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Abstract In this paper, we present a mixture of support
vector data descriptions (mSVDD) for one-class classifica-
tion or novelty detection. A mixture of optimal hyperspheres
is automatically discovered to characterize data. The model
includes two parts: log likelihood to control the fit of data
to model (i.e., empirical risk) and regularization quantizer
to control the generalization ability of model (i.e., general
risk). Expectation maximization (EM) principle is employed
to train our proposed mSVDD. We demonstrate the advan-
tage of the proposed model: if learning mSVDD in the input
space, it simulates learning a single hypersphere in the feature
space and the accuracy is thus comparable, but the training
time is significantly shorter.

Keywords Mixture of experts · Mixture model · Kernel
method · One-class classification

1 Introduction

Novelty detection is an interesting research topic in many
data analytics andmachine learning tasks ranging from video
security surveillance, network abnormality detection, and
detection of abnormal gene expression sequence to name a
few. Different from the binary classification which focuses
mainly on balance dataset, novelty detection aims to learn
from imbalance dataset where a majority in the dataset is
normal data, and abnormal data or outliers constitute a minor
portion of dataset. The purpose of novelty detection is to find
patterns in data that do not conform to expected behaviors
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[5]. To obtain this aim, a data description is constructed to
capture all characteristics of normal data, and subsequently
this description is used to detect abnormal data which cannot
fit it well. These anomaly patterns are interesting because
they reveal actionable information, the known unknowns
and unknown unknowns. Notable real-world applications
of novelty detection include intrusion detection [10], fraud
detection (credit card fraud detection, mobile phone fraud
detection, insurance claim fraud detection) [7], industrial
damage detection [2], and sensor network data processing
[13].

Probability density-based and neural network-based
approaches have been proposed to address novelty detec-
tion problems. Another notable solution is the kernel-based
approach. At its crux, data are mapped into the feature space
with very high or infinite dimension via a transformation.
In this space, a simple geometric shape is learned to dis-
cover the domain of novelty [16,20,21]. One-class support
vector machine (OCSVM) [20] uses an optimal hyperplane,
which separates the origin from data samples, to distinguish
abnormality from normality. The domain of novelty in this
case is certainly a positive region of the optimal hyperplane
with maximal margin, the distance from the origin to the
hyperplane. In another approach, support vector data descrip-
tion (SVDD) [21], the novelty domain of the normal data, is
defined as an optimal hypersphere in the feature space, which
becomes a set of contours tightly covering the normal data
when mapped back to the input space.

Data in real-world applications are often collected from
many different data sources. Such a heterogeneous dataset
requires a mixture of individual data descriptions. A mixture
of experts refers to the problem of using and combiningmany
experts (e.g., classification or regression models) for classifi-
cation or prediction purpose [12]. Two challenging obstacles
that need to be addressed include: (1) how to automatically
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discover the appropriate number of experts in use or auto-
matically do model selection; (2) how to train an individual
expert with reference to others.

In this paper, we present a mixture of support vector data
descriptions (mSVDD) for the novelty detection task. The
idea of mSVDD is to use a set of hyperspheres as a data
description for normal data. In mSVDD, we leverage the
probabilistic framework with kernel-based method, where
the model comprises two quantities: log likelihood to con-
trol the fit of data to the model (i.e., empirical error) and
regularization quantizer to control the generalization capac-
ity of the model (i.e., general error). The EM algorithm is
used to train the model and the model is guaranteed to grad-
ually converge to an appropriate set of optimal hyperspheres
that well describes data. In the model, for each hypersphere
(expert), a quantity, which expresses the total fit of data to
this hypersphere, is utilized for model selection. We start
with a maximal number of hyperspheres and step by step the
redundant hyperspheres are eliminated. In the experimental
section, we demonstrate the advantage of mSVDD: although
learning in the input space, the set of hyperspheres offered
by mSVDD is able to approximate a set of contours formed
by a single optimal hypersphere in the feature space. In par-
ticular, our experiment on several benchmark datasets shows
that mSVDD often yields a comparable classification accu-
racy while achieving a significant speed-up compared with
the baselines.

