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Abstract Xenografting involves the transplantation of human
tissue or cells into animal models and is an important tool for
regenerative medicine research. Implantation of engineered hu-
man bone tissues into animal models, for example, is performed
in preclinical evaluations of product safety and efficacy. With
the advent of improved experimental methodologies, these
models are further being exploited to interrogate molecular
mechanisms and physiological interactions in vivo. In parallel
to these developments, patient-derived xenograft murine
models of cancer are increasingly being studied for various
applications in cancer research and therapy; it follows that xe-
nograft models in tissue engineering may be adapted for such
approaches. In this review, we first discuss the development of
human bone xenograft models to recapitulate physiological
states in regenerative medicine. Subsequently, we discuss the
use of these techniques for applications in modeling patholog-
ical states in skeletal oncology, namely, hematopoietic malig-
nancies, bonemetastatic disease, and primary bonemalignancy.
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Introduction

Xenografting into animal models is commonly performed in
the preclinical evaluation of engineered tissues for regenera-
tive medicine, with the major objective of demonstrating safe-
ty and efficacy of the engineered constructs for regenerative
and reconstructive applications. These range from small ani-
mal models, where the engineered tissue constructs are typi-
cally implanted in an ectopic location, to large animals, where
they are usually implanted orthotopically [1], with many ex-
perimental tools specifically designed for the evaluation of
physiological responses to the implanted constructs in vivo.
For example, novel and powerful imaging modalities have
been developed to observe vascular development, in order to
shed light on angiogenic process following implantation of
engineered bone tissues [2, 3]. Advances in multimodal im-
aging have also made it possible to concurrently monitor such
responses in parallel [4] and/or multiple cell types homing and
migrating to the implanted constructs [5].

Beyond applications in regenerative medicine, human bone
xenografted models have also proven useful as experimental
models of skeletal disease, by providing a platform to study
human-specific pathologies. Leveraging on the customized ex-
perimental techniques described above, these models provide
unique opportunities to study disease states in vivo, whichwould
otherwise be impossible on human subjects. Such use of human-
derived tissue is of particular value in characterizing species-
specific behavior and provides specific insights into disease eti-
ology and drug efficacy over existing animal disease models.
This review thus focuses on the use of xenografted bone tissues
as experimental models in musculoskeletal oncology, beginning
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with a brief overview of xenografted bone models for regenera-
tive medicine, and leading to current studies in the use of
engineered bone tissue for the study of bone marrow-residing
leukemias, bone-metastatic cancers, and bone-primary tumors.

Engineered Human Bones in Xenograft Models:
Preclinical Testing for Regenerative Applications

Animal Models for Bone Regenerative Studies

A wide range of mammals have been used for preclinical
evaluations of tissue-engineered bones. Small rodents such
as mice and rats are generally preferred in early-stage studies
where large numbers are required [6]. Additionally, genetical-
ly engineered mice (GEM) are available that provide a pleth-
ora of experimental settings for study design, including dis-
eased phenotypes and, more specifically, immunocompro-
mised mice for xenografting studies [7, 8]. However, rodent
models are limited in the space and volume of implants
afforded, and implantation is commonly performed ectopical-
ly in the subcutaneous pockets or peritoneal cavity.

In the evaluation of regenerative capacity, orthotopic im-
plantations are preferred and most commonly performed on
larger animals such as rabbits, sheep, and dogs [9, 10]. In these
models, a critically sized, non-healing defect is surgically in-
troduced into the animal skeleton and subsequently treated
with the engineered tissue graft. Such models are isomorphic
to the clinical situation and purportedly demonstrate better
approximation to human bone biology and composition, as
compared to their small animal counterparts [11].

