value in the simulated error column denotes the estimated error mean and estimated
standard deviation, μ̂(e) and σ̂ 2(e), not the Monte Carlo standard error. Abbreviations: REM: Rapid eye
movement, RMSE: Root mean squared error, SD: Standard deviation, SE: Sleep efficiency, TST: Total sleep
time, WASO: Wake after sleep onset

compare the estimated sleep parameter error with. To be con-
sidered relevant, the models had to have an error value that
was below this threshold. The resulting baseline values can
be seen in Table 6. This set the lower baseline for 4-class
sleep staging accuracy at 46% and a Cohen’s kappa of 0.14.
Table 6 also includes accuracy values for 2-, 3- and 5 class
sleep staging baseline models for comparison. Furthermore,
Table 6 lists baseline error values for sleep parameters in
terms of MAE and RMSE. Not shown in Table 6 is the error
in sleep parameters obtained by using hypnograms estimated
using the baseline staging model. This consistently resulted

in higher sleep parameter errors, thanwhen using the average
parameter values from the training set.

Clinical Relevance of Staging Error

Figure5 shows the simulated sleep parameter RMSE over
the whole dataset as a function of the four-class staging error
for the twenty thousand generated confusion matrices, as
well as confusion matrices reported in the literature (circles)
[18, 26, 28, 41]. Also plotted are the staging error and sleep

Table 6 Performance of
baseline models for staging and
sleep parameter estimation. The
staging model randomly assigns
a sleep stage to an epoch
according to the time of day.
The parameter estimation model
always assigns the average
parameter value of the training
set

Parameter Baseline model performance

Accuracy (Cohen’s kappa)

Wake/sleep staging 74% (0.25)

Wake/NREM/REM staging 54% (0.15)

Wake/light/deep/REM staging 46% (0.14)

Wake/N1/N2/N3/REM staging 35% (0.10)

MAE (RMSE)

WASO [min] 135.1 (197.0)

TST [min] 47.2 (64.0)

Number of awakenings [count] 6.5 (8.0)

SE [%] 14.1 (18.0)

REM Latency [min] 90.0 (142.5)

Time in light sleep [min] 52.7 (67.3)

Proportion light sleep [%] 9.9 (12.3)

Time in deep sleep [min] 32.2 (38.4)

Proportion deep sleep [%] 7.9 (9.3)

Time in REM sleep [min] 25.5 (33.7)

Proportion REM sleep [%] 5.2 (6.9)

Abbreviations: MAE: Mean absolute error, NREM: Non-rapid eye movement, REM: Rapid eye movement,
RMSE: Root mean squared error, SE: Sleep efficiency, TST: Total sleep time, WASO: Wake after sleep onset
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Fig. 5 The RMSE of different simulated sleep parameters as a func-
tion of the staging error of the confusion matrix used. The blue
semi-transparent dots show simulations of twenty thousand generated
confusion matrices, and the red circles show simulations of confusion
matrices reported in the literature [18, 26, 28, 41]. The red triangles
show the RMSE of reported sleep parameters for a given staging accu-

racy from Wulterkens et al. [26]. The dotted line shows the RMSE of
the baseline sleep parameter estimation model. All data points which
lie above the dotted line can be interpreted as less accurate than an edu-
cated guess. Abbreviations: NA: Number of awakening, REM: Rapid
eye movement, RMSE: Root mean squared error, SE: Sleep efficiency,
TST: Total sleep time, WASO: Wake after sleep onset

parameterRMSE reported inWulterkens et al. (triangle) [26],
again showing reasonable agreement between simulated and
empirical results.1

1 It should be noted that the relationship between kappa and staging
error is approximately linear within the domain of four-class sleep stag-
ing on a homogeneous population. Thus, the relationship between sleep
parameter error and Cohen’s kappa of the staging machine learning
model is similar to that seen in Fig. 5