To summarize, the contribution of the paper consists of
the following points:

– We have viewed the problem of mixture of hyperspheres
under the probabilistic perspective and proposed a mix-
ture of support vector data description (mSVDD) for
novelty detection. We have employed the EM algorithm
to train mSVDD. The resultant model can automatically
discover the appropriate number of experts in use and the
weight of each expert.

– We have conducted the experiments on several bench-
mark datasets. The results have showed that mSVDD can
learn mixture of hyperspheres in the input space which
can approximately represent the set of contours generated
by the traditional SVDD in the feature space. While the
accuracy of mSVDD is comparable, the training time of
mSVDD is faster than the kernelized baselines, since all
computations are performed directly in the input space.

– Compared with the conference version [15], we have
introduced two new strategies, i.e., approximate SVDD
(amSVDD) and probabilistic mSVDD (pmSVDD), to
improve the training time and accuracy compared with
the general mSVDD. We have also conducted more
experiments to evaluate these two new strategies and
investigated the behaviors of the proposed algorithms.

2 Related work

We review the studies on a mixture of experts closely related
to our work. These works can be divided into two branches:
mixture of hyperplanes and mixture of hyperspheres. The
works presented in [6,12,14] applied divide-and-conquer
strategy to partition the input space into many disjoint
regions, and in each region, a linear or nonlinear SVM can
be employed to classify data. In [19], multiple hyperplanes
were used for learning to rank. It also follows up the divide-
and-conquer strategy and the final rank is aggregated by the
ranks offered by the hyperplanes. Multiple hyperplane was
brought into play in [1,24] formulticlass classificationwhere
each class was characterized by a set of hyperplanes. In [9],
a mixing of linear SVMs was used to simulate a nonlin-
ear SVM. This approach has both the efficiency of linear
SVM and the power of nonlinear SVM for classifying data.
Recently, a Dirichlet process mixture of large-margin kernel
machine was proposed in [27] for multi-way classification.
This work conjoined the advantages of Bayesian nonpara-
metrics in automatically discovering the underlying mixture
components and maximum entropy discrimination frame-
work in integrating large-margin principle with Bayesian
posterior inference.

Yet another approach to combine linear classifiers for non-
linear classification is ensemble methods including bagging
[3], boosting [8], and random forests [4]. They implement a
strong classifier by integrating many weak classifiers. How-
ever, since ensemble methods tend to use a great number of
base classifiers and for stable model like SVM, the train-
ing is quite robust to data perturbation. Hence, the classifiers
obtained at different stages are usually highly correlated and
this would increase the number of iterations required for con-
vergence and also bring the negative effect to the performance
of combination scheme with such classifiers used as weak
learners.

Mostly related to ours are the works of [17,18,25], which
are shared with us the idea of using a set of hyperspheres as
the domain of novelty. In [25], the procedure to discover a set
of hyperspheres is ad hoc, heuristic and does not conform to
any learning principle. Theworks of [17,18] are driven by the
principle learningwithminimumvolume.However, themain
drawback in those works is that the model selection cannot
be performed automatically and the number of hyperspheres
in use must be declared a priori.

3 Background

3.1 Expectation maximization principle

The main task in machine learning problems is to find the
optimal parameter θ of the model given a training set D. In
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probabilistic perspective, it is described as a maximization
of log likelihood function. However, estimating parameters
using maximum-likelihood principle is very hard if there
are some missing data or latent variables (i.e., cannot be
observed). The expectation maximization principle [11], for
short EM, was proposed to overcome this obstacle. EM
is an iterative method, in which each iteration consists of
expectation step (E-step) followed by the maximization step
(M-step). The basic idea of EM is described as follows.

Let {xn}Nn=1 be the observed data and {zn}Nn=1 the latent
variables; the log likelihood function is given as follows:

l (θ) =
N∑

n=1

log p (xn | θ) =
N∑

n=1

log

[
∑

zn

p (xn, zn | θ)

]
.