Defect type and location are also varied to reflect different
clinical scenarios or to facilitate specific experimentation. For
example, segmental defects in load-bearing long bones, such
as the femoral and tibial diaphysis, more accurately reflect the
mechanical loads experienced in vivo. [12–14]. Such defect
sites have well-defined geometry and location, facilitating
studies for the tracking of new bone formation and vascular
infiltration and mechanical testing for the evaluation of tor-
sional torque and bending strength as measures of functional
recovery [15]. In contrast, non-load-bearing facial/cranial de-
fects may be employed that usually do not require additional
fixation. These models are less challenging technically and
more amenable to small animal experimentation.
Additionally, the absence of (usually metallic) fixtures avoid
confounding effects of biomechanical stress shielding [16]
and render the surgical site more amenable to radiographic
imaging, facilitating serial, non-invasive monitoring.

Evaluation Reparative Outcomes

The accurate evaluation of physiological responses represents
another major challenge in the design and conduct of

experiments with xenografted animal models. Mineralization
and/or bone bridging in the bone graft, as determined by the
mineral extracellular matrix (ECM) formed, is most often tak-
en as a primary indicator of bone healing and is most readily
observed through radiographic imaging. This is commonly
performed with portable imaging systems (such as C-arms)
to provide gross observations, while computed tomography
(CT) techniques have gained popularity for high-resolution
three-dimensional reconstructions, which allow the acquisi-
tion of quantifiable parameters in the region, including vol-
ume and area of mineral tissue [17]. Histological staining of
sample sections is also commonly performed at end-point.
Hematoxylin and eosin (H&E) stain is mostly used, which
allows to observe not only ECM formation, but also the in-
growth of cells. Von Kossa staining and Masson’s trichrome
staining are also commonly used to identify mineral phos-
phates and ECM organization [18]. Immunohistochemistry
techniques may be further performed to allow the specific
detection of genes or cell types, providing evidence for mech-
anistic explanations and findings.

In addition to morphological observations, biomechanical
tests are often performed to quantify the restoration of struc-
tural function to the fracture site. Depending on implant site,
these include torsional, bending, and push-out tests, which are
performed on the extracted tissue samples [19]. In order to
meet specific requirements for biocompatibility testing, addi-
tional protocols for the evaluation of neo-vascularization, chi-
merism, inflammation, tumorigenesis, and other aspects of
safety and efficacy are also readily available [9, 20–23].

Behavior of Engineered Bone Grafts In Vivo

Arguably, the most crucial aspect of bone tissue engineering
lies in predicting the performance of engineered grafts in vivo.
Ectopic models, most commonly conducted in mouse models,
provide a measure of capacity bone formation after implanta-
tion. This process is highly dependent on factors intrinsic
(osteoinductive and osteoconductive properties) and extrinsic
(vascularization, immune reaction) to the graft itself [24].
Provided with adequate conditions, subcutaneously implanted
engineered bone grafts have been shown to be capable of
engraftment and formation of woven bone [25]. A major ad-
vantage of using murine models is the availability of geneti-
cally modified mice, in particular immunocompromised
strains that demonstrate greater Btake^ of implanted tissues.
Thus implanted, engineered bone constructs carrying mesen-
chymal and endothelial progenitors are capable of generating
osteogenic and vasculogenic tissue of human origin [26•].
Due to technical challenges arising from size limitations, how-
ever, these models are not commonly employed in orthotopic
settings, which would provide greater predictive value of the
efficacy of bone grafts for the treatment of fractures. Thus,
ectopic models are typically used instead as a screen in basic
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biocompatibility studies; further evaluations in more homolo-
gous settings, such as in non-healing, critically sized fracture
models, are generally required.

In a review of published articles from January 2000 to
November 2015, 175 articles were found in which tissue engi-
neering approaches were used for the treatment of critical-sized
bone defects. Among animal species used, rodents were
employed in more than 70 % of studies in the field (Fig. 1 b),
of which rats were favored for their size and ease of handling,
particularly in critical-sized defect models. Anatomical location
of the defect site is highly dependent on the choice of animals

used (Fig. 1 c); small species such as mice and rats mainly
focused on large bones such as cranium and femurs, while the
larger animals are amenable for surgery on smaller bones such
as radii and metatarsii, in accordance with the study objectives.