Looking at Fig. 5, it is apparent that the relationship
between staging error and sleep parameter error is non-linear.
In general, the relationship seems to be logarithmic, although
interestingly, error in the number of awakernings (NA error)
does not strictly increase with staging error. This is an arte-
fact of how NA is defined. A very inaccurate staging model
will produce a hypnogram similar to the labeled (d) Fig. 3,
with very few contiguous wake epochs. Since close to zero
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contiguouswake epochs are found, theRMSEwill be approx-
imately equal to the true NA, on average around 13. This
behaviour can be seen on the right side of the plot in Fig. 5. A
more accurate staging model will correctly label more wake
epochs, similar to the graph labeled (b) in Fig. 3. For pro-
longedwake bouts,made up ofmany epochs, somewill likely
bemisclassified as sleep, splitting thewake bout in two. Thus,
every misclassification of a wake epoch effectively increases
NA by one, resulting in higher NA error, as shown by the
peak in NA error for staging error between 0.05 and 0.35. In
general, some parameters’ error grows gradually as staging
error increases, but others (particularlyWASO, REM latency
and NA) seem to be much more sensitive to minor staging
errors.

The dotted lines in Fig. 5 show the RMSE of the base-
line sleepparameter estimators.While some sleepparameters
(such as WASO and NA) seem to be estimated below base-
line error irrespective of staging accuracy, others (such as
deep sleep and REM duration) are estimated with an error
surpassing baseline error, even when staging error is low.

The simulation shows that a highly accurate stagingmodel
(one far surpassing the wearable staging accuracy of today’s
state of art) could conceivably perform worse than the base-
line model on the estimation of derived sleep parameters.
Under the assumptions made here, models capable of 90%
sleep staging accuracy were, on average, estimated to per-
form below a baseline model in two out of eleven sleep
parameters, essentially making the estimations worse than
a random guess. For comparison, the current state-of-the-
art in machine learning 5-class sleep staging on PSG data is
around 85% [5, 7].

In recent years, a large body of literature has focused on
developingmachine learningmodels to automate the analysis
of sleep measurements in order to ease the labour-intensive
analysis and allow the use of wearables and other screening
devices [7, 42, 43]. However, these models are seldom used
in clinical practice [5, 44].

Clinically, sleep staging accuracy is an irrelevant metric
by itself, yet it is the most popular task for training machine
learning models in the literature. The results of the simu-
lations performed here may indicate that machine learning
models should not use staging accuracy as a target variable
because of how the error propagates from sleep stages to
sleep parameters. If the underlying purpose of estimating
sleep stages is to calculate sleep parameters, it may prove
more effective and robust to train regression models to pre-
dict sleep parameters directly and to report sleep parameters
and their errors when training sleep staging models. This
could lead to more accurate results, which is important for
clinical practice.

Treating sleep parameter estimation as a regression task
poses some new challenges. Because sleep parameters are

typically properties of a whole night of sleep, in contrast to
sleep stages, which are properties of individual epochs, the
training data needed for sleep parameter regression may be
much larger than for training sleep staging models. Further-
more, not all clinically important information is contained
in sleep parameters. For example, following a sleep study, a
clinician would typically review the hypnogram in order to
get an overview of the sleep architecture. However, epoch-
by-epoch sleep stage classification may not be the best way
to generate the hypnogram and the staging error may not be
indicative of the hypnogram error, as shown in Fig. 3.

Conclusions

Wehave presented a simulation framework for exploring how
sleep staging error propagates to the calculations of sleep
parameters. Our findings suggest that some sleep parameters
are highly sensitive to staging error and that the error in sleep
parameters may be worse than a baseline model, even when
the staging accuracy is high. We have also presented a base-
line sleep stage estimation model, which can be used as a
reference for future work.

The simulation framework was evaluated using an open-
source dataset of sleep studies and four-stage classification
metrics from studies usingwearable sleep trackers. However,
the framework can be expanded to apply to other scenar-
ios, such as five-class sleep staging and machine learning on
PSG data. Future work could use this framework to investi-
gate sleep parameter error propagation in other approaches,
such as EEG or ECG, where sleep parameter error is more
widely reported. Future work performing automated analy-
sis of sleep data should not focus solely on attaining higher
sleep staging accuracy. Error statistics of sleep parameters
and other clinically relevant quantities should be reported.

In conclusion, this simulation study explores nuances
around the topic of error in sleep parameters derived from an
estimated hypnogram. Machine learning experts and sleep
scientists should have a dialogue about alternative goals for
the future.
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