As can be seen, the log cannot be pushed inside the sum;
hence it is hard to find the maximum of l (θ). Instead of
finding maximum likelihood, EM involves the complete data
log likelihood as follows:

lc (θ) =
N∑

n=1

log p (xn, zn | θ) .

In the E-step, the expected complete data log likelihood
Q
(
θ, θ t−1

)
is computed by formulation as follows:

Q
(
θ, θ t−1

)
= E

[
lc (θ) | D, θ t−1

]
.

Then, in theM-step, θ t is found by optimizing the Q function
w.r.t θ

θ t = argmax Q
(
θ, θ t−1

)
.

3.2 Weighted support vector data description

Given the training set D = {(xn, yn)}Nn=1 where xn ∈ R
d

and yn ∈ {−1; 1} , n = 1, . . . , N including normal (labeled
by 1) and abnormal (labeled by −1) observations. To find
the domain of novelty, weighted SVDD [26] learns an opti-
mal hyperspherewhich encloses all normal observationswith
tolerances. Each observation xn is associated with a weight
Cλn and a smaller value for the weight implies that the cor-
respondent observation is allowed to have a bigger error. The
optimization problem of weighted SVDD is defined as fol-
lows:

min
c,R,ξ

(
R2 + C

N∑

n=1

λnξn

)

s.t. : ‖xn − c‖2 ≤ R2 + ξn, n = 1, . . . , N ; yn = 1

‖xn − c‖2 ≥ R2 − ξn, n = 1, . . . , N ; yn = −1

ξn ≥ 0, n = 1, . . . , n

(1)

where R, c are the radius and center of the optimal hyper-
sphere, respectively.

It follows that the error at the observation xn is given as

ξn = max
{
0, yn

(
‖xn − c‖2 − R2

)}

and the optimization problem in Eq. (1) can be rewritten as
follows:

min
c,R

(
R2 + C

N∑

n=1

λn max
{
0, yn

(
‖xn − c‖2 − R2

)})
.

4 Mixture of support vector data descriptions

4.1 Idea of mixture of support vector data descriptions

Let us denote the latent variable which specifies the expert
of xn by zn ∈ {0; 1}m . The latent variable zn , a bit pattern
of size m where only its jth component is 1 and others are
0, means that the jth expert (i.e., the jth SVDD) is used to
classify the observation xn . The graphical model of mSVDD
is shown in Fig. 1.

In mSVDD, we describe normal data using a set of m
hyperspheres denoted by S j

(
c j , R j

)
, j = 1, . . . ,m. Given

the jth hypersphere and the observation xn , the conditional
probability to classify xn w.r.t the jth hypersphere is given as
follows:

p
(
normal | xn,S j

) = p
(
yn = 1 | xn,S j

)

= p
(
yn = 1 | xn, z jn = 1, θ

)
= s

(
R2
j − ∥∥xn − c j

∥∥2
)

p
(
abnormal | xn,S j

) = p
(
yn = −1 | xn,S j

)

= p
(
yn = −1 | xn, z jn = 1, θ

)
=s
(∥∥xn − c j

∥∥2 − R2
j

)
,

(2)

where s (x) = 1
1+e−x is the sigmoid function and θ is the

model parameter.
Intuitively, p

(
normal | xn,S j

)
is exactly 1

2 if xn locates at
the boundary of the hypersphere S j and increases to 1 when
xn resides inside the hypersphere or decreases from 0 when

Fig. 1 Graphical model of a
mixture of SVDD

123



226 Vietnam J Comput Sci (2016) 3:223–233

Fig. 2 Plots of two functions on the same coordinate when δ = 0

xn resides outside the hypersphere and moves apart from it.
Because it is difficult to handle the log of s (x) = 1

1+e−x , we
approximate s (x) as follows:

s (x) = 1

1 + e−x
≈ e−max{0;δ−x}. (3)

To visually see how tight the approximation is, we plot the
above two functions on the same coordinate when δ = 1. As
can be seen in Fig. 2, the blue line (presenting function 1

1+e−x )

is close to the green line (presenting function e−max{0;δ−x}).
Therefore, the function e−max{0;δ−x} is a good approximation
of the sigmoid function s (x).