The experimental settings of reviewed studies were sum-
marized according to the nature of donor cells (animal origin
or human origin) and animal models used (Fig. 1). Across the
models, bone marrow-derived mesenchymal stem cells
(BMSC) and adipose tissue-derived stem cells (ASC) were
used most often, accounting for nearly 70 % of all studies.
BMSC were most popularly employed in autologous/

Fig. 1 The experimental settings
of reviewed studies were
summarized according to the
nature of donor cells (animal
origin or human origin) and
animal models used. a The MSC
employed in such studies are
derived from more accessible
tissue, such as adipose, muscle,
dental pulp, periosteum, umbilical
cord, cord blood, amniotic fluid,
and even urine. b Among animal
species used, rodents were
employed in more than 70 % of
studies in the field. c Anatomical
location of the defect site is highly
dependent on the choice of
animals used
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allogeneic cell transplantation studies (68 out of 121), but less
so in xenogeneic settings. However, this does not imply
BMSC to be less suited for xenotransplants, but are simply
more easily isolated and better established than their counter-
parts in allogeneic settings and thus preferred in such experi-
ments [27–29]. In contrast, xenotransplant experiments in re-
generative medicine are chiefly performed to evaluate the
therapeutic performance of various cell sources for clinical
applications (Fig. 1). It follows that the MSC employed in
such studies are derived from more accessible tissue, such as
adipose, muscle, dental pulp, periosteum, umbilical cord, cord
blood, amniotic fluid, and even urine (Fig. 1a). Additionally,
xenografting studies using primitive stem cells such as in-
duced pluripotent stem cells (iPSC) and embryonic stem cells
(ESC) have also been performed. It should be noted that while
these cells provide greater ease of use in the clinical setting
[30], they may, in themselves, demonstrate poorer approxima-
tion of osteogenic processes in vivo [31].

Findings from the reviewed studies generally suggest sig-
nificant osteogenesis and healing after implantation of the
engineered bone constructs, as compared to the control groups
such as an empty scaffold [32], or even against positive con-
trols such as autograft and BMP-2 treatment [33, 34]. About
7 % (13 out of 175) of the studies showed little healing after
the treatment with cellular scaffolds, with compromised effi-
cacy ascribed to inappropriate choice of cells or scaffolds,
poor conditions, or insufficient amount of cells. Notably, in
eight studies using osteoblast cell sources, four showed no
improvement to the healing, with two showing positive results
only when BMP-2-transduced cell lines were used [35–42].

A major conundrum in preclinical models lies in the con-
flicting need to evaluate the performance of human-derived
cell sources in isomorphic models, against confounding ef-
fects of host responses to the xenogeneic cell source.
Notably, in studies that compared implantation of human
BMSC against autologous cell lines, human cell lines resulted
in inferior healing efficacy, even where no inflammation re-
sponses was detected [14, 43]. Moreover, many other studies
using human cell sources claimed disappearance of implanted
human cells after weeks of transplantation, even with strict
immunosuppression regimes in place [44–46]. As such, such
tests may not be valid as definingmodels of clinical safety and
efficacy, but rather, the experimental results should be
interpreted at Brisk markers^ [47].

Engineered Human Bones in Xenograft Models:
Disease Models in Oncology

Bone, as an organ, performs many important biological func-
tions aside from providing structural support, including meta-
bolic homeostasis, hematopoiesis, and stem cell maintenance
[48]. Much of these functions are regulated by various niche

cells (mesenchymal, endothelial, osteoblast/osteoclast, and
immune cells) in the complex, interconnected bone marrow
microenvironment [49•]. In recent years, it has become evi-
dent that the bone marrow microenvironment nurtures not
only normal stem cells (mainly hematopoietic) but also leuke-
mic stem cells [50, 51] and bone metastatic cancers [52], with
many of these studies conducted on animals xenografted with
human cancer cells.