The marginal likelihood is given as: p (Y |X, θ) =∏N
n=1 p (yn | xn, θ), where X = [xn]Nn=1 ∈ R

d×N , Y =
[yn]Nn=1 ∈ R

N , and θ = (θ1, θ2, . . . , θm) encompass the
parameters of all experts.

4.2 Optimization problem

To take into account both the general and empirical risks, the
following optimization problem is proposed:

max
θ

⎛

⎝−
m∑

j=1

R2
j + C × log p (Y | X, θ)

⎞

⎠ . (4)

In the optimization problem as shown in Eq. (4), we mini-
mize

∑m
j=1 R

2
j to maximize the generalization capacity of

the model. In the meanwhile, we maximize the log marginal
likelihood log p (Y | X, θ) to boost the fit of the model to
the observed data X . The trade-off parameter C is used to
control the proportion of the first and second quantities or to
govern the balance between overfitting and underfitting.

To efficiently solve the optimization problem in Eq. (4),
we make use of EM principle by iteratively performing two
steps: E-step and M-step.

4.2.1 E-step

Given z = (z1, z2, . . . , zN ), we first compute the complete
log likelihood as

lc (θ | D) = log p (Y, z | X, θ) =
N∑

n=1

log p (yn, zn|xn, θ) .

(5)

It is clear that (cf. [15] for details)

log p (yn, zn | xn, θ)

= log

⎛

⎝
m∏

j=1

(
p
(
yn | z jn =1, xn, θ

)
p
(
z jn =1 | xn, θ

))z jn
⎞

⎠

=
m∑

j=1

z jn
(−ξ j (xn) + logα j

)
, (6)

where α j � p
(
z jn = 1 | θ

)
is interpreted as the mixing pro-

portion of the j th expert and satisfies
∑m

j=1 α j = 1. Because

it is difficult to compute the log of p
(
yn | xn, z jn = 1, θ

)
, as

mentioned before, we approximate p
(
yn | xn, z jn = 1, θ

)
as

p
(
yn | xn, z jn = 1, θ

)

= e−ξ j (xn) = e
−max

{
0;δ−yn

(
R2
j−‖xn−c j‖2

)}

.

Therefore, we have

log p (yn, zn | xn, θ) =
m∑

j=1

z jn
(−ξ j (xn) + logα j

)
.

Substituting Eq. (6) in Eq. (5), we gain the following:

lc (θ | D) =
N∑

n=1

m∑

j=1

z jn
(−ξ j (xn) + logα j

)

=
m∑

j=1

N∑

n=1

z jn
(−ξ j (xn) + logα j

)
.

To fulfill the E-step, we compute the following conditional
expectation when z is varied (cf. [15] for details):

E (θ) =
〈
−

m∑

j=1

R2
j + Clc (θ | D)

〉

z/D,θ(t)

= −
m∑

j=1

R2
j +C

m∑

j=1

N∑

n=1

〈
z jn
〉

z/D,θ(t)

(−ξ j (xn)+logα j
)
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= −
m∑

j=1

R2
j + C

m∑

j=1

N∑

n=1

τ
(t)
jn

(−ξ j (xn) + logα j
)
,

where θ(t) is the value of parameter θ at t th iteration and
τ

(t)
jn � p

(
z jn = 1 | xn, yn = 1, θ(t)

)
can be computed by the

Bayes formula as follows:

τ
(t)
jn � p

(
z jn = 1 | xn, yn, θ(t))

=
p
(
yn | z jn = 1, xn, θ(t)

)
α

(t)
j

∑m
k=1 p

(
yn | zkn = 1, xn, θ(t)

)
α

(t)
k

.

4.2.2 M-step

In this step, we need to find θ = (θ1, θ2, . . . , θm) where
θ j = (α j , c j , R j

)
, which maximizes E (θ). To this end, we

rewrite this function as

E (θ)=−
m∑

j=1

(
R2
j +

N∑

n=1

Cτ
(t)
jn ξ j (xn)

)
+C

m∑

j=1

τ
(t)
j log α j

= −E1 (R, c) + CE2 (α) ,

where τ
(t)
j �

∑N
n=1 τ

(t)
jn , R = [

R j
]m
j=1, c = [

c j
]m
j=1, and

α = [α j
]m
j=1.