Transplantation of human cancer (stem) cells or tumor tis-
sue into immunodeficient mice has been performed over the
past 50 years. Initially developed as a means of tumor propa-
gation, xenoimplanted tumors are currently being employed in
etiological and drug-response studies. Such models offer sig-
nificant advantages over mice genetically engineered with on-
cogenes (oncomice) to spontaneously develop cancer, includ-
ing their ability to capture human cancer-specific behavior
[53]. However, in contrast to oncomice, however, the tumors
are often ectopically implanted into subcutaneous or renal
capsule spaces, which are unable to provide appropriate mi-
croenvironmental effects. Even if orthotopically engrafted,
given the fundamental differences between human and mice
[54•], the murine model might not recapitulate the physiolog-
ical process of cancer development and stem cell maintenance
in human. Bereft of a suitable microenviroment, such models
suffer from poor Btake^ of injected human cancer cells and/or
incapability to recapitulate disease features.

Research efforts to generate more Bhumanized^ mouse
models have yielded enhanced human cell engraftment, each
with their attendant limitations. These include (1) supplemen-
tation of selected human cytokines, either by exogenous ad-
ministration or genetic expression (limited by the absence of
stromal cells and difficulties in maintaining cytokine concen-
trations at physiological level [54•]) and (2) co-transplantation
of human mesenchymal niche cells into the mouse bone mar-
row (limited by an inability to maintain the xenoplanted mes-
enchymal cells in vivo for a long term [55, 56]). More recent-
ly, tissue engineering approaches have been developed to cre-
ate human bone organoids in mice, in an effort to provide the
humanized environment to accommodate human cancer cells.
Here, we summarize the recent advances involving the use of
engineered human bone in murine models, especially in the
context of skeletal oncology.

Hematopoietic Malignancies

Experimental models of leukemia are the most commonly
studied xenograft models, due largely to the ready availability
of patient cancer cell samples. A major limitation in the use of
these models, however, lies in the low xenograft efficiency
[57]. Even with positive Btake,^ many engrafted cancer cells
display a lack of propensity for expansion, especially for those
samples taken from less aggressive diseases such as
Myelodysplastic Syndrome (MDS) or chronic myeloid
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leukemia (CML) [58]. To meet the need for better xenograft
models, engineered organoid human bone may be implanted
in murine models, providing a human bone-derived niche for
stem cell engraftment and proliferation (Table 1). Works by
Holzapfel et al., Reinisch et al., and Scotti et al. [61••, 63•, 64•]
have yielded highly encouraging results, with evidence of
long-term hematopoietic stem cells taking residence within
the engineered human bone (Fig. 2).

While this represents a proof of principle in generating
better xenograft models, further improvements and standard-
ization of the models are needed. Future endeavors are likely
to include coupling of engineering human bone with mice that
are more human cell-compatible. One example is the use of
NSG-SGM3 (or NSGS), a transgenic NSG strain that consti-
tutively produces human cytokines SCF, GM-CSF, and IL3
into their serum [54•]. The NSG-SGM3 is superior in
accepting and supporting the proliferation of human cells.
Additionally, the appropriate cellular milieu for the establish-
ment of a suitable hematopoietic niche needs to be identified.
In particular, despite years of research and usage, humanMSC
sources are largely heterogenous and remain poorly defined.
Good-quality and standardized MSC are requisite for engi-
neering the human bone marrow niche reliably. Given the
recent advantage in manipulation of embryonic stem (ES)
[65] and iPS cells, these might provide a more reliable and
reproducible source ofMSC, for niche engineering. Finally, in
reconstructing such a complex biological system as the bone
marrow, bio-inspired engineering approaches based on devel-
opmental biology will be critical [66]. The process of cartilage
remodeling in bone through endochondral ossification has
been shown to be integral in the formation of a hematopoietic
niche [67] and may be adapted to engineer a functional bone
marrow, as demonstrated by Reinisch et al. [61••] and Scotti
et al. [64•].

Bone Metastatic Disease

Metastasis is estimated to cause 90 % of cancer deaths [68],
with the bone being a particularly common site of metastasis
for cancers of the lung, breast, and prostate. Bone
metastastatic disease (BMD) is associated with high mortality
and can also often be observed in cancers of the colon, stom-
ach, bladder, uterus, rectum, thyroid, and kidney [69]. This is
most pronounced in prostate cancer, which shows a peculiar
predilection for bone, with 8 out of 10 advanced prostate can-
cer patients developing BMD [70]. BMD is also responsible
for significant morbidity, resulting in bone pain, hypercalce-
mia, and pathological fractures [71].