It is obvious that the two following optimization problems
need to be solved. The first becomes

max
α

⎛

⎝
m∑

j=1

τ
(t)
j log α j

⎞

⎠

s.t. :
m∑

j=1

α j = 1, α j ≥ 0, j = 1, . . . ,m.

The rule to update α is given as: α(t+1)
j = τ

(t)
j∑m

k=1 τ
(t)
k

.

The second is given as:

min
c j ,R j

(
R2
j +

N∑

n=1

Cτ
(t)
jn max

{
0, δ−yn

(
R2
j −
∥∥xn−c j

∥∥2
)})

where j = 1, . . . ,m.

If we choose δ = 0, the second is indeed split into m inde-
pendent weighted SVDD problems as

min
c j ,R j

(
R2
j +

N∑

n=1

Cτ
(t)
jn max

{
0, yn

(∥∥xn − c j
∥∥2 − R2

j

)})

where j = 1, . . . ,m. (7)

4.3 How to do model selection in mixture of SVDDs

We start with the number of hyperspheres m = mmax and
make use of the criterion α

(t+1)
j < λ, where λ > 0 is a

threshold, for decision to eliminate the j th hypersphere. The
small value for themixing proportion α

(t+1)
j of the j th hyper-

sphere implies that τ
(t)
j is too small as compared to others.

The quantity τ
(t)
j = ∑N

n=1 p(z
j
n = 1 | xn, yn = 1, θ(t)) is

interpreted as the sum of the relevance levels of observations
to the j th hypersphere and its small value implies that this
hypersphere is redundant and has a too small radius.

4.4 The approaches to make a decision in mSVDD

InmSVDD, a naturalway to classify a newobservation x is to
examinewhether it belongs to at least one ofm hyperspheres.
The decision function is given as follows:

f (x) = max
{
sign

(
R2
1 − ‖x − c1‖2

)
, . . . ,

sign
(
R2
m − ‖x − cm‖2

)}

where R j , c j are radius and center of the j th hypersphere,
respectively.

The above decision function can be regarded as a hardway
to decide the normality or abnormality. To take advantage
of the probabilistic perspective of mSVDD, we propose a
probabilistic approach to make a decision. This approach
decides an observation x as a normal data point if more than
k experts (e.g., k = 0.8m) classify it as normal data with a
confidence level over ρ, that is

f (x) =

⎧
⎪⎨

⎪⎩

1 if ∃ j : p
(
normal | x,S j

) = 1

1 if
∣∣{ j : p

(
normal | x,S j

) ≥ ρ
}∣∣ ≥ k

−1 otherwise

,

where the second case means that x is classified as normal if
there are more than k experts that predict it as normal with a
confidence level over ρ.

Table 1 Statistics of experimental datasets

Datasets #Train #Dim Domain

a9a 26, 049 123 Social survey

usps 5833 256 OCR images

Mushroom 6500 112 Biology

Shuttle 34, 800 9 Physical

Splice 800 60 Biology
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Fig. 3 Experimental results on
the datasets. a Training times, b
One-class accuracy, c negative
prediction value, d F1 score
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4.5 Approximate mixture of SVDDs

According to Eq. (7), M-step requires the solutions of m
weighted SVDD problems, each of which requires training
the whole training set. It is also noteworthy that the variable
τ

(t)
jn governs the influence of data point xn to the j th hyper-

sphere. A large value of τ
(t)
jn highly affects the determination

of the j th hypersphere and vice versa, and a small value of
τ

(t)
jn slightly affects the determination of the j th hypersphere.

Therefore, the data point xn with a small value of τ
(t)
jn can be

eliminated when training the j th hypersphere without possi-
bly changing the learning performance. In return, the training
time of a mixture of SVDDs would be improved because
training each SVDD now possibly involves a small subset of
the training set. To realize this idea, we define the parameter
μ ∈ (0, 1) as a threshold to eliminate data point xn in the
determination of the j th hypersphere (i.e., τ (t)

jn < μ).

5 Experiment

5.1 Experimental settings

We establish the experiments over five datasets.1

1 All datasets can be downloaded at the URL http://www.csie.ntu.edu.
tw/~cjlin/libsvmtools/datasets.

The statistics of the experimental datasets is given in
Table 1.To form the imbalanceddatasets,we choose a class as
the positive class and randomly select the negative data sam-
ples from the remaining classes such that the proportion of
positive and negative data samples is 10 : 1.Wemake a com-
parison of our proposed mSVDD with ball vector machine
(BVM) [22], core vector machine (CVM) [23] and support
vector data description (SVDD) [21]. All codes are imple-
mented in C/C++. All experiments are run on the computer
with core I3 2.3GHz and 16GB in RAM.

5.2 How fast and accurate the proposed method
compares with the baselines

Wedo experiments to investigate the performance of our pro-
posedmSVDDin the input space comparedwithBVM,CVM
and SVDD in the feature space with RBF kernel, named
KBVM, KCVM, and KSVDD, respectively. To prove the
necessity of mSVDD, we also compare mSVDD with CVM
using the linear kernel (i.e., LCVM).Wewish to validate that
with mixture model dataset, a single hypersphere offered by
LCVM cannot be sufficiently robust to classify it. We apply
fivefold cross-validation to select the trade-off parameter C
for KBVM, LCVM, KCVM, KSVDD, mSVDD and the ker-
nel width parameter γ for KBVM, KCVM and KSVDD.
The considered ranges areC ∈ {2−3, 2−1, . . . , 229, 231

}
and

γ ∈ {
2−3, 2−1, . . . , 229, 231

}
. With mSVDD and LCVM,

the linear kernel given by K
(
x, x ′) = 〈x, x ′〉 is used,whereas
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Table 2 One-class accuracy (in %) comparison

Dataset One-class accuracy

mSVDD SVDD KBVM KCVM LCVM

a9a 76.18 75.06 76.62 75.24 50.00

usps 94.81 91.65 99.15 98.89 50.02

Shuttle 95.43 98.24 99.99 99.99 50.00

Mushroom 95.48 99.75 100 100 50.10

Splice 80.00 70.98 84.92 83.84 48.28

Table 3 Negative prediction value (in %) comparison

Dataset Negative prediction value

mSVDD KSVDD KBVM KCVM LCVM

a9a 88.99 89.80 88.13 87.24 73.44

usps 98.20 96.84 99.67 99.58 86.67

Shuttle 95.68 80.63 99.99 99.97 20.00

Mushroom 95.61 99.64 100 100 62.86

Splice 75.70 67.52 83.60 84.11 12.50

Table 4 F1 score (in %) comparison

Dataset F1 score

mSVDD KSVDD KBVM KCVM LCVM

a9a 63.76 59.75 65.91 64.30 38.76

usps 92.60 90.82 99.07 98.04 28.14

Shuttle 95.40 97.45 100 99.99 90.99

Mushroom 95.76 99.74 100 100 65.02

Splice 79.80 69.96 85.24 84.59 66.44

with kernel versions, the RBF kernel given by K
(
x, x ′) =

e−γ ‖x−x ′‖2 is employed. It is certainly true that the compu-
tation cost of the linear kernel is much lower than that of the
RBF kernel. We fix δ = 0 in all experiments; then in Sect.
5.4 we will investigate the behavior of mSVDD when δ is
varied. We repeat each experiment five times and compute
the means of the corresponding measures. We report training
times (cf. Table 5 and Fig. 3a), the one-class accuracy (cf.
Table 2 and Fig. 3b), the negative prediction values (NPVs)
(cf. Table 3 and Fig. 3c) and F1 score (cf. Table 4 and Fig.
3d) corresponding to the optimal values of C , γ .