Following escape from the primary tumor, cells are dissem-
inated via hematogenous routes to distant tissues. It follows
that premetastatic tissues provide cues to elicit cancer cell
extravasation and migration into a metastatic-permissive en-
vironment. In bone metastasis, the process is believed to T
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Fig. 2 Works by Holzapfel et al., Reinisch et al., and Scotti et al. [61••, 63•, 64•] have yielded highly encouraging results, with evidence of long-term
hematopoietic stem cells taking residence within the engineered human bone
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mirror the cytokine-mediated Bhoming^ of hematopoietic
stem cells to bone marrow [72] and bone-trophic prostate
cancer cells have been shown to hijack hematopoietic stem
cell niches within the trebaculae [73]. Following dissemina-
tion to these sites, significant cross-talks between the dissem-
inated tumor cell (DTC) and the microenvironment continue
to take place, leading to transformation into a Bmalignant
niche^ and activation of DTC towards a metastatically active
phenotype. Much of these interactions are governed by oste-
oblasts, mesenchymal progenitors, and endothelial cells with-
in the sinusoidal hematopoietic niche [49•, 74].

The role of bone marrow-derived MSC in BMD progres-
sion, in particular, has been the topic of much debate.
Contrasting results have been demonstrated, for example for
tumor-promoting [75, 76] and tumor-suppressive effects of
MSC [77] in the microenvironment. Part of these differences
may be explained by the phenotypic state of the MSC.
Endochondral differentiation of MSC towards osteoblastic lin-
eages is known to elicit chemoattractants, such as SDF-1 and
MCP-1, and thus attract and retain B leukemia and metastatic
breast cancer cells [78–80]. Once homed to bone marrow, tu-
mor cells have been shown to interact with MSC or with their
progeny (such as osteoblasts and adipocytes) to induce both
pro-tumorigenic and inhibitory effects [81–83]. In light of such
findings, it is clear that early crosstalk between disseminated
tumor cells and the bone microenvironment is key to metastatic
activation and disease progression [84], highlighting an urgent
unmet need for adequate models of the disease.

Many experimental models of bone metastasis have been
developed over the past century, which have been integral in
identifying key molecular interactions in the bone metastatic
niche. These models, however, are lacking in various aspects
(Table 2). More recently, models combining features from the
above have been employed that may provide more accurate
representation of the clinical situation. Nemeth et al. first
showed preferential homing of circulating prostate cancer cells
towards subcutaneously implanted human fetal bone fragments
over host skeleton in immunodeficient mice [95].
Subsequently, Moreau et al. found that co-implantation of

engineered bone and tumor grafts also enables recapitulation
of breast cancer metastatic events [96]. Besides increased ac-
cessibility to samples, tissue-engineered bone exhibits a major
advantage in the ability to manipulate the engineered human
bone prior to implantation [97]. For example, varying the stage
of differentiation was found to influence extent of metastasis,
suggesting a role of osteoblastic progenitors in homing [96].
Similarly, altering the state of the ECMmay yield differences in
metastatic responses. Tumor migration and proliferation, skel-
etal remodeling, and even molecular events [98] may then be
interrogated longitudinally, aided by their extra-skeletal loca-
tion and close proximity to skin [99]. The scaffolds used may
also be modified to study the contributions of specific mole-
cules in the process: modification of silk scaffolds with receptor
activator of nuclear factor kappa-B ligand (RANKL), for ex-
ample, increased breast cancer metastasis to subcutaneously
implanted engineered bone constructs [100]. Additionally, the
use of human cells facilitate the tracking of human-specific
proteins, isolating graft-specific responses [101••]. Other ad-
vantages of this system include amenability to genetic manip-
ulation prior to implantation and the use of human tissue to
reduce confounders arising from xenogenic host cells. The
use of tissue-engineered bone in a metastasis model thus allows
the generation of a range of premetastatic conditions, followed
by longitudinal and real-time assessment of critical cancer pa-
rameters. These include tumor size, extent of skeletal remodel-
ing, and expression of osteogenic markers. Using such ap-
proaches, Holzapfel et al. demonstrated species-specific hom-
ing of metastatic prostate cancer cells to engineered human
bone, where they contribute to significant osteolysis and cancer
growth, recapitulating the clinical features of the disease
[101••]. These studies and others suggest the utility of murine
models with xenografted bone implants as humanized models
of bone metastatic disease, providing unique opportunities to
investigate poorly understood aspects of the disease [102•].