In addition, the one-class accuracy is computed by acc =
%T P+%T N

2 = acc++acc−
2 . This measure is appropriate for

one-class classification, since it is required to achieve high
values for both acc+ and acc− to produce a high one-class
accuracy. The negative prediction values (NPVs) are com-
puted by N PV = T N

T N+FN . This formulation indicates that
a less number of false negative (FN) produces a higher value
of NPV. F1 score is the harmonic mean of precision and

Table 5 Training time (in s) comparison

Dataset Training time

mSVDD KSVDD KBVM KCVM LCVM

a9a 55.48 1,334.75 1,342.05 3,396.91 1.45

usps 1.53 11.92 10.95 33.30 1.02

Shuttle 5.00 57.11 10.55 20.92 0.62

Mushroom 5.00 39.36 11.90 7.29 0.53

Splice 0.50 8.10 1.75 4.47 0.06

recall and is computed by F1 = 2.precision.recall
precision+recall where

precision = T P
T P+FP and recall = T P

T P+FN . F1 score can

be rewritten as F1 = 2.T P
2.T P+FP+FN which shows that a higher

value of F1 score is caused by a less number for both false
negative and false positive.

As observed from the experimental results, our proposed
mSVDD is faster than others (except LCVM) on all datasets.
This observation is reasonable sincemSVDD learnsm hyper-
spheres in the input space and, hence, is slower than learning
only one hypersphere in the input space. However, mSVDD
is faster than the kernel versions because of its lower ker-
nel computation cost. Regarding the measures involving the
learning performance, mSVDD is comparable or a little
less than others especially KBVM and KCVM. The rea-
son is that in mSVDD, each component hypersphere in
the input space can simulate a contour generated by map-
ping back the optimal hypersphere of KSVDD, KBVM,
and KCVM in the feature space into the input space. The
slightly lower accuracy and NPVs of mSVDD compared
to the kernel versions comes from the fact the hyper-
spheres of mSVDDmay be less robust than its representative
contours.

To visually support the above reason, we design experi-
ments on 2-D datasets as displayed in Figs. 4 and 5. In Fig. 4,
mSVDD recommends two hyperspheres in the input space
to approximate two contours formed by a single hypersphere
in the feature space. In Fig. 5, mSVDD offers three simple
hyperspheres which can be visually seen to sufficiently simu-
late the set of contours formed by a single hypersphere in the
feature space. The results of LCVM in all cases are worse,
because it learns a single hypersphere in the input space
which cannot sufficiently represent the contours formed by
a single hypersphere in the feature space.

5.3 How approximate and probabilistic approaches
improve mSVDD

We empirically compare mSVDD with its two variations
which are approximate approach (amSVDD) and probabil-
ity approach (pmSVDD). In amSVDD, we use the threshold
μ = 0.8 to eliminate data points for reducing training size
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Fig. 4 Comparison of mSVDD with the linear kernel, SVDD with the RBF kernel, and CVM with the linear kernel

Fig. 5 Comparison of mSVDD with the linear kernel, SVDD with the RBF kernel, and CVM with the linear kernel

Table 6 One-class accuracy (in
%) and training time (in s)
comparison

Dataset One-class accuracy Training time

mSVDD amSVDD pmSVDD mSVDD amSVDD pmSVDD

a9a 76.18 77.42 77.43 55.48 60.89 58.77

usps 94.81 93.29 95.20 1.53 1.41 1.09

Mushroom 95.48 92.74 92.35 5.00 4.74 5.39

Australian 81.39 81.06 82.57 0.06 0.02 0.06

Breast-cancer 96.44 94.51 96.75 0.02 0.01 0.02

Table 7 Negative prediction
value (in %) and F1 score (in %)
comparison

Dataset Negative prediction value F1 score

mSVDD amSVDD pmSVDD mSVDD amSVDD pmSVDD

a9a 88.99 90.77 90.78 63.76 63.49 63.49

usps 98.20 97.77 98.36 92.60 89.85 92.68

Mushroom 95.61 92.14 91.42 95.76 92.25 91.79

Australian 83.02 84.69 84.12 79.23 79.90 80.66

Breast-cancer 92.37 86.59 94.19 97.13 95.14 97.54

in each SVDD problem. Our pmSVDD applies probability
perspective and allows experts to vote when predicting new
data. We set the parameter k to 2 and the parameter ρ to 0.8.
Tables 6, 7 and Fig. 6 summarize the performance measures
of mSVDD, amSVDD, and pmSVDD. The results show that