A major research theme in tissue engineering involves vas-
cularization of implanted constructs, in order to promote tissue
viability and engraftment. Establishment of a functional vas-
cular network in xenografted bone is critical for effective

Table 2 Summary of existing models in the study of bone metastasis

Experimental set up Ref Limitations

Two-dimensional (Petri dish cultures) Cancer cells + ECM [85] Lack three-dimensional organization
Mixed cellular co-cultures [86]

Three-dimensional (engineered tissue) Cancer cells + ECM in a scaffold [87–89] Unable to recapitulate early metastatic
events such as extravasation. Difficult to imageCellular co-cultures [90]

Spheroidal cultures

In vivo models Subcutaneous implant of metastatic graft model [91] Unable to recapitulate human-specific responses
Technical challenges in imaging and studying

early events
Tibial injection of cancer cells [92]

Genetically engineered mouse models [93]

Intracardiac injection of cancer cells [94]
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models of bone metastasis, considering the roles of vascular
transport and bone marrow endothelial cells in cancer cell
transport and homing [103]. Several strategies have been de-
veloped to promote vascularization of engineered tissue fol-
lowing implantation, including biomaterial and scaffold mod-
ification, use of growth factors, and the use of co-culture sys-
tems [104]. The use of angiogenic cells in co-culture has also
been explored, and endothelial lineages [26•, 105–108] have
been incorporated into engineered tissue constructs to pro-
mote vessel formation. These angiogenic cells spontaneously
form prevascular networks in vitro and anastomose rapidly
following implantation, leading to perfusion of the construct.
In experiments involving MSC-EPC grafts, the neo-
vasculature formed within the graft is found to comprise cells
of human origin, connected to host vasculature, suggesting
concurrent vasculogenesis and angiogenesis [108]. It is antic-
ipated that such efforts will have significant impact on refining
the current xenograft models by reproducing the heterocellular
composition of the bone marrow, which, in turn, are expected
to have profound effects on cancer cell behavior [109, 110].

Primary Bone Malignancy

Bone-primary malignancies, including osteosarcoma (OS),
are generally rare in occurrence, affecting less than 1 % of
the general population in the USA [111]. OS may be catego-
rized according to its location within the bone structures
(intramedullary, cortex-associated) or disease entity (Paget’s
disease, fibrous dysplasia, Mazabraud’s disease) [112]. A pe-
culiar hallmark of the disease is the bimodal age distribution:
OS affects mainly adolescents (10–14 years old) and older
adults (>65 years old) [111, 113] and represents a significant
health concern for these populations. However, the disease
remains poorly understood, with severe limitations in existing
diagnostic and treatment options [112]. A review of www.
clinicaltrials.org (accurate to January 2016) revealed 349
clinical trials, of which 149 are completed (42.7 %); 145 are
still recruiting, inviting, or active (41.5 %); 44 were
terminated, withdrawn, or suspended (12.6 %); 10 are not
yet recruiting (2.9 %); and only 1 approved for marketing
(0.3 %). These statistics suggest extremely poor clinical
translation of investigated techniques, highlighting the need
for adequate disease models to investigate the molecular
pathogenesis of OS.

Since 2011, there have been 5863 publications about OS,
forming approximately 32.9 % of all publications to date (in-
formation from Web of Science, accurate to January 2016),
demonstrating the increase in research prominence of OS over
the last 5 years. Approximately 11.0 % of these publications
were related to the use of animal models for studying OS,
mostly involving murine models (6.4 % or 373 publications)
or canine models contributed (4.6 %; 265 publications). It is
interesting to note that dogs are predisposed to OS, leading to

their utility as spontaneous OSmodels [114]. Canine models of
OS have been identified to present parallel genetic features to
human OS [115], including similarly dysregulated p53, c-sis,
and c-myc profiles [116]. Crucially, they capture critical clinical
features of the disease, such as diffuse pulmonary metastasis
[117]. Using such models, Ranieri et al. correctly predicted the
efficacy of a regime based on intra-arterial cisplatin and irradi-
ation to achieve local tumor control and retain limb function
[118, 119]. Canine studies are, however, largely prohibitive in
terms of costs and scale, severely limiting their routine applica-
tion in research studies. Moreover, significant differences re-
main between canine and human osteosarcomas [120].

In the murine models, human xenografts are introduced via
inoculation of cells subcutaneously [121], direct injection into
the tibia [122], or subperiosteal injection [123]. Thus generated,
these models act as avatars to elucidate optimal drug regimes or
as disease models for the evaluation of the role of oncogenic
molecules in disease progression, including p53 [121], IL-6/
STAT3 [122], and ROCK1 [124]. Of these, orthotopic models
are favored for better approximation to the osseous tumor mi-
croenvironment; multimodal positron emission tomography,
computed tomography, magnetic resonance imaging, and bio-
luminescent imaging may be performed to achieve high-
resolution imaging of tumor interactions with bone [125].
Technical challenges of such approaches remain, however,
such as mortality arising from the intrabone injections [123],
technically demanding imaging techniques and difficulty in
harvesting or retrieving the xenografted cells.

As above, the use of tissue engineering approaches to gen-
erate bone (in this case, osteosarcomas) may provide similar
value as an experimental model for osteosarcoma research. In
fact, osteosarcoma lines such as MG62 and Saos-2 have his-
torically been used in studies evaluating the compatibility of
novel biomaterials with osteogenic cells [126, 127], providing
early evidence of the technical feasibility of engineering an
osteosarcoma in vitro. According to Villasante et al., an
in vitro model of Ewing’s sarcoma was found to be capable
of replicating several features of the native bone tumor niche,
including recovery of a hypoxic and glycolytic phenotype—
features that are lost in monolayer cultures [128]. To such
constructs, it has been suggested that co-cultures with
human-derived mesenchymal stromal cells and/or endothelial
cells may be introduced to mimic the cellular heterogeneity of
the in vivo environment, further improving the biological fi-
delity of such models [129]. Corollary to this, such assembled
human osteosarcoma-bone constructs may be implanted into
immunocompromised mice, possessing sufficient biological
complexity to capture the pathophysiological processes in tu-
mor progression. This approach has, to our knowledge, not yet
been attempted, and it remains to be seen if this model will
provide a more clinically relevant model, particularly if ma-
lignant transformation and metastatic distribution can be faith-
fully reproduced.
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Conclusions

Xenograft models are commonly used to establish the safety and
efficacy of engineered tissue grafts prior to translation to clinics.
More recently, such models have gained attention as experimen-
tal models of disease. Xenografted engineered bone tissues, in
particular, have applications in models of leukemia, bone meta-
static disease, and osteosarcoma. Major advantages of this ap-
proach include recapitulation of human-specific physiology in-
cluding cancer cell homing and drug responses. Additionally,
thesemodels benefit from the extensive range of tools developed
for evaluating both graft and host responses in preclinical tests.
Significant challenges remain, however, which need to be ad-
dressed before such models may be reliably used. Graft viability
is compromised by implantation, due to a range of issues includ-
ing immunogenic responses to the xenograft and the lack of
adequate vascularization. This is particularly pronounced in
orthotopic, large animal models, which suffer from both
immunorejection issues and compromised nutrient supply
compounded by the size of constructs. As such, disease models
remain largely limited to rodent models, in which research is
currently being undertaken to improve the tolerability of the
hosts and the biological performance of the grafts.
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