pmSVDD achieves higher accuracies on all datasets, except
mushroom, in comparison to mSVDD. This demonstrates
that the probability approach really improves mSVDD by
allowing a voting scheme and using probabilistic perspective.
For amSVDD, its training time is usually less than others in
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Fig. 6 Experimental results of
the datasets on cross-validation.
a Training times, b One-class
accuracy, c negative prediction
value, d F1 score
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Table 8 The one-class accuracy
when parameter δ is varied

δ = –1 –0.75 –0.50 –0.25 0 0.25 0.50 0.75

a9a 74.93 76.08 75.54 74.78 74.32 75.69 75.07 75.41

usps 93.96 95.011 92.68 93.51 93.41 94.46 93.50 92.57

Mushroom 95.55 95.30 96.20 95.83 95.86 95.00 95.05 95.55

Australian 78.90 79.04 79.08 77.12 78.94 78.06 77.42 77.49

Diabetes 67.99 68.40 68.30 72.78 72.70 71.69 74.03 73.21

Table 9 The negative
prediction value when parameter
δ is varied

δ = –1 –0.75 –0.50 –0.25 0 0.25 0.50 0.75

a9a 87.86 88.83 88.56 87.69 87.49 88.39 88.00 88.14

usps 98.01 98.37 97.56 97.79 97.68 98.08 97.78 97.52

mushroom 95.61 96.12 96.19 95.24 96.29 94.45 95.02 94.82

australian 79.73 79.21 80.00 77.30 79.87 78.62 77.34 76.74

diabetes 49.28 50.73 51.88 51.78 52.99 52.42 54.21 52.10

all datasets, except a9a. Obviously, it comes from the rea-
sonable reduction in training size of each SVDD problem
at each step. This allows amSVDD to run faster than others
while still preserving the accuracy.

5.4 How variation of the parameter δ influences
accuracy

To analyze how parameter δ affects the one-class accuracy
and negative prediction value, we conduct the experiment

where δ is varied and other parameters are kept fixed.
As observed from Tables 8 and 9, when δ is varied in
ascending order, the accuracy at first increases to its peak
and then gradually decreases. This fact may be partially
explained as δ is altered and also changes the probability
function of the observed data to classify them with respect
to a particular hypersphere. When δ decreases, the compo-
nent hypersphere tends to absorb more data outside it and,
consequently, the hypersphere becomes bigger. Therefore,
some abnormal data points can be misclassified. Reversely,
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Fig. 7 Behavior of mSVDD when parameter δ is varied

the component hypersphere tends to be smaller and would
not give a very high probability to data located inside
the hypersphere and near the boundary. This prevents the
model from misclassifying abnormal data points, but have
the side effect of increasing the misclassification of normal
data.

To visually manifest the above reason, we also provide
simulation study on 2 − D datasets, as displayed in Fig. 7.
When we set δ = −0.5 and start with 3 hyperspheres, the
hyperspheres tend to become bigger; as a result, two of them
overlap each other. In the meanwhile, we increase δ to 1 and
get a better solution which induces 90 % one-class accuracy.
However, if we continue to increase δ to 12, the hypersphere
is too small to describe normal data and, thus, the one-class
accuracy declines to 88.75 %.

6 Conclusion

Leveraging on the expectation maximization principle, we
propose amixture of support vector data descriptions for one-
class classification or novelty detection problem. Instead of
learning the optimal hypersphere in the feature space involv-
ing costly RBF kernel computation, mSVDD learns a set of
hypersphere(s) in the input space. Each component hyper-
sphere is able to simulate a contour generated by mapping
back the optimal hypersphere in the feature space into the
input space. The experiments established on the benchmark
datasets show that the mSVDD obtains shorter training time
while achieving comparable one-class classification accura-
cies compared with other methods operated in the feature
space.
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